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Accurate 3-DoF Camera Geo-Localization via
Ground-to-Satellite Image Matching
Yujiao Shi*, Xin Yu*, Liu Liu, Dylan Campbell, Piotr Koniusz, and Hongdong Li

Abstract—We address the problem of ground-to-satellite image geo-localization, that is, estimating the camera latitude, longitude and
orientation (azimuth angle) by matching a query image captured at the ground level against a large-scale database with geotagged
satellite images. Our prior arts treat the above task as pure image retrieval by selecting the most similar satellite reference image
matching the ground-level query image. However, such an approach often produces coarse location estimates because the geotag of
the retrieved satellite image only corresponds to the image center while the ground camera can be located at any point within the
image. To further consolidate our prior research finding, we present a novel geometry-aware geo-localization method. Our new method
is able to achieve the fine-grained location of a query image, up to pixel size precision of the satellite image, once its coarse location
and orientation have been determined. Moreover, we propose a new geometry-aware image retrieval pipeline to improve the coarse
localization accuracy. Apart from a polar transform in our conference work, this new pipeline also maps satellite image pixels to the
ground-level plane in the ground-view via a geometry-constrained projective transform to emphasize informative regions, such as road
structures, for cross-view geo-localization. Extensive quantitative and qualitative experiments demonstrate the effectiveness of our
newly proposed framework. We also significantly improve the performance of coarse localization results compared to the
state-of-the-art in terms of location recalls.

Index Terms—Camera Geo-Localization, Cross-View Matching, Street-View, Satellite Imagery, Geotagging
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1 INTRODUCTION

G IVEN an image captured by a camera at the ground
level in some large open space, estimating the camera

position and the direction it faces is a useful but also
challenging problem. This paper addresses the problem
of ground-to-satellite image geo-localization which aims to
determine the geographical location and azimuth angle of
a query image by matching it against a large geo-tagged
satellite map covering the region. Due to the accessibility
and extensive coverage of satellite imagery, the problem of
ground-to-satellite image alignment has been recently noted
by researchers as it can feature in a number of computer
vision applications e.g., autonomous driving, robot naviga-
tion, and way-finding in augmented/virtual reality.

Conventional methods for solving this task often for-
mulate the problem as image retrieval (e.g., [1], [2], [3], [4],
[5], [6], [7], [8], [9], [10]). They do so by first partitioning
a large satellite map to smaller satellite images, to form the
reference database. Once a ground-view query image is pro-
vided, they compare the query image with the database im-
ages to retrieve the most similar one, as shown in Figure 1a.
The gps-tag of the matched satellite image is then used to
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(a) Coarse camera geo-localization

Projected at (0, 0) Projected at (-3, -8)

Projected at (4, -5) Projected at (9, 2)

Projective-transformed satellite image at different locations 

(b) Fine-grained camera geo-localization

(c) Region selected for
fine-grained camera
geo-localization

Fig. 1: (a) Given a query ground image, we first retrieve its most similar
satellite image from the database. (b) Then, we use a set of candidate
locations in the satellite image as projection centers. The fine-grained
location of the query ground image is then achieved from the projected
satellite image that is most similar to the query image. The estimated
orientation is obtained by comparing the selected projected image and
the query image. (c) The black box represents a large satellite map
covering the whole region, from which the small satellite images in
the database (shown in (a)) are cropped for coarse camera localization.
The blue dots denote the centers of those cropped images. The red
boxes indicate the regions selected for fine-grained camera localization,
which cover nearly the entire satellite map.
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(a) (b) (c) (d)
Fig. 2: Given a satellite image (a), we explore two transforms, i.e., polar transform (b) and the projective transform (c), to align it to its corresponding
ground-view panorama (d).

approximate the location of the query image location. How-
ever, oftentimes the geo-tag of the retrieved satellite image
corresponds to the centre of the retrieved satellite image
from the database, while the true ground camera location
can be rather off. Therefore, camera locations estimated by
these methods are rather coarse and inaccurate.

To address this problem, we introduce a new two-stage
mechanism for accurate 3-DoF (latitude, longitude, and azimuth
angle) camera geo-localization in this paper. Firstly, we esti-
mate a coarse camera location by searching the most similar
satellite image from the database (Figure 1a). Subsequently,
we compute the displacement between the center of the
retrieved satellite image and the inquired camera location,
achieving fine-grained localization results (Figure 1b). The
orientation alignment (azimuth angle) between the ground
and satellite images is estimated in both steps.

At the coarse camera localization stage, we extend the
method proposed in our previous work [10]. Apart from a
polar transform (Figure 2b) that roughly bridges the cross-
view domain gap, we develop a projective transform in
this work to establish geometrically constrained correspon-
dences (Figure 2c) between the satellite (Figure 2a) and
ground-level (Figure 2d) images for scene objects on the
ground plane. Both the polar-transformed and projective-
transformed satellite images are used in our coarse local-
ization pipeline. The former preserves all details from the
original satellite image while the latter exhibits better visual
similarity to the captured ground-level scenes. Then, we
employ CNNs to learn feature correspondences between
ground-level and transformed satellite images. After satel-
lite images are projected to the corresponding pixels in the
ground-level coordinate system, the spatial layout gap be-
tween ground and satellite images is significantly reduced.
Following our prior works [10], we opt to extract feature
volumes as our global descriptors to encode discriminative
spatial information.

We note that for both the polar and projective trans-
forms, the horizontal axis corresponds to the azimuth di-
rection. We thus propose a Dynamic Similarity Matching
(DSM) module to estimate the orientation of ground images
with respect to satellite images. Specifically, DSM computes
the correlation between the ground and satellite features in
order to generate a similarity score at each angle, denoted
by the red curve in Figure 4. The argument of the similarity
score maximum corresponds to the latent orientation of the
ground image with respect to the satellite image. If the
ground image has restricted FoV, we then extract the appro-
priate local region from the satellite feature representation
for the use in the coarse localization stage. The output of
our coarse localization stage is the satellite image that is the
most similar to the query image in the database.

Considering the displacement between the ground cam-
era and the satellite image center, this article further in-
troduces a fine-grained camera localization stage to local-
ize a fine-grained position of the query ground image.
Specifically, we project the satellite image to the ground
viewpoint at a predetermined set of points of projection, as
shown in Figure 1a. The similarity between the projective-
transformed satellite images and the query image is then
computed in the same way as in the coarse matching
stage. The center of projection of the projective-transformed
satellite image that is most similar to the query ground
image is taken as the camera location, and the computed
relative orientation is taken as the camera azimuth angle. In
particular, the precision of the localization result depends
on the density of the sampled centers of projection, whereas
the precision of the orientation estimation depends on the
resolution of the images and the FoV.

Below, we detail novel contributions of this manuscript
which are not explored in our earlier work.

i. Compared to previous methods which formulate the
cross-view image-based geo-localization as a pure im-
age retrieval task, this article introduces a new fine-
grained localization method to compute the displace-
ment between the retrieved satellite image center and
the query ground camera location.

ii. We further extend our conference work [10] for coarse
camera localization. Apart from the polar transform in-
troduced in our conference work, this article proposes a
geometry-constrained projective transform to establish
more realistic geometric correspondences of points on
the ground plane between satellite and ground-level
images. This allows our network to focus on informative
regions for cross-view image matching.

iii. We achieve new state-of-the-art cross-view localization
performance compared to our conference work. More-
over, we analyze and discuss the different task proper-
ties for localizing restricted FoV and panorama images
and shed some light on how to exploit the proposed
method for different localization situations.

