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Jérôme Gaveau, Student Member, IEEE, Christophe J. Le Martret, Senior

Member, IEEE and Mohamad Assaad, Senior Member, IEEE,

Abstract

Model-free decentralized optimizations and learning are receiving increasing attention from the-

oretical and practical perspectives. In particular, two fully decentralized learning algorithms, namely

Trial and Error (TEL) and Optimal Dynamical Learning (ODL), are very appealing for a broad class

of games. In fact, ODL has the property to spend a high proportion of time in an optimum state that

maximizes the sum of utility of all players. And the TEL has the property to spend a high proportion

of time in an optimum state that maximizes the sum of utility of all players if there is a Pure Nash

Equilibrium (PNE), otherwise, it spends a high proportion of time in an optimum state that maximizes a

tradeoff between the sum of utility of all players and a predefined stability function. On the other hand,

estimating the mean fraction of time spent in the optimum state (as well as the mean time duration

to reach it) is challenging due to the high complexity and dimension of the inherent Markov Chains.

In this paper, under some specific system model, an evaluation of the above performance metrics is

provided by proposing an approximation of the considered Markov chains, which allows overcoming

the problem of high dimensionality. A comparison between the two algorithms is then performed which

allows a better understanding of their performances.

I. INTRODUCTION

Game Theory and more generally decentralized optimization has recently received increasing

attention from theoretical and practical perspectives. For instance, several classes of games have

been studied and characterization of the corresponding equilibria has been performed [1], [2]. On

another hand, developing learning based methods that can be implemented in a distributed way

by the agents is of paramount importance in decentralized optimization and game frameworks.

These methods must either converge to an equilibrium, in game contexts, or to a local/global

optimum in the context of decentralized optimization. One can refer to [1] for a survey on

learning based methods.
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In most cases, it is assumed that the utility function of the users and action set have some

mathematical properties (e.g. Lipschitz continuity of the reward, etc.) to ensure the convergence

of developed methods.

In practice, the optimization/game frameworks can however very complex, in which the utility

function may not have a closed form expression and even may take discrete values. In such

contexts, model-free strategy learning algorithms are very appealing approaches [3]. Players

neither try to model the environment nor try to have a specific/explicit utility form. They simply

consider the environment as a black box and learn by interactions (e.g. trials and errors). This

context, though very restrictive, can be encountered in a wide variety of examples. For instance,

in a wind farm, each turbine controls the power that it extracts from the wind [4]. It is very

difficult, if not intractable, to model the impact of a turbine on other turbines. In addition, the

lack of communications between them makes impossible any cooperation. Another example is

the case of commuters in city that want to avoid traffic jams but, they neither know the strategies

of other commuters nor the impact of their strategy on the achieved rewards [5]. In the context

of wireless telecommunication systems, decentralized resource allocation can be encountered in

many contexts since the nodes/players may not be able to exchange information between each

other in order not to increase the overhead in the network. Also realistic utility functions of

the users may not have closed form expression (e.g. Quality of Experience, number of correctly

decoded packets; etc.). Decentralized resource allocation approaches have been used [6], [7] to

respectively share the resources among femtocells or wifi access points. In ad hoc networks,

the network is infrastructure-less which makes decentralized learning solutions suited in such

contexts [8], [9], [10], [11].

In model-free resource allocation schemes, developing decentralized strategies that converge

to an equilibrium (if it exists), or at least finding conditions under which they converge, represent

a main challenge [3]. The trial and error algorithms, proposed in [4], [12] and then applied to

various resource sharing problems e.g. [8], [9], [10], [11], are very appealing in these contexts.

They show the particularity to exhibit cooperative convergence properties in a broad class of

games. For this reason, the focus in this paper is on Trial and Errors algorithms. For instance,

Optimal Distributed Learning (ODL) algorithm from [4] has the property to spend a high

proportion of time in an optimum state that maximizes the sum of utility of all players whether

there is, or not, a Pure Nash Equilibrium (PNE). On the other hand, Trial and Error Learning

(TEL) algorithm from [12] has the property to spend a high proportion of time in an optimum
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state that maximizes the sum of utility of all players if there is a PNE, otherwise, it spends

a high proportion of time in an optimum state that maximizes a tradeoff between the sum of

utility of all players and a predefined stability function. Even though the above two algorithms

converge to a desired state, the convergence rate remains an open question [3], [12]. The main

reason comes from the computation complexity of the inherent Markov Chain (MC) generated

by these two algorithms. In fact, the game in which players employ these learning schemes can

be represented by discrete MCs with huge number of states. Obtaining the transitions matrix

of these MCs is therefore not tractable which makes the analysis of the convergence rate not

possible (even numerically).

The main contributions of this work are fourfold. We are interested in computing the mean

time these algorithms spend in a desired state as well as the mean time required to achieve that

state under a given model. Due to the huge dimension of the MCs, only approximations can be

employed to compute a close approximation of the aforementioned convergence metrics. The

first contribution is to provide an approximation of the MC associated to the TEL algorithm. The

second contribution is to also provide such an approximation for ODL algorithm. In addition,

we explain the methodology to obtain them. To the best of our knowledge, a first attempt to

analyse the convergence rate of TEL in a practical context was addressed in [9]. However, the

analysis provided in this paper provides a better approximation (as one will see in the sequel).

In addition, no attempt has been made to analyse the convergence properties of ODL. Third,

with the numerical results, we derive the convergence properties of each algorithm. Last, this

allows us to provide a comparison between these two algorithms. To the best of our knowledge,

this comparison has not been addressed under a practical system model before.

This paper is organized as follows. Section II presents the system model along with a brief

description of TEL and ODL. Section III summarizes the main results of this work. The detailed

analysis of the convergence (i.e. mean convergence time to a desired state and mean time spent

in that state), including the reduction of the MCs, is provided in sections IV, V, VI, and VII.

Numerical results are provided in Section VIII and Section IX concludes the paper.

II. MODEL

We consider a network/set of K players K = {1, . . . , K}, that interact among each other. The

players share a set of resources N = {r1, . . . , rN}. Each player k choose an action ak, which

consists of selecting without exchanging any information with the other players a resource inside
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the set N . The vector a = (a1, . . . , aK) ∈ A represents the system action, where A = NK . The

utility received by each player k ∈ K is uk(a), and u(a) = (u1(a), . . . , uk(a)) is the system

vector utility. When two players choose the same resource they will interference with each other.

We assume that the utility can take binary values (i.e. u ∈ {0, 1}K). Note that, such an hard

threshold utility model is commonly encountered in the literature [10], [8], [13]. This problem

can be modeled as a normal form game G = (K,A, {uk}k∈K). A common approach to solve the

aforementioned problem is to study the PNE that can be defined as follows.

Definition 1 (PNE): An action profile a∗ ∈ A is a PNE of game G if ∀k ∈ K and ∀ak ∈ N ,

uk(a
∗
k, a
∗
−k) ≥ uk(ak, a

∗
−k)

Since we consider a general game model, we make in the following some assumptions in order

to ensure the existence of a PNE. We suppose that the number of available resources N is greater

or equal to the number of players K. Furthermore, we assume that if two players interfere with

each other (i.e. choose the same resource) then their utilities are equal to 0. The utility of a player

is then equal to 1 when no other player choose the same resource. These simplified assumptions

can be justified by the fact that our objective in this paper is to study the performance of TEL

and ODL algorithms and not to study the existence of PNE for some game models. It is worth

mentioning that even under the above assumptions the problem is still challenging due to the fact

that the players cannot communicate with each other and then cannot be aware of the others’

actions and they can only observe the result of their own actions (e.g. a player cannot know

how many players have chosen the same resource). The resulting Markov chain, as one will see

in the sequel, is very complex to analyze under this model.

In order to deal with the aforementioned decentralized resource allocation problem, two fully

distributed learning schemes, namely TEL and ODL, can be employed. They have received

increasing attention recently, which leads us to analyze their performance and make a comparison

between them in this paper. In the remaining of this section, a description of these algorithms

is provided. Both algorithms share common characteristics. Each player k ∈ K implements a

controller composed with states called moods and noted mk and, m = (m1, . . . ,mK) is the

mood vector of the network. In TEL, there are four moods called Content (C), Watchful (W),

Hopeful (H) and Discontent (D), whereas ODL controller is solely composed with the two moods

C and D. Furthermore, each player has a benchmark action and a benchmark utility denoted

respectively by āk and ūk. The benchmarks of the network are then denoted by ā = (ā1, . . . , āK)
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and ū = (ū1, . . . , ūK). At each iteration, every player either selects to use the benchmark action

(i.e. ak = āk) or decides to try a new one ak 6= āk. Then, the player observes the obtained utility

uk and compares to its benchmark utility ūk. Detailed descriptions of both algorithms, including

the rules used to define/update of the benchmark actions and utilities, are provided in the next

subsections.

A. TEL

This section described the rules applied in the TEL controller from [12] of any k ∈ K :

• mk = C, there are two cases to consider :

1) with probability 1 − ε, the player keeps playing its benchmark (i.e. ak = āk). The

next state changes to H if uk > ūk or, it changes to W if uk < ūk or, it remains C if

uk = ūk.

2) with probability ε, the player experiments a new action, i.e. ak ∈ N\{āk}. The action

experimented is selected randomly among N\{āk} (i.e. Pr {ak = ri} = 1
N−1

, ∀ri 6= āk)

and, the next state remains mk = C. When uk > ūk, player k updates its benchmark

with probability εG(uk−ūk), where G(x) = −ν1x + ν2, with ν1 > 0 and ν2 such that 0 <

G(uk− ūk) < 1/2. An update consists in changing the benchmark by the played action and

the received utility in the next iteration as follows, ūk ← uk and āk ← ak.

• mk = H: ak = āk and the next state changes to C with a utility benchmark update ( i.e.

ūk ← uk) if uk > ūk or, it changes to W if uk < ūk or, it changes to C if uk = ūk.

• mk = W : ak = āk and the next state changes to H if uk > ūk or, it changes to D if uk < ūk

or, it changes to C if uk = ūk.

