2106.08972v2 [cs.NE] 17 Aug 2022

arxXiv

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, MAY 2021

Redefining Neural Architecture Search of
Heterogeneous Multi-Network Models by
Characterizing Variation Operators and Model
Components

Unai Garciarena, Roberto Santana and Alexander Mendiburu

Abstract—With neural architecture search methods gaining
ground on manually designed deep neural networks -even more
rapidly as model sophistication escalates-, the research trend
shifts towards arranging different and often increasingly complex
neural architecture search spaces. In this conjuncture, delineating
algorithms which can efficiently explore these search spaces can
result in a significant improvement over currently used methods,
which, in general, randomly select the structural variation oper-
ator, hoping for a performance gain. In this paper, we investigate
the effect of different variation operators in a complex domain,
that of multi-network heterogeneous neural models. These models
have an extensive and complex search space of structures as they
require multiple sub-networks within the general model in order
to answer to different output types. From that investigation, we
extract a set of general guidelines, whose application is not limited
to that particular type of model, and are useful to determine the
direction in which an architecture optimization method could
find the largest improvement. To deduce the set of guidelines,
we characterize both the variation operators, according to their
effect on the complexity and performance of the model; and the
models, relying on diverse metrics which estimate the quality of
the different parts composing it.

Index Terms—Heterogeneous multi-task learning, neural ar-
chitecture search, generative modeling, supervised learning.

I. INTRODUCTION

Deep neural networks (DNN) are considered to be black-
box models due to their opaqueness when it comes to the
iterpretability of their operation mechanics. However, this fact
has not deterred researchers from studying their application to
many research fields, attracted by their impressive performance
in several different domains [21]. This phenomenon is particu-
larly noticeable in image-related tasks: classification [27]], [49],
captioning [51]], or segmentation [3]]; albeit other areas such as

U. Garciarena and R. Santana are with the Department of Computer Science
and Artificial Intelligence, University of the Basque Country UPV/EHU,
20018, Donostia, Spain.

A. Mendiburu is with the Department of Computer Architecture and
Technology, University of the Basque Country UPV/EHU, 20018, Donostia,
Spain.

email: unai.garciarena@ehu.eus (corresponding
roberto.santana@ehu.eus, alexander.mendiburu@ehu.eus

© 2022 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, including reprinting/republishing
this material for advertising or promotional purposes, collecting new collected
works for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version may
no longer be accessible.

author),

natural language processing [25] or data generation [22f] have
also been benefited.

Their adaptability to different problem specifications has
resulted in an enormous spike in DNN research in the last
decade. Initially little or no attention was paid to the DNN
structure (a term that we use to comprise the architecture
of a DNN as well as other hyperparameters, such as the
training specification), and default or baseline designs were
used. However, several researchers noticed that finding the
right structure proved to be essential for obtaining a good
performing DNN for the particular problem at hand [27], [48],
[49]. This fact promoted the usage of hand-made designs,
guided by expert knowledge. This approach, to this day, still
enjoys a large share of popularity [42], [47]. However, the
popularization of DNNs and their application to more and
more challenging problems has proportionally escalated the
necessity for increasingly complex DNN structures, to the
point where designing them has become a process too time-
consuming and difficult to be carried out by hand.

In order to overcome this issue, several approaches aiming
at neural architecture search (NAS) have been proposed in the
last years, their main goal being to extricate humans from the
duty of manually designing neural models, as well as being
able to obtain structures [14], [31], [59] which fit a given
problem exceptionally well. These techniques have evolved
from relying on modest operators whose scope merely enabled
them to perform small changes [45] -such as modifying one
parameter or connection-, to directly adding complete neural
cells that could be considered DNNs themselves [31]. Some
representative examples of NAS techniques employ reinforce-
ment learning [15]], evolutionary algorithms (EA) [38]], or local
search methods [13].

The lack of efficiency is a flaw often held against NAS
algorithms, as, commonly, assessing the quality of a DNN
structure involves weight optimization procedures, which tend
to be rather costly [54]. Hence, our main concern when
conceiving NAS algorithms is sharpening the usage of every
component of the search algorithm so that we make the most
out of every evaluation. The efficiency of NAS algorithms is
largely dependent on the effectiveness of the operators they
employ. Moreover, that effectiveness could fluctuate depending
on when or where it is applied, i.e., a productive operator can
result useless if applied in the wrong circumstances.

In this context, we identify a large potential for improvement

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, MAY 2021

in these NAS methods, as most of them apply modification op-
erators randomly, hoping for an improvement in the resulting
model. Developing criteria to select the most suitable choice
from a pool of operators, and the part of the model to be the
target of that modification, would improve the efficiency of
these NAS algorithms.

Structural specialization is not the only route in which
DNNs have made progress. As a matter of fact, research areas
which establish their base on completely antipodal intuition
have also received their fair share of attention. A good example
of this is multi-task learning (MTL) [5], a learning paradigm
which employs one single model for predicting similar targets
from pieces of data which follow similar distributions. This
approach has proven to have more benefits apart from the
obvious parameter reduction in the DNN, as it has been
demonstrated that the multiple tasks coexisting in a single
model act as regularizers of each other by introducing an
inductive bias, since the model cannot focus on learning a
single task. Furthermore, it has been theoretically proven [33]]
that the value of the loss function of a task within an MTL
framework tends to the same value that it would have obtained
had it been learned separately, as the number of training
observations increases. Although not as popular as the ones
introduced at the beginning of this section, problems in which
multiple outputs have to be addressed simultaneously also
exist, and DNNs (of elevated complexity) have recently been
the model of choice to approach them [19], [30], [57]. This
does nothing but further intensify the need for automatic DNN
structure designing algorithms. Furthermore, while extending
the complexity of the networks results in an increase in the
time required to researchers for developing new structures that
outperform the previous ones, the progress made regarding
the hardware in which DNN training can be parallelized
pushes the time elapsed by NAS techniques in the opposite
direction [41]]. One particular variant of MTL, heterogeneous
MTL (HMTL) was proposed in [19]. Unlike traditional MTL,
this new research line focuses on developing models which
are capable of dealing with several problems simultaneously
(potentially of different nature, e.g., classification, regression
and data generation) and in a collaborative way. This is
achieved by designing a single and complex DNN susceptible
of being incrementally extended for new data inputs and/or
tasks, as different requirements arise.

The diagram in Figure [I] shows a perspective on the direc-
tions in which the research of DNNs has evolved over the
last few years according to two criteria: the structure type of
the data they are specialized for, and the number and types of
tasks they are designed for.

Due to their incremented complexity, designing these mod-
els by hand poses an even harder challenge than the one of
designing single-task models. Moreover, the lack of hand-
made models expected to fulfill several assignments at the
same time (unlike the case of single-task models) makes this
problem even more difficult, as there are no references towards
which the searches could be guided. Additionally, approaches
based on reinforcement learning or gradient descent would
require non-trivial adaptations in order to deal with the intri-
cacies of operating in such a complex environment as that of

HMTL. A clear example of these complexities is the neces-
sity to satisfy data type constraints. Consequently, designing
refined incremental NAS techniques that can cope with these
restrictions becomes a necessity. More specifically, defining
effective operators and smart approaches that maximize the
efficiency of their application would be essential for obtaining
powerful HMTL models.

This work aims at opening a new research line in the
direction of making NAS more efficient. This has recently
been identified as an area for potential improvement for these
methods [4], [35], particularly for HMTL models. To that end,
we attempt to illustrate the effectiveness of an intelligent NAS
approach by reducing the random component that character-
izes some of the current structural search algorithms. With
that goal in mind, we define a set of guidelines which can
help a NAS algorithm to make an informed choice between
all the variation operators at its disposal. These guidelines
rely on a first step in which the model status is diagnosed
using a set of metrics, which dictate the variation operator
to be applied to improve the model in the second step. We
attempt to make these guidelines as problem-independent as
possible so that they ideally can be applied to any problem
domain (e.g., classification, regression, generative modeling,
or even combinations of them), regardless of the network
architectures or variable dependencies involved. In that regard,
we identify the areas in which the modeling difficulty is
high: problems that fit the HMTL paradigm [19], [30]. To
illustrate the effectiveness of these guidelines in complex
domains, we evaluate them on NAS algorithms for models
that satisfy two particular characteristics: 1) They comprise
multiple sub-networks that interact with each other. 2) They
solve multiple heterogeneous machine learning problems (e.g.,
classification, regression, and data generation simultaneously).
More specifically, we employ the VALP [19] (a recently
introduced HMTL model) as a testbed to demonstrate the
effectiveness of the proposed strategy.

This paper is organized as follows. In the next section,
literature relevant to this work is covered. The problem in
which the approach is tested is introduced in Section In
Section the ideas which are the main contribution of this
work are described. These ideas are then materialized into
mechanisms for improving NAS runs, which are described in
Section|V| The experiments designed for showing the potential
of the proposal are presented in Section and the obtained
results are summarized and discussed in Section Finally,
Section contains the conclusions drawn from this work,
as well as some future research lines.