2 RELATED WORK

3D structure-based localization. The task of visual localiza-
tion is to estimate the 6-DOF camera pose of a query image
with respect to a 3D scene model [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20], [21], [22], [23], [24], [25]. The key
to this problem is to establish efficient, accurate, and robust
2D-3D matches. This line of work can predict accurate 6-DoF
camera poses. Nevertheless, 3D models are not available
everywhere, and they are usually expensive to obtain. This
limits the applicability of these methods.
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2D ground-to-ground image-based localization. Image-
based localization aims to estimate the camera pose of a
query image by matching it against a large geo-tagged
database. It was originally approached as a ground-to-
ground image matching task, which is often used for place
recognition [26], [27], [28], [29], [30], [31], [32], [33], [34],
and loop-closure detection [35], [36], [37]. In the ground-
to-ground image-based localization task, both the query
and database images are captured at ground level. The
challenges are to address the difficulties of large viewpoint
differences, illumination differences (e.g., day and night),
and weather differences between query and reference im-
ages. However, ground-to-ground image matching cannot
localize query images where no corresponding reference im-
age is available, since the world is non-uniformly sampled
by tourists and ground-level vehicles.
2D ground-to-satellite image-based localization. Many
recent works [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [38],
[39], [40], [41], [42], [43], [44], [45] resort to satellite images as
a reference set for image-based camera localization, due to
the wide-spread coverage and easy accessibility of satellite
imagery. Challenges of ground-to-satellite image matching
include the significant visual appearance differences, geo-
metric projection differences, and the unknown relative ori-
entation between the two view images, as well as the limited
FoV of query ground images. Existing works have focused
on designing powerful network architectures [1], [3], [4], [7],
[41], [43], bridging the cross-view domain gaps [6], [8], [9],
[10], [45], and learning orientation invariant or equivariant
features [4], [5], [10], [43], [44].

Although promising results have been achieved, almost
all the approaches only estimate the location (latitude and
longitude) of a query image but neglect the orientation
misalignment. Our prior work [10] is the first attempt to
estimate the 3-DOF camera pose (location and estimation)
via ground-to-satellite image matching. However, all prior
arts (including ours) only retrieve the most similar satellite
image for a query image. As a result, the estimates of
camera location are quite coarse. In this article, we provide
a new mechanism for estimating the fine-grained location
and orientation of the query ground image subsequent to
the coarse localization stage.

3 IMAGE RETRIEVAL FOR COARSE CAMERA GEO-
LOCALIZATION

The approach proposed in this article involves a coarse
localization stage in which image retrieval techniques are
used to roughly estimate where an image was taken, and
a fine-grained localization stage where the displacement
between the query ground camera and the center of the
retrieved satellite image is computed. In this section, we
outline the extended framework for coarse camera geo-
localization in Figure 4.

For the cross-view geo-localization task, query images
are captured at ground level, and satellite images in the
database are captured from an overhead view. Since there
are large appearance variations between these two image
domains, our strategy is first to reduce the projection dif-
ferences between the viewpoints and then to extract dis-
criminative features from the two domains. Furthermore,

(a) Satellite
Image

(b) Ground Image

(c) Satellite Image (Polar Transform)

(d) Satellite Image (Projective Transform)
Fig. 3: The challenges of cross-view image matching: the orientation
of the query ground image is unknown, and its FoV is restricted.
The scene content in panoramas captured at the same location but
with different azimuth angles is offset. The image content in an image
with a restricted FoV can be entirely different from another image
captured from the same location, indicated by different boxes in (b).
The polar-transformed satellite image (c) is an approximation to the
ground panorama, which preserves all information from the original
satellite image. The projective-transformed satellite image (d) loses
some information, but preserves the ground-level geometry.

inspired by how humans localize themselves [46], [47] , we
exploit the spatial relationships between objects as a critical
cue for inferring location and orientation. To this end, we
enable our descriptors to encode the spatial relationship
among the features, as indicated by Fg and Fs in Figure 4.

Despite the discriminativeness of the spatially-aware fea-
tures, they are very sensitive to orientation changes. For in-
stance, when the azimuth angle of a ground camera changes,
the scene contents will be shifted in the ground panorama,
and the image content may be dramatically different if
the camera has a limited FoV, as illustrated in Figure 3.
Therefore, finding the orientation of the ground images is
crucial to make the spatially-aware features meaningful.
To this end, we propose a Dynamic Similarity Matching
(DSM) module, as illustrated in Figure 4. With this module,
we not only estimate the orientation of the ground images
but also achieve more accurate feature matching scores,
regardless of orientation misalignments and limited FoVs,
thus enhancing the performance of geo-localization.

3.1 Bridging the domain gap by the polar transform

When a scene is planar, a horizontal line in the ground-level
panorama corresponds to a circle in the satellite image, and
a vertical line in the ground-level panorama corresponds to
a ray starting from the center of the satellite image. This lay-
out correspondence motivates us to apply a polar transform
to the satellite images. In this way, the spatial layouts of
these two domains can be roughly aligned, as illustrated in
Figure 3b and 3c. To be specific, the polar origin is set to the
center of each satellite image, corresponding to the geotag
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Fig. 4: The overall framework of the proposed method. For the satellite image, we use a two-branch network that first applies a polar transform
and a projective transform before extracting features with a CNN. For the ground image, we also use a two-branch network that takes the bottom
half of the image corresponding to the projective-transformed satellite image and the whole image corresponding to the polar-transformed image
before extracting features. Given the concatenated feature tensors, the correlation between the two streams is used for estimation of the orientation
of the ground image with respect to the satellite image. Next, the satellite features are shifted and cropped to obtain the section that (potentially)
corresponds to the ground features. The similarity of the resulting features is then used for the retrieval of location.

location, and the 0◦ angle is chosen as the northward direc-
tion, corresponding to the upwards direction of an aligned
satellite image. In addition, we constrain the height (i.e.,
vertical resolution) of the polar-transformed satellite images
to be the same as the ground images, and ensure that the
angle subtended by each column of the polar transformed
satellite images is the same as in the ground images.

We apply a uniform sampling strategy along rays to
the satellite image, such that the innermost and outermost
circles of the satellite image are mapped to the bottom and
top line of the transformed image respectively. Formally,
let S × S be the size of the satellite image and Hg × Wg

be the target size of polar transform. The polar transform
between the original satellite image pixels (usi , v

s
i ) and the

target polar transformed pixels (uti, v
t
i) is expressed as{

usi = u0 − r(Hg − vti) cos(2πuti/Wg)/Hg,

vsi = v0 + r(Hg − vti) sin(2πuti/Wg)/Hg,
(1)

where (u0, v0) is the satellite image center, and r is the
maximum radius for the polar transform and set to S/2.

3.2 Bridging the domain gap by the projective trans-
form
The polar transform is a simple approximation for the cross-
view image transformation. In this article, we further estab-
lish more realistic geometric correspondences between the
satellite image and the ground-level panorama, especially
for scenes that are planar and lie on the ground plane.
Transformation between satellite and ground-level cam-
eras. As illustrated in Figure 5, we use (x1, y1, z1) to
represent the satellite camera coordinates and (x2, y2, z2)
to denote the ground-level camera coordinates. The trans-
formation between the two camera coordinate systems is
expressed as x1y1z1

1

 =

0 1 0 0
1 0 0 0
0 0 −1 H
0 0 0 1


x2y2z2
1

 , (2)

Fig. 5: Illustration of latent geometric correspondences between a
satellite image and a ground-level panorama for pixels on the ground
plane.

whereH is the height of the satellite above the ground level.
Satellite camera coordinate system. The satellite camera
projects a point (x1, y1, z1) to its image coordinates (usi , v

s
i )

by a parallel projection

[
usi
vsi

]
=

[
s 0 0 u0

0 s 0 v0

]x1y1z1
1

 , (3)

where s is the resolution of the satellite image and (u0, v0)
is the satellite image center.
Ground-level spherical camera coordinate system. In the
ground-level camera coordinate system, we define θ as the
elevation angle with respect to the z2 axis and φ as the
azimuth angle. To be consistent with the polar transform,
φ = 0◦ is the northward direction and it corresponds to the
negative direction along x2 axis. For both θ and φ, clockwise
is the positive direction. The mapping between (θ, φ) and
(x2, y2, z2) is computed as{

x2 = z2 tan θ cosφ,
y2 = −z2 tan θ sinφ, (4)
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Fig. 6: Visualization of the source (satellite) and target (ground-level
panorama) coordinate correspondences by (a) the polar transform and
(b) the projective transform. The spatial positions corresponds to the
satellite image pixels. Different colors in the two images indicate the
row number in the target coordinates.