• mk = D: an action ak is randomly selected among N (i.e. Pr {ak = ri} = 1
N

, ∀ri ∈ N )

with probability 1. The next state mk changes to C with probability εF (uk), where F (u) =

−φ1u + φ2 with, φ1 > 0 and φ2 such that 0 < F (u) < 1/2K, with a benchmark update

(i.e. ūk ← uk and āk ← ak), otherwise, with probability 1− εF (uk), mk = D.

B. ODL

This section described the rules applied in the ODL controller from [4] of any player k ∈ K :

• mk = C, there are two cases to consider :
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1) with probability 1 − εc, where c > K is a real constant, ak = āk. If uk 6= ūk then

the state mk changes to D with probability 1 − ε1−uk . Otherwise, with probability ε1−uk ,

the cluster updates its benchmark (i.e. ūk ← uk ) and remains C.

2) with probability εc > 0, a new action is experimented, ak ∈ N\{āk}. The new

action is selected randomly in the set N\{āk}. If uk 6= ūk, the state mk changes to D with

probability 1− ε1−uk . Otherwise, with probability ε1−uk , the cluster updates its benchmark

(i.e. ūk ← uk and āk ← ak) and remains in C.

• mk = D: an action ak is randomly chosen among N . The cluster switches to C with

probability ε1−uk and updates its benchmark (i.e. ūk ← uk and āk ← ak), otherwise with

probability 1− ε1−uk , it remains D.

C. Markov chain representation and performance metrics

The different states taken by the network are defined by z = (m, a, ā,u, ū) and represent a

Markov chain ΞTEL if the TEL is used by all players or ΞODL if it is ODL. Unless there is an

ambiguity, we drop the indices and call the Markov chain Ξ.

The convergence performance of TEL and ODL is evaluated along two features: i) the

mean time duration to reach the state maximizing the social welfare, starting from a specific

initialization point, also known as Expected First Hitting Time (EFHT) and denoted by TEFHT ,

ii) the mean fraction of time duration spent on that state denoted by α.

It is of interest to note that these algorithms are known to converge under the interdependence

property (see [12], [4] for the exact definition). In few words, the interdependence is the property

that for any set of players, there exists an action that changes the utility of a player not in the

set. This condition is a sufficient condition as the analysis in [12], [4] was done for more general

game model than the one considered in this paper. In our case, the above condition is not needed.

In fact, thanks to the presence of the small probability ε in TEL and ODL (see sections II-A and

II-B), all states of the Markov Chain Ξ communicate and form a unique communication class.

Ξ is then ergodic and possesses a unique invariant distribution. This property ensures a non null

transition probability between all states for a sufficient number of transitions and a non null

probability of the corresponding state. In this paper, we are interested in computing the mean

time the system stays in a desired state and the mean time needed to achieve that state for the

first time. The desired is the state that maximizes the social welfare of the players.
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III. RESULTS

The main result of this work is to provide an efficient approximation of the MC for TEL and

ODL algorithms that allow an accurate numerical convergence analysis. The approximated MC

is denoted by Ξ̃. In next sections, we describe the procedure to approximate and reduce the MC

dimensionality so as to realize the convergence analysis. It is worth mentioning that the number

of states in the original MC is huge, which makes very hard the computation (even numerically)

of the performance metrics TEFHT and α for both algorithms.

Using the proposed efficient approximation, we were able to find interesting results (that are

presented in VIII). Based on the obtained results, the following observations can be highlighted.

We use the Landau notation O(.) to specify the rate of convergence when K becomes important

or when ε is close to 0 but strictly positive. In this notation, K and ε are dropped for clarity.

Observation 1: For the TEL, the EFHT TEFHT = O( 1
εa1

) and TEFHT = O(Ka2) where

a1, a2 > 0 and, 1− α = O(εa3) and 1− α = O(Ka4) where a3, a4 > 0.

Observation 2: For the ODL, TEFHT = O( 1
εcb1

) and TEFHT = O(bK2 ) where b1 > 0 ,b2 > 1

and, the stability is 1− α = O(εb3) and α = O(bK4 ), where b3 > 0, 1 > b4 > 0.

From these observations some interesting comparisons can be deduced. Both algorithms have

a convergence time inversely proportional to ε and a stability that decreases polynomially with

ε. However, ODL has a convergence time which is exponential with respect to K contrary to

TEL which is polynomial. At low K, the convergence time of ODL is relatively similar to

the TEL one, but at higher K, TEL converges faster than ODL. In addition, for ODL, the

stability decreases exponentially with respect to K whereas, for the TEL, the stability decreases

polynomially. It follows that the TEL is much more stable than the ODL. At low number of

players, the convergence time of both algorithms are similar but the stability of TEL is better.

At higher number of players, the TEL performs better than ODL for both convergence metrics.

These observations result from the analysis of numerical figures of merit computed using the

formulas presented in next section.

IV. METRICS COMPUTATION

In this section, we present how to compute the figure of merit of both algorithms using the

transition matrix P0 of Ξ. The method is based on the generalized fundamental matrix F for
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ergodic MC developed in [14]. The matrix F, which is an extension of the fundamental matrix

introduced in [15], is defined by

F := (I−P0 + 1bt)−1, (1)

where I is the identity matrix, 1 is a column vector filled with 1, and b is any arbitrary column

vector such that bt1 6= 0. During simulations, we use b = 1.

The first feature concerns the expected first hitting time to a given state j from a state i,

Ei [Tj] and is given by ([14] equation (30))

Ei [Tj] =
Fjj − Fij

πj
, (2)

where Fij is the term in line i and column j of matrix F, and πj is the stationary probability

of state j. The stationary distribution is given by the property that (equation (28) from [14])

btF = π. (3)

The second feature that describes the performance of stochastic stable algorithms is the mean

fraction of time spent in the state that maximizes the social welfare. In an ergodic MC, the

proportion of time αj spent in a state j is equal to its stationary probability αj = πj ([15]

Theorem 4.2.1) that can be computed using (3).

The convergence analysis realization requires the manipulation of transitions matrices. The

huge number of states S grows exponentially with K and N (see Section VI-C) and since

Ξ’s transition matrix has dimension (S × S), it needs to be approximated to allow numerical

computation of the performance. As an example, even for small values N = K = 3, the

number of states is already S = 373, 248. In this work, we propose a new approach to build the

approximated Markov chain Ξ̃ whose transition matrix is noted P. Note that the approximation

Ξ̃ is built such that it is ergodic like Ξ which means that, P admits a unique invariant distribution

with strictly positive components. With this approximation, formulas (2) and (3) are still valid

if P0 is replaced by P. It remains to construct P with justified and motivated arguments. This

approach follows two steps: i) first we approximate the original Markov chain Ξ by identifying

some invariance induced by the utility model, ii) we then further reduce the Markov chain

complexity by neglecting some transitions. Then, from the probability transition matrix of the

approximated Markov chain, we are able to compute the two convergence figures of merit.
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V. REDUCING THE MARKOV CHAIN DIMENSIONALITY

In order to approximate Ξ, we start by considering only the states called recurrence classes

of the unperturbed process [16], shorten as recurrence classes (RC), that were used as the key

feature for the TEL and ODL proof of convergence. The system tends to spend naturally a

high amount of time in those states which thus play a major role in convergence metrics. The

reason comes from the combination of two properties. First, the network needs at least one

experimentation to leave an RC, which occurs with small probability ε. Secondly, by definition,

the network always naturally goes to an RC when no perturbation occurs. These states are

characterized by m = mC := (C,C, . . . , C), a = ā, and u = ū, i.e., all the players are in the

content mood and aligned (i.e. a = ā, and u = ū). We denote by R the set of these states. We

can also drop some notations, and we rewrite a state z = (mC , a, ā,u, ū) ∈ R as z = (ā, ū)

To reduce the number of RC, two invariances induced by the utility model are highlighted.

First of all, due to the binary utility values and the utility rules, interchanging actions between

players is equivalent to interchange the utility vector components accordingly, thus not modifying

the number of 0 and 1 in the utility vector. As such, we can deduce that it does not change the

“global” performance of the network. For instance, let consider a network with three players and

three resources z1 = ((r1, r2, r1), (0, 1, 0)) ∈ R. Players 1 and 3 have null utility because they

use the same resource. If we interchange the actions of player 1 and 2, z1 is transformed into

z2 = ((r2, r1, r1), (1, 0, 0)). There is always one player with utility 1 and two players with utility

0. Nothing has changed from a network perspective, thus, the algorithm performance remains

the same from these two states.

Secondly, notice also that interchanging the resource labels does not change at all the utility

vector (this is also true for geographical models when orthogonality between frequencies is

assumed). For instance, if we change the resource label 1 with label 3 and, label 2 with label

1, z1 becomes z3 = ((r3, r1, r3), (0, 1, 0)) which involves the same observations as the previous

modification.

These two invariances have led us to represent any RC with the ordered repartition of players

over resources. For any action vector ā, we build the repartition vector of players over resources

d := (d1, d2, · · · , dN) where di =
∑K

k=1 1{ak=fi} is the number of players that use a resource

fi ∈ N . For instance, the repartition of player in z1 is d1 = (2, 1, 0) and the repartition vector

of z3 is d3 = (1, 0, 2). The ordered repartition vector is s = (s1, . . . , sN) where ∀i, j ∈ [1, N ],
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i < j, ∃i′, j′ ∈ [1, N ], si = di′ ≥ sj = dj′ . For instance, the ordered repartition vector of z1 is

s1 = (2, 1, 0) and, the ordered repartition of z3 is s3 = (2, 1, 0) which is equal to s1. Thus, it

follows that this representation makes no difference between RC that are invariant with respect to

the transformations mentioned. Hence, it is possible to reduce the number of RC in Ξ. Moreover,

the utility vector repartition is directly specified by the ordered repartition of players, then we

drop this notation and z = (ā, ū) becomes z = s.