II. RELATED WORK

As stated in the introduction, the approach presented in this
work consists of the smart application of variation operators
in order to increase the efficiency level of NAS algorithms,
particularly -but not limited to- when applied to HMTL. In this
section, we first introduce relevant work on the NAS area, clas-
sified by the type of search and operators they employ, so that
the beneficial aspects of each type are identified. By integrating
multiple perspectives on the NAS problem, an algorithm with

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, MAY 2021

Data structure DNN Task
Spatial Sequential ~ Unknown Sampling Classification Regression
v v v v v v
CNN RNN MLP GAN, VAE, ...| [Inception, LSTM, ...|(U-net, LSTM, ...
[27] (81, [24] [10] [22], [26] (81, [24], [47] (361, 1391

| |

Easy problems,
e.g. MNIST

Design

(48]

More complex problems,
e.g. ImageNet

Manual
[24],

A 4

NAS Scope of this work
[14], 381, [58]

Generalization:] Task Combination
Generalization: hetero- MTL .
. [371, [56]
geneous tasks simul-

taneously + multi-network

HMTL
[19], [30] J

Fig. 1: Evolution of DNN research. On the right-hand side of the figure, we can see how DNNs have been adapted to be
able to satisfy different requirements, and how more complex fields have emerged by combining the different tasks. On the
left-hand side, we can observe how the DNN structures have increasingly been specialized up to the point of requiring the
application of NAS methods. This work lays at the top end of these two development branches.

access to multiple options from which to choose when making
decisions could be designed. We next discuss some work
performed on DNN model diagnosis, as the metrics proposed
in these works will be useful to make an estimation of the
relevance of each component within a neural model. This
estimation can ultimately lead to informed decisions among all
the possibilities imported from the different NAS approaches.
Finally, we cover some different approaches to the HMTL
problem, a problem definition to which the efforts in this paper
are devoted, and which is more general than the commonly
addressed single-task scenarios. By proving the proposal of
this paper in such a complex environment as HMTL, it seems
fair to assume that it could also be successfully applied to
other simpler scenarios - such as single task ones.

A. Neural architecture search

As previously mentioned in the introduction, several tech-
niques have influenced multiple NAS methods. We limit this
review to the approaches that have the largest influence on the
proposed set of guidelines: neuroevolution (EAs which usually
rely on neural variation or mutation operators) and network
morphism (NM).

1) Neuroevolution: In the last couple of decades, several
works have used evolutionary approaches for NAS with the
ultimate goal of producing DNNs able to cope with different
tasks. Although these works have particularly focused on
image-related tasks, many of the proposals could be applied
to other types of tasks.

The traditional approach to neuroevolution (NE) commonly
considers relatively low-parametrized networks, both regarding
the number of layers and the number of neurons in them. How-
ever, as the hardware supporting DNNs has improved, these
methods have shifted from performing low-level modifications,
e.g., the addition of one neuron or connection [44], [46], to
more complex operations, like the concatenation of full neural
cells to the DNN [31]], [35]]. This second kind of evolution has

proven competitive against hand-crafted structures and is the
most popular approach considering the amount of recent work
devoted to it. Currently, these two scopes of variation operators
are known as micro (modifications limited to the small cells
or sub-networks within the model) and macro search (altering
the general structure of the neural model) [54].

The work in [40] presents an NE approach that adopts the
NASNet search space (initially designed for a reinforcement
learning-based NAS) [59]. The authors propose the incorpora-
tion of an age property for all individuals in an NE procedure
carried out in the NASNet space, in order to favor individuals
of recent creation at the time of performing the tournament
selection.

Some other approaches, while still being framed in the
image treatment scheme, have variations especially relevant
to our work. For example, in [35)], NSGA-Net is proposed.
This population-based algorithm permits the inclusion of
(potentially conflicting) objectives as opposed to the classic
single error metric-minimization scenario. This way, the au-
thors address the problem of low efficiency on state-of-the-
art NE algorithms by introducing a second objective which
seeks the minimization of the computational complexity of
the models. The work presented in [[7] introduces ModuleNet.
This NE algorithm is largely inspired by [35], although new
mutation operators are introduced. This NE algorithm is based
on connecting sub-networks found in top-performing DNNs
proposed in the literature.

The previously reviewed works (as well as many others
not included here) mostly follow the same pattern: They
introduce a framework different from those that have already
been proposed, and design ad-hoc operators for it. In this
work, we aim at forming a set of guidelines which are able to
operate in different schemes in terms of model structure and
problem domain by encompassing different types of operators
and applying them when their positive impact towards the
search can be maximized.

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, MAY 2021

2) Network Morphism: Another research subfield which
has grown separately, but is related to NE due to being
based on structural variation operators, is network morphism.
It consists of a special set of operations for extending DNN
structures in such a way that the performance of the network
is not altered.

The work described in [6] proposes two operators for
expanding DNN architectures, Net2Net, applicable to both
MLP and CNN architectures. Their effectiveness is tested in a
framework in which, initially, a relatively shallow and narrow
teacher network is trained for the objective task. Next, one
of the two operators; Net 2WiderNet (enlarging the size of
a layer) or Net2DeeperNet (introducing a new layer to
the DNN), are applied to increment the number of parameters
of the model. By conveniently initializing the added weights
and/or the activation functions, the newly created student
network is able to produce the same result as the teacher
network. However, because its modeling power has increased,
better results can be expected with further training.

These operators are first employed to gradually transform
a shallow feacher into an inception network. Results show
higher accuracy and faster convergence than training the same
structure from scratch.

The authors of [S3] then extended that work by resolving
some of its inherent limitations: e.g., the inclusion of non-
idempotent activation functions in the network modifications.
Besides, the subnet adding operator was also presented, which
is equivalent to adding several layers at once. The authors fi-
nally used the network morphism term to name the framework
containing these kinds of operators. This extension of Net2Net
is able to outperform the original proposal both in learning
speed and final accuracy.

The work in [13] takes full advantage of the framework
defined in [53]] and uses it as a tool for a Neural Architecture
Search by Hillclimbing (NASH), using a simple structure as
the starting point.

To the authors’ knowledge, the research carried out using
these operators is rather limited, considering the complemen-
tary role they can play for the more common operators usually
employed for NAS. Therefore, we integrate them into the NAS
framework governed by the guidelines proposed in this work,
along with more traditional operators for NAS algorithms.

B. Model internal diagnosis

Studies attempting to understand the way DNNs operate
have yielded many interesting approaches [, [2], [43].

The authors of [43] propose the diagnosis of a neural
model by computing the mutual information between the
representations of the information found in the different layers
of a DNN, and the input and output of the network during the
training of the model. They concluded that, when trained with
the common combination of stochastic gradient descent (SGD)
and backpropagation, the weight optimization procedure of
a DNN consists of two different phases, the information
compression phase and the error minimization period.

In [1], a similar approach is presented. The information
representation in each layer of a classification DNN is ex-
tracted for a set of observations, and a linear classifier is

fitted between each of these representations and the original
classes, independently. The errors reported by the classifiers
from the different layers can serve as a measure of the quality
of the information representation at each level of depth in a
DNN. Because linear classifiers are rather limited and require
rich representations of the data to perform well, it can be
expected that, the deeper the layer -and therefore, the richer
the representation-, the better a linear classifier will perform.

In the both previous approaches, [1], [43], comparing the
values given by the metrics (the mutual information and the
classification error) between layers can help to understand the
level of importance of each layer within the general model
context.

In an attempt to identify the origin of an issue in the DARTS
[32] search space, the authors of [52]] propose the deletion of
different parts of a DNN and using the observed performance
decrease of the overall DNN as an estimation of the relevance
of that part to the overall model.

Although the explainability of the decisions made by DNN
models is not among the objectives of this work, trying to
estimate the relevance of a sub-network (named sub-DNN
indistinctly in this work) within a neural model composed
of multiple sub-networks is. In this work, we propose the
exploitation of this kind of metrics so as to assess the level of
importance of each sub-DNN in the general model in order to
determine the structural variations which have larger potential
for improvement in terms of model performance.

C. Heterogeneous learning

In [19], a framework for HMTL was defined, called VALP,
which will be introduced in more detail in Section One
particular characteristic of the VALP is the fact that the struc-
ture of the graph is not fixed, and it is therefore optimizable.
That work makes an initial exploration of the search space
of VALPs by employing a random search and comparing
its results to a fixed regular MTL model. That experiment
showed to which extent finding the right structure is an
important aspect for the performance of the HMTL models.
This observation later motivated an extension of this work in
[L8], where a VALP structural search algorithm was proposed.
The method consists of four different operators which modify
the structure of a VALP used as a base for a Hill Climbing
(HC) algorithm. All four operators are based on connection
modification, namely, add and delete connection, and insert
and delete network. Conducted experiments showed that, even
though the operator to be applied was randomly chosen, the
HC was able to find better performing structures than a simple
random search.

