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A Multitask Learning Model for Online
Pattern Recognition

Seiichi Ozawa, Member, IEEE, Asim Roy, Senior Member, IEEE, and Dmitri Roussinov

Abstract—This paper presents a new learning algorithm for mul-
titask pattern recognition (MTPR) problems. We consider learning
multiple multiclass classification tasks online where no informa-
tion is ever provided about the task category of a training example.
The algorithm thus needs an automated task recognition capability
to properly learn the different classification tasks. The learning
mode is “online” where training examples for different tasks are
mixed in a random fashion and given sequentially one after an-
other. We assume that the classification tasks are related to each
other and that both the tasks and their training examples appear in
random during “online training.” Thus, the learning algorithm has
to continually switch from learning one task to another whenever
the training examples change to a different task. This also implies
that the learning algorithm has to detect task changes automati-
cally and utilize knowledge of previous tasks for learning new tasks
fast. The performance of the algorithm is evaluated for ten MTPR
problems using five University of California at Irvine (UCI) data
sets. The experiments verify that the proposed algorithm can in-
deed acquire and accumulate task knowledge and that the transfer
of knowledge from tasks already learned enhances the speed of
knowledge acquisition on new tasks and the final classification ac-
curacy. In addition, the task categorization accuracy is greatly im-
proved for all MTPR problems by introducing the reorganization
process even if the presentation order of class training examples is
fairly biased.

Index Terms—Automated task recognition, knowledge transfer,
multitask learning, online learning, pattern recognition.

I. INTRODUCTION

I N machine learning and neural networks, we are obviously
interested in understanding and replicating the knowledge

acquisition processes of humans. A particular area of interest is
learning of related tasks. We generally observe that humans can
learn a new task quite quickly when the task is similar to the
one they have learned before. For example, a person who plays
tennis can quickly and easily learn a similar sport such as squash
or racquetball. So the theoretical question is: In what ways is the
human brain using knowledge of one task to enhance its learning
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of another similar task? The conjecture is that the human brain
is using some form of knowledge transfer when it knows that a
new task is similar to the one it had learned before. Thus, we
are interested in using similar knowledge transfer in artificial
systems to speed up the learning of similar tasks.

In general, the question of knowledge transfer arises when
multiple tasks are learned, one after another or one in con-
junction with another. This type of simultaneous or sequential
learning of different tasks is called multitask learning and is
well described in the literature (e.g., [1], [6], [25], and [26]).
Caruana presents a multitask learning mechanism where a
single multilayered perceptron is trained to perform multiple
tasks [5], [6]. Ghosn and Bengio [9] have proposed an approach
based on manifold learning. In these approaches, all tasks are
learned simultaneously by the system. On the other hand, Silver
et al. [22], [23] have proposed a type of multitask learning
where the tasks are given sequentially. The difficulty with
this approach, where a new task is learned in the same neural
network that had learned another task before, is the problem
of catastrophic interference or forgetting[4]. In catastrophic
interference, the neural network forgets the knowledge of
previous tasks when a new task is learned because its structural
parameters change with the learning of the new task. To prevent
catastrophic forgetting, Silver and Mercer [23], [24] save the
networks for previously learned tasks and use them to generate
virtual examples of the old tasks to learn the main network that
includes the new task.

We consider a dynamic multitask learning environment
where training examples for different tasks are given sequen-
tially to the learning system, but we permit frequent switching
of tasks. In addition, no particular order is required for the se-
quence of training examples for a given task or for the random
switching of tasks. This continuous online task learning is
very similar to human learning. In real life, humans are often
provided with different descriptions of the same object and
they learn to describe those objects with lots of descriptors. For
example, a child initially learns to recognize people and faces.
Then, over time, a child learns other descriptions of people –
their sex (male or female), their approximate age (young or
old), their approximate size (big or small, fat or skinny), their
approximate height (short or tall), and so on. Learning each
type of description is a separate task for the child. A child is
generally taught these tasks in a trial-and-error process over
time using a variety of examples.

The need for this type of learning in artificial systems is illus-
trated by the following example. Suppose a robot is to be trained
to recognize different features on the face of a person, such as
color of hair, hair style, shape of the nose, ears, eyes, and so
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on. Then, the robot is to be trained with pictures of different
people with different features where each picture is labeled ac-
cordingly. For example, one picture might have the label “black
hair,” another might say “red hair,” and so on. A sequence of
pictures showing different hair colors might be shown to the
robot so that it can learn to recognize hair color. That could be
followed by a sequence of pictures showing different shapes of
faces. Then, it could be another sequence of pictures of different
hairstyles and so on.

More generally, the multitask recognition problem is as fol-
lows. An artificial robot is presented with various objects and
their descriptions at different times and the task is to learn to
describe those objects with an appropriate set of descriptors. So
the robot has the following tasks to perform: 1) automatically
group the various descriptors into appropriate tasks without ex-
ternal supervision (e.g., group different hair color descriptions
for the hair color recognition task), 2) build and train models
appropriate to each task, and 3) then apply those task models to
describe new objects.

In this paper, we propose an approach to multitask pattern
recognition (MTPR) where learning is online and the system
learns to recognize tasks automatically. Online automated task
recognition capability is important to build robots that collect
data and learn on their own. This paper is organized as follows.
Section II presents general concepts related to online learning of
multiple tasks and the basic ideas of an automated task recogni-
tion system. Then, Section III presents the online learning algo-
rithm composed of multiple neural classifiers. In Section V, we
present experimental results for ten MTPR problems based on
five University of California at Irvine (UCI) data sets. Finally,
Section VI has our conclusions and directions for future work.

II. THE MULTITASK LEARNING PROBLEM

—SOME GENERAL CONCEPTS

A. The Multitask Learning Problem and Automated
Online Learning of Tasks

MTPR problems [7], [15] consist of several learning tasks,
each of which corresponds to a conventional multiclass classifi-
cation problem. Fig. 1 shows an example of an MTPR problem
in which three different classification tasks (tasks 1, 2, and 3) are
defined. All classification tasks have the same input domain, but
their class boundaries differ. Task 1 has three classes , , and

; task 2 has three classes , , and ; and task 3 consists of
the classes , , and . We assume that the tasks use different
names for the classes. Thus, the class names , , and are not
used in tasks 2 and 3. But it is not known to the learning system
that classes , , and belong to task 1. During training, each
training example comes with a class label, but not a task label.
So the learning system does not know what task a particular
training example belongs to.

We assume that the presentation of training examples to the
system is sequential. The period of learning from a whole se-
quence of training examples is called a learning session. Fig. 2
shows an example of a learning session where the first five ex-
amples are from task 1 in Fig. 1, the second seven are from task
2, the next four are from task 3, followed by six from task 1,
and so on. The period of learning from training examples of a

Fig. 1. Example of multitask learning problems in pattern recognition that is
composed of three different three-class tasks. The points marked {o, x, *} rep-
resent the training examples in the 2-D input space; {o, x, *} are the class labels.
This example is “Problem 2” in the later experiments. (a) Task 1. (b) Task 2. (c)
Task 3.

Fig. 2. Schematic diagram to show the sequential presentation of training ex-
amples.

single task is called an epoch. In Fig. 2, the first epoch consists
of five examples of task 1 and the learning session consists of
seven epochs for three different tasks. Thus, a training session
is a sequence of epochs of different tasks where the same task
can appear in different epochs in a session.