In what follows, for ease of comprehension we slightly modify RC notations. For each z ∈ R

the number of resources employed is noted n =
∑N

`=1 1{s`>0}. In addition, for each n ∈ [1, N ]

there exists different possible ordered repartitions of players whose number is noted IN(n). It

is equal to the number of ways to partition integer N in n parts, i.e. IN(n) = Part(N, n) where

the recursive formula gives Part(N, n) = Part(N − 1, n − 1) + Part(N − n, n), and for any

integers x, y, Part(x, x) = 1, Part(x < y, y) = 0 and Part(x, 1) = 1 ([17] Chapter 2, Section

2.1, Theorem B). Thus, any z ∈ R can be noted Zn(i) where n is the number of resources used

and i ∈ [1, IN(n)] is the indices of the ordered repartition and, the associated ordered repartition

vector is Sn(i) = (Sin,1, S
i
n,2, . . . , S

i
n,N). For instance, in a network with N = K = 4, when

n = 2 there are two possible ordered repartition S2(1) = (3, 1, 0, 0) and S2(2) = (2, 2, 0, 0).

However, for n = 3 there is a unique repartition S3(1) = (2, 1, 1, 0). The mapping between

indices i and the ordered repartitions is arbitrary and has to be made by the experimenter. The

reduced states Zn(i) for all n ∈ [1, N ] and for all i ∈ [1, IN(n)] are called Reduced Recurrent

Classes (RRC).

Notice that the social welfare of RC represented by the same RRC are equal, but we can find

different RRC for which their elements have the same social welfare.

VI. APPROXIMATED MARKOV CHAIN

In this section, we build an approximation Ξ̃ of Ξ that is composed of the RRC and a subset of

intermediary states between RRC. More specifically, the construction of the intermediary states

considered in each approximations (TEL and ODL) is detailed. These constructions are driven

by, i) the willingness to conserve the ergodic property of Ξ in order to be able to approach its

convergence performance, ii) the need to construct a Markov chain with low dimension (i.e. with

the least number of states). A condition to make property i) realizable, consists in constructing

intermediary states around each RRC such that, all states of Ξ̃ (i.e. RRC and intermediary

states) are accessible from one another. We note ξn(i) the set that contains the RRC Zn(i)
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and some associated intermediary states that we define later. The simplest, thus verifying ii),

and necessary way to conserve the ergodicity property is to construct intermediary states such

that, if the transition between sets ξn(i)  ξn+1(j) exists then there also exists a transition

from sets ξn+1(j)  ξn(i) (the symbol  specifies that this transition can involve multiple

states in Ξ̃). This is the consequence of the fact that from every RRC Zn(i) where n < N ,

there are players interfered and, it is possible for one of them to find a free resource (e.g. an

interfered player experiments on a free resource). Repeating this process successively shows that,

all RRC can access ZN(1), which is the RRC without interference. Therefore, the condition, if

ξn(i) ξn+1(j) exists, then, so does ξn+1(j) ξn(i), implies that all sets communicate. Finally,

the previous condition becomes sufficient, if the sets are constructed such that all states in all

sets are accessible. In addition to these simplifications, we consider the following hypothesis to

build Ξ̃ completely.

Assumption 1: For each algorithm models, we assume at each iteration of the algorithm that

at most one content player can experiment, and such, solely when the system is in an all content

mood and aligned state, i.e. m = mC , u = ū and, a = ā.

The reason to propose this assumption is summarized as follows. When all players are content,

the probability that one player experiments (i.e. 0 < ε � 1) is larger than the probability that

two or more player experiment (i.e 0 < ε2 � ε� 1). Moreover, when the system is not aligned,

it goes in less than two steps and with an high probability (i.e. ≈ (1− ε)2) to a state in which

all players are content and aligned or, that contains a discontent player. Thus, most of the time,

the system is either in a) an all content and aligned state or, b) it contains at least one discontent

player. In case a), it is most probable that only one player experiments whereas, in case b), the

probability that a discontent player experiments is 1 which is much more important than the

probability for a content player to experiment (ε� 1).

Hypothesis 1: For TEL model, the probability that a discontent player accepts a new utility

u as a benchmark is 1 ≥ εF (u) ≥ ε
1

2K . We suppose that εF (0) = ε
1

2K and that, εF (1) = ε0 = 1.

In other words, we suppose that the constants φ1 and φ2 from section II have been chosen such

that F (.) spans the whole available region.

In next two sections, we present the constructions of sets ξn(i) of each algorithm. We start the

reasoning by considering all sets ξn(i) = {Zn(i)}. Then we add successively intermediary states

in all sets to build the approximated Markov chain. When a state is added to ξn(i) it is also

added to any other set ξn′(i′) where i 6= i′ and n 6= n′. Figures 1a and 1b present, for ease of



12

space and comprehension, a resulting partial view of Ξ̃’s intermediary models with two sets ξn(i)

and ξn+1(j) for TEL and ODL respectively. The lines define the oriented connections between

states. Plain lines correspond to direct transition inside the same set ξn(i) whereas dashed lines

correspond to direct transitions between different sets. The connexions are detailed in appendix

A and B for the TEL and ODL respectively. In these figures, without loss of generality, it is

supposed that, there exists j such that ξn(i) is connected to ξn+1(j). In such a case, we would

also like to have ξn+1(j) connected to ξn(i) for ergodicity. We also suppose that, all intermediary

states are present for simplicity of comprehension, whereas as explained in next two sections,

there exists some conditions in which they have to be deleted from their corresponding set to

keep Ξ̃ ergodic.

A. TEL model

This section presents the construction of the intermediary states in the approximated Markov

chain based on the TEL algorithm described in section II-A. Given any RRC Zn(i), a transition

where a player interfered finds a free resource, e.g. Zn(i) Zn+1(j), does not necessitate addi-

tional intermediary state unless one player is left alone on its resource after the experimentation.

In this situation, the left alone player sees its utility increases and becomes hopeful. Therefore,

we start by considering in ξn(i) the state ξn0 (i) in addition to Zn(i) where

• ξn0 (i) corresponds to a player alone in Zn(i) that is hopeful.

Thus, at this step, ∀n, i, ξn(i) = {Zn(i), ξn0 (i)}.

A transition in which the network uses one less frequency, e.g. ξn+1(j)  ξn(i), involves a

player that accepts a lower benchmark, which is only possible through a discontent mood. To

become discontent, a player passes through a watchful mood. This leads us to consider the two

intermediary states ξn1 (i) and ξn2 (i) where

• ξn1 (i) is the state where a player alone in Zn(i) is watchful,

• ξn2 (i) is the state where a player alone in Zn(i) is discontent. It corresponds to the situation

where the watchful player in ξn1 (i) experiences one more iteration a decrease in utility.

Note that during the transition ξn1 (i) → ξn2 (i) (where → means that the transition is direct),

the system is not aligned whereas, a content player experiments. It is not in accordance with

hypothesis 1 but, this is the only time that the hypothesis 1 is overrided in order to keep the

chain ergodic. Finally, to avoid any absorbing state two more intermediary states ξn3 (i) and ξn4 (i)

are considered where
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• ξn3 (i) is a state where two players that were alone in Zn(i) are using the same resource and

one of them is watchful. It corresponds to the case where the discontent player from ξn2 (i)

has updated its benchmark with the resource of a player that was not interfered in Zn(i).

• ξn4 (i) is a state where two players that were alone in Zn(i) are using the same resource and

one of them is discontent. It corresponds to the state that follows ξn3 (i) where the player

watchful becomes discontent.

The base to construct our model for TEL is established with ξn(i) = {Zn(i), ξn0 (i), ξn1 (i),

ξn2 (i), ξn3 (i), ξn4 (i)}. It is said in the introduction, that all intermediary states have to be accessible

but, in some cases they are not all present. For instance, when every player in Zn(i) is interfered,

no one can become discontent and states ξn1 (i), ξn2 (i), ξn3 (i) and ξn4 (i) are not present. These

absences have to be taken into account, to compute the probabilities in appendix A, and during

simulations in order to build an ergodic chain (an isolated state in a matrix makes the chain not

ergodic). These cases are described as follows starting with any given ξn(i) = {Zn(i)}:

• If in Zn(i) all players are interfered, only the state Zn(i) is present

• If in Zn(i) one player is alone on its resource, this player can become discontent or hopeful,

however, it cannot make an other player discontent. Therefore, include states ξn0 (i), ξn1 (i)

and ξn2 (i) in ξn(i). There is one exception, where the distribution Sn(i) is of the form

(2, . . . , 2, 1, 0, . . . , 0) and, the state ξn0 (i) is removed from ξn(i).

• If in Zn(i) at least two players are alone on their respective resource, include ξn3 (i) and

ξn4 (i) in ξn(i).

The transitions between states and the associated probabilities are detailed in appendix A.

B. ODL model

This section presents the construction of the intermediary states in the Markov chain approxi-

mation based on the ODL algorithm described in section II-B. First of all, the model that contains

only the ξn(i) = {Zn(i)} is sufficient to have an ergodic chain Ξ̃. The transition Zn(i)→ Zn(i)

occurs if nothing happens. The transition Zn(i) → Zn+1(j) represents an interfered player that

experiments and finds a free resource. The reversed transition Zn+1(i)→ Zn(j) occurs if one of

the not interfered player in Zn+1(j) goes back to the position of the experimenter from Zn(i).

The accuracy of the model can be increased by adding a few more states. The stability of ODL is

directly related to the number of discontent players. Such players experiment randomly, which

makes the number of possible transitions between states growing very fast with the number
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of discontent players. It prevents us from describing too many discontent players at the same

iteration. In this work, we manage to model the case where at most two players can be discontent

at the same time. Going beyond this would require for each additional discontent player a large

amount of extra transitions for a small accuracy gain. This model requires three more states

ξn1 (i), ξn2 (i) and ξn3 (i) to be added with each RRC Zn(i):

• ξn1 (i) corresponds to the case where a player alone in Zn(i) is discontent,

• ξn2 (i) corresponds to the case where two players alone in Zn(i) are discontent.

• ξn3 (i) is a state where one of two players that share the same resource in Zn(i) is discontent.