After discovering the potential of a search algorithm on an
HMTL environment, in this paper, we go one step further in
this area by exploiting NAS methods in an HMTL framework.
Our main goal is, as we recognize the difficulty of dealing with
multiple inputs, outputs, loss functions, sub-DNN types, etc.,
to present advances to the NAS field that can make the struc-
tural search feasible even in such convoluted search spaces
by presenting a set of guidelines that can be used by NAS
algorithms. Although its initial presentation is directed towards

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, MAY 2021

the HMTL framework, the application of these guidelines is
not bounded to that environment, as it can be exported to many
other NAS formulations.

Multi-loss function joint learning (JL) [30] was initially
defined over the person re-identification problem, which con-
sists of matching identity classes in detected person bounding
boxes from non-overlapping camera views. To that end, several
different features are learned for each person in multiple
images, and are afterwards used to match persons across
images according to the similarity of these features. The
authors choose to employ a JL model to test the hypothesis
of whether learning these features can yield better results if
done together rather than using separate models for each one.
With that goal in mind, the authors manually build a CNN in
which the first part is shared, before the network is divided
into two branches, each of which has a specific design for the
different tasks and is trained using a separate loss function.

DG-Net [57]] introduces a new dimension to the JL frame-
work as it was designed to fulfill tasks different from each
other. In contrast to [30], DG-Net is able to both classify
and generate new samples similar to those in the training
set. DG-Net is designed as a module-based neural model,
in which each module has a specific task to fulfill, varying
from encoding or decoding image features or structures, to
discriminating the images based on the mentioned features.
Because each part of the model has a predefined role, the
structure of the model cannot be changed, as it could mean
a change on the role played by each sub-network of the
model. The training of the model for performing such diverse
tasks requires, of course, the management of different loss
functions. The components and loss functions are arranged in
a predefined structure to maximize the modeling capabilities of
each of the sub-networks within DG-Net. In order to combine
the losses in a single expression, a weighted average of them
is computed by hand-picking weights.

III. THE HETEROGENEOUS, MODULE-BASED MODEL

We aim at defining a set of guidelines as general as possible
capable of guiding a NAS algorithm and consequently choose
an application benchmark which shares that characteristic:
a model which is able to handle multiple data inputs, can
make predictions for more than one output at time (be they
homogeneous or heterogeneous), and is composed of sub-
DNNs itself. The inputs, outputs, and modules within the
model are interconnected with a scheme of connections which
points which information (either from a model input or a
sub-network) is redirected to which place (either another sub-
network or a model output), forming a directed graph. Each
output corresponds with a prediction required to the model.
Because the performance of a model can be assessed by (at
least) as many metrics as outputs it has, this problem has a
multi-objective nature.

The recently proposed VALP [19] is an example of a module
based model used for solving HMTL problems. Its structure
can be defined as a directed graph, G = (V, A) in which the
sub-DNNs within the model are represented by the vertices V/,
and the flow of information produced and received by them

Subgraphs
01 exclusive subgraph.
09 exclusive subgraph.

2

Fig. 2: Example of a VALP, with its different subgraphs. The
n1, ng, and ns sub-DNNs are part of the exclusive subset of
01, as they are exclusively connected to 0;. Similarly for the ny4
sub-network and o,. Adding the ns and ng sub-DNNss to either
subset would result in 0; and oy subsets respectively, as these
would contain all the sub-networks involved in these outputs,
including sub-DNNs which are involved in other outputs.

is directed by the arcs A. We name the combination of these
two sets as the set of components. The vertices in V' can be
categorized in three different disjoint subsets; ITUNUO = V.
I is composed of the source nodes ¢;, and, in the network
topology, these are the sources of information, the data. [NV
contains the internal nodes mj, which are the actual sub-
networks within the VALP, each of which can be defined
by different architectures and hyperparameters. Finally, O
contains the set of sink nodes o;, the final components in which
the final predictions (regarding the data present in the source
nodes) of the VALP can be collected. An example of a VALP
can be seen in Figure [2]

The VALP can be trained using backpropagation, a gradient
descent algorithm, and a set L of loss functions (which, in this
work, are combined by addition), containing at least one loss
function for each item in O.

In a VALP (as in any other module-based model with
multiple inputs, outputs, and components), the sub-networks
can be grouped according to different criteria. We define
the following subgraphs of G: output subgraph, and output
exclusive subgraph. The subgraph of an output o; consists of
all the components that, upon modification, alter the prediction
in o;. The output exclusive subgraph consists of a similar
subgraph, although in this case, the components that affect
multiple outputs are not included in either output subgraph.

Figure [2] shows two examples of subgraphs. The first one,
colored in blue, is the exclusive subgraph correspondent to
01. It contains three networks (n1, ns, ns), all of them only
ultimately connected to 01. ng, and ng cannot be part of that
exclusive subgraph because they also provide data to os. The
exclusive subgraph correspondent to o9, in red, is composed
of just ng4, as it is the only network exclusively connected
to that output. The output subgraph of 0; is composed of all
the components ultimately connected to oy, i.e., ni, ne, ns,
ns, and ng. Finally, ng, ng, and ny would form the output

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, MAY 2021

subgraph of 0s.

The first thing to be defined in a VALP are the I and O sets.
Next, A and N are defined to design the architecture of the
model. In this work, this is achieved by employing structural
optimization methods. Depending on their implementation,
some optimization algorithms (e.g., those based on variation
operators) could try to evaluate solutions which fall outside the
constraints of the problem, which would be a poor exploitation
of computational resources. Although techniques for detecting
and repairing this kind of solutions exist [9], a common
approach when facing such complex search spaces is to rely
on operators which guarantee that their product is going
to be feasible. In this work, we choose the second option.
We understand a structurally correct VALP as one which
guarantees to comply with a set of characteristics, which
necessarily include:

o The model has as many model outputs as the problem

has targets.

o Correspondence in terms of data type between each target
variable and each model output has to exist. For example,
a classification and a regression output do not share the
same characteristics (the neurons in a classification output
have to add to one, and are therefore activated by the
softmax function).

o Every sub-DNN and model output must receive data from
at least another component, and the data coming from
every sub-network and model input must go to at least
another component.

e This instance of VALP model does not consider the
possibility of recurrent connections, despite this limiting
the capacity of the model to deal with temporal data.
However, the proposal of this work would still be valid
if recurrent connections were contemplated.

IV. INTELLIGENT SEARCH

Due to the costly nature of some NAS algorithms caused by
the magnitude of the search space, an efficient structural search
of module-based models is crucial, especially when dealing
with HMTL problems. This efficiency is mainly dependent on
the operators integrated on the search algorithm, and, most
importantly, how they are employed. In this section, critical
aspects of different search methods are identified, before
reflecting on how to exploit these characteristics in order to
improve the efficiency of the search algorithms.

First, we categorize the search methods by the number of
neural models being taken into account in any given moment.

o Single model search: In this instance, the search algo-

rithm consists of improving a single model at a time, as
in a local search (e.g., hill climbing).

o Population based search: This second formulation con-

siders several models at each time during the search.

A. Model internal diagnosis

The first key question in the proposed intelligent structural
search is identifying which component or part of the structure
(in our case, a sub-network) should be improved at a given
point. To that end, we identify diverse sources of information

depending on the type of search, which could help making the
right decision in this matter.

In a single model scenario, the main sources of information
consist of:

1) Comparisons with the performance of models evaluated
in previous iterations of the algorithm.

2) The relevance of the different components within the
model to the final predictions made by the model.

3) The effectiveness of the training procedure to improve
the prediction.

In the population-based search, along with these three infor-
mation sources, other information sources are also available.
These can be used to gauge the performance of a given model
with respect to its peers, which can provide a more accurate
idea of which component of the model, when modified, can
provide a better gain in terms of model performance or loss
function optimization.

B. Metrics

With the information sources identified, the second step is
to determine how the knowledge is going to be captured.
Focusing on the single model scenario, we formalize four
different metrics:

1) Historic sub-loss information: Performance metrics ex-
tracted from the loss functions associated to the sub-
network. The performance of a sub-DNN (o set of them)
along time can be estimated comparing and combining
metrics -e.g., the loss function values- at each iteration.

2) Module intervention: Inspired by the techniques of inter-
vention for causal discovery [12] and neural architecture
selection methods [52], here we modify some compo-
nent of a module (e.g., setting the weights to random
values) to estimate its importance as the gain/loss in
performance as a result of the intervention.

3) Input intervention: Similarly, it is possible to intention-
ally modify input values (i.e., a subset of the features
of the data) and estimate their relevance with respect to
the predictions.

4) Dependency measures: Metrics (such as the mutual in-
formation or a classification algorithm error [1]) between
the output of each sub-network and the model output(s)
it contributes to, would ideally improve compared to the
output of the sub-DNN preceding it [43]. If this is not
the case, it could be interpreted that the component is
not helpful.

For population-based approaches, we define an additional
metric based on comparisons between models in population-
based searches (although it could also be applied to the isolated
model search by comparing the current model with other
models in previous stages of the search).

5) Relative performance: several rankings -at least one per
output- can be arranged, according to the performance of
the model in each output, relative to the rest of models.
The position of a model in the ranking of a given output
determines the quality of the subgraph of that output.

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, MAY 2021

C. Variation operator types

The third step is to define variation operators that cover the
different needs that the models can present at different points
during their development.