As mentioned above, the learning system is never told
whether a particular training example is from task 1, 2, or 3.
We require that after completion of a learning session, the
learning system should say, for this problem, that three tasks
were learned and that task 1 consists of classes , , and ,
task 2 consists of classes , , and , and task 3 consists of
classes , , and . So, in general, the learning system groups
classes into tasks and makes appropriate inferences as to which
classes belong to which tasks. Therefore, part of the proposed
method performs unsupervised learning of tasks (assignment
of classes to tasks and determining how many tasks there are)
since training examples do not come with task labels.

In multitask problems, the question of knowledge transfer
arises when the tasks are related to each other. In pattern clas-
sification tasks, task relatedness is measured by the amount of
overlap between the classes of different tasks. For example,
Fig. 1(a)–(c) shows that the region of class has large overlaps
with those of classes and , and class also has large over-
laps with classes and . So our proposed system is based on
the following assumptions and requirements: 1) tasks are mul-
ticlass classification problems whose inputs are from the same
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domain, but where class labels are unique to each task; 2) no
task labels are provided in the training examples, just class la-
bels; 3) training examples for a task are given sequentially one at
a time and task switching can be random during online training;
in other words, there is no particular order for the presentation
of training examples or for the tasks; 4) classification tasks are
related to one another; that is, there is some overlap between the
class regions of different tasks; and 5) the learning system does
automatic grouping of classes into tasks and builds classifiers
for the tasks.

B. Stable Online Learning, Automated Task Recognition,
and Knowledge Transfer

1) Stable Online Learning of Tasks Using Multiple Classi-
fiers: To allow online learning of different tasks in a stable
way, we use the classifier architecture called resource allocating
network with long-term memory (RAN-LTM) [11], [12] that
can build different classifiers for different tasks in an adaptive
way. RAN-LTM is an extension of the RAN model [16] and the
learning is carried out not only online but also in one pass[10]
where training examples are presented to the learning system
only once. RAN-LTM stores representative training examples in
the long-term memory that are used for preventing catastrophic
forgetting and for facilitating transfer of knowledge from one
task to another. The RAN-LTM method is discussed in more
detail in Section III-A.

2) Automated Task Recognition Mechanisms–A General
Overview: The proposed algorithm groups classes into tasks to
minimize prediction error. Since classes of different tasks have
overlap, the grouping of classes into separate tasks is based
on separating those classes that have substantial overlap and
combining those that do not. For example, in Fig. 1, classes

, , and do not have substantial overlap between them,
so they can be grouped into one task. Similarly, classes , ,
and do not have substantial overlap, so they can be grouped
into another task and so on. However, classes , , and
have substantial overlap with the classes , , , , , and

, so all of those classes cannot be grouped together into a
single task. The multitask learning system therefore has to
recognize which classes do or do not overlap in a substantial
way in order to assign classes to tasks and minimize the overall
prediction error. At the end of training, the task recognition
algorithm builds a separate classifier (a separate RAN-LTM
neural network) for each task.

The proposed task recognition approach has some limitations
as shown by the following example. The example in Fig. 3 has
three tasks, but the tasks have classes that do not overlap. Since
there is no overlap between the classes of different tasks, the
algorithm will not recognize that there are three different tasks,
although it will learn to perform all three tasks correctly using
a single classifier.

3) Knowledge Transfer Mechanisms–A General Overview:
The task recognition algorithm accumulates knowledge about
tasks over time and the accumulated knowledge is transferred
to a new task whenever a new task is encountered. Knowledge
transfer starts when a new classifier (a new RAN-LTM network)
is created for a new task. The extent of knowledge transfer de-
pends on the amount of overlap of class regions between the old

Fig. 3. Example of non-MTPR problems.

Fig. 4. Schematic diagram to explain the idea for knowledge transfer mecha-
nism. The class boundaries of task 1 and task 2 are represented by dotted and
solid lines, respectively. Now we consider a case that the task is changed from
task 1 to task 2 and a training example (sample 1 or sample 2) is provided to a
learning system.

and new tasks. The actual transfer of knowledge to a new task
occurs through the transfer of matching memory items of the
previous classifier to the new classifier, where memory items
are representative examples of the class regions in the previous
task. Since training examples for the new task are given sequen-
tially one at a time, the knowledge transfer itself also occurs on
an ongoing basis.

Knowledge transfer works in the following way. In Fig. 4,
the dotted and solid lines define the class boundaries for tasks
1 and 2, respectively. There are seven subregions bounded by
these lines and each subregion is denoted by a pair of class la-
bels such as where, in this case, class belongs to task 1
and class belongs to task 2. Assume that the learning system
was learning task 1, had constructed a RAN-LTM classifier for
it, and also had stored some memory items (representative ex-
amples) for task 1. Then, the first training example from class

of task 2 is given to the learning system. The training ex-
ample, shown in Fig. 4 as a solid dot and labeled “sample 1,”
is from the subregion . Let be the neighborhood of
a radius around sample 1. For sample 1, the neighborhood

Authorized licensed use limited to: Seiichi  Ozawa. Downloaded on March 26, 2009 at 03:46 from IEEE Xplore.  Restrictions apply.



OZAWA et al.: A MULTITASK LEARNING MODEL FOR ONLINE PATTERN RECOGNITION 433

Fig. 5. Structure of resource allocating network with long-term memory
(RAN-LTM).

is completely within the region of class of task 1. So knowl-
edge is transferred from task 1 to task 2 by transferring to the
new classifier for task 2 all of the memory items (representative
examples) from the task 1 classifier that are within the neighbor-
hood . During this transfer, the class labels of those memory
items are changed from “ ” to “ ” to match the class label of
sample 1. Next, suppose the second example of task 2 is “sample
2” in Fig. 4 from the subregion and the neighborhood
area is . In this case, the neighborhood crosses over into
the subregion . Since sample 2 is in the class region
of task 1, only class memory items in the neighborhood
are transferred to the new classifier for task 2 and their class la-
bels changed to “ .” Hence, the neighborhood is shown in
a truncated form.

What knowledge transfer does is to add extra training exam-
ples from related tasks to facilitate quick and efficient learning
of the new task. In the example above, the transfer of memory
items added some extra training examples for learning task 2 in
addition to the two examples, samples 1 and 2, which are pro-
vided to the classifier from the outside.

III. AN ALGORITHM FOR ONLINE MULTITASK LEARNING

FOR PATTERN RECOGNITION

As mentioned in Section II-B, the proposed online learning
algorithm has three main parts: 1) one-pass online learning of
classifiers, 2) automated task recognition, and 3) knowledge
transfer between tasks. These three parts are explained below
in some more detail.

A. One-Pass Online Learning of Classifiers

1) Network Architecture of RAN-LTM: The RAN-LTM
algorithm [11], [12] is the core classification algorithm in our
learning system. The Appendix provides further details on the
algorithm. Fig. 5 shows the architecture of RAN-LTM that
consists of two parts: resource allocating network (RAN) and
long-term memory (LTM). RAN uses a single-hidden-layer
neural network structure and is similar to radial basis function
(RBF) networks [18]–[21]. RAN allocates hidden units auto-
matically during online learning. Let the number of input units,
hidden units, and output units be , , and , respectively.

As shown in Fig. 5, let the input to the RAN be the vector
, the output of the hidden units be the vector
, and the output of the RAN be the vector
. The hidden and output unit values of the

network are computed as follows:

(1)

(2)

where and are the center and variance
(width) of the th hidden unit, is the connection weight from
the th hidden unit to the th output unit, and is the bias of
the th output unit. The variance or width is generally fixed
for all RAN networks.

