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Abstract—We propose a method for choosing the number of colors or true gray
levels in an image; this allows fully automatic segmentation of images. Our
underlying probability model is a hidden Markov random field. Each number of
colors considered is viewed as corresponding to a statistical model for the image,
and the resulting models are compared via approximate Bayes factors. The Bayes
factors are approximated using BIC (Bayesian Information Criterion), where the
required maximized likelihood is approximated by the Qian-Titterington
pseudolikelihood. We call the resulting criterion PLIC (Pseudolikelihood Information
Criterion). We also discuss a simpler approximation, MMIC (Marginal Mixture
Information Criterion), which is based only on the marginal distribution of pixel
values. This turns out to be useful for initialization and it also has moderately good
performance by itself when the amount of spatial dependence in an image is low.
We apply PLIC and MMIC to a medical image segmentation problem.

Index Terms—BIC, color image quantization, ICM algorithm, image segmentation,
Markov random field, medical image, mixture model, posterior model probability,
pseudolikelihood, satellite image.
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1 INTRODUCTION

IN this paper, we consider the problem of determining the number
of colors or gray levels to be used in presenting or interpreting an
image. We are motivated primarily by problems in medical image
segmentation. There, a segmentation is often desired to delineate
organs, tumors or other features in pixelized X-ray, MRI, PET,
CAT, or other images. If the image is segmented into too many
colors, it may make the border finding problem harder, while too
few colors may result in border information being lost. The idea is
thus to find the number of colors needed to represent the
information in the image (e.g., [1], [2]). The use of no more than
the number of gray levels needed facilitates the presentation and
analysis of mammograms, for example, [3].

Here, we introduce a new, model-based approach to this problem
using approximate Bayes factors. We model the image in terms of a
Markov random field and then each number of colors considered
corresponds to a different statistical model for the image data. By
doing this, we recast the problem of determining the number of
colors in the image as a problem of statistical model comparison, and
for this we use the standard Bayesian approach of Bayes factors. We
propose an approximation to the Bayes factor based on the
pseudolikelihood, called PLIC (for PseudoLikelihood Information
Criterion). We also discuss a simpler approximate Bayes factor
approach based on the marginal distribution of pixel values [4],
called MMIC (for Marginal Mixture Information Criterion). This
simpler approach is useful for initializing the PLIC method; MMIC
takes no account of spatial structure, whereas PLIC takes account of it
explicitly.

In Section 2, we review the Bayesian image models on which
our work is based. In Section 3, we review the basic ideas behind

Bayes factors and present the PLIC and MMIC methods. In
Section 4, we give the example of a medical image segmentation
problem; the PLIC approach yields a good result.

2 BAYESIAN IMAGE MODELING

2.1 Markov Random Fields with Noise

The model that underlies our work is a standard one in Bayesian
image analysis: a Markov random field with observation noise. We
denote the value observed at pixel i by Yi which will be a scalar for
gray-scale images, and a vector for color or multispectral ones. For
each observed Yi, there is a corresponding discrete-valued unobser-
vable state, Xi which determines the distribution of Yi; the set of all
the Xi values is called the “true scene.” Each possible state for Xi

corresponds to a particular distribution of Yi. The Yi are assumed to
be conditionally independent given the Xi and, so, dependence
among the Yi variables occurs only through dependence among the
Xi values.

We impose a dependence structure on the Xi by using a Markov
random field to model the true state of each pixel. This is a hidden
Markov random field model because it is observable only through
theYi values. Suppose that there areK possible states, so thatXi is an
integer between 1 and K. We define IðXi;XjÞ as an indicator
function equal to 1 when Xi ¼ Xj and to zero otherwise. We let
NðXiÞ be the set of neighbors ofXi. Here, we will take these to be the
eight pixels adjacent to pixel Xi. We let UðNðXiÞ; kÞ denote the
number of points inNðXiÞwhich have state k, so thatUðNðXiÞ; XiÞ is
the number of neighbors of pixel i which have the same state as
pixel i. For our work here, we use the Potts model, defined as follows:

pðXÞ / exp �
X
i�j

IðXi;XjÞ
 !

; ð1Þ

where the sum is over all neighbor pairs, i � j. This leads to the
following conditional distribution:

p Xi ¼ mjNðXiÞ; �ð Þ ¼ expð�UðNðXiÞ;mÞÞP
k expð�UðNðXiÞ; kÞÞ

: ð2Þ

The parameter � expresses the amount of spatial homogeneity in
the model. A positive value of �means that neighboring pixels tend
to be similar, while a negative value would mean that neighboring
pixels tend to be dissimilar. If� ¼ 0, then the pixels are independent.
Note that pixels on the boundary of an image will not have a full set
of observed neighbors. For simplicity and because the boundary is
only a small fraction of the data, we exclude boundary pixels from
the analysis except in their use as neighbors of interior pixels.