In this work, we categorize the variation operators according
to two attributes: their aggressiveness, and the effect they have
on the complexity of the model. Regarding aggressiveness, we
distinguish two types of mutators:

1) We consider an operator to be aggressive when it
performs drastic alterations to the model structure, in
such a way that the performance of the model can be
severely changed in at least one of the objectives (e.g.,
operators commonly used in NAS).

2) On the contrary, an operator is considered as gentle in
case the performance of the model does not vary after
its application (i.e., morphism operators).

When discriminating operators by their effect on the com-
plexity of the model, we also divide the set of mutators into
two subsets;

1) An operator is considered a reducer when its application
decreases the number of weights in the model, and thus,
theoretically, the modeling capacity.

2) Alternatively, an operator is an extender when the model
sees its number of weights increased.

Because we have two categories for each characteristic,
we can define four type combinations. First, an aggressive
extender operator would increase the number of weights of a
model at the same time as the performance of the model is
altered. For example, integrating a new random sub-network
to a subgraph of an output could alter the performance of the
model in that output.

Secondly, a gentle extender operator would increase the
modeling capacity of the model without modifying the per-
formance of the model, e.g., by modifying other components
already present in the model and cautiously designing and
placing the new component.

Thirdly, an aggressive reducer would decrease the modeling
capacity and have the collateral effect of altering the model
performance, e.g., by deleting a sub-DNN or a connection
which was relevant to the overall model.

Finally, a gentle reducer would delete certain parts of a
model, without affecting the performance of the model. The
deleted parts would need to be irrelevant to the model.

D. Donation operator

In population-based searches, mutation operators are not
the only method to perform alterations to models. In this
case, although they have been widely omitted by the NE
community [[16], [50], we define a special version of crossover,
traditionally referenced as the conjugation operator [23]. In
this method, a donor model donates a part of itself (e.g., the
output exclusive subgraph) to a host model.

E. Principles for using the metric information

In this section, we propose a set of criteria aiming at
optimizing NAS procedures for HMTL models (although their

application is not limited to that kind of models), exploiting the
metrics defined in Section to guide the selection of the
variation and donation operators, as defined in Section m
and Section

1) Historic sub-loss information: This metric can be used
to observe the behavior of one or more model outputs by fitting
a linear regression model which attempts to predict the sub-
loss value of an output, given the training step. This way, the
slope of the loss function can be approximated with a line and,
depending on that value, different approaches can be taken:

« If the slope is close to O or positive, it can be concluded
that the output has converged. In that case, an aggressive
operator could take the model away from that local
optima.

o When the slope is slightly smaller than 0, it can be inter-
preted that the output is still improving, although a major
improvement is unlikely. In this case, a gentle extender
operator could add more modeling power, helping the
model perform another significant gain without losing the
current performance.

« In the case in which the slope is considerably smaller than
0, the output is still in the early phase of improvement,
and should be left as it is until a certain level of
convergence is reached, i.e., the previous two scenarios.

2) Module intervention: This metric can be used to deter-
mine the relevance of a given sub-network to the overall model
by measuring the performance loss after resetting the weights
of that sub-DNN.

o If the performance loss is not great for any output, the
importance of the sub-DNN to the model is low, and a
reducing operator could be advised.

o On the contrary, if the drop off is significant, the compo-
nent is assumed to be relevant, and should either remain
intact or be expanded using a gentle operator.

o Finally, if the sub-network is connected to an output
which was not affected, a connection deletion would
reduce the model complexity without deteriorating the
overall model performance.

3) Input intervention: Similarly to Module intervention,
this metric would estimate the importance of a given input
to the final prediction of the model. This could be done by
observing the performance change in the different outputs
when randomly changing a subset of the features of the data:

o If the performance loss is not great, then the input is
not very relevant to the output, and deleting a connection
that connects the path between the input and the predic-
tion would be advisable, so that the model graphically
represents that independence.

« If a significant percentage of performance is lost, then the
input is relevant to the output, and no connection should
be deleted.

4) Dependency measures: As was the case for the module
intervention, this metric serves the purpose of measuring the
importance of a component for the model. In this case, a metric
(e.g., the mutual information or the error of a linear estimator)
is computed between a model output and the outputs of the
components on its subgraph. Next, for each sub-network, the

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, MAY 2021

obtained value is compared to the values of its predecessor in
the model.

o When the measure indicates a larger dependency between
the values, it can be assumed that the component is
performing satisfactorily, and should be either gently
expanded or left unchanged.

o If the value does not improve, the component is not
performing as expected, and a reducer operator can be
applied without losing much potential.

5) Relative performance: By constructing rankings of mod-
els according to their performance in the different outputs, it
would be possible to estimate the relative performance of a
model in that output. A model with all but one output in the
higher part of their corresponding rankings could become the
host of the exclusive subgraph of a model with a high rank
in that specific output ranking. This vision is closely related
to multi-objective optimization, as one model can be viewed
as valuable or useless depending on different factors, as the
output being evaluated, or the current state of the search.

V. SEARCHING FOR OPTIMAL VALP STRUCTURES USING
VARIATION OPERATORS

The previous section presented a general approach and
guidelines towards an intelligent structural search. In order
to show its utility, this theoretical framework is implemented
into the VALP NAS context. In what follows, we introduce
variation operators which can be applied to the VALP, but
could, generally, be applied to any other neural model based
on sub-DNNs (or neural cells). We decided that the defined
operators must comply with the characteristic of having to
produce structurally valid VALPs. The operators are classified
according to the characteristics described in Section
(aggressiveness and effect over the complexity of the model)
and the scopes of application:

1) Sub-networks, operators used in micro searches.

2) General model structure, macro search operators used
for modifying the connections between sub-DNNs.

3) Hyperparameters

4) Crossover operator

A. Sub-networks

We start with the operators with the most reduced perfor-
mance scope (micro search): layer-wise modifications of the
sub-networks in a VALP. Three different mutation operators
have this scope:

e add_layer: This extender operator adds a layer in the
network. Depending on how the weights are initialized
and where the layer is added, this operator can be
aggressive (e.g., by randomly initializing the weights) or
gentle (e.g., by using the morphism approach).

e remove_layer: This operator deletes a layer from the
network. The rest of the layers remain the same. As a
reducer, this operator is aggressive.

e extend_layer: This operator adds neurons to a layer
from the network. The remaining layers stay the same.
This extender operator can be aggressive or gentle.

B. General model structure

The next set of operators is capable of affecting the VALP
structure in its higher level (macro search), i.e., the inter-
connections between the different sub-DNNs in a VALP. We
define five modifiers with this capacity:

e add_connection: Given two currently unlinked sub-
networks of a VALP, this operator links them by creating
a new connection. In other words, the second sub-DNN
receives the output of the first sub-network as additional
input. This extender operator can be both gentle or
aggressive.

e delete_connection: Given a connection of a VALP,
this operator deletes it. This operator is aggressive and
reducer.

e insert_network: Given a connection of a VALP,
this operator inserts a network in the middle of the
connection. For example, if a connection ¢y that links
ng to ny is chosen, a connection ¢; between ng and the
newly created n,,, and a connection co between n,, and
ny are created, and cg is deleted. This expander operator
can be both aggressive or gentle.

e delete_network: Given a network n,, of a VALP,
this operator deletes it. Each sub-network providing data
to n,, switches to supplying data to each and every sub-
DNN n,, provided data to. This operator is reducer, and,
as determined by an additional experiment reported in the
supplementary material of this paper, aggressive.

e clone_network: Given a network of a VALP, this
operator duplicates that network and all the connections
related to it. This operator is an expander and can be both
gentle or aggressive. Applying a 0.5 factor to the outputs
of both the original and the clone networks neutralizes
the effect of the operator on the outputs, resulting in a
gentle operator.

These last five methods will be applied only if structural cor-
rectness is guaranteed. For example, delete_connection
will not, under any circumstances, delete a connection
when it is the only source of data of a sub-network, or
delete_network will never suppress a sub-network when
it is the only one between a model input and a model output.

The gentle operators defined in this work depend entirely
on reusing and adequately modifying the weights optimized in
the previous training epochs. We reuse the weights learned by
a model before being altered, i.e., we apply weight inheritance,
whenever it is viable (when a random sub-DNN is added to a
VALP, no weight inheritance is possible).

Graphical examples of how these operators work are shown

in Fig.

C. Hyperparameters

Searching for the optimal model architecture (the sub-
networks and how they are interconnected within the model)
would only raise the model to a certain point, as the rest of
the model components need to be synchronized to obtain an
optimal performance. This is the case of the loss functions
used to optimize the weights of the neural model and other
hyperparameters, as the SGD algorithm. Other aspects related

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, MAY 2021

Y R

(a) add_connection

(b) delete_connection

- £\
Nt

(d) delete_network

(c) insert_network

A
5T A

(e) clone_network

Fig. 3: Examples of the different operators. In all cases, the
variation is performed relative to the VALP sub-network in
the middle of the figure (in red). For Figures and
a connection. For Figures and , a network (n»).

to training, such as the learning rate and batch size, also have
to be properly set. With this in mind, we define the following
variation operators, all of which are gentle:

e change_1r changes the learning rate of a model output.
For example, if convergence is detected in the Historic
sub-loss function information, its learning rate can be
decreased, aiming at improving the effectiveness of the
training procedure over that specific objective.

e change_sgd changes the SGD algorithm used to opti-
mize the weights of the model with respect to a model
output.

e change_bs changes the size of the batch used at each
training epoch.

