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Abstract—Though network pruning receives popularity in reducing the complexity of convolutional neural networks (CNNs), it remains
an open issue to concurrently maintain model accuracy as well as achieve significant speedups on general CPUs. In this paper, we
propose a novel 1×N pruning pattern to break this limitation. In particular, consecutive N output kernels with the same input channel
index are grouped into one block, which serves as a basic pruning granularity of our pruning pattern. Our 1×N pattern prunes these
blocks considered unimportant. We also provide a workflow of filter rearrangement that first rearranges the weight matrix in the output
channel dimension to derive more influential blocks for accuracy improvements and then applies similar rearrangement to the next-
layer weights in the input channel dimension to ensure correct convolutional operations. Moreover, the output computation after our
1×N pruning can be realized via a parallelized block-wise vectorized operation, leading to significant speedups on general CPUs. The
efficacy of our pruning pattern is proved with experiments on ILSVRC-2012. For example, given the pruning rate of 50% and N=4,
our pattern obtains about 3.0% improvements over filter pruning in the top-1 accuracy of MobileNet-V2. Meanwhile, it obtains 56.04ms
inference savings on Cortex-A7 CPU over weight pruning. Our project is made available at https://github.com/lmbxmu/1xN.

Index Terms—Network pruning, pruning pattern, CPUs acceleration, CNNs.
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1 INTRODUCTION

CONVOLUTIONAL neural networks (CNNs) have sub-
stantially advanced varieties of computer vision

tasks [1], [2], [3]. Despite these tremendous success, newly
developed networks tend to have more learnable pa-
rameters which also mean more floating-point operations
(FLOPs). As a result, these CNNs can be rarely run on
the general CPUs embedded devices with limited compu-
tation power [4]. By pruning the redundancy in CNNs, the
emerging network pruning has become a broad consensus
in favour of model deployment by both the academia and
industries.

As illustrated in Fig. 1, according to the basic pruning
granularity, existing works accomplishing network pruning
are categorized into weight pruning and filter pruning. The
basic granularity of weight pruning falls into individual
weights at any location of the filters or connections between
full-connected layers. It essentially sparsifies the network
at a fine-grained level and is demonstrated to achieve an
extremely high compression rate and high accuracy per-
formance [4], [5], [6]. However, weight pruning receives
very limited speed gains since its irregular sparsity barely
takes advantage of vector processing architectures such as
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Fig. 1. Comparison between existing pruning scenarios (weight pruning
and filter pruning) and our 1×N pruning when sparsifying convolutional
weights with a shape of 8×6×3×3 in this illustration. Given a full
model, weight pruning removes some weights in the filters and filter
pruning removes the whole filters. In contrast, our 1×N pruning removes
consecutive N output kernels with the same input channel index (N=4 in
this illustration). Best viewed in colors.

Single Instruction Multiple Data (SIMD), and poorly utilizes
memory buses. In contrast, this increases latency due to
the dependent sequences of reads [7]. Recent studies [7],
[8], [9], [10] advocate N:M weight pruning where N out
of M weights are zeros for every continuous M weights.
Currently, this pattern achieves acceleration only in the case
of 2:4. Besides, the acceleration is realized on the specially
designed sparse Matrix Multiply-Accumulate (MMA) in-
structions of NVIDIA A100 towards modern single- and
multi-GPU workstations, servers, clusters, and even super-
computers [7], making it impossible to be utilized on other
types of GPUs, let alone the CPUs-based platforms.

Different from weight pruning, the basic granularity of
filter pruning in Fig. 1 consists of the whole filters. It reduces
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network complexity at a coarse-grained level by removing
all weights in a filter. Consequently, the network structure
does not change, thus the sparsified network can be well
fitted by regular hardware and off-the-shelf basic linear
algebra subprograms (BLAS) library to obtain acceleration.
Nevertheless, filter pruning only maintains accuracy un-
der moderate sparsity rates. Otherwise, such methods suf-
fer more significant performance degradation than weight
pruning methods. For example, a recent study [11] shows
that a 5.96× parameter reduction of ResNet-50 can well
retain the accuracy performance of the original network by
weight pruning, however, it is only a 1× reduction in filter
pruning. Though the research community has developed
varieties of techniques [12], [13], [14], [15], recent works [16],
[17] demonstrate that the capacity of these techniques for
performance improvement is indeed limited if appropriate
training settings are given to the previous works.