and the projection between (θ, φ) and ground-level
panorama image coordinates (uti, v

t
i) is expressed as{

θ = πvti/Hg,

φ = 2πuti/Wg.
(5)

Projection between satellite and ground-level images.
Finally, the mapping between the satellite image coordi-
nates (usi , v

s
i ) and ground-level panorama image coordi-

nates (uti, v
t
i) is established as{
usi = u0 + sz2 tan(πv

t
i/Hg) cos(2πu

t
i/Wg),

vsi = v0−sz2 tan(πvti/Hg) sin(2πuti/Wg),
(6)

where z2 represent the scene height at pixel (uti, v
t
i). Similar

to the polar transform, we choose the satellite image center
(u0, v0) as the projection point of the projective transform.

In practice, the height maps of satellite images are hard
to obtain and the scene heights are much smaller compared
to the distance between the ground and the satellite camera.
Thus, we assume all the pixels in the satellite image lie
on the ground plane. Therefore, z2 is set to the height
of ground plane with respect to the ground camera, and
0.5Hg < vti ≤ Hg because the ground plane is mostly
projected to the bottom half of a ground-view image. In
doing so, we construct the geometric correspondences be-
tween satellite and ground images for points that lie on
the ground plane. For clarity, we call this projection as
“projective transform”.

Note that both the polar transform and the projective
transform are implemented in an inverse warping manner.
Thus, they are differentiable and applicable in end-to-end
training. In our implementation, they are applied as a pre-
processing step in order to reduce the computation time
during both training and testing steps.

3.3 Complementary between the transforms

In Figure 2b and 2c, and Figure 3c and 3d, we present
two examples of the polar-transformed and projective-
transformed satellite images. Note that, although the pro-
jective transform only retains pixels in a small region of
the center of a satellite image, with others pixels being
occluded, the scene geometric structure is better preserved
by the projective transform than polar transform. This is
also reasonable since scene objects far away from the center
of a satellite image are unlikely visible in the ground-level
panorama.

Furthermore, we illustrate the mapping relationship
between the source (satellite) and target (ground-level
panorama) coordinates of the two transforms in Figure 6. As
the projection method along the azimuth direction (image
columns in target coordinates) is the same in both trans-
forms, we compare their projection difference on mapped
image row coordinates. Figure 6 manifests that most of the
pixels are mapped to a few rows in a target image (same
color) by the projective transform, while the polar transform
maps satellite image pixels to different rows in a target im-
age (indicated by different colors) uniformly. This indicates
that the polar transform retains nearly all the information
of a satellite image and the projective transform is able to
highlight the ground-level scenes and their structure that
would be visible in ground-level panoramas.

As illustrated in Figure 2b and 2c, and Figure 3c and
3d, the projective transformed and polar transformed im-
ages provide complementary information for the cross-view
matching. Hence, we apply both polar and projective trans-
forms to bridge the cross-view domain gap.

3.4 Spatially-aware feature representation

Applying a translation offset along the horizontal axis of a
polar-transformed or projective-transformed image is equiv-
alent to rotating a satellite image. Hence, the task of learning
the rotation equivariant features for satellite images is re-
formulated into learning translation equivariant features on
polar or projective transformed images. Doing so signifi-
cantly reduces the learning difficulty of our network since
CNNs are inherently translation equivariant [48], [49], [50].
Because the horizontal axis corresponds to rotation degrees,
we need to ensure that the CNN treats the leftmost and
rightmost columns of the transformed image as adjacent
neighbours. Hence, we employ circular convolutions [51]
with periodical padding along the horizontal direction.

Figure 4 illustrates the pipeline of our coarse localization
framework. As the traits of representations resulting from
polar- and projective-transformed satellite images are differ-
ent in nature, we adopt separate CNNs to extract features
from them. For the ground images, we also employ separate
CNNs. One focuses on the bottom half of the ground image
and it is expected to learn similar feature representations
to the projective-transformed satellite image. The other
one extracts features from the whole ground image and
aims to learn matching features with respect to the polar
transformed satellite images. The four branches in Figure 4
have the same architecture. Since the projective-transformed
satellite images share the same domain as the ground plane
images, we employ the same weights in the first and third
branch in Figure 4 (indicated by the blue color) to extract
features and then enforce their similarity. The other two
branches, marked with different colors, do not share weights
so that they can adapt to their individual domains.

We adopt VGG16 [52] as the network backbone. In
particular, the first ten layers of VGG16 are used for features
extraction. As the vertical direction of the images may
include irrelevant features, such as sky, missing pixels and
distortions in the transformed satellite images, we modify
the subsequent three layers to decrease the vertical resolu-
tion of the feature maps while maintaining their horizontal
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resolution. In this manner, our extracted features are more
tolerant to distortions along the vertical direction while
retaining information along the horizontal direction. We
also decrease the number of feature channels to 8. For each
branch in Figure 4, the output feature is of size 4 × 64 × 8.
The extracted features in each stream are then concatenated
together to form a global feature descriptor. Hence, for a
satellite image or a ground-level panorama, the size of their
global descriptors is 4 × 64 × 16. Following our previous
work [9], the extracted feature volumes are used to preserve
the spatial layout of scenes, thus improving the discrimina-
tiveness of the descriptors. For query ground images with
limited FoV, the width of the extracted features is decreased
proportionally.

3.5 Dynamic Similarity Matching (DSM)
When the orientation of ground and transformed satellite
features is aligned, their descriptors can be easily compared.
However, the orientation of the ground images is not always
available, and orientation misalignments increase the diffi-
culty of geo-localization significantly, especially when the
ground image has a limited FoV. When humans use a map
to localize themselves, they determine their locations and
orientation jointly by matching what they have seen to what
a map shows [46], [47]. In order to let the network mimic this
process, we compute the correlation between the ground
and satellite descriptors along the azimuth angle axis. To be
specific, we use the ground descriptors as a sliding window
and then compute the inner product between then ground
and satellite descriptors across all possible orientation.

Let Fs ∈ RH×Ws×C and Fg ∈ RH×Wg×C denote the
satellite and ground descriptors, respectively. Let H and C
indicate the height and channel number of the descriptors,
and Ws and Wg indicate the width of the satellite and
ground descriptors. The correlation between Fs and Fg is
expressed as

[Fs∗Fg](i)=
C∑
c=1

H∑
h=1

Wg∑
w=1

Fs(h,mod(i+w,Ws), c)Fg(h,w, c), (7)

where F (h,w, c) is the feature response at index (h, w, c)
while operator mod denotes the modulo operation. Having
computed the correlation, we take the argument of the
maximum similarity scores as our estimated orientation
misalignment of the ground image with respect to the
transformed satellite image.

We normalize Fs and Fg by the `2 norm before calcu-
lating the correlation results for panorama images. When a
ground image has a limited FoV, we crop the transformed
satellite features corresponding to the FoV of the ground
image. Then we re-normalize the cropped satellite features
and calculate the `2 distance between the ground and satel-
lite descriptors as the similarity score. Note that if there are
multiple maxima in the similarity scores, the satellite image
contains indistinguishable symmetries. Thus, we choose one
of these maxima at random.