In RAN, each output node represents a class in the classifica-
tion problem based on the binary encoding scheme. So the th
output node represents the th class . Ideally,
with a properly trained RAN network, if the input vector belongs
to class , then the th output node should have a value of 1 and
all other output nodes should have a value of 0. Less ideally, a
point in class might have an output vector of ,
but the point is still considered to be from class because the
output of the class node is quite high compared to the other
ones.

The training examples stored in LTM are called memory
items. Let be the total number of memory items in LTM.
Each memory item, which is a representative training example,
stores the following information: an input vector , the class
label , and the status flag . So the triplet

denotes the th memory item. Define a target

output vector for the class label
based on the binary encoding scheme. For example, for a point
in class of task 1 in Fig. 1, the target vector is , for a
point in class it is , and so on. The status flag has a
value of 0 or 1 that represents the status of the memory item: 0
means it is inactive and 1 means it is active. If a memory item
is active, then that memory item could be retrieved from LTM
for use as a training example. If it is inactive, then it cannot be
retrieved for training. In the simple version of RAN-LTM [12],
a new memory item is created whenever a new hidden unit is
created in the RAN network. That is, the new RBF center and
the corresponding target output vector are stored as a memory
item. To prevent catastrophic forgetting in RAN, some of these
memory items are provided as training examples to the learning
system along with the new ones.

2) Learning Algorithm of RAN-LTM: The RAN-LTM
learning algorithm is divided into two phases: allocation of
hidden units and updating of RBF centers and connection
weights between the hidden and output units. The procedure
for allocation of hidden units is the same as that of the original
RAN [16], except that a new memory item is created whenever
a new hidden unit is created. The RBF centers and the
connection weights are modified using the conventional
steepest descent algorithm for error minimization. To prevent
catastrophic forgetting, some of the memory items in LTM are
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retrieved and provided as training examples along with the new
training example .

Let be the set of memory items in the neighborhood of
, which are retrieved from LTM and provided as training ex-

amples along with . The total squared error to be minimized
consists of two parts: squared error for the new example

and squared error for the retrieved memory items
in the neighborhood of . These are defined as follows:

(3)

(4)

(5)

where and are the network outputs for and
. In the simple version of RAN-LTM, the set is se-

lected based on hidden unit activations. Further details of the
RAN-LTM algorithm are in the Appendix.

B. Automated Recognition of Tasks

The following functions are part of the algorithm that auto-
matically recognizes tasks and builds corresponding classifiers
for them: 1) detection of task change during online learning, 2)
identification of known and unknown tasks and learning within
a proper classifier, 3) reorganization of classifiers to correct mis-
allocation of classes to tasks. In the following sections, we pro-
vide detailed descriptions of these functions.

1) Detection of Task Changes During Online Learning:
There are a variety of methods that detect changes in data
streams [8]. We use a heuristic approach [27] to detect task
changes and it is based on the prediction error on incoming
training examples. Consider any input to a RAN-LTM network.
The output at each output node will be a value around between
0 and 1. The output value of a particular output node reflects
the confidence with which that class is predicted for the given
input, where each output node represents a particular class.
Generally, if the output value is smaller than a certain threshold
value , it means that the confidence is low in the prediction
that the input is from the class represented by that output node.
On the other hand, when the output value is larger than , it
means that the confidence is high in the prediction.

Consider the problem in Fig. 1. Suppose the first RAN-LTM
network has learned task 1 fairly well and for the input vector
(denoted as a black square in Fig. 1), the network output vector
is . That means confidence is high in the prediction that

is from class . Suppose the task now changes to task 2 and
the first training example from task 2 is the same input , but its
label is now class . Whenever a new class is encountered, the
RAN-LTM algorithm adds a new output node to the network.
So a fourth output node is added to the network for class and
the target output vector for is now . However, the
current RAN-LTM network, trained for task 1, predicts to be
from class and the output vector is . From (4), the
squared error for input is . Therefore, if the output

of the class node is larger than and the error is larger than
, it signals a potential task change to the task recognition

algorithm.
The prediction error of a network on a particular example

could be large due to noise (due to overlapping classes within a
task) and not due to task change. To avoid the potential error in
detection of task changes, the task recognition algorithm looks
for some more evidence for a task change. That is to say, when a
training example signals a potential for a task change (large pre-
diction error coupled with a new class not seen before), training
of the current network is suspended and the current training ex-
ample is temporally stored in a queue whose maximum size is
defined by . Then, the prediction errors and the class labels
are tracked for the next examples. If the average error
for the examples in the queue becomes less than the threshold

1 or a known class is given before the queue reaches
its size limit, the algorithm infers that there is no task change.
Even when the queue reaches its size limit without encountering
a training example that belongs to one of the known classes of
the current RAN-LTM, no task change is detected by the algo-
rithm if the average prediction error on the stored examples is
less than the threshold . In both of these cases, the cur-
rent RAN-LTM is adjusted using the examples in the queue, and
the queue is emptied. On the other hand, if the queue reaches its
maximum size and the average error over examples exceeds
the threshold , it infers that a task change has indeed
occurred.

In the above task change detection procedure, the algorithm
resumes training when an example of a known class is given
and the examples stored in the queue are used for training the
current network. This heuristic is based on the two assumptions
about how training examples are presented to the system. First,
we assume that a certain number of training examples for a task
are presented to the system before a switch to a different task.
Second, we assume that examples of different classes within a
task occur randomly in the training sequence. That also implies
that the presentation of examples could be biased. For instance,
training examples from a certain class might show up for the first
time in the training sequence long after other class examples are
presented. In such a case, our task change detection procedure
infers that the training examples in the queue from an unknown
class actually belong to the current task if an example from a
known class appears in the training sequence before the queue
reaches its maximum size.

It remains a question how parameter , the maximum queue
size, is determined. In general, it is difficult to determine an-
alytically before the start of online learning. It, therefore, has
to be set using some heuristic. The main criterion that guides
the setting of is detection of a task change as quickly as pos-
sible. Setting of , therefore, is a tradeoff between reliability
and quickness of task change detection. However, not much
is lost with task change detection failures because the algo-
rithm has a backup method to recover from such failures (see
Section III-B3). Section V-C discusses how is set for empir-
ical tests of the algorithm.

1The prediction accuracy is good if the squared error is less than �� � �� ,
which means the largest output is larger than � and the predicted class matches
the target class.
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Fig. 6. Proposed model for MTPR problems that uses multiple RAN-LTMs for
multiple tasks.

2) Identification of Known and Unknown Tasks and Learning
Within a Proper Classifier: After detecting a task change, the
task recognition algorithm has to identify whether the next task
is known or unknown. This is done by evaluating the prediction
errors for existing RAN-LTM networks.

Consider again the learning sequence in Fig. 2. After the
system trains with the training examples of the first task through
the third task, there will be three RAN-LTM networks in the
system, one for each task. When the training examples of the
fourth task (which are actually task 1 examples, as shown in
Fig. 2) are presented next, the system should detect, using the
procedure described above, that a task change has occurred.
When a task change is detected, the system first tries to find a
RAN-LTM network that is consistent with the stored training
examples in the queue. Consistency is checked on the basis of
average prediction error for the stored training examples. If a
RAN-LTM whose average error is less than is found,
it indicates that the new task was encountered before. That par-
ticular RAN-LTM is then retrieved and trained with the set of
stored examples for that task. For the problem of Fig. 2, there-
fore, when training examples of the fourth epoch (which are ac-
tually task 1 examples) are presented to the system, it will rec-
ognize that there already is a RAN-LTM network for task 1. It
will then retrieve the RAN-LTM network for task 1 and train it
with the set of queued examples.

