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On the Combined Inverse-Dynamics/Passivity-Based

Control of Elastic-Joint Robots
Andrea Giusti, Jörn Malzahn, Nikolaos G. Tsagarakis, and Matthias Althoff

Abstract—We present a novel global tracking control approach
for elastic-joint robots which can be efficiently computed and
is robust against model uncertainties and input disturbances.
Elastic-joint robots provide enhanced safety and resiliency for
interaction with the environment and humans. On the other
hand, the joint elasticity complicates the motion-control pro-
blem especially when robust and precise trajectory tracking is
required. Our proposed control approach allows us to merge
the main benefits of two well-known control schemes: inverse-
dynamics control, which can be efficiently computed thanks
to modern recursive algorithms, and passivity-based tracking
control, which provides enhanced robustness to model uncer-

tainty and external disturbances. As an extension of our previous
work, we present a detailed robustness analysis of our combined
Inverse-Dynamics/Passivity-Based controller, a new variant of the
original scheme which shows practically relevant implications,
and finally, experimental results which verify the effectiveness of
the approach.

Index Terms—Elastic-joint robots, motion control, inverse-
dynamics control, passivity-based control

I. INTRODUCTION

MODERN advanced robotic applications benefit from

resilient, compliant robots that can provide safe and

dependable interaction with humans and the environment [1].

These systems have enjoyed growing interest in recent deca-

des, in particular towards the intentional inclusion of elastic

elements in the structures of robots [2]. In fact, a typical means

of adding compliance to a robotic structure is the use of elastic

elements in the joints e.g., by using series elastic actuators [3],

[4]. However, in such cases motion control is significantly

more complex with respect to the classical rigid case due to

the necessary extension of the state variables to capture both

motor-side and link-side dynamics, coupled through elastic

elements.

The control problem of elastic-joint robots has attracted

numerous researchers since the mid ’80s. Fundamental works

up to the mid ’90s are summarized and detailed in [6], [7],

while more recent results have been collected in [2], [8]. One

of the most celebrated results is the model reduction approach

by [9], which is based on very reasonable assumptions. This

result makes the control problem significantly more tractable

with respect to the use of a complete model from the classical
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Fig. 1. Picture (top) and dimensions in mm (bottom) of the bi-manual robotic
platform [5] serving for the experimental evaluation of the proposed controller.

Lagrangian formulation, enabling the realization of static

feedback-linearizing controllers for trajectory tracking. This

additionally paved the way for the development of control

laws based on the singular perturbation technique, which can

be found in [10]. This approach has shown to be very effective

when sufficiently high stiffness is present in the joints, as

described in the experimental comparison with the feedback-

linearizing controller on a single-link arm in [11]. A practical

solution for trajectory tracking has been introduced in [12],

where the authors propose an effective feedforward/feedback

method for which local stability can be shown [13]. A semi-

global tracking controller for elastic-joint robots, which in-

terestingly does not require the calculation of the link jerks,

can be found in [14]. A comparative study of global tracking

controllers based on decoupling, backstepping, and passivity

is presented in [15]. Among more recent works, an approach

for trajectory tracking where limited sensing capability is

considered for lossless elastic-joint manipulators can be found

in [16], [17], and a passivity-based approach for both link-
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side tracking and damping assignment considering nonlinear

springs is presented in [18]. Effective approaches that focus on

the regulation control problem are reported e.g., by [19]–[21].

In this paper, we focus on the global tracking control

problem. Among the existing methods, the inverse-dynamics

control scheme is especially attractive thanks to recently pro-

posed algorithms that allow its efficient implementation such

as in [22], [23]. However, this controller relies on the exact

cancellation of the system couplings and may be sensitive

to even small model mismatches, as shown by simulations

in [24]. Also, other authors have previously realized the risk

of poor robustness of such a control technique, such as in

[15], among others. The authors of [15] suggest an effective

passivity-based controller as an alternative. On the other hand,

an algorithm for a computationally efficient implementation of

passivity-based controllers for global tracking of elastic-joint

robots (e.g., [15], [18]) is not yet available to the best of our

knowledge as is the case for inverse-dynamics control.