3.6 Training DSM
During the training process, our DSM module is applied
to all ground and satellite pairs, regardless of whether they

are matching or not. For matching pairs, DSM forces the
network to learn similar feature embeddings for ground
and transformed satellite images as well as discriminative
feature representations along the horizontal direction (i.e.,
azimuth). In this way, DSM is able to identify the orientation
misalignment as well as find the best feature similarity for
matching. For non-matching pairs, we firstly find the ori-
entation with the highest similarity using the DSM module,
and then minimize the maximum similarity score of non-
matching pairs to make the descriptors more discriminative.
Following traditional cross-view localization methods [4],
[5], [8], we employ the weighted soft-margin triplet loss [4]
to train our network. Our training loss is expressed as

L = log

(
1 + e

α

∥∥F b
g−F j

s′

∥∥
F
−α
∥∥F b

g−F j

s∗′

∥∥
F

)
+ log

(
1 + e

α

∥∥Fw
g −F l

s′

∥∥
F
−α
∥∥Fw

g −F l

s∗′

∥∥
F

)
+ log

(
1 + e

α

∥∥Fg−F
s
′
∥∥

F
−α
∥∥Fg−F

s∗′
∥∥

F

)
.

(8)

In the above equations, F b
g and Fw

g denote the extracted
features from the bottom half of a query ground image and
the whole ground image, F j

s′ and F l
s′ are the cropped fea-

tures from the non-matching projective-transformed satel-
lite features and the polar-transformed satellite features,
F j

s∗′
and F l

s∗′
denote the cropped features from the match-

ing projective-transformed satellite features and the polar-
transformed satellite features. Recall that we do not require
ground view query images to be panoramas, and the trans-
formed satellite images will be cropped automatically to
fit the resolution of the ground images by the DSM mod-
ule. Fg = [F b

g , F
w
g ] is the global query ground descriptor,

Fs∗′ = [F j

s∗′
, F l

s∗′
] and Fs′ = [F j

s′ , F
l
s′ ] indicate the cropped

satellite descriptors of the matching satellite image and a
non-matching satellite image aligned by our DSM module,
[·, ·] is the concatenation operation, and ‖·‖F denotes the
Frobenius norm. The parameter α controls the convergence
speed of training process. Following precedent [4], [5], [8],
we set it to 10.

4 FINE-GRAINED CROSS-VIEW IMAGE MATCHING

After the coarse geo-localization process, we retrieve an
satellite image that is the most similar to the query ground
image. However, the GPS tag of the satellite image is as-
sociated with its center point, whereas the ground image
might be captured away from the center of the satellite
image. Therefore, in this article we further propose a novel
mechanism to compute the displacement between the query
ground camera and the retrieved satellite image center.

To achieve this goal, we employ the projective transform
explained in Section 3.2. As indicated in Figure 6, only a
small portion of the satellite image is projected to the trans-
formed image. Thus, the projective transform is sensitive to
the projection center. This phenomenon is useful in aiding
fine-grained localization of where a query image was taken.

In the fine-grained camera geo-localization stage, we
firstly select a central square region in the retrieved satellite
image, as shown in Figure 1b. This central region encloses
the possible query camera locations. At each pixel in the
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Projected at the GPS location

Projected at (3, 3) Projected at (3, 3), pred_orien=-159°Top-1 retrieved image
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Projected at the GPS location

Projected at the GPS location

(b) FoV = 180◦

Fig. 7: Qualitative illustration of fine-grained 3-DoF camera localization for query images with unknown orientation and varying FoVs. Given
query images (the last column), we first retrieve their most similar satellite images (the first column) from the database. The projective-transformed
satellite images according to the query camera GPS locations are presented in the second column. The ground structure of those images (the second
column) is significantly different from the query images (the last column), indicating that the GPS locations are not accurate. According to our
fine-grained camera geo-localization method, we exhaustively project the retrieved satellite image to their ground panorama coordinates at points
in a central square region of the retrieved satellite image. Among the projected images, the most similar ones to the query ground images are
presented in the third column. The fourth column shows the shifted and cropped projective-transformed satellite images that align with query
images.

selected region, we project the satellite image to the cor-
responding ground panorama coordinates by applying the
projective transform. Then, a query image with unknown
orientation (or even with limited FoV) is compared with
each of the projective-transformed satellite images via the
dynamic similarity matching module. Specifically, we circu-
larly shift the projective-transformed satellite image along
the azimuth (horizontal) direction. If the query ground
image has a restricted FoV, we also crop out a portion of
the transformed image according to its FoV. The similarity
between the transformed image and the query ground im-
age is then computed. Note that in this fine-grained camera
localization process we use the SSIM as the similarity mea-
sure instead of the cross-correlation as SSIM is more suitable
to evaluate structural differences between the projective-
transformed satellite image and the query ground image.

For each projective-transformed satellite image, we
record the maximum similarity across different orienta-
tions as its similarity to the query image. Among all the
projective-transformed satellite images, the most similar one
is selected, as marked by the green box in Figure 1b. Its
corresponding projection point, indicated by the blue dot
in Figure 1b, is taken as the query camera location. The
computed relative orientation is taken as the camera orienta-
tion. Under such a scheme, the precision of the location and
orientation estimation depends on the real-world distance
of a satellite image pixel and the resolution of the query

image, respectively.

Figure 7 provides some qualitative examples of fine-
grained localization of orientation-unknown images. The
query images are presented in the last column and their
corresponding retrieved top-1 satellite images are shown in
the first column. Since the geotags of the database satellite
images are associated with the image centers, we firstly
apply the projective transform to the retrieved satellite
images according to their image centers, which is also the
GPS location of query ground images provided by the
dataset. The projected images are presented in the second
column of Figure 7. They are significantly different from
the query ground images. We next apply the proposed
fine-grained camera localization method, and visualize the
most similar projective-transformed satellite images in the
third column. The fourth column provides the shifted and
cropped projective-transformed satellite images according
to the estimated relative orientation and the FoV of ground
images. The estimated camera location with respect to the
satellite image center and the relative orientation are pre-
sented under each of the images. As can be seen, images
presented in the fourth column align with the original query
ground images.

Since in the second stage (fine-grained camera localiza-
tion) we search exhaustively every point in the selected
central region, we recommend that the reference satellite
images in the first stage (coarse camera localization) should
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Fig. 8: Cross-view image pairs from the CVUSA (top two rows) and
CVACT (bottom two rows) datasets. The satellite images are on the left
and the ground panoramas are on the right.

cover the entire region as densely as possible. By doing
so, the selected central region used for fine-grained camera
geo-localization will be small, reducing the computation
complexity.

In our implementation, the satellite image is resized to
256×256 pixels from 1200×1200 pixels. The central square
region covers 40 × 40 pixels in the resized image, corre-
sponding to 11.25× 11.25 square meters (±5.625 meters to
the satellite image center). By searching the 40×40 candidate
locations and the 512 candidate orientations (40×40×512 =
614, 400 candidate solutions in total), it takes 15 minutes on
average for the fine-grained localization of a query image
on an RTX 2080 Ti GPU.

5 EXPERIMENTS

5.1 Datasets
We carry out the experiments on two standard cross-view
datasets, CVUSA [2] and CVACT [5]. They both contain
35, 532 training ground and satellite pairs and 8, 884 testing
pairs. Following an established testing protocol [5], [8], we
denote the test sets in CVUSA and CVACT as CVUSA and
CVACT val, respectively. CVACT also provides a larger test
set, CVACT test, which contains 92, 802 cross-view image
pairs for fine-grained city-scale geo-localization. Note that
the ground images in both of the two datasets are panora-
mas, and all the ground and satellite images are north
aligned. Figure 8 presents samples of cross-view image pairs
from the two datasets.

For localizing ground images with unknown orientation
and limited (180◦) FoV, we use the image pairs in CVUSA
and CVACT val and randomly rotate the ground images
along the azimuth direction and crop them according to
a predetermined FoV. The source code of this work is
available at https://github.com/shiyujiao/IBL.git.
Accurate camera geo-localization. In the CVUSA dataset,
there is no GPS data available for the ground–satellite im-
age pairs. The CVACT dataset, introduced in our previous
work [5], does provide GPS data for every ground–satellite
image pair. However, due to GPS drift, the location of a
ground camera provided by the dataset is not accurate,

which is visualized in Figure 7. In practice, it is also hard
to collect strictly location-aligned satellite–ground image
pairs [53]. Hence, we adopt user study for the evaluation of
our fine-grained localization method on the CVACT dataset.