2.2 Parameter Estimation

The Iterated Conditional Modes (ICM) algorithm was introduced by
[5]. It can be used as a method of image reconstruction when local
characteristics of the true image can be modeled as a Markov random
field. In particular, this can be used with the model described in (1).
The algorithm begins with an initial estimate of the true sceneX and
proceeds iteratively to provide an estimate of the parameters of the
conditional distribution of Yi givenXi, as well as � andX. An initial
estimate of X, which is required for ICM, can be found through the
simple marginal mixture EM segmentation method [4].

3 APPROXIMATE BAYES FACTORS FOR CHOOSING THE

NUMBER OF COLORS OR TRUE GRAY LEVELS:
PLIC AND MMIC

Our general approach to the problem of choosing the number of
colors or true gray levels in an image, K, is to recast it as a
statistical model selection problem and then to use the standard
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Bayes factor approach to choose the appropriate model. The
Markov random field model in Section 2 is viewed as defining not
one model, but several, one for each value of K considered. Here,
we review the basic ideas of Bayes factors and then introduce our
pseudolikelihood-based approximation, PLIC, and the simpler
marginal mixture approximation, MMIC.

3.1 Bayes Factors

The Bayesian approach to model comparison and model selection
is based on posterior model probabilities. Given a set of models
considered, fMK : K ¼ 1; . . . ; Kmaxg and data Y , the posterior
probability of model MK is

pðMK jY Þ ¼
pðY jMKÞpðMKÞPKmax

L¼1 pðY jMLÞpðMLÞ
; ð3Þ

where pðY jMKÞ is the integrated likelihood of modelMK and pðMKÞ
is the prior probability of modelMK . Here, we will take the models to
be equally likely a priori, so that

pðMKÞ ¼ 1=Kmax ðK ¼ 1; . . . ; KmaxÞ:

The integrated likelihood, pðY jMKÞ, is defined by

pðY jMKÞ ¼
Z
pðY j�K;MKÞpð�KÞd�K; ð4Þ

where �K is the parameter (vector) for modelMK , pðY j�K;MKÞ is the
(usual) likelihood and pð�KÞ is the prior distribution. The quantity

BKL ¼
pðY jMKÞ
pðY jMLÞ

ð5Þ

is known as the Bayes factor for model MK against model ML. See
[6] and [7] for reviews of Bayes factors.

Evaluating the integral in (4) is often hard and much of the
research in this area has focused on ways of doing it. A simple, but
often reasonably good approximation is

2 log pðY jMKÞ � BIC ¼ 2 log pðY j�̂�K;MKÞ ÿ dK logðNÞ; ð6Þ

with �̂�K being the maximum-likelihood estimator of �K and dK
denoting dimð�KÞ, the number of parameters in model MK . Under
regularity conditions that are roughly those that guarantee
consistency and asymptotic normality of �̂�K , the error in this
approximation is Oð1Þ regardless of the prior pð�K jMKÞ ([8], [9]). If,
in addition, the prior pð�K jMKÞ is a unit information prior (i.e., a
multivariate normal prior distribution centered at the MLE with
variance matrix equal to the inverse of the Fisher information
matrix for one observation), then the error is OðNÿ1=2Þ [10]. Raftery
[11] argues that this prior, while proper, is conservative and, so,
may be appropriate as the basis for a baseline reference analysis.
Differences of 10 or more in BIC values between competing models
are conventionally viewed as constituting strong evidence for the
favored model over its competitor [6].

3.2 Penalized Pseudolikelihood Criterion: PLIC

We wish to conduct inference for K, the number of segments in the
image, using the Bayesian approach in Section 3.1. Here, MK refers
to the Potts model (1) with K components. Thus, �K consists of �
and the parameters of the conditional distribution of Yi given Xi.
We propose the use of a criterion derived from the BIC. A similar
approach was used by [12] for choosing between different Markov
random field models in the case where the true scene is directly
observed and the number of segments is known in advance;
neither of these is the case in the applications we have in mind.
When, as here, the true scene is not observed, this would require
evaluation of the likelihood of the observed data, LðY jKÞ, namely,

LðY jKÞ ¼
X
x

pðY jX ¼ x;KÞpðX ¼ xjKÞ: ð7Þ

The sum in (7) involves all possible configurations of the hidden
states. With N pixels and K states, there are KN possible
configurations, which is huge, making this approach intractable.
Instead, we approximate the likelihood term by a pseudolikelihood
proposed by [13] and [14] which maintains computational feasibility.