On the other hand, if no existing RAN-LTM matches the new
task examples in the queue, a new RAN-LTM is created for
the new task. To transfer knowledge to the new task, the newly
created RAN-LTM inherits all of the memory items from the
current RAN-LTM. Fig. 6 shows the structure of the proposed
system that is composed of the conflict detector (to detect a
new task as explained above) and multiple RAN-LTMs that are
responsible for learning individual tasks. Note that the system
must learn different tasks on a continuous basis and not wait
until the end of training to group classes into tasks.

3) Reorganization of Classifiers to Correct Misallocation of
Classes to Tasks: Since task change detection is based on a
heuristic, there is no guarantee that the task recognition algo-
rithm always detects task changes correctly. Misdetection of
task changes can result in misallocation of classes to appropriate
tasks (or networks). Thus, a backup measure is required to com-
pensate for such failures and it should be carried out on an on-
going basis to maintain accurate task recognition.

Misallocation of classes to tasks is caused mainly by: 1) an
inadequate number of examples to learn about class regions and
2) the lack of class examples to learn a task. The following situ-
ation illustrates the first case. For the problem of Fig. 1, classes

of task 1 and of task 2 have an overlapped region in their
input domains. Suppose that class examples of task 1 are se-
quentially drawn from a part of the overlapped region and they
are used for training during the first epoch. Then, suppose task 1
is changed to task 2, and several class examples of task 2 are
sequentially drawn from a different part of the overlapped re-
gion in the first several stages of the second epoch. In this case,
the given examples of classes and are from the overlapped
region between the two classes, but they happen to have no sig-
nificant overlap with each other. In this case, the class exam-
ples would be stored temporarily in the queue and then would
be used to train the current task 1 network unless the average
error becomes larger than the threshold (i.e., a task change is
detected) when the queue reaches its maximum size. The end
result could be that class becomes part of task 1. Therefore,
the algorithm could miss the task change when task 1 is changed
to task 2.

The following situation illustrates the second case. Again, for
the problem of Fig. 1, suppose that training examples in the first
epoch are sequentially drawn from classes and , and the
network is trained only for those two classes. Then, suppose task
1 is changed to task 2, and several class examples, which are
drawn from the overlapped region with class of task 1, are
presented for training in the first several stages of the second
epoch. Since the above class examples have no significant
overlap with the classes and of task 1, the algorithm would
miss the task change when task 1 is changed to task 2. Again,
the end result could be that class becomes part of task 1.

In the first case, where class examples are misallocated
to the task 1 network, the class examples in that particular
overlapped region with class can be no longer allocated to
task 1. Thus, class appears in both networks of tasks 1 and 2.
The same thing could happen in the second case. Suppose that
class happens to be allocated to the task 1 network along with
classes and . If several class examples in the overlapped
region with class are presented, a task change would be de-
tected because the queued examples of class would have a
large prediction error. Thus, parts of class could appear in
both networks. In general, as a result of the flaw in the task
change detection heuristic, the same class can exist in multiple
networks.

To rectify this misallocation of classes to multiple net-
works, we use a procedure to reorganize and consolidate
classifiers. Assume that class is assigned to or exists in two
RAN-LTMs denoted by RAN-LTM and RAN-LTM .
Let and be the set of memory items for that class
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Fig. 7. Schematic diagram to explain knowledge transfer that is actually real-
ized by replacing the class labels of memory times marked by squares with the
label of � in task 2. The solid dot denoted by � represents a given training
example; � and � are the closest memory items to � for task 2 and task 1,
respectively. Note that the boxed points in the figures represent memory items
to be transferred. (a) Task 1. (b) Task 2.

in RAN-LTM and RAN-LTM , respectively. To consoli-
date class , either should be moved to RAN-LTM or

should be moved to RAN-LTM . To determine which
set of memory items is to be moved, the prediction error
of RAN-LTM is estimated for ; in the same way, the
prediction error of RAN-LTM is estimated for .
If , class is consolidated into RAN-LTM ;
otherwise, it is consolidated into RAN-LTM . To minimize
the overall error and the number of classifiers, the reorganiza-
tion procedure checks the error for every shared class between
two RAN-LTMs, and this procedure is applied to every combi-
nation of two RAN-LTMs. After the reorganization operation,
every class is allocated to one and only one task (or network).

IV. TRANSFER OF KNOWLEDGE BETWEEN TASKS

If multiple tasks are related to one another, then the learning
of a particular task among them can be speeded up if knowledge
is transferred from another related task that has already been
learned. Baxter [3] has shown the theoretical effectiveness of
such knowledge transfer. When there are several learned tasks
that are related to the new task, it is important to choose the one
most closely related to the knowledge transfer. There is con-
siderable work on selecting the right source for such transfer of
knowledge [2], [17], [26]. Silver and Mercer [22] have proposed
several ways to measure the relatedness of tasks.

The knowledge transfer procedure in our system works in the
following way. For the problem of Fig. 7, suppose the system
so far has been trained with task 1 examples and the task now
is changed to task 2. After detection of a task change, the
algorithm transfers all memory items in the current RAN-LTM
to the new RAN-LTM for the new task, but they remain inactive
(i.e., the status flag is set to 0 for all memory items in the new
RAN-LTM). That means that none of the transferred memory
items can be used yet for learning task 2. In Fig. 7(a) and (b),
all of the points are memory items. Now suppose that a new
“class 5” training example (solid dot) of task 2, around
the point , is provided to the system. The closest
memory item to in Fig. 7(b) is , and in Fig. 7(a) is the
memory item corresponding to in Fig. 7(b). The knowledge
transfer is achieved through activation of a set of the transferred
memory items. In this case, it is the set of and memory items
around . In the neighborhood of (dotted circle), there are

seven memory items. Based on the knowledge transfer ideas
of Section II-B2, five of the seven memory items including
itself, those that have the same class label as , are activated
for task 2 [see the five squares in Fig. 7(a)]. Therefore, the class
labels of the corresponding five transferred memory items in
Fig. 7(b), denoted by the squares, are set to “class 5,” which
is the label of , and these memory items are then activated.
That means that they can be used for learning task 2 from
now on. The procedure illustrated here is the basic method of
knowledge transfer for a single new training example of the new
task. However, this knowledge transfer occurs on an ongoing
basis for every new training example of the new task. Thus,
whenever a new training example for the new task is given, the
class labels of the inactive memory items in its neighborhood
are changed as per this procedure and then activated for training
purposes. Note that the status flag of activated memory items
is set to “1” to distinguish them from inactive ones.

The effectiveness of this knowledge transfer mechanism de-
pends on the size of the neighborhood. A large neighborhood
transfer can bias a new task in a detrimental way, whereas a
small neighborhood transfer may not transfer enough knowl-
edge. On the other hand, a large neighborhood transfer can be
useful if the two tasks are highly related. In general, it is dif-
ficult to determine the size of the neighborhood transfer ana-
lytically either before or during learning. So the algorithm has
a mechanism to minimize as much as possible the problem of
too much or too little neighborhood transfers. In this algorithm,
incorrect knowledge transfer is caused by the assignment of
incorrect class labels to the transferred memory items in the
new RAN-LTM. So it uses the following mechanism to correct
such incorrect knowledge transfers: every time a new training
example is given, the algorithm first finds the closest active
memory item and checks the class label of the memory item
against that of the training example. If there is discrepancy be-
tween them, the class label of the active memory item is changed
to that of the training example.