Above all, how to simultaneously retain the performance
and achieve apparent acceleration on mobile and embedded
devices becomes a challenging but valuable problem. In this
paper, we propose a novel pattern of 1×N pruning with
its merits in realizing both high-performing accuracy and
apparent CPUs acceleration for practical model deployment.
Our 1×N pattern provides an intermediate granular level
for network pruning, which is coarser as compared to the
fine-grained weight but finer as compared to the coarse-
grained filter. An example of our pruning pattern that satis-
fies N=4 requirement is shown in Fig. 1: the core distinction
of our pruning from existing scenarios [12], [13], [15] lies in
that our basic pruning granularity consists of consecutive N
output kernels with the same input channel index. In short,
we aim to remove these consecutive kernels with smaller `1
norms that are considered less important in literature [12].
Our 1×N pruning in this paper follows the typical three-
step pipeline of network training, pruning consecutive ker-
nels with smaller `1 norms, and fine-tuning the sparsified
one to recover the performance. At the point of the second
step, we further propose a workflow of filter rearrangement,
which rearranges the weight matrix in the output channel
dimension according to the `1 norm of each filter, based
on which more influential consecutive kernels with larger
`1 norms are observed for accuracy improvements. Then,
the next-layer weights are similarly rearranged in the input
channel dimension to ensure the same convolutional results.
In contrast to earlier developments [18], [19], [20] that also
explore removing kernels, we have a stronger requirement
of continuity on the N removed kernels, with its benefit in
acceleration because these consecutive kernels can be stored
continuously in the memory cache and the convolution
with the inputs can proceed using a block-wise vectorized
operation in parallel as analyzed in Sec. 3.4.

We display multiple compression rates using the light-
weight MobileNet-V1 [21], -V2 [22], -V3 [23] and large-
scale ResNet-50 [2] on the challenging ILSVRC-2012 [24],
and compare our 1×N pruning with weight pruning and
filter pruning. The experiments suggest obvious increas-
ing accuracy performance compared with filter pruning,
and apparent inference acceleration compared with weight
pruning. For example, given a pruning rate of 50% and
N=4, our 1×N pattern obtains around 3.0% improvements
over filter pruning in the top-1 accuracy of MobileNet-

V2 on ImageNet, meanwhile, it obtains 56.04ms inference
savings on Cortex-A7 CPU compared to weight pruning
which obtains no speedup.

This work addresses the problem of simultaneously
maintaining accuracy and achieving general CPU speedups
to enable practical model deployment on CPUs-based plat-
forms. The key contributions of this paper include: (1) One
novel pattern of 1×N for network pruning. (2) A work-
flow of filter rearrangement for accuracy improvements. (3)
Simultaneously maintaining high-performing accuracy and
achieving apparent CPUs acceleration.

The remainder of this paper is organized as follows:
We briefly discuss some relevant prior works in network
pruning in Sec. 2. Then, we present details of our 1×N pat-
tern for network pruning in Sec. 3. In Sec. 4, a discussion on
the empirical evaluation of our method in comparison with
weight pruning and filter pruning is presented. Moreover,
a brief discussion on the limitation of this work is given in
Sec. 5, laying out some avenues for future research in our
1×N pruning pattern. We finally conclude in Sec. 6.

2 RELATED WORK

Traditional network pruning including weight pruning and
filter pruning is a classical research topic. We briefly review
some related works below.

Weight Pruning. Weight pruning dates back to Opti-
mal Brain Damage [25] and Optimal Brain Surgeon [26],
which prune weights based on the Hessian of the loss
function. Despite their accuracy retaining, the second-order
Hessian needs additional computation cost. Dong et al. [27]
restricted the second-order derivatives for a specific layer
to enable tractable computation. Han et al. [4] proposed to
recursively remove small-weight connectivity and retrain
the `2-regularized subnetwork to derive smaller weight
values. Dynamic network surgery [28] performs pruning
and splicing on-the-fly. The former compresses the network
and the latter recovers the incorrect pruning. The lottery
ticket hypothesis [29] randomly initializes a dense network
and trains it from scratch. The subnets with high-weight
values are extracted, and retrained with the initial weight
values of the original dense model. Lin et al. [30] proposed
a dynamic allocation of sparsity pattern and incorporated
feedback signal to reactivate prematurely pruned weights.