The basic idea of this pseudolikelihood is that instead of summing
over all possible configurations of X, we consider only configura-
tions that are close to the ICM estimate of X, denoted by X̂X.
Specifically, we consider each pixel Yi, in turn, and condition on X̂Xÿi,
which is X̂X excluding the value at Xi. We then obtain the following
conditional likelihood, in which NðX̂XiÞ denotes the neighbors of X̂Xi:

LðYijX̂Xÿi; KÞ ¼
XK
j¼1

pðYijXi ¼ jÞpðXi ¼ jjNðX̂XiÞÞ: ð8Þ

The first term in the sum, pðYijXi ¼ jÞ, simply requires
evaluation of the conditional density of Yi given Xi; the second
term, pðXi ¼ jjNðX̂XiÞÞ is evaluated using (2). The conditional
likelihoods from (8) are combined to form the Qian-Titterington
pseudolikelihood of the image, as follows:

LX̂XðY jKÞ ¼
Y
i

fðYijX̂Xÿi; �̂�Þ

¼
Y
i

XK
j¼1

fðYijXi ¼ jÞpðXi ¼ jjNðX̂XiÞ; �̂�Þ: ð9Þ

Returning to the formula for BIC, we replace the intractable
LðY jKÞ by the easily computable LX̂XðY jKÞ from (9), to obtain our
new approximation

PLICðKÞ ¼ 2 logðLX̂XðY jKÞÞ ÿ dK logðNÞ: ð10Þ

Because we do not expect the model assumptions to hold for
values of K very far from the true value, we adopt a sequential
approach to choosing K to maximize PLICðKÞ. We begin by
computing PLICðKÞ for K ¼ 1, and then incrementally increase
the value of K. At each step, we compare PLICðKÞ with
PLICðK ÿ 1Þ and stop the process when the smaller model is
preferred. In other words, as we increase K incrementally from
K ¼ 1, we take the first local maximum of PLICðKÞ to be our
choice for the number of segments K.

3.3 MMIC: A Simpler Bayes Factor Approximation for
Initialization and Fast Computation

A faster approximate Bayes factor approach to choosing the number
of colors or true gray levels is available by just considering the
empirical marginal distribution of pixel values and ignoring their
spatial locations. MMIC is much faster computationally than the
PLIC method and it can be used as an initialization step for PLIC. If
the data are generated by the Markov random field model (1), then
the marginal distribution of pixels is a finite mixture of
K distributions, each equal to the conditional distribution of Yi
given thatXi takes on one of its K possible values. The basic idea of
MMIC is to compute the BIC value for each number of components
in this finite mixture distribution.

Suppose we have observations Y ¼ ðY1; . . . ; YNÞ from a mixture
model with K components. Let Pj denote the mixture proportion
of the jth component. Let � be the mixing density (for example, for
a Gaussian mixture, � is a single Gaussian density) with � ¼
ð�1; . . . ; �KÞ giving the parameters for the K components. The
marginal density for a single observation, Yi, is

fðYijK; �Þ ¼
XK
j¼1

Pj�ðYij�jÞ: ð11Þ

Then, the loglikelihood for Y , assuming that all of the Yi are
independent, is

log pðY jK; �Þ ¼
XN
i¼1

log
XK
j¼1

Pj�ðYij�jÞ
 !

: ð12Þ
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After choosing � to maximize the loglikelihood from (12), the

maximized loglikelihood can be used in the BIC formula (6). We

refer to the resulting approximation as the Marginal Mixture

Information Criterion (MMIC):

MMICðKÞ ¼ 2 log pMLEðY jKÞ ÿ dK logðNÞ; ð13Þ

where dK is the number of parameters in the mixture model with

K components.
We view MMIC as only a heuristic guideline because the

likelihood on which it is based is correct only if the Yi are
independent, which is not the case for images, and also because the
regularity conditions for BIC to approximate the Bayes factor do
not hold for mixture models. However, it is known that choosing a
model based on BIC produces consistent density estimates when
the data are independent and one-dimensional [15] and a proof of
the consistency of BIC as a model selection criterion for mixture
models has been produced [16]. In addition, BIC has given good
results for choosing the number of components in a wide range of
applications of mixture models ([15], [17], [18], [4], [19]).

4 EXAMPLE: MEDICAL IMAGE SEGMENTATION

Fig. 1a shows a PET image of a dog lung. This image was obtained
from Dr. H.T. Robertson at the University of Washington Division
of Pulmonary and Critical Care. The goal of the analysis here is to
delineate the lung in the image automatically.

It is clear from Fig. 1a that the actual image area is circular, with
the corners of the image filled in with a constant gray value; this
reflects the way the PET image is taken. This sort of artifact can be
removed easily with a mixture model; one of the components
converges to a spike for that gray level, separating it from the rest
of the data. This can be clearly seen in the marginal histogram of
the image shown in Fig. 1b.