A. Automated Task Recognition–A Summary of the Algorithm

Here is a step-by-step description of the automated task
recognition algorithm.

[Automated Task Recognition Algorithm]

Step 0: Initialize: For the first training example , create
a classifier (RAN-LTM) with a single hidden unit and a single
output unit, set the center vector to , and initialize the
weight vector to (i.e., ). Set the number of
output units to 1. Define an empty queue where the last
training examples can be stored.

Step 1: New class encountered, create a new output unit:
If a training sample is given and is an unknown class
label, add a new output unit . Define the output
variable and the corresponding class label by and ,
respectively.

Step 2: Calculate average error for a new training example
and for those in the queue: Store a new training example

in . Obtain the output of the

Authorized licensed use limited to: Seiichi  Ozawa. Downloaded on March 26, 2009 at 03:46 from IEEE Xplore.  Restrictions apply.



OZAWA et al.: A MULTITASK LEARNING MODEL FOR ONLINE PATTERN RECOGNITION 437

current classifier (RAN-LTM) for all the training examples in
, and calculate the average squared error .

Step 3: Check if the prediction of RAN-LTM is consistent
with a given target signal—if so, update current RAN-LTM;
otherwise, check if enough evidence for a task change has
been collected: If or the class of the new
training example is already trained by the current RAN-LTM,
then go to Step 7. Else if the number of training examples in
is less than , go back to Step 1.

Step 4: Reorganize Classifiers: Perform the Reorganize
Classifiers procedure described below.

Step 5: Check if there is an existing RAN-LTM for this
task—if so, switch to it: Search all existing RAN-LTMs to
check if the average error for the training examples in is less
than . If one exists, switch to it as the current classifier
and go to Step 7.

Step 6: Consistent high error for last examples—new task
encountered, create new RAN-LTM: Perform the following
procedure to create a new RAN-LTM for the new task:

1) Create a new RAN-LTM, and copy all memory items of
the current RAN-LTM to it;

2) deactivate all the transferred memory items in the new
RAN-LTM.

Step 7: Update current RAN-LTM: Perform the following
procedure for all training examples in :

1) Perform the Update Memory Item operation.
2) Perform the Do Knowledge Transfer operation.
3) Update the current RAN-LTM using the learning

algorithm in the Appendix.
4) Empty and go back to Step 1.

[Update Memory Item]

Step 1: Search for the nearest memory item: Find the active
memory item closest to .

Step 2: Class label update: If and , update the
class label by setting .

[Do Knowledge Transfer]

Step 1: Define the neighborhood of the next training
example in : Define the neighborhood of the next
training example in by a hypersphere whose center
and radius are and , respectively.

Step 2: Search for the closest nonactive memory item: Find
the nonactive memory item closest to
within . If there is no nonactive memory item found, go
to Step 5.

Step 3: Search for other nonactive memory items
to be transferred: Find all nonactive memory items

within whose class label is (i.e.,
).

Step 4: Activate the memory items: For the nearest nonactive
memory item and all the memory items

found in Step 3, replace the class labels with
(i.e., and ), and activate the memory items

(i.e., set the status flag ).

Step 5: If there is no training example left in , terminate this
procedure. Otherwise, go back to Step 1 for the next example
in .

[Reorganize Classifiers]

Do the following procedure for all combinations of
where and are the classifier numbers.

Step 1: Find class labels shared between two RAN-LTMs:
Find the class labels that occur in both the th RAN-LTM
and the th RAN-LTM . Define the set of shared class
labels by . If , terminate the reorganize procedure for
these two RAN-LTMs.

Step 2: Find the active memory items for the shared classes:
Let and be the set of active memory items in
RAN-LTM and RAN-LTM , respectively, whose class
labels are in .

Step 3: Define the direction of consolidation: Calculate
the average error of RAN-LTM for , and
the average error of RAN-LTM for . If

, set and . Otherwise, set
and .

Step 4: Consolidate the shared classes in RAN-LTM
into RAN-LTM : Train RAN-LTM using the
memory items in . For RAN-LTM , delete the
memory items in , the output units for the classes in ,
and their weight connections.

Step 5: Consolidate the unshared classes in RAN-LTM
into RAN-LTM if necessary: Define the set of all
class labels in RAN-LTM that are not included in .
Perform the following procedure for each class label :

1) define the set of active memory items whose labels
are class ;

2) calculate the average error of RAN-LTM for ;
3) if the error is smaller than , train RAN-LTM

using the memory items in . For RAN-LTM ,
delete the memory items in , the output unit for the
class , and its weight connections.

Step 6: If there is no class left in RAN-LTM , delete
RAN-LTM .

V. EXPERIMENTAL EVALUATION OF THE AUTOMATED

ONLINE TASK LEARNING SYSTEM

A. Evaluation Method and Performance Measures

Since the performance of the system could potentially be in-
fluenced by the order of presentation of tasks and training exam-
ples, the algorithm is evaluated using the average results from
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TABLE I
SOME RANDOM TASK SEQUENCES FOR LEARNING THREE DIFFERENT TASKS. HERE “� ,” “� ,” AND “� ” STAND FOR AN EPOCH OF TASK 1, TASK 2, AND TASK

3, RESPECTIVELY, WHERE EACH EPOCH CONSISTS OF SOME NUMBER OF TRAINING EXAMPLES OF THE CORRESPONDING TASK

TABLE II
INFORMATION ON THE FIVE UCI DATASETS

50 different sequences for each problem that are generated such
that both tasks and training samples are presented in random
order. This section defines the performance evaluation measures
and related concepts.

In our experiments, the total number of training examples (all
tasks combined) in a training session is fixed at 720 and each
session has three tasks to learn. Although all epochs within a
training session have a fixed number of training examples, the
number of training examples per epoch is varied across the 50
different training sessions for a problem to remove any bias
from using a fixed epoch size. To illustrate, when the number
of training examples per epoch is 40, the number of epochs in
the training session is 18 and 18 tasks (or epochs)
are presented sequentially to the learning system. Table I shows
some sample task sequences for different training sessions. In
our experiments, the number of training examples per epoch is
varied from ten to 80 and the number of epochs consequently
varies from nine to 72.