Like in previous section VI-A, there are some cases, depending on Zn(i), where ξn1 (i), ξn2 (i)

and ξn3 (i) are not all present simultaneously in ξn(i). They have to be removed accordingly to

make the resulting Markov chain ergodic. These cases are described as follows starting with

ξn(i) = {Zn(i)}:

• If there exists a resource played by two players in Zn(i), include the state ξn3 (i) in the set

ξn(i).

• If at least one player in Zn(i) is alone on its resource, include the state ξn1 (i) in ξn(i).

• If at least two players in Zn(i) are alone on their respective resource, include ξn2 (i) in ξn(i).

The transitions between states and the associated probabilities are detailed in appendix B.

C. Complexity comparison

We compute the Markov chain complexities, to highlight the importance of the transformations

from Ξ to Ξ̃ made in this work. The simplifications and approximations are essential in order to

be able to predict the algorithm performance. The number of states in Ξ is given by the product

of component dimension of z = (m, a, ā,u, ū). The vector of player moods can have MK

values if the mood of each player can take M values. The vector of player actions and action

benchmarks a or ā can take NK values each one. The utility vector u is specified by the action

vector a and, the utility benchmark vector ū can take 2K values. Therefore, the complexity of Ξ

is (MN22)K . This is obviously intractable and, we have reduced the recurrence states R into Z

which has a cardinality |Z| =
∑K

n=1 Part(K,n). Afterwards, we have approximated Ξ by keeping

some intermediary states as detailed in previous section VI. Figure 2 presents the complexity of

Ξ and Ξ̃ for the TEL algorithm with respect to the number of players. The significant complexity

reduction allows us to predict performance numerically.
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Fig. 2. Complexity comparison between Ξ and Ξ̃.

VII. PROCEDURE TO COMPUTE THE TRANSITION MATRIX

Once the states of Ξ̃ are established, the next step consists in computing the transition

probabilities of matrix P. The procedure is described in algorithm 1 and summarized as follows.

The first step necessitates to generate all RRCs. For this purpose, a classical integer partitioning

algorithm is used to generate all ordered repartition vector Sn(i) [18]. The number of RRC using

n ∈ [1, . . . , N ] resources among N is given by IN(n) (see section V). In both algorithms, at each

RRC Zn(i) is associated an intermediary state model ξn(i), whose number of states depends
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on some exceptions specified in sections VI-A and VI-B for the TEL and ODL respectively.

One has to pay attention to these exceptions when it makes the one-to-one mapping function

between the states of Ξ̃ and the lines of P. Then, the algorithm 1 goes trough all Zn(i) and

looks for all j ∈ IN(n + 1) such that Zn+1(j) is accessible from Zn(i). When n < N , there

exists at least one such a j and, by construction the set ξn+1(j) is connected to the set ξn(i).

The transition probabilities are computed in the algorithm through three consecutive steps. These

steps and formulas are highlighted in the same order in appendices A and B for the TEL and

ODL respectively. On the first hand, the probabilities inside the set ξn(i) are computed. On the

second and third hand, for each j in IN(n + 1) such that ξn(i) is connected to ξn+1(j), the

algorithm computes, the probabilities from set ξn(i) to set ξn+1(j) and, the reverse probabilities

from set ξn+1(j) to set ξn(i).

The example provided in figure 3 with K = N = 5 highlights the links between the sets

ξn(i), identified by the vector Sn(i). For instance, the set in the top left corresponds to 5 players

interfering on the same resource.

Algorithm 1 Computing the matrix P - Part 1/2
Input: Z; ∀n ∈ [1, N ], IN(n); ∀n ∈ [1, N ], ∀i ∈ [1, IN(i)]

Output: P

1: Generate ∀n ∈ [1, N ] and ∀i ∈ [1, IN(n)], Zn(i) = (Sn(i)) with an integer partitioning

algorithm, and construct each set ξn(i) following rules in section VI

2: for n = 1 to N do

3: for i = 1 to IN(n) do

4: Select a distribution Sn(i) = [Sin,1, S
i
n,2, · · · , Sin,n, 0, 0, · · · , 0]

5: Compute the following probabilities using appendices A and B for TEL and ODL

respectively (check the existence of links using exceptions from sections VI-A and VI-B),

and fill the matrix P:

• (TEL) pZn(i)ξn1 (i), pZn(i)Zn(i), pξn1 (i)ξn2 (i), pξn1 (i)Zn(i), pξn2 (i)Zn(i), pξn2 (i)ξn3 (i), pξn2 (i)ξn2 (i),

pξn3 (i)ξn4 (i), pξn4 (i)ξn0 (i), pξn4 (i)ξn3 (i), pξn4 (i)ξn4 (i), pξn0 (i)Zn(i), pξn0 (i)Zn(i) using (4), (5), (7), (8),

(9), (10), (11), (13), (14), (15), (16), (18) respectively,

• (ODL) pZn(i)ξn1 (i), pZn(i)ξn2 (i), pZn(i)ξn3 (i), pZn(i)Zn(i), pξn1 (i)Zn(i), pξn1 (i)ξn2 (i), pξn1 (i)ξn1 (i),

pξn2 (i)Zn(i), pξn2 (i)ξn1 (i), pξn2 (i)ξn2 (i), pξn3 (i)Zn(i), pξn3 (i)ξn3 (i) using (24), (25), (26), (27), (33),

(34), (35), (38), (39), (40), (45), (46), respectively.
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5,0,0,0,0 4,1,0,0,0

3,2,0,0,0

3,1,1,0,0

2,2,1,0,0

2,1,1,1,0 1,1,1,1,1

Fig. 3. Example of transitions considered between RRC in our models for N = K = 5.

Algorithm 1 Computing the matrix P - Part 2/2
6: for k = 1 to n do

7: if Sin,k > 1 then

8: w ← (Sin,1, · · · , Sin,k − 1, · · · , Sin,n, 1, 0, · · · , 0)

9: w̃ ← w sorted in decreasing order

10: Find j ∈ IN(n+1) such that Sn+1(j) = w̃ which corresponds to state Zn+1(j)

11: Compute the following probabilities using appendices A and B for TEL and

ODL respectively (check the existence of links using exceptions from sections VI-A and

VI-B), and fill the matrix P:

• (TEL) pZn(i)Zn+1(j), pZn(i)ξn+1
0

, pξn+1
2 (j)Zn(i), pξn+1

4 (j)Zn(i), pξn+1
4 (j)ξn0 (i) using (19), (20),

(21), (22), (23) respectively,

• (ODL) pZn(i)Zn+1(j), pZn(i)ξn+1
1 (j), pZn(i)ξn+1

2 (j), pξn3 (i)Zn+1(j), pξn3 (i)ξn+1
1 (j), pξn3 (i)ξn+1

2 (j),

pZn+1(j)Zn(i), pZn+1(j)ξn3 (i), pξn+1
1 (j)Zn(i), pξn+1

1 (j)ξn3 (i), pξn+1
2 (j)Zn(i), pξn+1

2 (j)ξn1 (i), pξn+1
2 (j)ξn2 (i)

and pξn+1
2 (j)ξn3 (i) using (50), (51), (52),(47), (48), (49), (53), (55), (56), (57), (58), (59),

(60), (61) respectively.

12: end if

13: end for

14: end for

15: end for

16: return P
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VIII. NUMERICAL RESULTS

A. Accuracy of the proposed models

We assess the accuracy of our proposed models by comparing the values obtained for Ei [Tj]

using (2) and αj using (3) of Ξ̃, with Monte Carlo simulations. We consider three different

values for K = {3, 5, 7} in two cases N = K and, N = K + 2. In ODL, the constant c is equal

to K. Both algorithms are compared with respect to the same probability to experiment from a

content mood, i.e. ε in TEL is equal to εc in ODL. The EFHT τij is computed from, the state

i where all players are on the same resource (e.g. state with S1(1) = (5, 0, 0, 0, 0) in Figure 3),

to the state j where they are all on different resources (e.g. state with S5(1) = (1, 1, 1, 1, 1) in

Figure 3). The stability α is computed for the state j where all players use a different resource.

In Monte Carlo simulations with use 5000 trials to compute τij and 106 trials to compute α.

For TEL algorithm, Figures 4a and 4b present the EFHT and the fraction of time 1−α when

K = N respectively. The reason to display 1 − α instead of α is to discern the values close

to one at low ε. For both features, these results are accurate in comparison to Monte Carlo

simulations. The EFHT converges to the Monte Carlo results when ε decreases. The little gap

observed at higher ε is caused by an increasing probability to have more than one experiment at

a time. Thus, the probability for the system to not be aligned increases and, Assumption 1 is less

valid. The offset observed in Figure 4b is due to the fact that, we are able to represent accurately

at most one discontent player at each algorithm iteration. The stability is highly related to the

number of discontent players.

Figure 5a and 5b present the same results but with N = K + 2. The goal is to show the

coherence of our approximation. In that scenario, two resources have been added which results in

the decrease of the collision probability. Therefore, with respect to the first scenario, Assumption

1 is more accurate and, the probability of being discontent decreases. Consequently, the numerical

results of our approximation are closer to Monte Carlo simulations.

In addition, from figures 4 and 5, one can check the result from proposition 1, in which the

behaviour of EFHT is TEFHT = O( 1
εa2

) where a2 > 0 and the behaviour of the stability is

1− α = O(εa4) where a4 > 0.

For ODL algorithm, Figures 6a and 6b present when K = N the EFHT and the fraction of

time αj , respectively. For both features, these results are accurate in comparison to Monte Carlo

simulations. The gap observed at low ε for stability metric is due to the number of discontent



19

10
−3

10
−2

10
−1

10
1

10
2

10
3

10
4

ε

T
E

F
H

T

 

 
K=3 mc

K=3 Ξ̃
K=5 mc

K=5 Ξ̃
K=7 mc

K=7 Ξ̃

(a) TEL : convergence time

10
−3

10
−2

10
−1

10
−3

10
−2

10
−1

10
0

ε

1
−

α

 

 

K=3 mc

K=3 Ξ̃

K=5 mc

K=5 Ξ̃

K=7 mc

K=7 Ξ̃

(b) TEL : fraction of time

Fig. 4. EFHT comparisons between our approximated models and Monte Carlo simulations when N = K.
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Fig. 5. EFHT and stability comparisons between our approximated models and Monte Carlo simulations when N = K + 2.

players. We recall that the proposed approximation models accurately at most two discontent

players. When ε decreases the number of discontent players increases (a player remains in D

with probability 1− ε when u = 0) above two with an increasing probability and the model is

less accurate.