Table 1 shows that PLIC decisively chooses four segments for
this image. In the context of PET imagery, the choice of four
segments is quite reasonable for this image. Two segments are
needed for the background: one to model the spike (due to the
corner artifact) and one for the general background. Since the
image is constructed based on radioactive emissions from gas in
the lung, it is not surprising to see two segments for the lung itself
to account for the high gas density in the interior of the lung and
the somewhat lower gas density around the periphery. For this
case, MMIC also chooses four segments using only the marginal
grayscale values from the image.

The results of the marginal mixture EM segmentation are
shown in Fig. 2a. This does a reasonable job of separating the lung
from the background, especially given that it makes no use of
spatial context. It provides a good initialization for the segmenta-
tion methods that do take account of spatial context.

The ICM refinement, shown in Fig. 2b, does a good job of reducing
clutter in the image and gives a qualitatively satisfactory answer. We
also applied morphological smoothing [20] to Fig. 2b; the final result
is shown in Fig. 2c. This smoothes the outer edge of the lung, and it
also removes most of the other clutter in the image. The small spot
separate from the lung and below could be removed by simply
considering the lung to be the largest connected component. The
small void in the center of the lung is not artifactual; it is real.

Subjective evaluation of this result by the researchers who
provided us with this image found that our final segmentation
provided a good delineation of the lung as a region of interest for
further analysis; also, the segmentation based on four segments
was preferred to those based on three or five segments, thus
providing some practical validation of our method in this case.

The final result shows that this segmentation method has
promise for the purpose of automatically processing a database of
lung images to separate out the region of interest (the lung) from the
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Fig. 1. (a) PET Image of a dog lung. (b) Marginal histogram of the dog lung image.

TABLE 1
PLIC and MMIC Results for the Dog Lung Image

The preferred number of segments is shown in boldface for each method.

Fig. 2. (a) Marginal mixture EM segmentation of the dog lung image into four segments. (b) Segmentation of the dog lung image into four segments by the ICM algorithm,
initialized by the marginal mixture EM segmentation result. (c) Final segmentation of the dog lung image into four segments after morphological smoothing (opening and
closing, conditional on the edge pixels).



background. Currently, the most widely used method for this sort of
segmentation is for a human expert to manually outline the lung
with an interactive computer program, a process which is quite
tedious and can take a long time for a large database of images. The
automatic segmentation algorithm can obviate the need for the
manual process, requiring only human inspection of the results.

5 DISCUSSION

We have proposed an approximate Bayesian method for determin-
ing the number of colors or gray levels in a noisy image from the
image data themselves. This number has usually been either
predetermined or chosen in an ad hoc manner, but the literature
shows that there are many instances where a more formal, data-
based, method could be useful. Our method works well in our
medical image segmentation example and seems to be potentially
useful for a variety of other applications, including automatic
segmentation of satellite images, color and gray-level image
quantization, and the use of cooccurrence matrices. Color image
quantization is the process by which an original color image is
mapped into an output image with a limited number of colors, while
attempting to preserve the image quality; this arises because real-
world images typically come in many colors, whereas output devices
can often display far fewer. In some cases, the number of colors used
in an image can be reduced by a factor of 1,000 or more without much
decrease in quality [21]. Cooccurrence matrices, which are used for
assessing texture in images ([22], [23]), are defined in terms of groups
of pixel values called “bins” or “colors.” Choice of the number of bins
has an effect on the effectiveness of cooccurrence matrices in
characterizing textures [24].

Our method is fully defined for multispectral and color images,
but we have shown examples of its use only for gray-scale images.
For multispectral images, the noise distribution would often be
taken to be multivariate normal. For initialization, the marginal
mixture EM segmentation method is still available, for example,
using model-based clustering [18]. If the number of pixels is too
large for this to be efficient, a subsample of the pixels could be
used for the clustering, and then discriminant analysis applied to
classify the remaining pixels [25], or an efficient method based on
the minimal spanning tree could be used [26].

Our approach has been to compute approximate Bayes factors
using the ICM algorithm and the pseudolikelihood of [13]. Another
approach would be to carry out a fully Bayesian analysis of the
image model using Markov chain Monte Carlo, as suggested by
[27], and then to estimate the integrated likelihood using one of the
available methods for doing this from MCMC (e.g., [28], [29], [30],
[31]). This would conform more fully to the Bayesian paradigm,
but could be extremely expensive computationally.

Our method could also be used for choosing between
competing higher-order interaction Markov random field models
for texture in images, e.g., between special cases of the Chien
model of [32] or the models of [33]. In some situations, one might
expect there to be a relationship between the number of colors
used and the complexity of the texture model needed to describe
the resulting pattern. Our approach could be generalized to
choosing both of these simultaneously by identifying each
combination of texture model and number of colors with the
corresponding probability model and then comparing the resulting
probability models using approximate Bayes factors, calculated
using methods based on those described here.
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