5.2 Coarse camera geo-localization

5.2.1 Implementation details

We use the first ten convolutional layers in VGG16 with
pretrained weights on Imagenet [54] and randomly initialize
the parameters in the following three layers for extraction
of global feature descriptors. The first seven layers are kept
fixed and the subsequent six layers are learnt. The Adam
optimizer [55] with a learning rate of 10−5 is employed for
training. Following [3], [4], we adopt an exhaustive mini-
batch strategy [3] with a batch size of B = 32 to create
training triplets. Specifically, for each ground image within
a mini-batch, there is one matching satellite image and B−1
non-matching images. Thus we construct B(B − 1) triplets.
Similarly, for each satellite image, there is one matching
ground image and B − 1 non-matching images within a
mini-batch, and we create another B(B−1) triplets. In total,
we obtain 2B(B − 1) triplets in total.

In order to obtain a time-efficient approach, we compute
the correlation in our DSM module by the fast Fourier trans-
form during inference. Specifically, we store Fourier coeffi-
cients of satellite features in the database, and only calculate
Fourier coefficients of the ground descriptors in the forward
pass. In doing so, the computation cost yields 13NHWsC
flops (including 4NHWsC flops for coefficient multiplica-
tion in the spectral domain, and 1.5NHCWs log2W flops
for the inverse Fast Fourier Transform), where H , Ws and
C are the height, width and channel number of the global
feature descriptor of a satellite image, and N is the number
of database satellite images. In contrast, performing correla-
tion in the spatial domain requires 2NHW 2C flops. Thus,
the computation time by applying the Fourier transform is
reduced by a factor of 10 ( 13NHWC

2NHW 2C ≈
1
10 ).

For localizing query images with unknown orientation
and a limited FoV, there is a shift-and-crop operation to find
the corresponding part of a query image in a satellite image.
The flops in the shift operation are NHWsC , and the flops
in the crop operation are NHWgC , where N is the number
of database satellite images, H and C are the height and
channel number of satellite (and query ground) features,
Wg and Ws are the widths of satellite and query ground
features, respectively, and Wg = FoV ∗Ws/360. The flops
in computing the similarity between a query image and all
satellite images are 3NHWgC . Hence, the complexity of
retrieving a ground image from a database with N satellite
images is O(NHWsC).

Using an RTX 2080 Ti GPU, the feature extraction time
for a ground image is 0.01s, and it takes 0.06s on average to
retrieve its satellite counterpart from a database containing
8884 reference images. On the CVACT val dataset, the 8884
reference images cover approximately 64km2.

5.2.2 Evaluation Metrics

Location estimation. Following the standard evaluation
procedure for cross-view image localization [3], [4], [5], [6],

https://github.com/shiyujiao/IBL.git
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TABLE 1: Comparison of our approach with existing methods on the
CVUSA [2] dataset.

Methods CVUSA
r@1 r@5 r@10 r@1%

Workman et al. [1] – – – 34.3
Zhai et al. [2] – – – 43.2

Vo and Hays [3] – – – 63.7
CVM-NET [4] 22.47 49.98 63.18 93.62
Liu and Li [5] 40.79 66.82 76.36 96.12

Regmi and Shah [6] 48.76 73.64 81.27 95.94
GeocapsNet-II [7] – – – 98.07

Siam-FCANet34 [7] – – – 98.3
CVFT [8] 61.43 84.69 90.49 99.02
SAFA [9] 89.84 96.93 98.14 99.64

Shi et al. [10] 91.96 97.50 98.54 99.67
Ours 92.69 97.78 98.60 99.61

TABLE 2: Comparison of our approach with existing methods on the
CVACT val [5] dataset by re-training existing networks.

Methods CVACT val
r@1 r@5 r@10 r@1%

CVM-NET [4] 20.15 45.00 56.87 87.57
Liu and Li [5] 46.96 68.28 75.48 92.01

Regmi and Shah [6] 48.62 72.48 79.65 93.16
CVFT [8] 61.05 81.33 86.52 95.93
SAFA [9] 81.03 92.80 94.84 98.17

Shi et al. [10] 82.49 92.44 93.99 97.32
Ours 82.70 92.50 94.24 97.65

[7], [8], [43], we use the top K recall as the location eval-
uation metric to examine the performance of our method
and compare it with the state-of-the-art. Specifically, given
a ground image, we retrieve the top K satellite images in
terms of `2 distance between their global descriptors. The
ground image is regarded as successfully localized if its
corresponding satellite image is retrieved within the top K
list. The percentage of correctly localized ground images is
recorded as recall at K (r@K).

Orientation estimation. The predicted orientation of a
query ground image is meaningful only when the ground
image is localized correctly. Hence, we evaluate the orienta-
tion estimation accuracy of our DSM only on ground images
that have been correctly localized by the top-1 recall. In
this experiment, when the differences between the predicted
orientation of a ground image and its ground-truth orienta-
tion is within ±10% of its FoV, the orientation estimation
of this ground image is deemed as a success. We record
the percentage of ground images of which the orientation
is correctly predicted as the orientation estimation accuracy
(Orien acc).

Combined measure. Denote the top-1 recall rate for location
estimation as Loc acc. The overall 3-DOF camera localiza-
tion performance is computed as Loc acc×Orien acc, which
we denote as Overall.

5.2.3 Localizing Orientation-aligned Panoramas
Firstly, we investigate the performance of location estima-
tion of our method and compare it with the state-of-the-
art [1], [2], [3], [4], [5], [6], [7], [8], [9], [10] on the standard
CVUSA and CVACT datasets, where ground images are
orientation-aligned panoramas. The recall results at top-1,
top-5, top-10 and top-1% on the CVUSA and CVACT val
datasets are presented in Table 1 and Table 2, respectively.
They are reported from other works or produced by the

re-trained models using source codes provided by the au-
thors. The complete r@K performance curves on CVUSA
and CVACT val are illustrated in Figure 9a and Figure 9b,
respectively.

Among those baseline methods, [1], [2], [3] are the first
approaches that utilize deep learning for cross-view related
tasks. CVM-NET [4], GeocaosNet-II [7] and Siam-FCANet34
[7] focus on designing powerful feature extraction networks.
Liu and Li [5] introduce the orientation information to net-
works so as to facilitate geo-localization performance. These
works do not explicitly address the domain gap between
ground and satellite images which leads to their inferior
performance.

Regmi and Shah [6] adopt a conditional GAN to gen-
erate satellite images from ground panoramas. Although
it helps to bridge the cross-view domain gap, undesired
scene contents are also introduced in this process. CVFT [8]
proposes a Cross-view Feature Transport (CVFT) module
to better align ground and satellite features. However, it
is hard for networks to learn geometric and feature re-
sponse correspondences simultaneously. SAFA [9] explores
a parameter-free polar transform to bridge the geomet-
ric domain gap, and proposes a Spatially-aware Position
Embedding (SPE) module to further construct geometric
and feature correspondences between the two view images.
In [10], we found that further increasing the spatial size of
the global image descriptors can increase the localization
performance. Similar to SAFA, the polar transform is also
employed in [10] to bridge the cross-view domain gap.
However, in this journal paper, we further establish the
geometric correspondences between a satellite image and
its corresponding ground-level panorama by a projective
transform. The projective transform and the polar transform
cooperate with each other to align the matching ground
and satellite image pairs. As shown in Table 1 and Table 2,
the top-1 recall rate has been further boosted by the newly
proposed method compared to our conferece work [10].
Although SAFA achieves slightly better performance on the
CVACT val, its performance degrades significantly when
orientation of query images is unknown, which will be
investigated in later experiments.