Filter Pruning. The norm of filter weight such as `1-
norm [12] is often considered as an indicator of filter im-
portance. Filters with smaller norms are considered unim-
portant and removed. He et al. [31] pruned the filter with
`2-norm criterion, but the pruned filters are changeable and
endowed with the chance to be recovered during network
training. Ding et al. [32] computed the changes in the
next layer’s outputs to evaluate the impact of pruning the
filters. Lin et al. [33] used the artificial-bee-colony-based
evolutionary algorithm to automatically search for the best
pruning structure for each layer. He et al. [34] leveraged
reinforcement learning to sample many subnetworks from
the original CNN for evaluation, and ultimately find the best
compressed network. Liu et al. [13] adopted meta-learning to
prune redundant filters. It trains a weight-generating meta-
network in advance for subnetworks evaluation, and then
searches for the best subnetwork.
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Discussion. While a variety of approaches for network
pruning have been proposed, existing methods fail to ei-
ther maintain accuracy or achieve apparent speedups on
the general CPUs-based platforms. Thus, it is natural for
researchers to go further on pruning neural networks. This
motivates our search for designing one new pruning pattern
that enables general CPUs acceleration as well as maintains
accuracy performance.

3 METHODOLOGY

In this section, we introduce the intuition of our method and
present its implementation details. In order to simplify the
explanations, we only talk about the convolutional layers
as illustrations. However, our 1×N pruning can also be
applied to the fully-connected layers since their weights can
be regarded as 1 x 1 convolutions.

3.1 Preliminaries

We start with notation definitions. Considering a pre-trained
L-layer CNN model F , we denote its filter set as W =

{Wi}Li=1 with Wi = {Wi
j}n

i

j=1 ∈ Rni×mi×hi×wi

, where ni,
mi, hi and wi respectively indicate the number of output
channel, input channel, kernel height and kernel width in
the i-th layer; Wi is the filter set for the i-th layer and Wi

j

is the j-th filter in the i-th layer. For the fully-connected
layer, its weight matrix is indeed an exception of hi = 1
and wi = 1. In order to simplify the explanations, in the
following contents, we only talk about the convolutional
layers as illustrations.

Network pruning can be implemented by imposing a
mask Ti upon Wi. Here Ti is a binary tensor (0 or 1)
with its entries indicating the states of network connections,
i.e., whether the corresponding weights are pruned or not.
Thus, given an expected pruning rate p, network pruning is
formally expressed as:

arg max
Ti

L(Wi ⊕Ti), s.t.
‖Ti‖0
K

= 1− p, (1)

where ⊕ represents the masking operation, L(·) measures
the importance of its input, and K denotes the size of Ti

that varies according to the basic pruning granularity. We
measure the input importance using the `1 norm of the basic
pruning granularity. We find this criterion sufficient, how-
ever, other metrics, such as weight gradients [6], activation
sparsity [35], can be adopted as well.

Weight Pruning. The studies on weight pruning remove
individual weights at any location of Wi. Therefore, each
mask Ti in weight pruning has the same shape with Wi of
Rni×mi×hi×wi

and its size K = ni ·mi · hi ·wi. The specific
objective of weight pruning is:

arg max
Ti

ni∑
j

mi∑
k

hi∑
q

wi∑
r

L(Wi
j,k,q,r ·Ti

j,k,q,r),

s.t.
‖Ti‖0
K

= 1− p.

(2)

Filter Pruning. The studies on filter pruning remove the
entire filter Wi

j . Thus, each mask Ti in filter pruning has

the shape of Rni

and K = ni. The specific objective of filter
pruning is:

arg max
Ti

ni∑
j=1

L(Wi
j ·Ti

j), s.t.
‖Ti‖0
K

= 1− p. (3)

In the following, we introduce a novel pattern of 1×N
pruning, whose basic pruning granularity falls into consecu-
tive N output kernels with the same input channel index. We
show that our 1×N pruning can be an efficient and effective
alternative to simultaneously accelerate the model inference
on modern CPUs-based platforms and retain the accuracy
performance.

3.2 1×N Pruning Pattern

We define the problem of pruning CNNs using our 1×N
pattern. In order to simplify the explanations, we reformat
the representation of Wi ∈ Rni×mi×hi×wi

as Ωi ∈ Rmi×ni

.
Note that each element in Ωi is a kernel with the shape of
hi × wi, i.e., Ωi

k,j = Wi
j,k,:,:. Each column Ωi

:,j stands for a
filter and each row Ωi

k,: consists of these kernels that have
the same input channel index of k.