We present in Fig. 7a and 7b the same results but with N = K + 2. The accuracy of both

features studied is again assessed. The probability to have collisions decreases and so does the

probability to have an high number of discontent players. This leads to a better accuracy of the

proposed model.

Generally, one can notice how the stability decreases with the number of players and how the

convergence time increases. Furthermore, the convergence time decreases when the number of

resource increases. In addition, one can check the results from



20

10
−3

10
−2

10
−1

10
1

10
2

10
3

10
4

ε
c

T
E

F
H

T

 

 
K=3 mc

K=3 Ξ̃

K=5 mc

K=5 Ξ̃

K=7 mc

K=7 Ξ̃

(a) ODL : convergence time

10
−3

10
−2

10
−1

10
−2

10
−1

10
0

ε
c

1
−

α

 

 

K=3 mc

K=3 Ξ̃
K=5 mc

K=5 Ξ̃
K=7 mc

K=7 Ξ̃

(b) ODL : fraction of time

Fig. 6. EFHT and stability comparison between our approximated models and Monte Carlo simulations when N = K.
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Fig. 7. EFHT and stability comparison between our approximated models and Monte Carlo simulations when N = K + 2.

In addition, from figures 6 and 7, one can check the result from proposition 2, in which the

behaviour of EFHT is TEFHT = O( 1
εcb2

) where b2 > 0 and the behaviour of the stability is

1− α = O(εcb4) where b4 > 0.

B. Performance comparisons with approximation in the literature

In this section, we compare the results obtained in previous section with the approximation

given in paper [9], noted model 1 in this work. This last model figures of merit are computed

as follows. For the EFHT, the equation (33) in [9] is employed. For the stability, Theorem 5 in

[9] gives the stability αj but some corrections have been made. For instance, the term TCNE(k)

from [9] is replaced with equation (33)[9] whose sum is started in k instead of 0. The reason

for this change is that the variable TCNE(k) diverges when N = K and, it is an upper bound

of (33) [9].



21

10
−3

10
−2

10
−1

10
1

10
2

10
3

10
4

10
5

ε

T
E

F
H

T

 

 
K=3 Rose

K=3 Ξ̃
K=5 Rose

K=5 Ξ̃
K=7 Rose

K=7 Ξ̃

(a) Convergence time

10
−3

10
−2

10
−1

10
−3

10
−2

10
−1

10
0

ε

1
−

α

 

 

K=3 Rose

K=3 Ξ̃

K=5 Rose

K=5 Ξ̃

K=7 Rose

K=7 Ξ̃

(b) Fraction of time

Fig. 8. Performance comparison between our approximation and Rose approximation when N = K.
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Fig. 9. Performance comparison between our approximation and Rose approximation when N = K + 2.

Figures 8a and 9a present the EFHT of the models Ξ̃ and 1 when N = K and K + 2,

respectively. One can observe that both models are quite far from each other except for high ε.

Knowing that our model converges close to simulations, we immediately deduce the model 1

lack of accuracy.

On the other hand, Figures 8b and 9b present 1− αj when N = K and K + 2 respectively.

One can notice that, except for K = 3, the curves resulting from model 1 are above those of

model Ξ̃. As our model is a tight upper bound on Monte Carlo simulation (see figures 4b and

5b ), it again assesses the accuracy of our model.

For the stability metric, in the case N = 3 and K = N , the model 1 is as closed to Monte

Carlo simulations as our proposed approximation. However, contrary to model Ξ̃, the result for

N = K + 2 shows that model 1 gets away from the simulation contrary to our approximation

that gets closer. This proves the coherence of our model in comparison to model 1.
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C. Performance comparison between TEL and ODL

In previous sections, we have characterized the accuracy of TEL and ODL proposed models.

In this section, we take the advantage of the available approximations that have low complexity,

to compare both algorithms and, to analyse their performance in domains hardly reachable with

Monte Carlo simulations. Figures 10a and 10b present, for both algorithms, the EFHT (in log

scale) and the stability αj respectively. The number of resources used is N = K and N = K+5

and, the probability to experiment is fixed to ε = εν = 10−3. The increase of N results for both

algorithms, first, in a better stability and, secondly, in a lower convergence time. This result

counteracts the argument that the convergence time increases with the alphabet size ([9] section

V. B.). The reason is that players find a free interference state faster and, the probability that

two players collide is less important when the set of free resources is bigger. There exists a

value of K such that the EFHT of both algorithms is the same. Below this value ODL is more

efficient than TEL with respect to the convergence time and beyond this value the behavior is

inverted. More generally, the fact that in some cases TEL converges faster than ODL contradicts

the idea that, the bigger is the algorithm controller (4 moods for TEL and 2 moods for ODL),

the slower its convergence is, as it is said in [10] (section IV-B). In addition, Figure 10b shows

that TEL is much more stable than ODL even when N is increased and such, at any K. Figure

11 presents the same results as in Figure 10 but with ε = εν = 10−4. The convergence time

of both algorithms are increased. This is not a surprise as we deduce from proposition 1 that

TEFHT = O
(

1
εa1

)
. The decrease of ε increases the stability of both algorithms. As ε decreases, so

does the number of experiments from players in state C. Thus, the probability that two players

or more collide also decreases with ε which results in an higher stability of the state. More

generally, the convergence and stability tendency remain the same in comparison to Figure 10.

From figures 10a and 11a one can assess what results from observations 1 and 2. The EFHT

of ODL and TEL respectively follow an exponential and a polynomial behaviour with respect

to K (the y-axis is in log scale). From figures 10b and 11b one can guess the exponential and

polynomial decreasing of the ODL and TEL stability respectively. Figure 12 presents the stability

1 − α and α with respect to K for the TEL and ODL respectively. These two figures confirm

the previous guess and assess the convergence results of observations 1 and 2.

To conclude, in our system model, ODL is less stable than TEL. There exists some region of

K for which ODL converges faster. However, the gain in speed convergence is not considerable
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Fig. 10. Performance comparison between TEL and ODL when ε = 10−3 with respect to K.
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Fig. 11. Performance comparison between TEL and ODL when ε = 10−4 with respect to K.

and, the exponential behavior of ODL with respect to K makes the convergence of this algorithm

possibly very long in large systems. This small advantage in convergence speed is compromised

by less stability. In view of the results, I would recommend that, the use of ODL algorithm in

an environment with important utility variation is preferable when the need in stability is not

important and the amount of players is limited.

IX. CONCLUSION

This work provides a detailed performance analysis of well known model-free learning strate-

gies, TEL and ODL, that converge in a broad class of games. To overcome the huge dimension

of the inherent Markov Chains of the game, we provide an approximation of these chains. This

allows computing a close approximation of the average time the system stays in a desired state
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Fig. 12. Stability performance of TEL and ODL with respect to K.

as well as the average time required to achieved that state for the first time. Thanks to the above

approximations, a comparison between the performance of TEL and ODL is provided.

APPENDIX A

PROBABILITIES INVOLVED IN TEL APPROXIMATION

This appendix describes all the possible transitions and probabilities of TEL algorithm model

presented in Figures 1a.

Remind with hypothesis 1 that, a discontent player accepts a free resource with probability

ε0 = 1 and, it accepts a resource already interfered with probability εF (0) = ε
1

2K . In addition, with

assumption 1, we approximate the probability that there is one experimentation among K content

players by the probability that at least one experimentation happens Pε(K) = 1− (1− ε)K .

A. Notations and preliminaries

Like in Figure 1a, we consider two sets ξn(i) and ξn+1(j). We assume the presence of all

the intermediary states in order to derive the most general transition probabilities. In practice,

using section VI-A, the reader must check the existence of the intermediary states involved in

sets before computing the probabilities.

The probability computation require the knowledge of the players repartition over resources.

For each set ξn(i), the number of resources having p players in Zn(i) is noted M i
n(p) =∑

k 1{Si
n,k=p} and the number of players that share a resource with p − 1 other players in

Zn(i) is noted mi
n(p) = pM i

n(p).
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During a transition from ξn(i) to ξn+1(j), a resource is decremented by one player and a free

resource is incremented. We note k(i, j) the resource decremented such that the term Sin,k(i,j)

of Sn(i) is decremented by one. Meanwhile, the term Sin,n+1 is incremented by one. During the

reverse transition from ξn+1(j) to ξn(i), the most left column of Sn+1(j) that has Sin,k(i,j) − 1

players is incremented by one and, Sjn+1,n+1 is decremented by one.

B. Transitions inside each ξn(i)

We start by describing the transitions inside ξn(i) that is to say between the states Zn(i),

ξn0 (i), ξn1 (i), ξn2 (i), ξn3 (i) and ξn4 (i). State Zn(i) is connected to ξn1 (i) and itself. The transition

Zn(i) → ξn1 (i) happens when a player that is not interfered becomes watchful. It is given by

probability

pZn(i)ξn1 (i) =

(a)︷ ︸︸ ︷
Pε(K)

K − 1

K

(b)︷ ︸︸ ︷
M i

n(1)

N − 1
. (4)

where (a) is the probability that there is an experimentation from any player except the one

that is going to be interfered and, (b) is the probability to select the frequency of a player

not interfered. The probability of transition Zn(i) → Zn(i) is computed using the conservation

probability property

pZn(i)Zn(i) = 1− pZn(i)ξn1 (i) − pZn(i)Zn+1 , (5)

where pZn(i)Zn+1 is the probability for the network to find a new resource. It is given by

pZn(i)Zn+1 =

(a)︷ ︸︸ ︷
Pε(K)

(K −mi
n(1))

K

(b)︷ ︸︸ ︷
Mn

i (0)

N − 1
, (6)

where (a) is the probability that an interfered player experiments and, (b) is the probability that

it finds a free resource.