Distance-based localization. In CVUSA and CVACT val,
there is only one matching satellite image in the database
for a query image in the test set. In [5], we introduced
CVACT test to evaluate the performance of different meth-
ods on real-world localization scenarios. This test set pro-
vides geotagged (GPS) satellite images that densely cover
a city, and the localization performance is measured in
terms of distance (meters). Specifically, a ground image is
considered as successfully localized if one of the retrieved
top K satellite images is within 5 meters of the ground-
truth location of the query ground image. That is to say,
in this test set, there might be several matching satellite
images in the database for a query ground image. Following
the evaluation protocol in [5], we plot the percentage of
correctly localized ground images (recall) at different values
of K in Figure 9c.

Compared to the work [10], SAFA [9] has eight addi-
tional Spatially-aware Position Embedding (SPE) modules
to construct cross-view correspondences. Thus, the perfor-
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Fig. 9: Evaluations of recall at different values of K on the CVUSA, CVACT val and CVACT test datasets.

Fig. 10: Visualization of localization results attained by our method on the CVACT test set. From left to right: ground-level query image and the
top 1-5 retrieved satellite candidates. Green and red borders indicate correctly and incorrectly retrieved results, respectively.

TABLE 3: Comparison of recall rates for localizing ground images with unknown orientations and varying FoVs (models trained with random
orientation augmentation).

Dataset Methods
FoV=360◦ FoV=180◦

Orientation Aligned Orientation Unknown Orientation Aligned Orientation Unknown
r@1 r@5 r@10 r@1% r@1 r@5 r@10 r@1% r@1 r@5 r@10 r@1% r@1 r@5 r@10 r@1%

CVUSA

CVFT [8] 23.13 45.01 55.94 86.93 23.38 44.42 55.20 86.64 7.97 2354 33.32 74.40 8.10 24.25 34.47 75.15
SAFA [9] 53.33 76.82 84.29 97.48 52.85 76.27 83.78 97.50 27.43 53.85 65.70 92.27 28.71 55.27 66.65 92.78

Shi et al. [10] 91.96 97.50 98.54 99.67 78.11 89.46 92.90 98.50 75.11 89.72 93.48 98.71 48.53 68.47 75.63 93.02
Ours 92.69 97.78 98.60 99.61 78.94 90.31 93.42 98.67 75.65 89.17 93.44 98.90 54.27 72.78 79.54 94.73

CVACT val

CVFT [8] 26.19 46.09 54.52 80.53 26.79 46.89 55.09 81.03 6.56 18.10 26.24 62.78 7.13 18.47 26.83 63.87
SAFA [9] 44.15 68.02 75.83 93.14 43.54 67.65 75.64 93.05 20.98 43.65 54.58 86.09 21.15 44.60 55.66 86.40

Shi et al. [10] 82.49 92.44 93.99 97.32 72.91 85.70 88.88 95.28 67.26 83.84 87.57 95.36 49.12 67.83 74.18 89.93
Ours 82.70 92.50 94.24 97.65 73.06 85.73 88.76 95.44 67.23 83.57 87.81 95.25 52.98 71.18 77.36 91.61

mance of SAFA is significantly better than that of Shi et
al. [10] in this challenging test set. As a contribution of
this paper, we establish more realistic geometric correspon-
dences between satellite and ground-level images compared
to our conference version [10] which makes the extracted
feature descriptors more informative. Hence, the localiza-
tion performance on the CVACT test is further boosted. The
top-1 recall rate of SAFA and the newly proposed algorithm
on the CVACT test is 55.50% and 60.46%, respectively. Note
that having the SPE module in the framework will prohibit
the application of our DSM which is designed to address
orientation-unknown and limited FoV query images. Thus
we do not retain it in the proposed framework in this

article. In the following section, we will demonstrate the
superiority of our DSM module on localizing query images
with unknown-orientation and limited FoV.

5.2.4 Practical Localization: Localizing With Unknown Ori-
entation and Limited FoV

We compare the performance of our newly proposed
method with our three previous works [8], [9], [10], on
the CVUSA and CVACT val datasets in a more realistic
localization scenario, where the ground images do not have
a known orientation and have a limited FoV. Recall that Liu
and Li [5] require the orientation information as an input, so
we cannot compare our approach with such a method.
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TABLE 4: The overall performance of 3-DoF coarse camera localization.

Dataset CVUSA CVACT val

FoV 360◦ 180◦ 360◦ 180◦

Loc acc Orien acc Overall Loc acc Orien acc Overall Loc acc Orien acc Overall Loc acc Orien acc Overall

Shi et al. [10] 78.11 99.41 77.65 48.53 98.54 47.72 72.91 99.84 72.79 49.12 99.10 48.68
Ours 78.94 99.45 78.51 54.27 96.87 52.57 73.06 99.75 72.88 52.98 98.72 52.30

Fig. 11: Examples of symmetric scenes (satellite images). At these
locations, it is hard to determine the orientation (azimuth angle) of
a ground image.

Location estimation. In order to evaluate the impact of
orientation misalignments and limited FoVs on localiza-
tion performance, we randomly shift and crop the ground
panoramas along the azimuth direction for the CVUSA and
CVACT val datasets. In this manner, we mimic the proce-
dure of localizing images with limited FoV and unknown
orientation. For completeness, we also report the perfor-
mance of the models trained without known orientations
on orientation-aligned query images. Results are presented
in Table 3.

For CVFT [8] and SAFA [9], the difference between the
models from Sec. 5.2.3 and this section is that we apply the
random orientation augmentation on training image pairs.
By doing so, we expect that the networks can tolerate some
orientation misalignments between satellite and ground
image pairs. Those two methods do not have the ability
to explicitly align the orientation of ground and satellite
images. Thus, their performance drops significantly when
localizing ground images with unknown orientation, which
can be seen by comparing Table 1, 2 and 3. Furthermore,
since the data augmentation on orientation is applied during
training, these networks need to spend more capacity on
tolerating orientation misalignments. Their performance on
localizing orientation-aligned query images drops.

For the method [10] and the newly proposed method,
the models from Sec. 5.2.3 and this section are the same,
where random orientation augmentation is applied dur-
ing training. In these two methods, an explicit parameter-
free orientation alignment mechanism (the Dynamic Sim-
ilarity Matching module) is applied, and thus they out-
perform CVFT and SAFA by a large margin on localiz-
ing orientation-unknown query images. The performance
degradation of the two methods between orientation-
aligned and orientation-unknown images is mainly due to
the orientation ambiguity. Compared to the work [10] that
we extend from, the newly proposed method establishes
more sensible geometric correspondences between satellite
and ground-level images by a projective transform, leading
to a better performance.

Finally, as FoVs increase, one can observe that all of the
methods perform better. That is mainly because a larger
FoV image provides richer scene contents, making a global
descriptor more discriminative.

Orientation estimation. As aforementioned, the estimated

orientation of a query image is meaningful only if its loca-
tion has been correctly determined. Thus, the experiment on
the orientation estimation is conducted on ground images
which are correctly localized in terms of top-1 retrieved
candidates. For the fair comparison between different algo-
rithms, we combine the location estimation accuracy and the
orientation estimation accuracy together to present the over-
all performance score in Table 4. As indicated by Table 4,
our proposed method achieves higher location estimation
accuracy than our previous work [10], whereas the orienta-
tion estimation accuracy is slightly lower. This implies that
scenes may look similar in multiple directions, even when
the location is estimated correctly. For instance, a person
standing on a road may be able to localize their position but
will find it difficult to determine the orientation if the views
are similar along the road in both directions. Figure 11 con-
tains examples of such symmetric scenes. According to the
combined score, our newly proposed method achieves the
best performance on 3-DoF camera localization. Figure 13
visualizes the orientation estimation process.
Why does performance decrease when the orientation is
unknown? When the orientation of the camera is unknown,
the search space becomes significantly larger. The alignment
between the query image with non-matching satellite im-
ages increases the number of local maxima in the similarity
objective function. Due to occlusions and the definition of
the location alignment between the ground and satellite
images in two transforms, the matching satellite image
projected by the transforms might be not very similar to
the query image. When the similarity score of an incorrect
location-orientation pair is higher than the true pair, our
method will estimate the wrong location and orientation for
a query image.