In this work, we present a control scheme that provides

enchanced robustness to model uncertainties and external

disturbances, which can still be computed in the same compu-

tationally efficient way as classical inverse-dynamics control

schemes can. Our new global tracking control approach is

based on the partial cancellation of the modeled system dyn-

amics, combined with the exploitation of the passivity-related

properties of the robot model. Our proposed combined Inverse-

Dynamics/Passivity-Based (ID/PB) control scheme allows us

to merge the enhanced robustness typical of passivity-based

controllers (see e.g., [25]–[27]) with the efficient numerical

computability recently made possible for inverse-dynamics

control of elastic-joint robots in [22], [23], [28]. This paper

extends our previous work in [24] to provide: 1) a detailed

robustness analysis with respect to model uncertainties and

external disturbances, 2) a new variant of the proposed con-

troller which includes a feedforward inverse-dynamics action

showing practically relevant implications, and 3) experimental

results on a 7-degrees-of-freedom arm with mixed rigid/elastic

joints.

In the next section we detail the control problem. In section

III we present the complete control approach with its detailed

robustness analysis. We show experimental results in section

IV, to draw the conclusion in section V.

II. CONTROL PROBLEM

We focus on the global tracking control problem of robot

manipulators composed of N links serially connected through

elastic joints and adopt “Spong’s assumptions” [9]. We redirect

the reader to that work for a detailed description of these

assumptions which are, however, justifiable for the large class

of robots with high gear ratios. We consider the following

model:

M(q)q̈+n(q, q̇)+K(q−θ) = τext , (1a)

Jθ̈ + f(θ̇)+K(θ −q)︸ ︷︷ ︸
:=τe

= u, (1b)

where q∈R
N is the vector of link-side joint position variables,

θ ∈ R
N is the vector of motor-side joint position variables,

M(q) ∈R
N×N is the inertia matrix of the rigid links assembly,

J ∈ R
N×N is the constant diagonal matrix of the rotor inertia

moments through the square of the respective gear ratio,

K ∈ R
N×N is the diagonal joint stiffness matrix, u∈R

N is the

vector of control input forces/torques, f(θ̇ ) ∈R
N is the vector

of the motor-side friction terms, τe ∈ R
N is the elastic torque

vector, and τext ∈R
N is the vector of external forces applied to

the manipulator mapped onto the joint space. The centrifugal,

Coriolis, gravitational, and link side friction contributions are

collected in the following term:

n(q, q̇) = C(q, q̇)q̇+Dq̇+ g(q), (2)

where g(q)∈R
N is the vector of the gravity terms, D ∈R

N×N

is the matrix of the link-side viscous damping coefficients, and

C(q, q̇) q̇ ∈R
N is the vector of Coriolis and centrifugal terms,

with C(q, q̇) ∈ R
N×N being a matrix such that the following

holds:

xT
(
Ṁ(q, q̇)− 2C(q, q̇)

)
x = 0, ∀x ∈ R

N . (3)

For the scenario described above, we provide a controller

which is able to globally track link-side joint-space trajectories

qd(t), which are at least four times differentiable:

lim
t→∞

‖q(t)−qd(t)︸ ︷︷ ︸
:=e(t)

‖= 0.1

When significant model uncertainties and disturbances are

present, we consider a more practical stability target to ensure

ultimate boundedness of the trajectories. More precisely, we

seek

‖q(t)−qd(t)‖< ε, ∀ t ≥ t∗,

for a finite positive ε and a finite time t∗.

Except when stressing certain aspects, throughout this paper

we adopt two measures to keep the mathematical description

succinct: 1) we omit the time dependence of time-varying vari-

ables, and 2) we additionally omit joint variable dependencies

of the model terms. For example, the matrix M
(
q(t)

)
will be

simply denoted by M, its first derivative over time as Ṁ instead

of Ṁ
(
q(t), q̇(t)

)
, and its second derivative as M̈ instead of

M̈
(
q(t), q̇(t), q̈(t)

)
. The same notation is also employed for

the other model terms.