As shown in Fig. 1, we further partition the whole Ωi

into a collection of smaller blocks. Our partition can be made
more precise for an mi × ni matrix Ωi by partitioning mi

into a collection of mi row-groups, and then further parti-
tioning ni into a collection of ni

N col-groups. Consequently,
each block (k, j) is a 1×N matrix including consecutive N
output kernels with the same input channel index k, namely
Ωi

k,(j−1)·N+1 : j·N . Based on this partitioned matrix, the basic
pruning granularity of our 1×N sparsity falls into these
blocks. Thus, the mask, Ti, in our 1×N pruning has the
shape of Rmi×ni

N and its size K = mi·n
i

N . Finally, the specific
objective of our 1×N pruning is:

arg max
Ti

mi∑
k=1

ni

N∑
j=1

L(Ωi
k,(j−1)·N+1 : j·N ·Ti

k,j),

s.t.
‖Ti‖0
K

= 1− p.

(4)

Furthermore, we realize that weight pruning and filter
pruning are two special cases of our proposed 1×N prun-
ing pattern. Specifically, our 1×N pruning degenerates to
weight pruning subject to N = 1, hi = 1 and wi = 1.
Besides, it further degenerates to filter pruning if N = ni.
When 1 < N < ni, our method provides an intermediate
granular level for network pruning, since it is coarser as
compared to the fine-grained weight pruning but finer as
compared to the coarse-grained filter pruning. Many previ-
ous researches [18], [19], [20] also explore removing kernels;
however, our pruning pattern has a stronger requirement
of continuity on the N removed kernels, with its merits in
acceleration since these consecutive kernels can be stored
continuously in the memory cache and the convolution
with the inputs can proceed using a parallelized block-
wise vectorized operation as analyzed in Sec. 3.4. Therefore,
it is expected that our 1×N pruning can offer a better
performance than the filter pruning, and also an apparent
inference speedup compared to the weight pruning.
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Fig. 2. Workflow of filter rearrangement. We rearrange the weight matrix in the output channel dimension using the `1 norm of each filter. Then,
similar rearrangement is applied to the next-layer weight matrix in the input channel dimension. As results, more influential kernels with larger `1
norms are preserved for accuracy improvements, as validated using MobileNet-V2. Best viewed in colors.

As a distinguished difference from weight pruning and
filter pruning, pruning kernels provides an intermediate
granular level for network sparsity, since it is coarser as
compared to the fine-grained weight pruning but finer as
compared to the coarse-grained filter pruning.

3.3 Filter Rearrangement
Our 1×N pruning in this paper follows the typical three-
step pipeline of network training, then pruning consecutive
kernels with smaller `1 norms, and fine-tuning the sparse
one to recover the performance in the end. At the second
pruning step, inspired by [10] which conducts channel per-
mutations to preserve more high-magnitude weights in the
N:M weight pruning, we realize that the layout of Ωi can be
altered to further relieve the pruning impact.

To implement the above process, we propose a workflow
of filter rearrangement, whose working principle is shown
in Fig. 2. Given the original weight matrix Ωi in the top-left
of (a), simply applying 1×N pruning upon Ωi leads to the
loss of some kernels with relatively large values of `1 norms
in the top-right of (a). We calculate the `1 norm of each
filter, i.e., one column in Ωi, then rearrange Ωi in the output
channel dimension according to the calculated filter norm
in a decreasing order as shown in the lower-left of (a). The
rearranged weight matrix is denoted as Ω̃i to which our
1×N pruning is further applied. As a consequence, more
kernels with larger `1 norms are preserved after pruning
in the lower-right of (a), leading to an overall increasing
weight magnitude as verified on MobileNet-V2 of (b). The
filter rearrangement requires the outputs to be similarly
rearranged as well, so as to maintain the same convolu-
tional results with the next-layer weight matrix. However,
frequently rearranging outputs incurs more run-time cost in
the inference. Alternatively, we choose to apply a similar
rearrangement to the input channel dimension of the next-
layer weight matrix as illustrated in the middle of (a), which
is accomplished once for all before pruning and thus brings

no run-time cost. The effectiveness of filter rearrangement
for accuracy improvements is presented in Sec. 4.