From the state ξn1 (i), the network can directly go in Zn(i) or ξn2 (i). With assumption 1, we

do not consider any experimentation in ξn1 (i) except the one needed to make the Markov chain

ergodic in transition ξn1 (i) → ξn2 (i). This later happens if the watchful player (which cannot

experiment) is subjected to a second experiment on its resource by an other player. This is given

by the following probability

pξn1 (i)ξn2 (i) = Pε(K − 1)
1

N − 1
. (7)
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Otherwise, we do not consider any other case from ξn1 (i) and, the system goes naturally from

ξn1 (i) to Zn(i) with probability

pξn1 (i)Zn(i) = 1− pξn1 (i)ξn2 (i). (8)

State ξn2 (i) is connected to Zn(i) and ξn3 (i). During transition ξn2 (i)→ Zn(i), on the first hand,

the discontent player selects a free resource. There are Mn
i (0) free resources in addition to the

discontent player resource. Secondly, it accepts it as a new benchmark with probability εF (1) = 1

(hypothesis 2). The probability of this transition is thus given by

pξn2 (i)Zn(i) =
Mn

i (0) + 1

N
, (9)

The transition ξn2 (i)→ ξn3 (i) happens if the discontent player selects a resource already occupied

by only one player and, it updates its benchmark with probability εF (0) = ε
1

2K (hypothesis 1).

The new player interfered becomes watchful in next iteration. From the discontent player point

of view, there are Mn
i (1) − 1 players alone on their resource. The transition happens with the

following probability

pξn2 (i)ξn3 (i) =
Mn

i (1)− 1

N
ε

1
2K . (10)

The probability of transition ξn2 (i) → ξn2 (i) is computed using the conservation probability

property

pξn2 (i)ξn2 (i) = 1− pξn2 (i)Zn(i) − pξn2 (i)ξn3 (i) − pξn2 (i)Zn−1 , (11)

where pξn2 (i)Zn−1 is the probability that the discontent player selects and accepts a resource already

occupied by two players or more, which has probability

pξn2 (i)Zn−1 =
N −M i

n(1)−M i
n(0)

N
ε

1
2K (12)

In state ξn3 (i), the system is not aligned and there is no discontent player. Thus, with assump-

tion 1, no experiment is proceeded and, the system moves directly to state ξn4 (i) with probability

pξn3 (i)ξn4 (i) = 1. (13)

The state ξn4 (i) is connected to ξn0 (i) and ξn3 (i). For the following transitions, it useful to note

that in ξn4 (i), the number of resources with players that do not interfere is Mn
i (1)− 2 and, the

number of free resources is Mn
i (0)+1. The transition ξn4 (i)→ ξn0 (i) corresponds to the situation

where the discontent player chooses a free resource, that it accepts with probability εF (1) = 1
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(hypothesis 1). The player left alone sees its utility increases and becomes hopeful. This happens

with probability

pξn4 (i)ξn0 (i) =
Mn

i (0) + 1

N
. (14)

Transition ξn4 (i) → ξn3 (i) occurs when the discontent player selects an occupied resource with

one player (there are Mn
i (1) − 2 of them from ξn4 (i)) and, it accepts this resource as a new

benchmark with probability ε
1

2K according to hypothesis 1. Thus, the new player interfered

becomes watchful with probability

pξn4 (i)ξn3 (i) =
Mn

i (1)− 2

N
ε

1
2K . (15)

The probability to remain in ξn4 (i) is

pξn4 (i)ξn4 (i) = 1− pξn4 (i)ξn0 (i) − pξn4 (i)ξn3 (i) − pξn4 (i)Zn−1 , (16)

where pξn4 (i)Zn−1 is the probability that, the network use one less frequency with all players

content and aligned. This happens if the discontent player selects and accepts one of the N −

M i
n(1)−M i

n(0) resources already occupied by two players or more or, if it selects and accepts its

current resource where the content player interfered is aligned (i.e. it is going to accept the choice

of the discontent player). Consequently, the system uses one less frequency with probability

pξn4 (i)Zn−1 =
N −M i

n(1)−M i
n(0) + 1

N
ε

1
2K , (17)

and the probability that it remains one more step in ξn4 (i) is pξn4 (i)ξn4 (i) = 0. Once the network is

in ξn0 (i), one player is hopeful and with assumption 1, no player can experiment. Thus, in next

step this player becomes content with a benchmark update and the network goes to Zn(i) with

the following probability

pξn0 (i)Zn(i) = 1. (18)

C. Transitions from ξn(i) to ξn+1(j)

The only way for the network to find a new resource is to go through a RC Zn(i). If the

network is not in Zn(i) either one player is discontent or the network is not aligned. In the later,

assumption 1 tells us that no player experiments, whereas in the former, the discontent player

cannot discover a free resource because it is not interfered in Zn(i).
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During transition Zn(i)→ Zn+1(j), a player experiments on a free resource with probability

pZn(i)Zn+1(j) =


(a)︷ ︸︸ ︷

Pε(K)
mi
n(Sin,k(i,j))

K

(b)︷ ︸︸ ︷
Mn

i (0)

N − 1
, if Sin,k(i,j) > 2,

0, if Sin,k(i,j) = 2,

(19)

where (a) is the probability to have an experimentation from any player interfered on resources

with Sin,k(i,j) > 2 players and, (b) is the probability to select a free resource. The second

line corresponds to an other transition Zn(i) → ξn+1
0 (j), in which the player left alone after

the experimentation sees its utility increase and becomes hopeful. The probability of transition

Zn(i)→ ξn+1
0 (j) is thus complementary to the previous one and, it is given by

pZn(i)ξn+1
0 (j) =

 0, if Sin,k(i,j) > 2,

Pε(K)
mi

n(Si
n,k(i,j)

)

K

Mn
i (0)

N−1
, if Sin,k(i,j) = 2.

(20)

D. Transitions from ξn+1(j) to ξn(i)

The approximation is constructed such that if it is possible to go from ξn(i) to ξn+1(j), it is

also possible to go from ξn+1(j) to ξn(i) (see section VI-A). The way for the system to go in

a set where one less resource is employed only happens in states with a discontent player, i.e.

ξn+1
2 (j) and ξn+1

4 (j) for transition ξn+1(j) to ξn(i). In practice, to compute the transitions inside

ξn+1(j), we use the formulas in appendix A-B by replacing the indices appropriately. In this

section, the starting state is in ξn+1(j). Therefore, we use the functions mj
n+1(.) and M j

n+1(.)

instead of mi
n(.) and M i

n(.). Moreover, during a transition from ξn(i) to ξn+1(j), the resource

that contained Sin,k(i,j) in Sn(i) has been decremented by one. Thus, the transition from ξn+1(j)

to ξn(i) occurs if any resource that contains Sin,k(i,j) − 1 players is incremented by one.

The transition ξn+1
2 (j) → Zn(i) happens if the discontent player selects a frequency with

Sin,k(i,j) − 1 players and accept the new benchmark. The probability of ξn+1
2 (j)→ Zn(i) is thus

given by

pξn+1
2 (j)Zn(i) =


Mn+1

j (Si
n,k(i,j)

−1)

N
ε

1
2K , if Sin,k(i,j) − 1 ≥ 2,

0, if Sin,k(i,j) − 1 = 1,
(21)

where, the second line is null because it is represented by transition ξn+1
2 (j) → ξn+1

3 (j) (see

(10) with appropriate indices changes).
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The transition ξn+1
4 (j) → Zn(i) happens when the discontent player selects an occupied

resource and all players are content and aligned in the end. This is given by probability

pξn+1
4 (j)Zn(i) =

 0, if Sin,k(i,j) − 1 ≥ 2,

1
N
ε

1
2K , if Sin,k(i,j) − 1 = 1,

(22)

where, the first line is null because this corresponds to the transition ξn+1
4 (j)→ ξn0 (i) described

afterwards. The second line is the probability for the discontent player to select and to accept the

current resource. The transition ξn+1
4 (j) → ξn0 (i) corresponds to the case where the discontent

player selects and accepts a resource with Sin,k(i,j)−1 ≥ 2 players. Consequently, the player that

is left alone becomes hopeful with probability

pξn+1
4 (j)ξn0 (i) =


Mn+1

j (Si
n,k(i,j)

−1)

N
ε

1
2K , if Sin,k(i,j) − 1 ≥ 2,

0, if Sin,k(i,j) − 1 = 1,
(23)

where, the second line corresponds to previous transition ξn+1
4 (j)→ Zn(i).

APPENDIX B

PROBABILITIES INVOLVED IN ODL APPROXIMATION

This appendix describes all the possible transitions and probabilities of ODL algorithm model

presented in Figure 1b. We also use the same notations and preliminaries specified in appendix

A-A.

In ODL, a player which perceives a utility or an action change accepts the new benchmark

with probability ε1−u or, it refuses it and becomes discontent with probability 1− ε1−u.

A. Transitions inside ξn(i)

We start by describing the transitions between the states Zn(i), ξn1 (i), ξn2 (i) and ξn3 (i). The

state Zn(i) is connected to ξn1 (i), ξn2 (i), ξn3 (i). Transition Zn(i) → ξn1 (i) happens if an alone

player becomes discontent after perceiving a utility change that it does not accept. This situation

arises with probability

pZn(i)ξn1 (i) =

(a)︷ ︸︸ ︷
Pε(K)

(K −mi
n(1)−mi

n(2))

K

M i
n(1)

N − 1

(b)︷ ︸︸ ︷
(1− ε) .

(24)

where (a) is the probability that any player interfered by two players or more experiments on a

resource with solely one player, (b) is the probability that this alone player becomes discontent.
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The transition Zn(i)→ ξn2 (i) represents the situation where two players alone in Zn(i) become

discontent in one step, whose probability is

pZn(i)ξn2 (i) =

(a)︷ ︸︸ ︷
Pε(K)

mi
n(1)

K

M i
n(1)− 1

N − 1

(b)︷ ︸︸ ︷
(1− ε)2, (25)

where, (a) is the probability that an alone player experiments on a resource with an other

alone player and, (b) is the probability that both players become discontent.