III. PROPOSED APPROACH

In this section, we first present the derivation of our

proposed combined ID/PB controller as a modification of

the classical inverse dynamics controller. Then, we describe

a small variant of it, which has been shown to provide

improved performance in practice when facing rough estimates

of feedback variables. The description of these two control

laws is followed by a way to efficiently implement them

using off-the-shelf recursive numerical algorithms. A detailed

analysis of the robustness with respect to model mismatches

and external disturbances completes the section.

1All the norms of vectors in this paper are Euclidean norms, while all
norms of matrices are induced 2-norms.
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A. Combined ID/PB Control

The basic idea of our proposed control law is that (contrary

to classical inverse-dynamics control) we do not require the

perfect cancellation of nonlinear coupling model terms through

feedback. In fact, we perform only a partial cancellation of

the couplings to resort to passivity-based control principles to

ensure stability and performance.

To formulate a clear description of the controller derivation,

we proceed as for the classical inverse-dynamics controller.

From the model in (1), we consider availability of measure-

ments of joint positions and velocities for both the link and

the motor side, and we assume (for now) that no external

forces are applied to the robot i.e., τext = 0. In this case, by

rearranging (1a), differentiating it twice, and using the notation

of x[n] for denoting dn

dtn x with n∈ {3, 4}, the following relation

can be obtained:

θ̈ = K−1
(
Mq[4] + 2Ṁq[3] + M̈q̈+ n̈

)
+ q̈, (4)

where

n̈ = (C+D)q[3] + C̈q̇+ 2 Ċq̈+ g̈. (5)

On the other hand (by considering the definition of τe in (1b)),

one can rewrite (1a) as

M(q)q̈+n(q, q̇) = τe. (6)

Now, by substituting (4) and (6) in (1b), we obtain

JK−1
(
Mq[4] + 2Ṁq[3] + M̈q̈+ n̈

)
+
(
M+ J

)
q̈+n+ f = u. (7)

From the position of (7), by considering an auxiliary control

input vector y, it is not difficult to see that the use of the

following classical inverse-dynamics control scheme

uID = JK−1
(
My+ 2Ṁq[3] + M̈q̈+ n̈

)
+
(
M+ J

)
q̈+n+ f, (8)

allows one to obtain a linear and decoupled system: q[4] = y.

From here, the designer can assign an asymptotically stable

dynamics of the tracking error through y to complete the

classical inverse-dynamics control law.

The derivation of our proposed controller can now be seen

as a modification of (8). In fact, from this position we expand

n̈ in (8) using (5), we remove the model terms My and Cq[3],

and we include a new auxiliary vector ν to obtain

uIDPB = JK−1
(
2Ṁq[3] + M̈q̈+Dq[3] + C̈q̇+ 2 Ċq̈+ g̈

)
+
(
M+ J

)
q̈+n+ f+ν. (9)

By applying (9) to (7), we avoid the complete cancellation

of the overall system dynamics. We do not reach a linear

decoupled system and instead obtain

JK−1
(
Mq[4] +Cq[3]

)
= ν. (10)

We can now complete the control law using

ν =−JK−1
(
Mq

[4]
a +Cq

[3]
a +Λr

)
, (11)

where Λ is any positive definite matrix of proper dimensions

and

r = e[3] +KCB3ë+KCB2ė+KCB1 e, (12)

q
[3]
a =−q

[3]
d +KCB3ë+KCB2ė+KCB1 e,

q
[4]
a =−q

[4]
d +KCB3e[3] +KCB2ë+KCB1 ė.

By applying our proposed control law in (9) with (11) to the

system in (7), we obtain the following closed-loop relation

Mṙ+Cr+Λr = 0. (13)

Since no perturbation is assumed so far, the right-hand

side of (13) is zero; this allows us to conclude that r will

globally and asymptotically converge to zero, as theoretically

supported from the large body of literature on passivity-based

control (see e.g., [29], [30]). The convergence to zero of the

tracking error directly follows, provided that the diagonal gain

matrices KCB3, KCB2, and KCB1 are properly selected. The jth

element of the diagonal of these matrices for i ∈ {1,2,3} is

denoted by KCBi j j
; we choose the gains such that the following

polynomials are Hurwitz:

cb j(x) := x3 +KCB3 j j
x2 +KCB2 j j

x

+KCB1 j j
, ∀ j ∈ {1, . . .N}.