Herein, we want to stress the difference of our filter
rearrangement against the channel permutation [10]. First,
rearranging the columns of Ωi is indeed to change the
position of each filter in our setting. Second, our goal is
to preserve more high-magnitude kernels, while [10] is to
preserve more individual high-magnitude weights. Third,
we simply accomplish our rearrangement according to the
`1 norm of each filter. The implementation details of channel
permutations are discussed in another paper [36] where a
bounded regressions-based permutation search is proposed
to find a high-quality permutation.

Then, Eq. (4) after filter rearrangement is rewritten as:

arg max
Ti

mi∑
k=1

ni

N∑
j=1

L(Ω̃i
k,(j−1)·N+1 : j·N ·Ti

k,j),

s.t.
‖Ti‖0
K

= 1− p.

(5)

Note that the maximization of the above objective can
be achieved by setting to 1s the entries of Ti corresponding
to these blocks in Ω̃i with their `1 norms within the largest
top-(1−p), and 0s otherwise. As a consequence, the pruned
weights after applying our 1×N pruning pattern is then
derived as:

Ω̄i = Ω̃i ⊕Ti. (6)

3.4 Encoding and Decoding Efficiency

Given the input activation tensor Xi as illustrated in Fig. 3,
the output tensor Yi calculated by the standard dense-
matrix structure is obtained as:

Yi
k,j =

mi∑
z=1

Xi
k,zΩ̄

i
z,j . (7)
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Fig. 3. Encoding and decoding of our 1×N pruning pattern. Our pruning pattern results in a sparse matrix with constant-size blocks, enabling it to
be encoded by Block Compressed Sparse Row Format (BSR) to save the memory storage. In the decoding process, we calculate the outputs in a
block-wise manner where the block-wise vectorized operation is applied in parallel to realize practical speedups. Best viewed in colors.

Considering a sparse matrix, operations using the stan-
dard dense-matrix structure bear inefficiency as processing
and memory are wasted on a large number of zero-valued
elements. Thus, it is of great necessity to take advantage of
specialized data structures in order to store and manipulate
the sparse matrix. However, the irregular sparse matrix
resulting from weight pruning requires a great many of
indices to record the positions of the reserved weights.
Though Compressed Sparse Row Format (CSR) can be used
to save index storage, irregular sparsity barely takes advan-
tage of vector processing architectures and memory buses,
resulting in little acceleration and even speed deterioration.

Weight pruning leads to an irregular sparse matrix,
therefore, a large number of indices are needed to record
the positions of the reserved weights. To save the index
storage, the relative Compressed Sparse Row (CSR) format
is usually adopted [4], [37], which encodes each index by
the relative distance (i.e., the number of zeros) between
two adjacent non-zero weights. Besides, a decoding process
is needed to select the corresponding activations for the
reserved weights. The main drawback of irregular pruning
is that decoding one index requires a search over the whole
activation vector, thus it brings little acceleration, even
speed degradation.

In contrast, due to the requirement of continuity on the
N removed kernels, our pruning pattern results in a sparse
matrix Ω̄i with constant-sized blocks. This good property
brings two merits: First, the constant-sized blocks are by
nature more easily encoded by Block Compressed Sparse
Row Format (BSR) [38] to save non-zero elements in Ω̄i with

significantly less storage for the indices. Second, the output
tensor Yi is derived using a block-wise vectorized operation
in parallel to achieve an apparent speedup. Specifically, as
illustrated in Fig. 3, the pruned weight matrix Ω̄i in our
1×N pruning is encoded by BSR into three components:
1)Di ∈ Rt×N , 2)Ii ∈ Rt and 3)Pi ∈ Rni

N +1, where t is
the number of non-zero blocks in Ω̄i. The matrix, Di, and
vector, Ii, contain non-zero blocks and their row indices in
Ω̄i, respectively. We form Di by firstly stacking up non-zero
blocks within the same col-group of Ω̄i, and concatenating
the stacked ones across different col-groups. The vector Ii

records the row index of each block item in Ω̄i. The k-th
element of the vector Pi encodes the start row index of the
k-th col-group in Di. The last element of Pi is a fictitious
index, which is always equal to t+1. Attributed to the block
storage format of Di, we can calculate Yi in a block-wise
manner during decoding as follows:

Yi
k, (j−1)·N+1:j·N =

Pi
j/N+1−1∑
z=Pi

j/N

Xi
k,Iiz
·Di

Iiz,:
. (8)

With proper index vectors Pi and Ii, we can directly
fetch these activations corresponding to non-zero weights
for the output computation, through which we avoid a
complete involvement of the whole activation tensor as with
the dense-matrix structure. Besides, the block storage format
of Di also allows fast row data access since each block Di

Iiz,:

is stored continuously in the memory. Besides, the block-
wise vectorized operation in Eq. (8) can be implemented
extremely fast as the multiplication between input item
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TABLE 1
Performance studies of our 1×N pruning with and without filter rearrangement. The experiment is conducted using MobileNet-V2 with the pruning

rate p = 50%.