We test the algorithm on a set of problems to evaluate: 1)
whether new tasks are automatically recognized on an ongoing
basis and training examples are assigned to the appropriate
classifier (RAN-LTM) for the task, 2) whether its knowledge
transfer mechanism enhances the classification accuracy when
an unknown new task is presented, and 3) whether the mech-
anism of reorganizing classifiers works well and properly
assigns classes to tasks (task categorization). So the following
specific measures are used to evaluate the performance of the
algorithm: a) the accuracy of task-change detection, b) the
task categorization accuracy (accurate assignment of classes to
tasks), c) the classification accuracy after a complete training
session, and d) the classification accuracy after the first epoch
of a completely unknown task. Next we define these measures
in detail.

a) Accuracy of task-change detection measures the per-
centage of times the system correctly detects an actual
task change. It is the ratio of the number of successful
task-change detections over the total number of actual
task changes in a training session. The total number of
actual task changes is always known in advance. For
example, there are 18 task changes in a training session

with 720 examples when the number of examples per
epoch is 40. They occur when the following training
examples are presented: the 41st, 81st, 121st, and so on.
So it is easy to verify how many of these actual task
changes are correctly detected.

b) Task categorization accuracy measures the success rate
in assigning classes to the right classifiers for tasks, and
this accuracy is evaluated only after training is complete.
For the example of Fig. 1, task categorization would be
successful if, after training, classes , , and are in
one classifier, classes , , and are in a second clas-
sifier, and classes , , and are in a third classifier.
Hence, task categorization is successful if the system as-
signs classes of a particular task to the corresponding clas-
sifier for that task. On the other hand, task categorization
fails if a classifier has classes of different tasks and/or the
class labels of a particular task separately allocated into
more than one classifier. Redundancy of classifiers, where
the system creates more classifiers than tasks, does not by
itself result in any performance degradation. So multiple
classifiers for a single task could still be successful in sep-
arating classes into tasks as long as the classes are prop-
erly assigned to each and every task. However, since this
leads to inefficiency in computations and memory usage,
we do not count it as successful task categorization when
more than one classifier is created for a single task. We
should also note here that the system cannot predict the
task of a particular test example. Although it builds a sep-
arate classifier for each task, predicting the task of a par-
ticular test example is difficult without some additional
information because the same input belongs to different
classes of different tasks.

c) Classification accuracy measures the percentage of times
the class of a test example is predicted correctly. Like
training examples, test examples do not have task labels
either. So the basic prediction is at the class level. Since
all tasks are from the same input space, the system makes
a class prediction for each task. For example, for the
problem of Fig. 1, suppose a test example is from
class of task 1. During testing, the system will predict
that is from one of the following classes: class of
task 1, class of task 2, or class of task 3. Since

is from class of task 1, the prediction is actually
correct and the system treats this as a correct prediction
for the purposes of measuring classification accuracy.
The basic idea of this system is to group and learn var-
ious descriptors of similar objects and expect one of the
predicted descriptors on a test object to be correct. The
classification accuracy is estimated on all test data after
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TABLE III
TWO MTPR PROBLEMS CREATED FROM THE UCI SEGMENTATION DATA

TABLE IV
TWO MTPR PROBLEMS CREATED FROM THE THYROID DATA

TABLE V
TWO MTPR PROBLEMS CREATED FROM THE VEHICLE DATA

the training is successfully completed and is called the
final classification accuracy. Note that the final accuracy
is measured only when task categorization is successful.
This is because failure in task categorization can degrade
the classification accuracy. Task categorization failure
cases are, therefore, ignored so that classification accura-
cies can be compared on a fair basis.
To observe the evolution of learning by the system, clas-
sification accuracy is also evaluated on an ongoing basis
at every learning step using a randomly selected subset of
test examples. This ongoing estimation of accuracy is not
only for tasks learned up to a certain point in a training
session, but also for tasks not yet learned, and it helps to
verify whether knowledge transfer is effective in online
task learning. In general, knowledge transfer from one
task to another occurs mainly when an unknown task is
first encountered, and if the transfer works well, the clas-
sification accuracy of the system should be higher for the
epoch right after such a new task appears compared to
when there is no such knowledge transfer. Therefore, the
acceleration in learning can be measured by the average
accuracy for the epoch when an unknown task first ap-
pears.

B. Data Sets for Experimental Evaluation

To evaluate the robustness of the task learning system, ten
multitask MTPR problems with noisy, overlapping classes are
defined based on the following five data sets from the UCI
Machine Learning Repository: Segmentation, Thyroid, Vehicle,
Vowel, and Yeast. Information on these five data sets is summa-
rized in Table II. Although Segmentation, Vehicle, and Vowel
data sets have fairly even distribution of class examples, that
is not true for Thyroid and Yeast data sets. The Yeast data set

in particular has a very skewed class distribution; two classes
have more than 200 training examples, but six other classes
have less than 30 examples. The largest and smallest numbers
of class examples are 232 and 3, respectively. So the smallest
class examples are rarely presented in a training session. The
Yeast problem, therefore, is the hardest problem of the five.

Since the UCI data sets are for a single classification task, we
combined the original classes in different ways to create addi-
tional tasks such that every task has some relatedness to each
other. Tables III–VII show how the original classes are com-
bined to form new classes for the new tasks. Here is how the
seven Segmentation classes of Table III(a) are combined to form
new tasks. In Problem 1 in Table III(a), the classes of task 1
are the same as those of the original problem; therefore, task
1 is a seven-class classification problem. Task 2 is defined to
be a two-class problem with class labels 8 and 9. As shown in
the table, class 8 of task 2 combines classes 1–3 of the original
problem and class 9 of task 2 combines classes 4–7. Task 3 is
defined in a similar way. The other MTPR problems shown in
Tables IV–VII are defined in a similar manner. Since the dif-
ficulty of MTPR problems could depend on the grouping of
classes, we defined two MTPR problems for each data set as
shown in the tables. For the two MTPR problems for Yeast data,
we combined small classes with large ones to define new classes
so that the new class distributions are more balanced than the
original ones.

C. Setting Parameters of the Algorithm

In this learning system, several parameters have to be set. As
shown below, those parameters can be divided into three groups:
(1) the ones related to the underlying RAN-LTM classifier, (2)
the ones associated with task change detection, and (3) the one
related to knowledge transfer.
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TABLE VI
TWO MTPR PROBLEMS CREATED FROM THE VOWEL DATA

TABLE VII
TWO MTPR PROBLEMS CREATED FROM THE YEAST DATA

[RAN-LTM classifier]
— (width of radial basis functions)
— (minimum distance between two nearest RBF centers)
— (tolerance for approximation error)
[Task change detection]
— (threshold for class prediction at an output node)
— (minimum length of queue )
[Knowledge transfer]
— (radius of knowledge transfer region)

Other than the RAN-LTM parameters, the parameters , ,
and are the new ones introduced by this task learning system.
Since MTPR problems are classification problems, the threshold
for class prediction is set to 0.5 in all test problems because
the output of an output node reflects the likelihood of the corre-
sponding class.

The main problem is with setting the three inter-related
RAN-LTM parameters: , the width of the RBFs, , the
minimum distance between them, and , the tolerance for
approximation error. This problem is inherent to many online
RBF algorithms that cannot adaptively define these parameters
during learning; therefore, this is not a problem created by the
multitask learning concept presented here. Roy et al. [18]–[21]
have developed a version of the RBF algorithm where the
algorithm itself determines the widths and centers of the RBFs
and therefore the problem of presetting these parameters goes
away. But currently there is no online version of that algorithm.
We hope to develop an online version of RAN-LTM that in-
corporates the ideas of Roy et al. For this paper, however, we
report our experience with the current RAN-LTM algorithm of
Ozawa et al. [12].

Table VIII(a) shows the final classification, task-change de-
tection, and task categorization accuracies for different RBF

TABLE VIII
THE ACCURACIES (IN PERCENT) OF FINAL CLASSIFICATION, TASK CHANGE

DETECTION, AND TASK CATEGORIZATION FOR DIFFERENT MODEL

PARAMETERS: (a) WIDTH OF RBF � , (b) MINIMUM SIZE OF

QUEUE �, AND (c) RADIUS OF KNOWLEDGE TRANSFER

REGION �. THE DATA SET USED IS “SEGMENTATION”

widths for the Segmentation data set. Table VIII(b) shows
the same accuracies for different values of and Table VIII(c)
shows the effect of the parameter on these accuracies. As seen
from Table VIII(a), task categorization and classification accu-
racies fall drastically when the width is less than 0.5. This is
caused by poor generalization ability of RAN-LTM with small
RBF widths, which results in incorrect prediction on known or
unknown tasks.