To demonstrate this, we conduct experiments for local-
izing orientation-unknown query images where the orienta-
tion alignment is only performed with respect to the match-
ing satellite image, not the entire database as is standard.
Note that this is for illustration only, and is not a practical
setting. The results are shown in the third row of Table 5.
It can be seen that the performance is significantly better
than that of aligning query images with non-matching ones
by the DSM (the second row of Table 5). It can be seen that
the performance is significantly better than when aligning
with respect to the entire database (the second row of
Table 5). In fact, the results are even better than when using
orientation-aligned query images, since minor orientation
misalignments between the query and matching satellite
images can be rectified by our DSM module.

5.2.5 Discussion on the necessity of the polar transform
and the projective transform
In this section, we conduct an ablation study to demon-
strate the effectiveness and necessity of the polar trans-
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(a) (b) (c) (d) (e)
Fig. 12: (a) Satellite image; (b) polar-transformed satellite image at the satellite image center; (c) projective-transformed satellite image at the
satellite image center; (d) query ground-level panorama; (e) projective-transformed satellite image at the ground camera location. The ground
camera location is determined by our fine-grained camera localization method. All of the images are orientation aligned.

TABLE 5: Comparison of recall rates when the query image is orientation-aligned to every element in the database (standard case) or just the
matching image.

Orien Align
Negative

CVUSA CVACT val
FoV=360◦ FoV=180◦ FoV=360◦ FoV=180◦

r@1 r@5 r@10 r@1% r@1 r@5 r@10 r@1% r@1 r@5 r@10 r@1% r@1 r@5 r@10 r@1%
Aligned – 92.69 97.78 98.60 99.61 75.65 89.17 93.44 98.90 82.70 92.50 94.24 97.65 67.23 83.57 87.81 95.25

Unknown 3 78.94 90.31 93.42 98.67 54.27 72.78 79.54 94.73 73.06 85.73 88.76 95.44 52.98 71.18 77.36 91.61
Unknown 7 93.22 98.22 98.94 99.74 79.44 92.64 95.78 99.46 84.30 93.93 95.52 98.49 73.06 88.61 92.19 97.90

TABLE 6: Comparison of recall rates for localizing ground images with unknown orientation and varying FoVs.

Dataset Methods
FoV=360◦ FoV=180◦

Orientation Align Orientation Unknown Orientation Align Orientation Unknown
r@1 r@5 r@10 r@1% r@1 r@5 r@10 r@1% r@1 r@5 r@10 r@1% r@1 r@5 r@10 r@1%

CVUSA
Ours w/o polar 84.78 93.99 95.95 99.13 65.33 80.46 85.61 0.9612 60.48 79.78 85.40 96.49 37.27 57.36 65.93 88.15
Ours w/o proj [10] 91.96 97.50 98.54 99.67 78.11 89.46 92.90 98.50 75.11 89.72 93.48 98.71 48.53 68.47 75.63 93.02
Ours 92.69 97.78 98.60 99.61 78.94 90.31 93.42 98.67 75.65 89.17 93.44 98.90 54.27 72.78 79.54 94.73

CVACT val
Ours w/o polar 68.71 84.38 87.94 94.70 50.50 68.83 74.75 89.45 43.88 65.80 73.05 89.46 27.95 46.26 54.10 79.45
Ours w/o proj [10] 82.49 92.44 93.99 97.32 72.91 85.70 88.88 95.28 67.26 83.84 87.57 95.36 49.12 67.83 74.18 89.93
Ours 82.70 92.50 94.24 97.65 73.06 85.73 88.76 95.44 67.23 83.57 87.81 95.25 52.98 71.18 77.36 91.61

Dataset Methods
FoV=90◦ FoV=70◦

Orientation Align Orientation Unknown Orientation Align Orientation Unknown
r@1 r@5 r@10 r@1% r@1 r@5 r@10 r@1% r@1 r@5 r@10 r@1% r@1 r@5 r@10 r@1%

CVUSA
Ours w/o polar 11.65 23.73 31.09 59.87 7.02 17.95 25.01 59.43 6.27 14.55 19.57 43.91 4.09 11.81 18.13 50.98
Ours w/o proj [10] 33.66 51.70 59.68 82.35 16.19 31.44 39.85 71.13 20.88 36.99 44.70 70.95 8.78 19.90 27.30 61.20
Ours 20.28 36.41 44.47 72.83 11.30 26.00 34.23 69.03 10.50 21.83 28.79 56.07 5.85 15.71 23.13 59.34

CVACT val
Ours w/o polar 8.13 17.54 23.06 48.50 4.19 11.52 16.34 42.75 3.33 9.31 13.09 33.86 2.04 5.83 9.16 31.89
Ours w/o proj [10] 31.17 51.44 60.05 82.73 18.11 33.34 40.94 68.65 18.45 35.87 44.39 71.85 8.29 20.72 27.13 57.08
Ours 21.42 38.43 47.06 73.86 14.34 27.90 35.18 64.86 9.68 20.60 27.68 56.22 4.60 12.73 17.99 46.86

TABLE 7: Comparison of localization performance when ablating the transforms for orientation estimation.

Orien.
Est.

FoV=360◦ FoV=180◦ FoV=90◦ FoV=70◦
r@1 r@5 r@10 r@1% r@1 r@5 r@10 r@1% r@1 r@5 r@10 r@1% r@1 r@5 r@10 r@1%

CVUSA
Polar 78.61 90.32 93.34 98.56 53.88 72.43 79.10 94.48 10.85 24.16 32.11 66.06 5.49 14.61 21.15 55.47
Proj 78.57 89.90 93.00 98.37 52.00 69.82 76.28 92.28 10.74 23.69 31.37 65.49 5.61 15.31 22.20 56.89

Combined 78.94 90.31 93.42 98.67 54.27 72.78 79.54 94.73 11.30 26.00 34.23 69.03 5.85 15.71 23.13 59.34

CVACT val
Polar 73.11 85.56 88.74 95.41 52.71 70.45 76.83 91.11 13.45 26.31 33.26 61.91 3.80 10.65 15.26 40.54
Proj 72.73 85.02 88.12 94.65 50.54 67.83 73.67 87.97 12.13 23.12 29.19 55.31 4.12 11.19 15.62 41.90

Combined 73.06 85.73 88.76 95.44 52.98 71.18 77.36 91.61 14.34 27.90 35.18 64.86 4.60 12.73 17.99 46.86

form (polar) and the projective transform (proj). To this
end, we remove the branch of polar-transformed satellite
images or projective-transformed satellite images from our
whole pipeline. We denote such settings as “Ours w/o
polar” and “Ours w/o proj”, respectively. Accordingly, the
corresponding ground branch is also removed from the
whole pipeline. In particular, “Ours w/o proj” becomes the
method proposed in our conference version [10]. Table 6
reports the localization performance of the three baselines.

When the ground images have a 360◦ or 180◦ FoV, the
newly proposed method with both polar and projective
transform achieves the best performance. That is because
the polar transform preserves all of the scene content in-
formation and the projective transform recovers the ground
structure from a satellite image. As seen in Figure 12, there

is a building in the ground-level panorama (Figure 12d),
and it is also visible from the satellite image (12a). The
polar transformed satellite image (Figure 12b) successfully
preserves this scene information. However, the building
is hard to be recognized from the projective-transformed
satellite image (12c). In contrast, the ground structure is
better recovered by the projective transform. The two types
of transformed images complement with each other to make
the satellite image descriptor informative and discrimina-
tive. Moreover, we also present the projective-transformed
satellite image at the ground camera location in Figure 12e.
It aligns better with the ground-level panorama. The ground
camera location is estimated by our fine-grained camera
localization method.