N=2 (%) N=4 (%) N=8 (%) N=16 (%) N=32 (%)
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

w/o Rearrange 69.900 89.296 69.521 88.920 69.206 88.608 68.971 88.399 68.431 88.315
Rearrange 70.233 89.417 69.579 88.944 69.372 88.862 69.352 88.708 68.762 88.425

TABLE 2
Performance studies of our 1×N pruning with kernel-wise pruning. The
experiment is conducted using MobileNet-V2 and ResNet-50 with the

pruning rate p = 50%.

ResNet-50 (%) MobileNet-V2 (%)
Top-1 Top-5 Top-1 Top-5

1×N (N=4) 76.506 93.238 69.706 89.165
kernel (random) 74.834 92.178 68.615 88.434

kernel (`1) 75.370 92.582 69.514 89.012

Xi
k,Iiz

and each entry of Di
Iiz,:

can proceed in parallel. Thus,
our 1×N pruning enables apparent acceleration on the gen-
eral CPUs-based devices. To ensure end-to-end execution
efficiency, we utilize the optimizing compiler TVM [39] to
enable optimal code generation. And based on Eq. (8), we
use Ansor [40] for automated tensor program generation to
search best sparse convolution implementation.

4 EXPERIMENTS

4.1 Implementation Settings

For fair comparison, similar to our 1×N pruning, we re-
implement the compared baselines of weight pruning and
filter pruning using `1 norm as the importance evaluation.
Besides, given the expected pruning rate p, we simply
remove per-layer weights/filters/blocks with their corre-
sponding `1 norms within the smallest top-p. All exper-
iments are performed using the pre-trained light-weight
MobileNet-V1 [21], -V2 [22], -V3 [23] and large-scale ResNet-
50 [2] on ILSVRC-2012 [24] that contains over 1.2 million
images for training and 50, 000 validation images from
1, 000 classes. After pruning, we fine-tune the sparse models
for 90 epochs on two NVIDIA V100 GPUs with the set-
tings: Stochastic Gradient Descent (SGD) optimizer with a
momentum of 0.9, weight decay of 4e-5 for MobileNets and
1e-4 for ResNet-50, and initial learning rate of 0.1 with a
cosine annealing. The data augmentation includes random
cropping and horizontal flipping.

4.2 Ablation Study

We first analyze the influence of filter rearrangement in
Sec. 3.3. Table 1 compares the performance of our 1×N
pruning for pruning MobileNet-V2 with and without filter
rearrangement. The pruning rate p is set to 50%. As can be
seen, rearranging filters consistently enhances the accuracy
performance in both the top-1 and top-5, even with various
block size (N). For example, the top-1 classification accuracy
of pruned MobileNet-V2 with 1×16 pruning is increased
by 0.381% (69.352% with and 68.971% without filter rear-
rangement). To dive into a deeper analysis, by rearranging
the weight matrix in the output channel dimension, more

blocks with larger `1 norms are preserved after applying
our 1×N as validated in Fig. 2(b). These results well validate
the effectiveness of filter rearrangement in boosting the
performance of pruned models.

We continue the study on our consecutive kernel re-
moval. Recall that consecutive N output kernels with the
same input channel index are grouped into one block and
our 1×N removes these blocks with a smaller `1 norm. In Ta-
ble 2, we compare our consecutive kernel removal with two
variants including (1) removing kernels randomly and (2)
removing kernels with smaller `1 magnitudes. From these
results in Table 2, we can see that removing random kernels
performs worse than removing smaller magnitude kernels,
indicating the importance of preserving larger magnitude
weights. Our stronger constraint of block-level magnitude
leads to performance increase compared with the kernel-
level magnitude. Also, our 1×N merits in its acceleration
since the consecutive kernels can be stored continuously
in the memory cache. Moreover, the convolution with the
inputs can proceed using a parallelized block-wise vector-
ized operation as analyzed in Sec. 3.4 and verified in the
following Sec. 4.3.