The transition Zn(i)→ ξn3 (i) represents the situation where, from a resource with two players,

one of them experiments on an other resource with one player and, one of them ends in discontent

mood. This happens with probability

pZn(i)ξn3 (i) =

(a)︷ ︸︸ ︷
Pε(K)

mi
n(2)

K

(b)︷ ︸︸ ︷
M i

n(1)

N − 1
2ε(1− ε), (26)

where (a) is the probability that a player experiments from a resource with two of them, (b)

is the probability to interfere with one player and, one of the two players involved becomes

discontent. The presence of multiplier 2 in term (b) means that, inverting player’s label is a

different event that results in the same state ξn3 (i) and with the same probability.

The transition Zn(i)→ Zn(i) is computed using probability conservation as follows,

pZn(i)Zn(i) = 1− pZn(i)ξn1 (i) − pZn(i)ξn2 (i) − pZn(i)ξn3 (i) − pZn(i)Zn+1 − pZn(i)Zn−1

− pZn(i)ξn+1
1
− pZn(i)ξn+1

2
− pZn(i)ξn−1

3
,

(27)

where pZn(i)Zn+1 is the probability for any interfered player to select a free resource, pZn(i)Zn−1

is the probability for any not interfered player to become interfered, pZn(i)ξn+1
1

and pZn(i)ξn+1
2

are similar to pZn(i)Zn+1 with one and two players ending in discontent mood respectively and,

pZn(i)ξn−1
3

is the probability that two players alone in Zn(i) finish on the same resource with one

of them discontent. The first probability is given by

pZn(i)Zn+1 = Pε(K)
(K −mi

n(1))

K

Mn
i (0)

N − 1
, (28)

which is the same as equation (6) in the TEL model. The second probability is given by

pZn(i)Zn−1 =

(a)︷ ︸︸ ︷
Pε(K)

mi
n(1)

K

( (b)︷ ︸︸ ︷
N −M i

n(1)−M i
n(0)

N − 1
ε+

(c)︷ ︸︸ ︷
M i

n(1)− 1

N − 1
ε2
)
, (29)

where, (a) is the probability for a player that is not interfered to experiment, (b) is the probability

that it experiments on resource with two players or more and that it updates its benchmark, (c)
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is the probability to select the resource of a player not interfered and that both accept this new

benchmark. Probability pZn(i)ξn+1
1

is given by

pZn(i)ξn+1
1

= Pε(K)
K −mi

n(1)

K

(a)︷ ︸︸ ︷
N −M i

n(1)−M i
n(0)− 1

N − 1
(1− ε), (30)

where (a) is the probability that the player interfered selects a frequency with two players or

more, except its own resource, and, that it ends in discontent mood.

The probability to end in ξn+1
2 is

pZn(i)ξn+1
2

= Pε(K)
K −mi

n(1)

K

(a)︷ ︸︸ ︷
M i

n(1)

N − 1
(1− ε)2, (31)

where (a) is the probability that the experimenter selects the resource of player not interfered

and that both end up in discontent mood.

Finally, the probability to go from Zn(i) to ξn−1
3 is given by

pZn(i)ξn−1
3

= Pε(K)
mi
n(1)

K

(a)︷ ︸︸ ︷
M i

n(1)− 1

N − 1
2ε(1− ε), (32)

where (a) is the probability that the experimenter selects a resource with a player not interfered

and, one of them ends in discontent mood. The multiplier 2 has a similar role than in (26).

The state ξn1 (i) is connected to Zn(i) and ξn2 (i) inside the set ξn(i). During transition ξn1 (i)→

Zn(i) the discontent player either chooses a free resource or its current benchmark with proba-

bility

pξn1 (i)Zn(i) =
M i

n(0) + 1

N
. (33)

During transition ξn1 (i) → ξn2 (i), the discontent player makes an other player discontent in

addition to itself. This is given by probability

pξn1 (i)ξn2 (i) =

(a)︷ ︸︸ ︷
M i

n(1)− 1

N
(1− ε)2, (34)

where (a) is the probability that the discontent player selects a resource that contains a player

alone, except its own resource.

The probability pξn1 (i)ξn1 (i) is obtained using the conservation property:

pξn1 (i)ξn1 (i) = 1− pξn1 (i)Zn(i) − pξn1 (i)ξn2 (i) − pξn1 (i)Zn−1 − pξn1 (i)ξn−1
3

, (35)
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where pξn1 (i)Zn−1 and pξn1 (i)ξn−1
3

are the probability for the system starting in ξn1 (i) to end for all

j ∈ IN(n− 1) in states Zn−1(j) and ξn−1
3 (j) respectively. The first probability is given by

pξn1 (i)Zn−1 =
N −M i

n(0)−M i
n(1)

N
ε+

M i
n(1)− 1

N
ε2, (36)

which are similar to terms (b)+(c) in (29) except the choice is made over all resources as the

player is in state D.

The second probability is given by

pξn1 (i)ξn−1
3

=
M i

n(1)− 1

N
2ε(1− ε), (37)

which is similar to (a) in (32) except that the choice is made among N resources.

The state ξn2 (i) is connected to ξn1 (i) and Zn(i). The probability of transition ξn2 (i) → Zn(i)

is given by

pξn2 (i)Zn(i) =

(a)︷ ︸︸ ︷
M i

n(0) + 2

N

(b)︷ ︸︸ ︷
M i

n(0) + 1

N
, (38)

where (a) is the probability that the first discontent player selects a free resource. The number

of free resource is M i
n(0) in addition to the 2 resources left by the discontent players. Term

(b) is the probability that the other discontent player selects a free resource given that, the first

discontent player has already selected a free resource.

The probability of a transition ξn2 (i)→ ξn1 (i) is given by

pξn2 (i)ξn1 (i) = 2
M i

n(0) + 2

N

(a)︷ ︸︸ ︷
N −M i

n(1)−M i
n(0)

N
(1− ε), (39)

where (a) is similar to the term (a) in (30) except there is one more resource available.

The probability to remain in ξn2 (i) is given by probability conservation

pξn2 (i)ξn2 (i) = 1− pξn2 (i)Zn(i) − pξn2 (i)ξn1 (i) − pξn2 (i)Zn−1 − pξn2 (i)ξn−1
1
− pξn2 (i)ξn−1

2
− pξn2 (i)ξn−1

3
, (40)

where pξn2 (i)Zn−1 , pξn2 (i)ξn−1
1

and pξn2 (i)ξn−1
2

represent the probability that the system uses one less

resource and, that, respectively, all player are content and aligned, one player ends discontent and

two players end discontent. The probability pξn2 (i)ξn−1
3

corresponds to the event where two players

not interfered end on the same resource with one of them discontent. A transition ξn2 (i)→ Zn−1

happens if one of the two discontent players selects a resource already occupied and the system

ends in an all content and aligned state. The probability of the first events is given by

pξn2 (i)Zn−1 =
M i

n(0) + 2

N

M i
n(1)− 1

N
ε2 + 2

M i
n(0) + 2

N

N −M i
n(1)−M i

n(0)

N
ε, (41)
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The transition ξn2 (i) → ξn−1
1 happens if one of the two discontent players selects a resource

already occupied and the system ends with one player discontent. The probability of all these

possible events is given by

pξn2 (i)ξn−1
1

= 2
N −M i

n(1)−M i
n(0)

N
ε
N −M i

n(1)−M i
n(0)

N
(1− ε)

+ 2
M i

n(1)− 2

N
ε2
N −M i

n(1)−M i
n(0) + 1

N
(1− ε),

(42)

where the first terms in the sum deals with the cases in which one of the two discontent players

accepts a resource with two players or more and, the second term concerns the case in which

one of the two players selects a resource with one player solely.

The probability of transition from ξn2 (i) to ξn−1
2 is the probability that one player updates

its benchmark with a resource already occupied and that, the systems ends with two discontent

players. It is given by

pξn2 (i)ξn−1
2

= 2
N −M i

n(1)−M i
n(0)

N
ε
M i

n(1)− 2

N
(1−ε)2 +

M i
n(1)− 2

N
ε2
M i

n(1)− 3

N
(1−ε)2, (43)

where the first term deals with the case in which, one of the discontent players updates its

benchmark with a resource that contains two players or more and, the second term concerns the

scenario where both discontent players select a resource with one player. More specifically, in

the second term, once the first discontent player has selected a resource with one player and,

both have accepted the new benchmark, there is now one less resource with one player, i.e.

M i
n(1)− 3.

The transition ξn2 (i) to ξn−1
3 happens if one of the discontent players finds a free resource

and, the other selects the resource of a player not interfered. In this last situation one of the two

players interfered becomes discontent. This is given by the following probability

pξn2 (i)ξn−1
3

=
M i

n(0) + 2

N

M i
n(1)− 1

N
2ε(1− ε), (44)

The state ξn3 (i) is linked to Zn(i) and itself in the set ξn(i). During transition ξn3 (i)→ Zn(i)

the system comes back to the all content and aligned state with probability

pξn3 (i)Zn(i) =

(a)︷︸︸︷
ε

N
+

(b)︷ ︸︸ ︷
M i

n(1)

N
ε2, (45)

where (a) is the probability that the discontent player tries the current resource and that it updates

its benchmark. Note that, the player interfered is already aligned from ξn3 (i). Term (b) is the
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probability that the discontent player tries an other resource with one player and both accept the

new benchmark.

The probability to remain in ξn3 (i) is given by

pξn3 (i)ξn3 (i) = 1− pξn3 (i)Zn(i) − pξn3 (i)Zn+1 − pξn3 (i)ξn+1
1
− pξn3 (i)ξn+1

2
, (46)

where pξn3 (i)Zn+1 , pξn3 (i)ξn+1
1

and pξn3 (i)ξn+1
2

are the probabilities for the system to use one more

frequency from ξn3 (i) and, respectively, the system ends with all players content, one player

discontent and two players discontent. Note that, these transitions lead to one unique state j in

IN(n+ 1), Zn+1(j), ξn+1
1 (j) and ξn+1

2 (j). The transition ξn3 (i)→ Zn+1(j) occurs if the system

ends in an all content mood and aligned with one more frequency used after the experimentation.