D. Crossover operator

In this multi-objective scenario, the objectives are indepen-
dent of each other to some degree, as each output will normally
have some exclusive sub-DNNs (and therefore, weights). Em-
ploying crossover-like operators enables parts of models to
be cherry-picked for constructing other models with the best
parts of each one. We define a crossover operator based on
the donation between models:

o Exclusive subgraph crossover: This aggressive operator
can be applied when, based on the Relative Performance
measure, a model behaving adequately in multiple tasks
fails at another one. A model with a top performance
in that last task is selected as the donor of the exclusive
subgraph of that output for the first model, the host, which
has its exclusive subgraph replaced by the donation.

VI. EXPERIMENTS

We have designed a set of experiments in order to vali-
date some of the general guidelines for the NAS framework
proposed in this paper.

Several works have reported that starting from simple neural
models with relatively few parameters and allowing them to
evolve towards more complex structures yields positive results
[34]. The experiments described in this section consist of the
employment of the proposed search guidelines with this same
mindset. We consider a model with a number of components
close to the minimum (roughly one sub-network per model
output) to provide the required output to be on its initial stages,
whereas a mature model would consist of a more complex
structure with more sub-networks and connections.

A. Test Benchmark

For the different parts of the experimentation, we have
built two artificial and similar problems. Both of them consist
of extensions of two widely known problems, MNIST [29]
and Fashion MNIST [55]. The two datasets are composed
of images of the same number of pixels (784) arranged in
the same manner (28x 28), although the former is composed
of handwritten digits, and the latter consists of pictures of
clothing pieces. We define the multiobjective version of both
problems [20].

o Classification objective: This is the original definition
of the problem. It consists of correctly classifying the
observations in the dataset into one of the 10 possible
classes.

« Histogram prediction objective: This objective consists
of correctly predicting the histogram of the pixels in the
images. The images being grayscale, a single histogram
(of 8 bins) can be computed and associated with each
one of the examples.

« Image sampling objective: This last objective consists
of sampling images similar to those in the dataset.

This way, we can test the performance of the operators when
acting in an environment where the outputs are related to a
single data input.

We define the two separate problems to simulate the
scenario in which the rules are inferred from one set of
experiments, and are then applied to another, more complex
problem. The two problems having very similar characteristics
in terms of the number of examples and features as well as
data type and the number of classes is purely coincidental,
as this approach could be tested in problems of varying data
inputs, outputs, and characteristics of both.

B. Initial experimentation

The first step consists of testing the proposed metrics and
operators isolated from the NAS framework. This way, we
will be able to extract valuable information about how to use
the information given by the metrics with the final goal of
deciding which operator and where it should be applied in a
NAS process.

In order to assess the impact that each operator can have
in different scenarios (these being described by the values ob-
tained from the different metrics), we perform an exploratory
search over the space of medium-sized VALPs (i.e., twice as
many sub-networks as model outputs). In this experimentation,

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, MAY 2021

we will be able to observe the difference between applying
gentle mutation operators over their aggressive counterparts.

Additionally, and this is the main goal of this experimental

section, we aim at setting the grounds of the set of rules
which will be helpful to improve the efficiency of future NAS
runs. To that end, we attempt to identify which operators
offer the largest improvement potential. Because the rules we
are looking for should not be tied to the particular problem
used in this instance, we are relying on the metrics defined
in Section [[V-B|instead of the common metrics for assessing
the performance of a prediction model (e.g., accuracy for a
classification model).

Choosing the MNIST problem, we test the effect of the

mutation operators defined in Section To that end

1) 100 VALPs are randomly created (as described in the
supplementary part of this work and in [19]) and trained
for ~67 epochs (20,000 batches of size 200).

2) Every operator is applied to different clones of each
VALP. The operators are applied to each component of
the VALPs only if structural correctness is guaranteed.

3) Every VALP is retrained to adjust the weights of the
model to the variation for ~17 additional epochs (5,000
more batches).

To determine the quality of the VALPs at each point, we
have evaluated them before the modification and after the
secondary training.

C. Main experimentation

In this second step, we want to employ the knowledge
obtained in the first step on a NAS procedure. With that
goal in mind, we propose a common HC algorithm (Figure {4
contains a pseudo-code form of the method) with two different
implementations: the common approach, in which operators
are chosen randomly, and the smart approach, in which the
most promising operator is chosen. The pseudo-code makes
use of the following functions:

o random_VALP(): This function randomly initializes a

VALP, with a limited number of components.

o evaluate(model): Given a VALP, this function evaluates
the model and returns one value per model output. In this
work, it consists of a triple, since the problem has three
objectives.

o select_operator(model): Given a VALP, this function
selects the operator to be applied. The difference between
the random and the smart HC approach resides in the
implementation of this function.

o variation(model, op): Given a VALP and an operator,
this function generates a neighbor of the VALP by
applying the operator.

e <: This operator compares two tuples of values. In this
case, if at least two of the three values of the operand on
the left are lower than their corresponding values on the
right, it returns True. Otherwise, False is returned.

The two variants of the algorithm are tested on the (slightly
more difficult) Fashion-MNIST multiobjective problem. Fol-
lowing the start-simple-and-sophisticate approach, a random

1: procedure STOCHASTICHC (step_limit)
2 current < random_VALP()
3 curr_fitness < evaluate(current)
4: step <+ 0

5: while step < step_limit do
6 op + select_operator(current)

7 candidate <+ variation(current, op)

8 cand_fitness < evaluate(candidate)
9: if cand_fitness < curr_fitness then
10: current < candidate

11: curr_fitness < cand_fitness
12: end if

13: step < step + 1

14: end while

15: return current, curr_fitness

16: end procedure

Fig. 4: HC approach used in the experiments.

solution is initialized containing between one and two times
as many sub-networks as model outputs. Then, both variations
of the algorithm are applied to search for VALP structures.

The VALP configurations used as the starting point are
trained for 5.000 batches. At each step of the HC algorithm,
the modified model is retrained for 1.000 additional batches.
Each HC is run 30 times with different random seeds in order
to avoid possible bias, product of the stochastic component of
the method. 60 steps are awarded to each search method.

As in the initial experiment, we constrain the set of variation
operators to be investigated to those defined in Section

VII. RESULTS
A. Initial experimentation

First, we want to investigate whether the gentle operators
consistently perform better than their aggressive counterparts.
To that end, we have computed the improvement observed in
the VALPs between the end of the first training session and
after it has been modified and retrained. With the improve-
ment measured -performance after second training divided
by performance after the first training, both measurements
in logarithmic scale- we subtract the improvement observed
due to the application of gentle operators to the improvement
caused by their corresponding aggressive counterparts. This
metric G serves as a measure of the gain or advantage of
using one class of operator over the other. Figure [5] shows the
frequency (y axis) of the GG difference values (x axis). The
more positive they are, the bigger the difference in favor of
the gentle operator. Any difference superior to one is cut to
that value to improve the visualization of the figure.

As can be observed in Figure [5] the gentle operators
have outperformed the aggressive ones considerably more
frequently than the other way around, especially taking into
account extreme differences (values over 1). Gentle operators
are, in general, conservative variations when it comes to
increasing or decreasing the performance of the model. In
closer comparisons, the gentle operators also tend to produce
a bigger improvement in model quality. However, although

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, MAY 2021

6 Mutation
oy I Clone Network
C
24 Add Connection
o W Insert Network
5. | [
0 .

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 04 06 0.8 1.0
G Difference

Fig. 5: G difference observed when comparing the improve-
ments obtained by VALPs after being modified by gentle op-
erators, and their aggressive versions. Positive values indicate
a better performance of the gentle operator, whereas negative
ones do the exact opposite. Larger numbers represent larger
differences between operators.

less frequent, there are many cases in which the aggressive
operators had a more positive impact than their gentle coun-
terparts. The noise these operators introduce into the model,
in the form of random weights, appears to be able to shake the
model from a local optimum, from which the gentle operator
could not make it escape. This is especially visible in the
cases in which extreme improvements were achieved by the
aggressive operators.

The presence of these last cases suggests that the employ-
ment of aggressive operators is not only viable, but advisable
in some scenarios. This theory is also backed up by statistical
testing. After the null hypothesis of all mutations producing
the same effects was rejected by the Kruskal-Wallis statistical
test [28]], the Dunn post-hoc test [11] found significant dif-
ferences between all pairwise comparisons between mutations
-p-value < 0.0007- except for one, the comparison between
the aggressive and gentle version of the connection adding
operator. This is probably due to the high number of extreme
differences in improvements. In other cases, although many
of the measurements fall close to zero, there is a significantly
larger amount of differences on the positive side as opposed
to the negative side, including a substantial amount of extreme
values over one. This explains the significant differences
corroborated by the test.