From Table VIII(b), one can see that task-change detection
and task categorization accuracies decrease significantly when

is equal to 1. This is easily expected since task change deci-
sions are being made with single evidence; therefore, the system
tends to be deceived into detecting task changes at wrong places
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TABLE IX
AVERAGE ACCURACIES (IN PERCENT) OVER ALL PARAMETER COMBINATIONS

FOR TEN DIFFERENT TASK SEQUENCES AND THE AVERAGES FOR THE

STANDARD PARAMETER SETTING USED IN THE EXPERIMENTS.
THE DATA SET USED IS “SEGMENTATION”

by noisy data such as outliers and data within overlapped class
regions. On the other hand, the task categorization accuracy for

is greatly improved from the case of in spite of
keeping one more evidence in the queue. Considering that the
task categorization accuracy for is better than the accu-
racy of task-change detection, this improvement results not only
from the improvement in task-change detection but also from
the introduction of the reorganization process. On the contrary,
however, the classification accuracy for is a little worse
than that for . This is because the classification accuracy
is measured only when task recognition succeeds and because
the accuracy is generally deteriorated through the reorganization
process. As seen from the algorithm of Reorganize Classifier,
when two classifiers are consolidated, the training data to recal-
culate the weight connections of a consolidated classifier are the
memory items, which correspond to a small subset of training
data given so far. Therefore, it is inevitable to lose certain clas-
sification accuracy by this retraining especially when the reor-
ganization process is often invoked. However, the degradation
in the classification accuracy is not serious as long as we see the
results in Table VIII(b).

Overall, these results show that the algorithm works quite
well for . So we set to 5 in our experiments across all
problems. As seen from Table VIII(c), the various accuracies
are also not affected greatly by , so we used in our ex-
periments. The RAN-LTM parameters are set to the following
values: , , and .

The important parameters in this algorithm are: the RBF
width , the queue length , and the radius of knowledge
transfer region . We evaluated the final classification and
task categorization accuracies for the following parameter
combinations on the Segmentation data set: ,

, and . Average
accuracies over all parameter combinations for ten different
task sequences are shown in Table IX along with the averages
for the standard parameter setting used in our experiments:

, , and . From these results, one can see
that good performance can be obtained from a broad range
of parameter combinations and that there never is a need to
fine-tune the parameters to a given problem. In general, the
algorithm is fairly robust for a broad range of reasonable
parameter values.

D. Performance Evaluation

The proposed multitask learning algorithm includes two dis-
tinctive functions: 1) knowledge transfer and 2) reorganization
of classifiers. In this section, we verify the effectiveness of these
two functions through experimental results. As per our discus-
sion in the previous section, the following parameters are used

Fig. 8. Time evolution of test classification accuracy (in percent) in
the proposed system with knowledge transfer (with-KT) and without
knowledge transfer (without-KT). The tasks are provided in the sequence:
� � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � where “� ,” “� ,” and “� ”
stand for task 1, task 2, and task 3, respectively. The learning stage (�-axis) is
a count of the number of examples presented to the system. The data set used
is “Segmentation.”

in the experiments: , , , , ,
and .

1) Evaluation of Knowledge Transfer: The basic idea behind
transferring knowledge from an old task to a new task is to
improve the generalization performance and to speed up the
learning of new tasks [6], [22]. To measure the effectiveness
of knowledge transfer, the task recognition system is evaluated
in two ways—with and without knowledge transfer. Fig. 8,
for the segmentation data set, shows the overall classification
accuracy over time with knowledge transfer (with-KT) and
without knowledge transfer (without-KT) for the particular
task sequence

where the values in
parenthesis are the number of training samples in that epoch.
The new tasks and first appear when the 41st and 261st
training examples are presented (i.e., at the learning stage 41
and 261), respectively. As seen in Fig. 8, when these new
tasks are first presented, the classification accuracy increases
rapidly, but the improvement for “with-KT” is higher than that
for “without-KT.” Thus, knowledge transfer seems to be quite
effective in this particular problem. Note that the proposed
system works well even when the number of training examples
for an individual task varies at every learning epoch.

The effectiveness of knowledge transfer is further verified by
the final classification accuracies. Table X shows the average
final classification accuracies over 50 learning sessions with 720
training examples in each session for the five UCI data sets. The
two values in each cell of Table X are the mean and standard
deviation of the final classification accuracies. The single as-
terisk (*) and double asterisks (**) mean that the average dif-
ference between “with-KT” and “without-KT” is statistically
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TABLE X
FINAL CLASSIFICATION ACCURACIES (IN PERCENT) OF THE TASK RECOGNITION

SYSTEM WITH KNOWLEDGE TRANSFER (WITH-KT) AND WITHOUT

KNOWLEDGE TRANSFER (WITHOUT-KT) FOR THE FIVE UCI
DATA SETS. THE ACCURACY IS MEASURED AFTER COMPLETION

OF TRAINING WITH A SEQUENCE OF 720 TRAINING SAMPLES.
THE TWO VALUES IN EACH CELL ARE THE AVERAGE ACCURACY

AND THE STANDARD DEVIATION IN THE FORM OF (AVERAGE) �
(STANDARD DEVIATION). THESE ACCURACIES ARE AVERAGED

OVER 50 DIFFERENT LEARNING SESSIONS. THE SINGLE ASTERISK

(*) AND THE DOUBLE ASTERISKS (**) MEAN THAT THE AVERAGE

DIFFERENCE BETWEEN WITH-KT AND WITHOUT-KT IS

SIGNIFICANT AT 5% AND 1% LEVEL, RESPECTIVELY

significant at the 5% and 1% levels, respectively. As seen from
Table X, the average final classification accuracy across all prob-
lems is better with knowledge transfer (with-KT) than without
(without-KT), and their average differences are statistically sig-
nificant except for the Yeast problem. The results suggest that
knowledge transfer enhances the generalization performance on
most problems.

Note that Fig. 8 shows the effectiveness of knowledge transfer
through acceleration of learning (in terms of classification accu-
racy) over time, after each new training example is presented, for
one of the UCI problems. Table X also reflects acceleration in
learning, but after a certain time, because this accuracy is mea-
sured after a fixed number of training examples are presented.

2) Evaluation of Reorganization: An important feature of
the proposed algorithm is the dynamic reorganization of clas-
sifiers to improve task categorization; that is, reorganization to
properly allocate classes to tasks. If enough training examples
for all of the classes are provided during the first epoch of a
new task, it is expected that the system can construct a com-
plete classifier for the new task without misallocation of classes
to tasks. However, if only a small number of training samples
are provided or training samples of all the classes are not pro-
vided in an epoch, the system might fail to detect a new task in
the subsequent epoch and, as a result, classes of different tasks
can get misallocated to a classifier. Dynamic reorganization of
classifiers tries to correct this misallocation of classes to tasks
(or classifiers), and this subsection examines the effectiveness
of this procedure.