It happens if the discontent player chooses a free resource with probability

pξn3 (i)Zn+1(j) =


M i

n(0)
N

, if Sn,k(i,j) = 2,

0, otherwise.
(47)

The term pξn3 (i)Zn+1 is the sum over all possible j of pξn3 (i)Zn+1(j). Consequently, pξn3 (i)Zn+1 =

M i
n(0)
N

.

The transition ξn3 (i)→ ξn+1
1 (j) occurs if the discontent cluster remains discontent. It happens

with probability

pξn3 (i)ξn+1
1 (j) =


N−M i

n(1)−M i
n(0)−1

N
(1− ε), if Sn,k(i,j) = 2,

0, otherwise.
(48)

where the first line is the probability that the discontent player experiments on a resource, with

two players or more, except the current one and, that it remains discontent. After this event, the

player left alone by the discontent player is no more interfered and accepts the new benchmark

with probability 1. The total probability to go in ξn+1
1 is pξn3 (i)ξn+1

1
= N−M i

n(1)−M i
n(0)−1

N
(1− ε).

The event that leads to transition ξn3 (i)→ ξn+1
2 (j) is realized if the discontent player experi-

ments on an other resource with a cluster not interfered and both end in discontent. This happens

with probability

pξn3 (i)ξn+1
2 (j) =


M i

n(1)
N

(1− ε)2, if Sn,k(i,j) = 2,

0, otherwise.
(49)

Using the same reasoning, pξn3 (i)ξn+1
2

= M i
n(1)
N

(1− ε)2.
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B. Transition from ξn(i) to ξn+1(j)

The only states in ξn(i) from which the system can use one more frequency are Zn(i) and

ξn3 (i). In other states, the discontent players are alone on their resource, which mean that they

cannot discover a new one.

The transitions ξn3 (i)→ Zn+1(j), ξn3 (i)→ ξn+1
1 (j) and ξn3 (i)→ ξn+1

2 (j) have been described

in equations (47), (48) and (49).

The transition Zn(i) → Zn+1(j) happens if a player on a resource with Sin,k(i,j) experiments

on a free resource. It is given by probability

pZn(i)Zn+1(j) = Pε(K)
mi
n(Sin,k(i,j))

K

Mn
i (0)

N − 1
, (50)

which is term j of the sum that gives the total probability pZn(i)Zn+1 (28). The term K −mi
n(1)

in (28) is decomposed as follows
∑

jm
i
n(Sin,k(i,j)) = K −mi

n(1).

The transition from Zn(i) → ξn+1
1 (j) corresponds to the term j of the sum that gives

probability Zn(i)→ ξn+1
1 in (30). Using the same procedure

pZn(i)ξn+1
1 (j) = Pε(K)

mi
n(Sin,k(i,j))

K

N −M i
n(1)−M i

n(0)− 1

N − 1
(1− ε), (51)

Again with the same decomposition, probability of transition Zn(i)→ ξn+1
2 (j) is obtained using

(31) as follows

pZn(i)ξn+1
2 (j) = Pε(K)

mi
n(Sin,k(i,j))

K

M i
n(1)

N − 1
(1− ε)2, (52)

C. Transitions from ξn+1(j) to ξn(i)

The system can employ one less resource when an alone player selects a resource already

occupied as a new benchmark. These transitions are possible from states Zn+1(j), ξn+1
1 (j) and

ξn+1
2 (j). In practice, probability transitions inside ξn+1(j), are computed from formulas in section

B-A by replacing the indices appropriately. For example, in this section, the starting state is

in ξn+1(j). Therefore, we use the functions mj
n+1(.) and M j

n+1(.) instead of mi
n(.) and M i

n(.).

Moreover, during a transition from ξn(i) to ξn+1(j), the resource that has Sin,k(i,j) is decremented

by one. Thus, from ξn+1(j), any resource that contains Sin,k(i,j) − 1 players can be incremented

by one to make the transition to ξn(i) occurs.

The transition Zn+1(j)→ Zn(i) happens with probability

pZn+1(j)Zn(i) =

 Pε(K)
mj

n+1(1)

K

Mj
n+1(Si

n,k(i,j)
−1)

N−1
ε, Sin,k(i,j) − 1 > 1

Pε(K)
mj

n+1(1)

K

Mj
n+1(1)−1

N−1
ε2, Sin,k(i,j) − 1 = 1.

(53)
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The first line corresponds to the probability that an alone player experiments on a resource with

Sin,k(i,j) − 1 > 1 players, and that it accepts the decrease in utility. The second line corresponds

to the probability that an alone player experiments on a resource with Sin,k(i,j) − 1 = 1 player,

and that both accept the decrease in utility. From the experimenter point of view, there are

M j
n+1(1)− 1 resources with one player.

Note that pZn+1(j)Zn(i) is the term i of the sum that gives pZn+1(j)Zn =
∑

i pZn+1(j)Zn(i) in

(29). Therefore, the first and second line of (53) are, with respect to the right indices changes,

the term i of the sum that gives the first term and the second term of (29) respectively. These

similarities are used in what follows.

The transition probabilities pZn+1(j)ξn3 (i), pξn+1
1 (j)Zn(i), pξn+1

1 (j)ξn3 (i), pξn+1
2 (j)ξn1 (i), pξn+1

2 (j)ξn2 (i) and

pξn+1
2 (j)ξn3 (i) correspond to the term i of the sum that gives pZn+1(j)ξn3

pZn+1(j)Zn , pξn+1
1 (j)Zn

,

pξn+1
1 (j)ξn3

, pξn+1
2 (j)ξn1

and pξn+1
2 (j)ξn3

respectively. After changing the indices n+1 into n, n into n−1

and j into i, one can realize that these probabilities have already been computed. They correspond

to pZn(i)ξn−1
3

, pZn(i)Zn−1 , pξn1 (i)Zn , pξn1 (i)ξn−1
3

, pξn2 (i)ξn−1
1

and pξn2 (i)ξn−1
3

from (32), (36), (37),(41),

(42) and (44) respectively. Thus, to obtain pZn+1(j)ξn3 (i), pξn+1
1 (j)Zn(i), pξn+1

1 (j)ξn3 (i), pξn+1
2 (j)ξn1 (i),

pξn+1
2 (j)ξn2 (i) and pξn+1

2 (j)ξn3 (i), we use previous probabilities by changing the indices appropriately

and then, the i th term of the sum that results in N −M j
n+1(0)−M j

n+1(1) is selected. This term

corresponds to M j
n+1(Sin,k(i,j) − 1) as∑
i,Si

n,k(i,j)
−1>1

M j
n+1(Sin,k(i,j) − 1) = N −M j

n+1(0)−M j
n+1(1). (54)

With these modifications and, using (32), the transition Zn+1(j)→ ξn3 (i) has a probability

pZn+1(j)ξn3 (i) =

 0, Sin,k(i,j) − 1 > 1

Pε(K)
mj

n+1(1)

K

Mj
n+1(1)−1

N−1
2ε(1− ε), Sin,k(i,j) − 1 = 1.

(55)

From state ξn+1
1 (j) it is possible to go to Zn(i) and ξn3 (i). During transition ξn+1

1 (j)→ Zn(i)

the discontent player chooses a frequency that contains Sin,k(i,j)− 1 players. It happens with the

following probabilities

pξn+1
1 (j)Zn(i) =


Mj

n+1(Si
n,k(i,j)

−1)

N
ε, Sin,k(i,j) − 1 > 1

Mj
n+1(1)−1

N
ε2, Sin,k(i,j) − 1 = 1.

(56)

The first line is similar to the term i of the sum that results in the first term of (36). The second

line corresponds to the second term of (36).
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With the same reasoning, using (37), ξn+1
1 (j)→ ξn3 (i) happens with probability

pξn+1
1 (j)ξn3 (i) =

 0, Sin,k(i,j) − 1 > 1

Mj
n+1(1)−1

N
2ε(1− ε), Sin,k(i,j) − 1 = 1.

(57)

The state ξn+1
2 (j) is connected to Zn(i), ξn1 (i), ξn2 (i) and ξn2 (i). The probability of transition

ξn+1
2 (j)→ Zn(i) is obtained using (41) as follows

pξn+1
2 (j)Zn(i) =

 2
Mj

n+1(0)+2

N

Mj
n+1(Si

n,k(i,j)
−1)

N
ε, if Ci

n,k(i,j) − 1 > 1,

Mj
n+1(0)+2

N

Mj
n+1(1)−1

N
ε2, if Sin,k(i,j) − 1 = 1.

(58)

The first line is similar to the term i of the sum that results in the second term of (41). The

second line is similar to the first term of (41).

The probability of transition ξn+1
2 (j)→ ξn1 (i), noted pξn+1

2 (j)ξn1 (i), is given by 2
Mj

n+1(Si
n,k(i,j)

−1)

N
ε
N−Mj

n+1(1)−Mj
n+1(0)

N
(1− ε), Sin,k(i,j) − 1 > 1,

2
Mj

n+1(1)−2

N
ε2
N−Mj

n+1(1)+1−Mj
n+1(0)

N
(1− ε), Sin,k(i,j) − 1 = 1.

(59)

which is obtained from equation (42).

The probability of transition ξn+1
2 (j)→ ξn2 (i) is given by

pξn+1
2 (j)ξn2 (i) =

 2
Mj

n+1(Si
n,k(i,`)

−1)

N
ε
Mj

n+1(1)−2

N
(1− ε)2, if Sin,k(i,j) − 1 ≥ 2,

Mj
n+1(1)−2

N
ε2
Mj

n+1(1)−3

N
(1− ε)2, if Sin,k(i,j) − 1 = 1.

(60)

which is obtained from equation (43).

Finally, the probability of transition ξn+1
2 (j)→ ξn3 (i) is obtained using equation (44) as follows

pξn+1
2 (j)ξn3 (i) =

 0, if Sin,k(i,j) − 1 ≥ 2,

Mj
n+1(0)+2

N

Mj
n+1(1)−1

N
2ε(1− ε), if Sin,k(i,j) − 1 = 1.

(61)
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