4.3 Performance Comparison
In this section, we compare the performance of our pro-
posed 1×N pruning with traditional weight pruning and
filter pruning. We show that the advantages of pruning
pattern are reflected from two perspectives: 1) maintaining
better accuracy than filter pruning, and 2) achieving appar-
ent CPUs acceleration compared to weight pruning.

Accuracy Performance. We first study the performance
of 1×N sparsity across different networks. Table 3 dis-
plays the pruning results of our 1×N pruning and exist-
ing weight pruning and filter pruning using MobileNet-
V1/-V2/-V3 with the pruning rate p set to 50%. Table 3
shows that filter pruning suffers the most performance
degradation of 5.806%, 5.007%, 8.171%, and 5.143% when
pruning MobileNet-V1, V2, V3-small and V3-large, respec-
tively. Such severe performance losses are attributed to
its coarse-grained pruning granularity. Consequently, the
poor performance barricades the using of filter pruning in
practical model deployment. In contrast, due to its fine-
grained pruning granularity, weight pruning presents the
best performance with top-1 accuracy losses of 0.390%,
0.591%, 0.849%, and 1.383% when pruning MobileNet-V1,
V2, V3-small and V3-large, respectively. Despite its ability
to maintain high accuracy, weight pruning achieves rare
acceleration as analyzed in the following. The poor speedup
also disables the using of filter pruning. With respect to
our proposed 1×N pruning, we have two observations: 1)
our method well boosts the performance of filter pruning
regardless of the block size N. Taking MobileNet-V2 as an
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TABLE 3
Performance comparison of our 1×N pruning against weight pruning and filter pruning. The experiment is conducted using MobileNet-V1/-V2/-V3

and ResNet-50 with the pruning rate p = 50%.

MobileNet (p = 50%) ResNet-50 (p = 50%)
V1 (%) V2 (%) V3-small (%) V3-large (%) (%)

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5
Origin 71.154 89.834 71.737 90.452 67.225 87.351 74.280 91.928 77.008 93.654

Weight Pruning 70.764 89.592 71.146 89.872 66.376 86.868 72.897 91.093 77.088 93.614
Filter Pruning 65.348 86.264 66.730 87.190 59.054 81.743 69.137 89.097 75.382 92.518

1×2 Pattern (Ours) 70.281 89.370 70.233 89.417 65.380 86.060 72.120 90.677 76.654 93.466
1×4 Pattern (Ours) 70.052 89.056 69.706 89.165 64.465 85.495 71.935 90.458 76.506 93.238
1×8 Pattern (Ours) 69.908 89.027 69.372 88.862 64.101 85.274 71.478 90.163 76.146 93.134
1×16 Pattern (Ours) 69.559 88.933 69.352 88.708 63.126 84.203 71.112 90.129 76.254 93.084
1×32 Pattern (Ours) 69.541 88.801 68.762 88.425 62.881 83.982 70.769 89.696 75.960 92.950
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Fig. 4. Performance comparison of our 1×N pruning against weight pruning and filter pruning under different pruning rates. The experiment is
conducted using MobileNet-V2 (left) and ResNet-50 (right). Best viewed in colors.

example, our 1×4 pruning achieves 69.706% top-1 accuracy,
significantly better than 66.730% of filter pruning. Though
it is slightly poorer than 71.146% of weight pruning, our
1×4 pruning obtains an apparent speedup as detailed in
the following context. 2) The performance of 1×N pruning
degenerates as the block size N increases. The rationale
behind this is that a larger N indicates coarser pruning. As
analyzed in Sec. 3.2, our 1×N pruning degenerates to weight
pruning with a small N and filter pruning with a large N.

Table 3 also provides the performance comparison when
using ResNet-50 as the network backbone with the prun-
ing rate p = 50%. We can observe similar phenomena to
MobileNets that filter pruning suffers the most performance
drops and weight pruning presents best performance while
our 1×N provides a trade-off. Besides, our performance
decreases as the block size N increases.

Fig. 4 further shows the performance comparison when

applying different pruning rates to sparsifying MobileNet-
V2 and ResNet-50. We can see that the increasing prun-
ing rate results in decreasing accuracy performance for
all methods. However, filter pruning degrades drastically
if p > 50%. In contrary, our pruning pattern maintains
a similar decreasing tendency and close performance to
weight pruning even if the pruning rate p is very high1.