We now address the question of how to create the set of
rules which helps NAS algorithms to correctly identify the
best operator given one model.

Regarding the second part of the experimentation, we at-
tempt to define the metrics that will eventually guide future
NAS runs. With that goal in mind, we aim at observing,
given the metric values (from those defined in Section [[V-B),
which operator(s) produced the largest gains. The two metrics
which have produced the most significant differences among
the analyzed mutation operators were the historic sub-loss
information and the module intervention.

Regarding the loss function slope, Figure [6] shows the
percentage of improvement observed in a VALP after it
was modified by the gentle operators and their aggressive
counterpart (in the y axis, in logarithmic scale), regarding the
historic sub-loss function of the regression output of the VALP

(x axis). The improvement percentages (the lower, the larger
improvement) have been cut to the [—0.5,0.5] range. The loss
slope also only considers a minimum value of —0.00015. As
can be seen in the figure, most improvements are marginal,
just below the 0 mark. However, note that the goal of this
analysis is to observe in which cases the operators can produce
a significant improvement to the search, rather than how often
they are able or unable to do so. The random application of
an operator, as can be seen in the distributions in Figure [6}
would very unlikely result in a drastic improvement. Because
of this, some interesting insights can be extracted from this
figure.

For example, because of the lack of existence of large
performance decline when applying the clone net operator
(Figure [6a) if the loss function is still decreasing (left-hand
side of the figures), we can conclude that this is usually a ben-
eficial mutation. The connection adding operator (Figure [6b)
was also able to produce large performance gains when the
loss function of an output is still steeply decreasing. This
means that these kinds of changes are beneficial, especially
the gentle form, when the loss function is still decreasing.

The mutation that places a network in the middle of a
connection (Figure[6c) was able to produce significant changes
(both improvement and deterioration) when the slope of the
loss function is smaller. This is especially true for the aggres-
sive version, as a significant number of drastic improvements
was observed compared to the gentle version. This means that
applying it on an output which has saddled in a poor local
optimum can make the model to dramatically improve, while
a drastic performance loss would not hurt the search, as the
local optima was not desirable anyway.

A similar set of figures has been generated for the network
relevance metric. Relevance consists of the change observed
between the two stages of the model, before and after being
affected by the module intervention approach, and it is also
measured in percentage points. This way, if no change was
observed in a model output after being affected, a 1 is
recorded. If the performance was halved (e.g., only half of
the observations which were previously correctly classified are
correctly classified after modifying the model), a 2 is recorded.

In the case of Figure because the performance of a
regression output can decrease indefinitely, the relevance has
been cut to 0.4 (in logarithmic scale). As can be observed in
the top right corner of the figures, when modifying a network
relevant to an output, the result, as expected, can be very bad if
the mutation is an aggressive one. The gentle network cloning
appears to be a conservative choice when it comes to a relevant
net, given the few cases in which performance declines have
been observed. A similar effect can be observed with the insert
network operator, as it produced more improvements when
applied to relevant networks. The connection adding operator
in this case is not advisable with relevant networks.

B. Operator per network characterization

With the insights made in the previous section, we have
defined the following set of rules to display the potential of
this kind of guided searches.

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, MAY 2021

Clone Net, Aggressive Clone Net, Gentle

Connect Nets, Aggressive Connect Nets, Gentle

Insert net., Aggressive Insert net., Gentle

0.4 — 0.4- o | 0.4- = —
0.3- 1 200 0.3- 0.3- . - 400
€ 02- - - € 02- . € 02- [| - .
“E’ 0.1- - 150 “E’ 0.1- - “E’ 0.1- - 300
@ 00 - | - o 00 ! ¥ | & 0.0 I - -
> 01- - > 01- > 01 - 200
o 100 © o -
S 02w < 02 S 02-
203 B ==l g‘ 0.3 B g' 0.3 B B
E -0.3- . -0. -0.
= .04 - -= 50 = 04 - = 04 SRS == 100
0.5 - 0.5 0.5 — -
|||||||||||||||||| 0 [B R I [T B R B T [N B S B A 0
-1.5e-4 -9.e-5 -3.e-5l.e-5 -1l.5e-4 -9.e-5 -3.e-5l.e-5 -1.5e-4 -9.e-5 -3.e-5l.e-5 -1l.5e-4 -9.e-5 -3.e-5l.e-5 -1.5e-4 -9.e-5 -3.e-51le-5 -1.5e-4-9.e-5 -3.e-5l.e-5
Loss slope Loss slope Loss slope Loss slope Loss slope Loss slope

(a) Clone Net mutation operator.

(b) Add Connection mutation operator.

(c) Insert network mutation operator.

Fig. 6: Percentage improvement observed over the regression output of the VALP (in the y axis, the lower the value, the larger
improvement) in logarithmic scale, by different mutation operators, with respect to the slope of the historic sub-loss function
evolution (x axis). The color darkness represents the number of mutations that registered the improvement in the y axis. The
subfigures on the left-hand side represent data relative to the aggressive version of the operators, whereas the ones on the

right-hand side show information about the gentle ones.

Clone Net, Aggressive Clone Net, Gentle

0.4 - 049
o . n 15, 03
qc) 0.2 - | - B qC) 0.2
100
5 L . . £ o .
g0 . s i m » 75 L0 'wm
o 0.1 | [} o 0.1
o u put
o -0.2- - 50 g -0.2 |
£ -03 € -03 I
0.4 25 0.4
0s5# , WEEREEC ARy 0 o054 W, L]
00 01 02 03 04 00 01 02 03 04 00 01 02 03 04
Relevance Relevance Relevance

(a) Clone Net mutation operator.

Connect Nets, AggressiveConnect Nets, Gentle

00 0.1 02 03 04

(b) Add Connection mutation operator.

Insert net., Aggressive Insert net., Gentle

Improvement

o o o
oo
T |
|
[
,
m'
m
]
=
]
|
=
ErEEE——— o
N
5 & 3 &
o o o o

' 400
300
- hw
| 200
100
R

Relevance Relevance Relevance

(c) Insert network mutation operator.

Fig. 7: Percentage improvement observed over the regression output of the VALP in logarithmic scale (in the y axis), by
different mutation operators, with respect to the relevance of the network affected by the operator, also in logarithmic scale (x

axis, the larger, the more relevant a network to the output).

o When a network involved in a loss function registers a
steep descent, the gentle version of the network cloning
mutation can be applied.

o If a network is part of an output which is moderately
descending, the add connection operator can be applied.

o When a network is part of an output in a local optimum,
the insert network can be applied.

o If a network is not relevant for some outputs it is
connected to, but is for other ones, the delete connection,
the insert network, or the aggressive version of the clone
network can be applied.

These rules, along with these additional ones,

o When a network is not relevant for an output it is con-
nected to, the delete connection operator can be applied.

o If a network is not relevant for any output, the network
deletion operator can be applied.

have been compiled into the mutation selection guidelines,
which are going to be used in the HC algorithm.

A more sophisticated usage of the metrics and variation
operator characterization could be carried out. Defining a
metamodel that is able to capture the patterns between model
states and operator application with the largest benefit for
an efficient search of the DNN structure could improve the
obtained results [17].

C. Main experimentation

The threshold values for determining whether a loss function
is descending or not, or how relevant a sub-network is, are
parameters of the NAS algorithm. In this case, they are
estimated from the initial experimentation. A loss slope larger
than —10~19 is considered to be stuck, and if smaller than
—2x1075, it is determined to be steeply descending. Anything
in between these two values is considered to be moderately
descending. A network is considered to be relevant to an
output if the performance of the VALP in that output decreases
by 20% or less when it is intervened.

These values could be used as a reference for setting
these threshold values in the future, taking into account the
magnitudes of the problems being dealt with in each case.

D. Operator selection

With these defined criteria, all networks within a VALP can
be modified by several operators at each stage. Therefore,
we define a hierarchy in which the operators are organized
according to the priority they are given to modify the models.

1) Reducers: Because we pursue efficient models, any

network or connection which is not valuable for the
overall performance should be deleted.

2) Aggressive expanders: Any network which, according to

the rules defined in the previous section, can be affected

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, MAY 2021

by an aggressive expander operator, is assumed not to
be working properly, and this is the second priority.

3) Gentle expanders: Giving more modeling power to a
model only makes sense when all its resources are being
effectively used, and therefore this is the last type of
operators to be taken into account.

At the time of selecting the operator to be applied, within
the set of operators with the highest priority, one is chosen at
random. When a selected operator is not able to improve the
current model, it is not included among the candidate operators
to generate a neighbor of the model in the next step. If no
operator from those selected by this method is able to create a
candidate model that improves the current solution, a random
gentle operator is applied to a random network in the model.

Since we deal with multi-task problems where multiple
objectives have to be simultaneously optimized, the question of
deciding what model is the better one is not trivial, and, there-
fore, neither is when comparing search algorithms. We thus
resort to using two Pareto front-based approaches to compare
the quality of the VALP structures found. Further analysis of
these results can be found as part of the supplementary work.