When the ground images have a more restricted FoV,
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(a) FoV=360◦

(b) FoV=180◦
Fig. 13: Visualization of estimated orientation for ground images with
FoV = 360◦ and 180◦. In each of the subfigures, the satellite images are
on the left and the ground images are in the middle. We visualize the
transformed satellite features and the correlation results (red curves) in
the right column. The positions of the correlation maxima in the curves
corresponds to the orientation of the ground images.

i.e. 90◦ and 70◦, the results in Table 6 show that the newly
proposed method achieves inferior performance than “Ours
w/o proj”. The reason is that the projective-transformed
satellite image only preserves a small portion information
from the original satellite image. When the query image has
a small FoV, e.g., only the building part in Figure 12d, it
will not be matched to the projective-transformed satellite
image. Thus its localization result would be incorrect. Not
surprisingly, when the polar transform is removed from our
pipeline, the performance of ‘Ours w/o polar” decreases
significantly. This demonstrate the necessity of the polar
transform.

To summarize, our newly proposed method is more suit-
able for localizing larger FoV images, and when the FoVs of
query images are small, removing the projective transform
branch and its corresponding ground image branch will be
more recommended. In real-world applications, it would be
better to employ different branches in our proposed pipeline
according to different deployment situations.
Orientation estimation w.r.t. the two transforms. We
also study the influence on localization performance when
only using the polar transform or the projective transform
in orientation estimation, denoted as “polar” and “proj”,
respectively. The results are given in Table 7. The ablation
labelled as “combined” is our whole method where both of
the transforms are applied to orientation estimation. It can
be seen that the polar transform contributes more to the final
performance, but both help boost performance.

5.3 Fine-grained camera geo-localization
Here, we conduct three groups of experiments on fine-
grained camera geo-localization: (1) location estimation with
known orientation; (2) orientation estimation with known
location; and (3) joint location and orientation estimation.
Location estimation. We first evaluate the location esti-
mation accuracy of our method when the orientation of
a query image is given. Since ground-truth labels of the
precise camera locations are not available, we conduct a

Fig. 14: User study results for fine-grained camera localization (orienta-
tion aligned). In this evaluation, users are asked to determine whether
a location is correct or not. The color cyan indicates the portion of data
where both GPS and our estimated locations are correct. The red bar
“Neither” indicates the portion of data that cannot be localized when
the FoV decreases from 360◦ to 180◦.

TABLE 8: The performance of our method for fine-grained camera
localization.

Loc Orien FoV=360◦ FoV=180◦
Loc acc (%) Orien acc(%) Loc acc(%) Orien acc(%)

7 3 75.29 – 56.46 –
3 7 – 95.31 – 70.83
7 7 50.59 65.88 24.53 66.04

user study with five participants for quantitative evaluation.
As shown in Figure 7, given a query ground image (the
last column) and its corresponding satellite image (the first
column), it is very difficult for a human to localize which
pixel in the satellite image corresponds to the query camera
location. However, when the projected satellite image at a
given location (the second or third column) is provided, it
is much easier to determine whether this location is correct
or not by comparing the projected satellite image with the
query image. Therefore, the participants are provided with a
query image, a projected satellite image at the GPS location,
and a projected satellite image at the location estimated
by our method. They are required to decide whether the
camera location of each projected image is correct or not.
Moreover, when the query image is different from both
projected images, we mark this case as unknown. This
case occurs when there is a severe occlusion in the vertical
dimension. For example, tree canopies entirely cover the
road underneath, which makes the ground-level localization
extremely difficult.

We randomly select 150 image pairs from the
CVACT val set for this user study. The user study is first
conducted on 360◦ query images. We exclude the rare (#)
‘unknown’ samples and use the remaining images for the
evaluation. From the results in Figure 14, it can be seen that
our method helps to correct the GPS drifting problem. The
experiments on localizing 180◦ FoV images are conducted
on the same image set. We found that around 8% of the
query images cannot be localized when their FoV decreases
from 360◦ to 180◦, marked as “Neither” in Fig. 14. This is
due to the increasing ambiguity when FoV decreases.

We present a failure case of our method in Figure 15. As
seen in the middle of the projected satellite image at the GPS
location, the pixels from the tree canopies occlude the road
pixels underneath. Those pixels are not similar to the pixels
in the query image at corresponding positions. However,
humans still can infer that the two images are at the same
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location, by leveraging the visible surrounding content and
the geometric correspondences. In contrast, the SSIM metric
only measures the overall pixel-wise similarity between
the two images. It cannot handle pixels that are visually
different but geometrically consistent. Thus, it yields a low
similarity value between the image projected at the GPS
location and the query image. Instead, it regards the image
projected at a different coordinate (-20, 8) as the most similar
one to the query image, since the road pixels in the two
images align well and they account for a significant fraction
of the image. As a result, our method fails to localize the
correct location in this case.

Orientation estimation. We also investigate the accuracy of
the orientation estimation of our method when the camera
location is known. Here, the ground-truth location informa-
tion is obtained from the previous stage of the user study,
rather than the noisy GPS provided by the dataset. We
generate query images by rotating the aligned images ran-
domly along the azimuth direction and storing the rotation
as the ground-truth orientation. The results in the second
row of Table 8 indicate that the accuracy of orientation es-
timation is satisfactory when the query images have a 360◦

FoV. However, the accuracy decreases significantly when
the FoV of the query images decreases to 180◦. Figure 16
presents a failure case of the orientation estimation for 180◦

FoV images. As shown in the figure, the scene contents at
the estimated orientation are very similar to those at the
ground-truth orientation (i.e., the query image), making the
orientation estimation rather ambiguous.

Joint location and orientation estimation. Here we evaluate
the overall performance of our method on joint location and
orientation estimation for fine-grained camera localization.
The experiments are conducted on the images of which the
ground-truth is provided by the user study participants.
For location estimation, we consider localization within ±5
pixels (±1.4 meters) as a success. The results are presented
in the third row of Table 8. The first row of Table 8 shows the
localization performance of our method when orientation
is given. It can be seen that the joint estimation task is
much more challenging, since the ambiguity of the problem
becomes even severe.

6 LIMITATIONS.

Our method assumes that the image plane of the query cam-
era is perpendicular to the ground plane. The tilt (elevation)
and roll angles of the ground cameras in the current datasets
are approximately zero. Thus, the sensitivity of our method
to these angles is not investigated.

For the fine-grained 3-DoF camera localization from
satellite images, there is considerable space for our method
to improve. The pixel-wise SSIM similarity used by our
method is not robust to severe occlusions between the
ground and satellite images. It could be replaced by a
higher-level content similarity metric. Improving the run-
time is also an important aspect. For example, a more
sophisticated searching strategy instead of the exhaustive
searching is required to find the camera location within a
selected region.

7 CONCLUSIONS

In this paper, we proposed an effective two-stage algorithm
for ground-to-satellite image geo-localization, which can
handle complex cases where neither location nor orienta-
tion are known. In contrast to many existing methods, our
algorithm provides accurate 3-DoF (location and orienta-
tion) camera localization results. Specifically, our method
includes a coarse localization step which retrieves the most
similar satellite image from the database given a query
image, and a fine-grained localization step which computes
the displacement between the query ground camera loca-
tion and the retrieved satellite image center. The orien-
tation alignment between satellite and ground images in
both steps is evaluated. In contrast to our previous works,
we established more authentic geometric correspondences
between satellite and ground images using a projective
transform. By exploring the geometric correspondences, we
successfully boost the coarse localization performance in
terms of higher location recalls, and provide a novel method
for accurate 3-DOF camera localization.
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