CPUs Acceleration. Fig. 5 presents the experimental re-
sults, which are conducted to further explore the accelera-
tion capacity of different methods on CPUs-based platforms.
In Sec. 3.4, we adopt TVM [39] to compile the pruned model
of our pruning pattern. For fair comparison, we also con-
sider TVM compiler for weight pruning and filter pruning.
Besides, additional experiments by TFLite compiler [41] are

1. The raw data for plotting Fig. 4 can be found from our project at
https://github.com/lmbxmu/1xN.

https://github.com/lmbxmu/1xN
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Fig. 5. Performance and latency comparison between our 1×N (N=4) pruning against weight pruning and filter pruning. The experiment is conducted
using MobileNet-V2 on the mobile platform of Pixel2 equipped with a Snapdragon 835 CPU (left), and the embedded platform of Zeropi equipped
with a Cortex-a7 CPU (right). Best viewed in colors.

also presented for weight pruning and filter pruning. After
model compiling, we respectively deploy the sparse models
to obtain network latencies on the mobile platform of Pixel2
equipped with a Snapdragon 835 CPU and the embedded
platform of Zeropi equipped with a Cortex-a7 CPU.

From Fig. 5, we observe no speedup from weight prun-
ing, despite its ability to preserve good performance. As
analyzed in Sec. 1, weight pruning leads to irregular sparsity
that hardly utilizes the vector processing architectures and
memory buses. Thus, weight pruning often results in little
acceleration and even speed deterioration. Filter pruning
leads to the most significant speedups since it does not
modify the network structure, so that the pruned network
can be well fitted by regular hardware to achieve accelera-
tion. Nevertheless, the severe performance degradation dis-
ables the using of filter pruning in the model deployment.
In contrast, our 1×N (N=4) pruning achieves noticeable
latency reductions across various pruning rates such as
56.04ms inference savings on Cortex-A7 CPU over weight
pruning when p = 50%, while maintaining comparable top-
1 accuracy performance. Compared with weight pruning
and filter pruning, our 1×N pruning shows a better capacity
of keeping a trade-off between latency and performance.

5 LIMITATIONS

First, our filter rearrangement using `1 norms of filters does
not always guarantee maximizing magnitude. Though it
does not seem to have happened in the experiments, op-
portunity exists that lower-magnitude kernels are retained.
The approach to cluster large values as in [42] has no this
issue. However, we observe a similar performance of the
cluster against our rearrangement. We adopt the `1 norm
based rearrangement since it is much easier to implement.

Second, though our 1×N is originally proposed for
CNNs, we observe rare speedups on recurrent neural net-
works (RNNs) compared to these RNNs acceleration [43],
[44]. Nevertheless, we are making efforts to break this
limitation and expecting that our method can be well gen-
eralized to a wider variety of networks in the near future.

Third, this paper misses comparisons to many studies
that also explore an intermediate pruning granularity [18],
[42], [45], [46], most of which only report the theoretical

acceleration in their papers. In our deployment, we find
most of them fail to obtain practical acceleration, or only
reach few CPU speedups in a pruning rate of over 90% [45].
Currently, we are not sure if something is wrong in our im-
plementation of these methods. Our future work will focus
on this topic to show that our method is worth building on.

Fourth, we do not introduce a new pruning criterion but
use the `1 norm as our measure to reflect the importance
of these consecutive kernels. This is because we find that
existing pruning criteria show similar performance if fair
training settings are given, which is also discussed in [16],
[17]. Thus, we focus on designing a new pruning pattern.
However, it is unclear if a specialized pruning criterion
exists in our 1×N pattern. We will continue excavating this
issue.

6 CONCLUSION

We introduce a novel 1×N pruning pattern to simulta-
neously maintain model accuracy and achieve significant
speedups on general CPUs. Unlike previous approaches that
prune the individual weights or the whole filters, we design
a pruning pattern that supports network pruning by remov-
ing consecutive N output kernels with the same input chan-
nel index. To preserve more influential kernels, we propose a
workflow of filter rearrangement that rearranges the weight
matrix in the output channel dimension and applies similar
rearrangement to the next-layer weight matrix in the input
channel dimension. Our pruning pattern leads to a sparse
matrix with constant-sized blocks enabling the computa-
tion outputs by using a parallelized block-wise vectorized
operation. The experiments on the MobileNets/ResNet-50
and CPUs embedded hardware platforms demonstrate the
efficacy of our approach.
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