For the first comparison, we take each of the 30 pairs of
runs separately, considering as pairs those runs which start
from the same random VALP structure and use the random
and guided HC approaches. At each step, all the structures
found (across the whole search) by a pair of runs are compiled
into a single set, and a Pareto front is computed, considering
the three outputs of the model. This way, in, for example, the
fourth step, we have 30 different PFs, each being composed of
at most eight points, four from each of the corresponding runs
(one per completed step). Next, the points in the PF from each
HC approach are counted. In Figure |8} boxplots are presented,
which display the number of points in the PFs (y axis) by each
approach (orange for the guided HC and blue for the random
version), in each step (x axis).

As can be seen in Figure[§] in the initial 20 steps, both ver-
sions of the algorithm work similarly, with a slight advantage
for the random HC. This trend changes after the 20th step,
where, although the median remains similar, the top results
are clearly produced by the guided version of the algorithm.

Interestingly, both the random and the guided versions have
produced one run each which generates a number of points in
their corresponding PFs far superior to the rest. These outliers
are also higher in the guided version.

Secondly, we consider all 30 runs together, in order to know
what algorithm is able to obtain the best results, overall. In
this case, instead of constructing one PF per step and pair
of runs, we simply construct a single PF from all the points
found across runs limited only by the step. Again, all the found
structures until a step are considered in each step. The results
are shown in Figure [0}

Although Figures [§] and [9] look dissimilar, the information
shown coincides. During the initial stages of the search (the
initial 16-17 steps), the algorithms are searching for the best
area to exploit, at which the random HC seems to outper-
form the guided version. This comes as no surprise, as the
randomized approach does not focus on a search path to
follow. Because it can perform modifications in any place

within the model structure, the model can improve or lose
performance continuously in different outputs. This helps a
larger presence of points generated by the random HC in the
PFs shown in Figure [0 as opposed to the guided version,
which focuses on improving certain aspects of the model -
the efficiency of the sub-networks- before starting to seek
performance improvements. That first phase ends near the
18th step, as one of the guided runs achieves one VALP
configuration capable of dominating all the ones found during
all searches. Slowly, other points start to form the PF, most
of which belong to the guided runs. This shows the benefit of
the guided search over the randomized one in the long term
when performing intelligently chosen moves.

VIII. CONCLUSIONS

This work is framed in the neural architecture search field.
Our efforts are focused on compiling a set of guidelines which
aims at maximizing the effectiveness of the application of
variation operators to model structures during a structural
search procedure, illustrated using a complex scenario, HMTL.
More specifically, we first identify several metrics which can
be used to determine the level of importance of different sub-
DNNs in the overall performance. Secondly, we compile a
set of variation operators previously used in NAS procedures
described in the literature and classify them according to the
effect they have on the complexity and performance of the
model. Next, we conduct an extensive exploratory search on
how these operators affect the performance of a medium-sized
model, in order to identify patterns that relate the defined
metrics and the improvements in the models. These patterns
are latter transformed into a set of guidelines for enhancing the
efficiency of future NAS searches. These guidelines add one
level of sophistication to current NAS algorithms, as, opposed
to the common practice of randomly selecting a variation
operator, a more informed choice is made, which can save
the need to evaluate DNN structures affected by the wrong
operator. Finally, a comparison of the performance of the
two variants of the NAS search -blind versus guided by the
introduced rules- is presented as an illustration of the gains
that could be obtained in NAS efficiency.

The main contribution of this work is the methodology for
diagnosing the state of an HMTL model and identifying the
relevance of its different components, and the application of
these metrics for more efficient NAS algorithms. One key
for this goal is the set of metrics defined with this purpose,
although others which complement those introduced in this
work could result in more valuable information about the
model, ultimately making the processes more efficient.

The experiments conducted in this work serve as a blueprint
for implementing the presented ideas to other problems and
domains, as they have already served the purpose of efficiently
exploring a complex search space using. Although the con-
ducted NAS runs can be considered as simple, the defined
methodology is not restrained to be applied in such scenarios.

The study and application of these (or similar) methodolo-
gies to other problem definitions; e.g., NAS types (e.g., neu-
roevolutionary algorithms), or DNN types (single objective,

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, MAY 2021

30 A Method
I Random
[Guided

20 1

et b’

fury
o
1

Points in PF

¢
N ¢

¢
R NN

A

R

mfﬁﬁﬁﬁﬁgﬁﬂoﬁ

0 2 4 6 810121416182022242628303234363840424446485052 54565860

Step

Fig. 8: Boxplot showing the number of points (y axis) in the PFs generated from combining all HC runs (blue for random,
orange for guided), per step (x axis). The larger the number of points in the PF, the better the performance of the algorithm.

30

N
o

=
o

Points in PF

Method
I Random
I Guided

0 2 4 6 81012141618 202224 262830323436384042444648505254565860

Step

Fig. 9: Barplot showing the number of points (y axis) in the combined PF from each approach (blue for random, orange for
guided), per step (x axis). The larger the number of points in the PF, the better the performance of the algorithm.

convolutional DNNSs, etc.); is left as future work, as are the
employment of some of the metrics and operators described
in this work, which were not tested in the experiments; and
studying the possibility of adaptation of reinforcement learning
and gradient based NAS approaches to the HMTL framework.

ACKNOWLEDGMENT

This work has received support from the KK-2020/00049
(BKIA through the ELKARTEK program) PID2019-
104966GB-100 (Spanish Ministry of Science and Innovation)
and IT-1244-19 (Basque Government) programs. Unai
Garciarena holds a predoctoral grant (PIF16/238) by the
University of the Basque Country. We gratefully acknowledge
the support of NVIDIA Corporation with the donation of a
Titan X Pascal GPU used to accelerate the process of training
the models used in this work.

REFERENCES

[11 G. Alain and Y. Bengio. Understanding intermediate layers using linear
classifier probes. arXiv preprint arXiv:1610.01644, 2016.

[2] L. Arras, G. Montavon, K.-R. Miiller, and W. Samek. Explaining
recurrent neural network predictions in sentiment analysis. arXiv
preprint arXiv:1706.07206, 2017.

[3] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A deep
convolutional encoder-decoder architecture for image segmentation.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
39(12):2481-2495, 2017. Publisher: IEEE.

[4] G. Bender, P-J. Kindermans, B. Zoph, V. Vasudevan, and Q. Le.
Understanding and Simplifying One-Shot Architecture Search. In J. Dy
and A. Krause, editors, Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pages 550-559. PMLR, July 2018.

[5] R. Caruana. Multitask learning. Machine Learning, 28(1):41-75, 1997.

[6] T. Chen, I. Goodfellow, and J. Shlens. Net2net: Accelerating learning
via knowledge transfer. arXiv preprint arXiv:1511.05641, 2015.

[71 Y. Chen, R. Gao, F. Liu, and D. Zhao. ModuleNet: Knowledge-inherited
Neural Architecture Search. arXiv preprint arXiv:2004.05020, 2020.

[8] K. Cho, B. Van Merriénboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio. Learning phrase representations using
RNN encoder-decoder for statistical machine translation. arXiv preprint
arXiv:1406.1078, 2014.

[9] C. A. C. Coello. Theoretical and numerical constraint-handling tech-

niques used with evolutionary algorithms: a survey of the state of the

art. Computer Methods in Applied Mechanics and Engineering, 191(11-

12):1245-1287, 2002. Publisher: Elsevier.

G. Cybenko. Approximation by superpositions of a sigmoidal function.

Mathematics of Control, Signals and Systems, 2(4):303-314, Dec. 1989.

O. J. Dunn. Multiple comparisons using rank sums. Technometrics,

6(3):241-252, 1964.

F. Eberhardt and R. Scheines. Interventions and causal inference.

Philosophy of Science, 74(5):981-995, 2007. Publisher: The University

of Chicago Press.

T. Elsken, J.-H. Metzen, and F. Hutter. Simple and efficient ar-

chitecture search for convolutional neural networks. arXiv preprint

arXiv:1711.04528, 2017.

T. Elsken, J.-H. Metzen, and F. Hutter. Neural Architecture Search: A

Survey. Journal of Machine Learning Research, 20:1-21, 2019.

V. Francois-Lavet, P. Henderson, R. Islam, M. G. Bellemare, J. Pineau,

and others. An Introduction to Deep Reinforcement Learning. Foun-

dations and Trends® in Machine Learning, 11(3-4):219-354, 2018.

Publisher: Now Publishers, Inc.

E. Galvan and P. Mooney. Neuroevolution in Deep Neural Net-

works: Current Trends and Future Challenges. arXiv preprint

arXiv:2006.05415, 2020.

U. Garciarena, N. Lourengo, P. Machado, R. Santana, and A. Mendiburu.

On the Exploitation of Neuroevolutionary Information. In Proceedings of

the Genetic and Evolutionary Computation Conference, page Accepted

for publication, 2021.