To evaluate the effectiveness of reorganization, we computed
the average accuracies of final classification, task-change de-
tection, and task categorization on 50 different task sequences
for the ten MTPR problems shown in Tables III–VII. Table XI
shows the results of these simulations with reorganization
(with-RO) and without reorganization (without-RO) for dif-
ferent numbers of training examples per epoch (10, 20, 40,
60, and 80). As seen from Table XI, if training samples per
epoch are less than 40, task categorization accuracy with
reorganization (with-RO) is significantly better than without
reorganization (without-RO) for all data sets although there
is no significant difference in task-change detection accuracy.
This means that the reorganization process makes up for the
task-change detection failures. This is much clearer when the
number of training samples per epoch is smaller. In addition,
we find a significant improvement for Thyroid and Yeast data
sets whose class distributions are strongly biased. Table XI also
shows that the final classification accuracy with reorganization
(with-RO) is almost the same as that of without reorganization
(without-RO). Since the final accuracy is measured only when
the task categorization succeeds, the results of without-RO
reflect the accuracies only for easy cases that the reorganization
is not necessary for correct task recognition. Therefore, the
above fact indicates that the classification accuracies are not
significantly degraded by the reorganization. Overall, these
results show that the reorganization mechanism helps to correct
misallocation of classes to tasks.

VI. CONCLUSION AND FUTURE WORK

We addressed the following multitask recognition problem in
this paper. An artificial robot is presented with various objects
and with various descriptions of those objects at different times
and the task is to learn to describe those objects with an appro-
priate set of descriptors. So the robot has to do the following in
terms of learning: 1) automatically group the various descriptors
into appropriate tasks without external supervision, 2) build and
train models appropriate to each task, and 3) then apply those
task models to describe new objects of similar type. It is antici-
pated that future robots would need these kinds of algorithms to
recognize and learn new tasks on their own without outside in-
tervention. In fact, similar learning assumptions have been con-
sidered in automated mental development, which gives a new
concept to the robot learning [29].

At the algorithmic level, the paper considered learning of
multiclass classification tasks where no information was pro-
vided to the learning algorithm about task categories of training
examples. The learning mode of the proposed algorithm is “on-
line” where training examples for the tasks are given sequen-
tially one after another. The learning algorithm, therefore, ac-
quires task knowledge incrementally as training examples are
given sequentially. Since classification tasks are related to each
other in a multitask learning environment, the task learning al-
gorithm is required to detect task changes automatically and uti-
lize knowledge of previous tasks for learning new tasks. Overall,
automated task recognition falls in the category of unsuper-
vised learning since no information about task categories of
training examples is ever provided to the algorithm. Thus, in
this algorithm, supervised learning is performed at the lower
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TABLE XI
THE ACCURACIES (IN PERCENT) OF CLASSIFICATION, TASK-CHANGE DETECTION, AND TASK CATEGORIZATION FOR THE PROPOSED MODEL WITH

REORGANIZATION (WITH-RO) AND WITHOUT REORGANIZATION (WITHOUT-RO) FOR DIFFERENT NUMBERS OF TRAINING EXAMPLES PER EPOCH.
ALTHOUGH TWO MTPR PROBLEMS ARE DEFINED FOR EACH DATA SET, THE AVERAGE PERFORMANCE

FOR THE TWO PROBLEMS IS SHOWN DUE TO THE SPACE LIMITATION

level where classification problems are framed, whereas unsu-
pervised learning is performed at the task recognition level. In
“online learning,” catastrophic forgetting is a serious problem.
The new algorithm addressed catastrophic forgetting at both
levels of learning—at the supervised learning level and at the
unsupervised task recognition level. It is able to do that by com-
bining neural classifiers and long-term memories (called RAN-
LTM), which had originally been proposed by one of the au-
thors.

Overall, the proposed algorithm has the following properties:
1) the ability to transfer knowledge from one task to another
to speedup learning, 2) automated recognition of tasks, and 3)
incremental, one-pass online learning. Although the first capa-
bility has been considered in prior works in machine learning,
the last two capabilities are new. The last two capabilities are re-
quired in an environment where task category information is not
provided explicitly during learning and almost all training sam-
ples are discarded after learning (that is, there is no long-term
storage of all training examples).

The algorithm was tested on ten multitask problems—they
were defined from five UCI database problems (Image Segmen-
tation, Thyroid, Vehicle, Vowel, and Yeast). The following per-
formance measures were used to evaluate the algorithm: a) ac-
curacy of task-change detection, b) classification accuracy on
test data, and c) task categorization accuracy. The experimental
results demonstrated that the proposed algorithm can learn new
tasks successfully in an incremental, online environment, and
that knowledge transfer enhances both the learning speed and
the final classification accuracy. In addition, it was verified that
task recognition works fairly well unless the number of training
examples per epoch is too small, and that classifier reorganiza-
tion greatly improves task categorization accuracy for all MTPR
problems even when the presentation order of class training ex-
amples is fairly biased.

This algorithm is a first step towards developing a completely
automated multitask learning system for artificial robots. There
still remain several problems in the current algorithm that have
to be addressed in future works. The most important challenge is
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complete automation of this algorithm so that an artificial robot
can learn on its own without external help. For that, we have
to resolve the problem of having to predefine different parame-
ters of this algorithm, in particular, those of the RAN-LTM clas-
sifier. We plan to develop a new online version of RAN-LTM
that incorporates the ideas of Roy et al. [18]–[21] where the al-
gorithm itself adaptively defines the widths and centers of the
RBFs and therefore gets away from the problem of presetting
those parameters. In addition to this problem, we still need more
robustness for the task-change detection part and the reorgani-
zation process. If the presentation order of classes is strongly
biased, the possibility of misdetection of task changes would be
increased. In an extreme case that only one class of a particular
task is presented at every epoch, there is a high possibility that
the class region of a particular task has no overlap with another
class region of a subsequent task. Since the task-change detec-
tion in the proposed model relies on large prediction error, this
case would cause the misdetection of a task change, and the two
classes of different tasks are allocated in the same classifier. In
this case, it is quite difficult for the current reorganization algo-
rithm to recover this misallocation. Although the misallocation
of classes could be resolved through the reorganization process
to some extent, there is no guarantee for the proposed system to
work well for any biased cases at the present state. This problem
is also left for our future work. Finally, pattern recognition sys-
tems perform feature extraction when inputs have large dimen-
sions. Therefore, for practical purposes, the proposed multitask
learning model should also have the ability to extract features on
an ongoing basis. This can be done with online feature extrac-
tion algorithms such as incremental principal component anal-
ysis (PCA) [12], [13] and incremental linear discriminant anal-
ysis (LDA) [14].

APPENDIX

THE RAN-LTM ALGORITHM

The RAN-LTM learning algorithm is summarized below.

[Learn RAN-LTM]

For each training example in the given
training set with an output , perform the following procedure.
Here, is the number of training examples.

Step 1: Output Calculation: Calculate the outputs
from (1) and (2).

Step 2: Network Learning: Calculate the squared error
. If and

( : the nearest center to ), then the following procedure
is carried out.

1) Hidden Unit Allocation: Add a hidden unit (i.e.,
). For this hidden unit, the center vector

is set to and the connection weight
from the th hidden unit to the th output unit are set to

.
2) Memory Item Creation: If ,

increment the number of memory items:
and set the th memory item as follows:

. Then, store this
memory item into LTM.

Otherwise, the following procedure is carried out:
1) Memory Item Retrieval: Find all active memory items

where . Define an index set
for these memory items.

2) Output Calculation: For the training example
and all the retrieved active memory items

, calculate RAN’s outputs
and , and calculate the total squared error

in (3).
3) Modification: Update the weight connection , RBF

center , and bias as follows:

where

Step 3: Reevaluation and Retraining: Calculate the square
error again. If , perform
Hidden Unit Allocation and Memory Item Creation in Step 2.
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