U. Garciarena, A. Mendiburu, and R. Santana. Automatic Structural

Search for Multi-task Learning VALPs. In B. Dorronsoro, P. Ruiz,

[10]
[11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, MAY 2021

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

J. C. de la Torre, D. Urda, and E.-G. Talbi, editors, Optimization and
Learning, pages 25-36, Cham, 2020. Springer International Publishing.
U. Garciarena, A. Mendiburu, and R. Santana. Towards automatic
construction of multi-network models for heterogeneous multi-task
learning. ACM Transactions on Knowledge Discovery from Data
(TKDD), 15(2):1-23, 2021. Publisher: ACM New York, NY, USA.

U. Garciarena, R. Santana, and A. Mendiburu. Expanding variational
autoencoders for learning and exploiting latent representations in search
distributions. In Proceedings of the Genetic and Evolutionary Compu-
tation Conference, pages 849-856, Kyoto, Japan, 2018. ACM.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press,
2016.

1. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. Generative Adversarial Nets. In
Proceedings of the 27th International Conference on Neural Information
Processing Systems - Volume 2, pages 2672-2680, Cambridge, MA,
USA, 2014. MIT Press. event-place: Montreal, Canada.

I. Harvey. The microbial genetic algorithm. In European Conference
on Artificial Life, pages 126-133. Springer, 2009.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735-1780, 1997.

R. Jozefowicz, O. Vinyals, M. Schuster, N. Shazeer, and Y. Wu. Explor-
ing the limits of language modeling. arXiv preprint arXiv:1602.02410,
2016.

D. P. Kingma and M. Welling. Auto-encoding variational Bayes. arXiv
preprint arXiv:1312.6114, 2013.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in Neural
Information Processing Systems, pages 1097-1105, 2012.

W. H. Kruskal and W. A. Wallis. Use of ranks in one-criterion variance
analysis. Journal of the American Statistical Association, 47(260):583—
621, 1952.

Y. LeCun, C. Cortes, and C. Burges. MNIST handwritten digit database.
ATT Labs [Online]. http://yann.lecun.com/exdb/mnist, 2, 2010.

W. Li, X. Zhu, and S. Gong. Person re-identification by deep joint
learning of multi-loss classification. arXiv preprint arXiv:1705.04724,
2017.

J. Liang, E. Meyerson, and R. Miikkulainen. Evolutionary Architecture
Search for Deep Multitask Networks. In Proceedings of the Genetic and
Evolutionary Computation Conference, pages 466—473, New York, NY,
USA, 2018. ACM.

H. Liu, K. Simonyan, and Y. Yang. Darts: Differentiable architecture
search. arXiv preprint arXiv:1806.09055, 2018.

T. Liu, D. Tao, M. Song, and S. J. Maybank. Algorithm-dependent
generalization bounds for multi-task learning. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 39(2):227-241, 2016.
Publisher: IEEE.

J. Lu, W. Ma, and B. Faltings. CompNet: Neural networks growing
via the compact network morphism. arXiv preprint arXiv:1804.10316,
2018.

Z. Lu, I. Whalen, V. Boddeti, Y. Dhebar, K. Deb, E. Goodman, and
W. Banzhaf. NSGA-NET: a multi-objective genetic algorithm for neural
architecture search. arXiv preprint arXiv:1810.03522, 2018.

S. Mahendran, H. Ali, and R. Vidal. 3d pose regression using con-
volutional neural networks. In Proceedings of the IEEE International
Conference on Computer Vision Workshops, pages 2174-2182, 2017.
E. Meyerson and R. Miikkulainen. Beyond Shared Hierarchies: Deep
Multitask Learning through Soft Layer Ordering. arXiv preprint
arXiv:1711.00108, 2017.

R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon,
B. Raju, H. Shahrzad, A. Navruzyan, N. Duffy, and others. Evolving
deep neural networks. In Artificial Intelligence in the Age of Neural
Networks and Brain Computing, pages 293-312. Elsevier, 2019.

Y. Qin, D. Song, H. Chen, W. Cheng, G. Jiang, and G. Cottrell. A dual-
stage attention-based recurrent neural network for time series prediction.
arXiv preprint arXiv:1704.02971, 2017.

E. Real, A. Aggarwal, Y. Huang, and Q. V. Le. Regularized evolution
for image classifier architecture search. In Proceedings of the AAAI
Conference on Artificial Intelligence, pages 4780-4789, 2019.

K. Rupp. CPU, GPU and MIC Hardware Characteristics over Time.
Publication Title: www.karlrupp.net, 2016.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen.
MobileNetv2: Inverted residuals and linear bottlenecks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 45104520, 2018.

R. Shwartz-Ziv and N. Tishby. Opening the black box of deep neural
networks via information. arXiv preprint arXiv:1703.00810, 2017.

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]
[54]

[55]

[56]

[57]

[58]

[59]

K. O. Stanley. Compositional pattern producing networks: A novel
abstraction of development. Genetic Programming and Evolvable
Machines, 8(2):131-162, 2007.

K. O. Stanley and R. Miikkulainen. Efficient reinforcement learning
through evolving neural network topologies. In Proceedings of the 4th
Annual Conference on Genetic and Evolutionary Computation, pages
569-577. Morgan Kaufmann Publishers Inc., 2002.

K. O. Stanley and R. Miikkulainen. Evolving neural networks through
augmenting topologies. Evolutionary Computation, 10(2):99-127, 2002.
C. Szegedy, S. loffe, V. Vanhoucke, and A. A. Alemi. Inception-v4,
Inception-ResNet and the Impact of Residual Connections on Learning.
In Proceedings of the Thirty-First AAAI Conference on Artificial Intel-
ligence, AAAT’17, pages 4278-4284. AAAI Press, 2017. event-place:
San Francisco, California, USA.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1-9, 2015.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking
the inception architecture for computer vision. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages
2818-2826, 2016.

T. Uriot and D. Izzo. Safe crossover of neural networks through
neuron alignment. In Proceedings of the 2020 Genetic and Evolutionary
Computation Conference, pages 435-443, 2020.

O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A
neural image caption generator. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3156-3164, 2015.
R. Wang, M. Cheng, X. Chen, X. Tang, and C.-J. Hsieh. Rethinking Ar-
chitecture Selection in Differentiable NAS. In International Conference
on Learning Representations, 2021.

T. Wei, C. Wang, Y. Rui, and C. W. Chen. Network morphism. In
International Conference on Machine Learning, pages 564-572, 2016.
C. White, S. Nolen, and Y. Savani. Local Search is State of the Art for
NAS Benchmarks. arXiv preprint arXiv:2005.02960, 2020.

H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNIST: a Novel Image
Dataset for Benchmarking Machine Learning Algorithms, Aug. 2017.
arXiv: ¢s.LG/1708.07747.

Y. Zhang and D.-Y. Yeung. A regularization approach to learning task
relationships in multitask learning. ACM Transactions on Knowledge
Discovery from Data (TKDD), 8(3):12, 2014.

Z. Zheng, X. Yang, Z. Yu, L. Zheng, Y. Yang, and J. Kautz. Joint
discriminative and generative learning for person re-identification. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2138-2147, 2019.

B. Zoph and Q. V. Le. Neural architecture search with reinforcement
learning. arXiv preprint arXiv:1611.01578, [cs], 2016.

B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning transferable
architectures for scalable image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 8697—
8710, 2018.

Unai Garciarena received his Ph.D. degree in computer science in 2021, in
the University of the Basque Country (UPV/EHU). His main research interests
are generative modeling, supervised classification, and optimization.

Roberto Santana received a Ph.D. degree in Mathematics from the University
of Havana, Havana, Cuba, in 2005, and a Ph.D. degree in Computer Science
from the University of the Basque Country, Spain, in 2006, where he is
a researcher. His research interests include machine learning, evolutionary
computation, probabilistic graphical models, and neuroscience.

Alexander Mendiburu received the Ph.D. degree from the University of
the Basque Country, Spain, in 2006. Since 1999, he has been a Lecturer
with the Department of Computer Architecture and Technology, University
of the Basque Country. His current research interests include evolutionary
computation, probabilistic graphical models, and parallel computing.

	I Introduction
	II Related Work
	II-A Neural architecture search
	II-A1 Neuroevolution
	II-A2 Network Morphism

	II-B Model internal diagnosis
	II-C Heterogeneous learning

	III The heterogeneous, module-based model
	IV Intelligent search
	IV-A Model internal diagnosis
	IV-B Metrics
	IV-C Variation operator types
	IV-D Donation operator
	IV-E Principles for using the metric information
	IV-E1 Historic sub-loss information
	IV-E2 Module intervention
	IV-E3 Input intervention
	IV-E4 Dependency measures
	IV-E5 Relative performance

	V Searching for optimal VALP structures using variation operators
	V-A Sub-networks
	V-B General model structure
	V-C Hyperparameters
	V-D Crossover operator

	VI Experiments
	VI-A Test Benchmark
	VI-B Initial experimentation
	VI-C Main experimentation

	VII Results
	VII-A Initial experimentation
	VII-B Operator per network characterization
	VII-C Main experimentation
	VII-D Operator selection

	VIII Conclusions
	References
	Biographies
	Unai Garciarena
	Roberto Santana
	Alexander Mendiburu