This requirement can be seen more clearly by applying the

Laplace transform to the jth coordinate of (12) (using the

Laplace variable s) and considering the transfer function from

r j(s) to e j(s):

e j(s) =
1

s3 +KCB3 j j
s2 +KCB2 j j

s+KCB1 j j

r j(s). (14)

The stability properties of the closed-loop system can also

be analyzed by considering the cascade of subsystems in (12)

and (13). Remarkably, this approach lets one infer uniform

global exponential stability of the overall closed-loop system.

This follows by considering that in (12) the origin of r is

uniformly globally exponentially stable and that the same

holds for (13) with e when r ≡ 0. Thus, by invoking the

fundamental results in [31], [32], uniform global exponential

stability of the overall closed-loop system follows directly.

As introduced earlier, the measurements required for the

practical implementation of our proposed controller are the

joint positions and joint velocities, both for the link and the

motor sides. Even if our proposed controller (as is the case

for the classical inverse-dynamics control scheme) requires the

feedback of link-side joint accelerations and jerks, one can, in

principle, obtain them by exploiting the model knowledge with

the following relations:2

q̈ = M−1
(
τe −n

)
, (15)

q[3] = M−1
(

τ̇e −
(
Ṁ q̈+ ṅ

))
. (16)

2It is important to mention that in the more general case of τext 	= 0,
one should also include such contribution and thus require availability of
corresponding sensors.
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B. Combined ffwd-ID/PB Control

Even though the above mentioned approach for estimating

joint accelerations and jerks is certainly viable in principle,

the accuracy of the corresponding estimates can be poor in

practice. In fact, this is the case when noisy/biased torque

readings are available for lightweight robotic structures and/or

when the knowledge of the model is not sufficiently precise.

An alternative to estimating these quantities can rely on the use

of an observer, e.g., as in [24] when the model knowledge is

considered accurate but the torque readings are noisy. Instead,

when the model knowledge is poor and one faces significant

systematic errors of the acceleration estimates, one can resort

to using a kinematic-Kalman-filter-based approach as in [33].

Our proposed controller relies on the partial cancellation of

nonlinear coupling terms through feedback. Such terms should

be computed using the estimates of accelerations and jerks.

Poor/delayed estimates are a source of direct perturbation in-

jected by the controller, which affects the control performance

directly. We foster a practical solution based on feedforward

control for the inverse-dynamics part of our controller to

provide a combined feedforward-ID/PB scheme:

u f f wdIDPB = ud,ID(qd , q̇d , q̈d ,q
[3]
d )+

f(θ̇ )− JK−1
(
M(q)q

[4]
a +C(q, q̇)q

[3]
a +Λr

)
, (17)

where

ud,ID(qd , q̇d , q̈d ,q
[3]
d ) =JK−1

(
2Ṁd q

[3]
d + M̈d q̈d +

Dq
[3]
d + C̈dq̇d + 2 Ċdq̈d + g̈d

)
+
(
Md + J

)
q̈d +nd .

For compactness, in the above equation we denote with

the subscript d the model terms that are evaluated along

the desired trajectory. For example, we denote the model

term Ṁ(qd(t), q̇d(t)) simply by Ṁd . The effectiveness of the

combined feedforward-ID/PB control law has been verified by

experiments, as shown in Section IV.

C. Efficient Computation of the Proposed Controllers

A particularly interesting aspect of our proposed control

laws compared to most existing passivity-based tracking sche-

mes resides in its straightforward and efficient implemen-

tability, that is, using a combination of modern recursive

algorithms for robot dynamics computation. In particular,

let us first denote with EJNEA (Elastic Joint Newton-Euler

Algorithm) the algorithm for efficiently computing the inverse

dynamics of robots with elastic joints as recently proposed in

[22], [28], which yields

JK−1
[
Mq[4] + 2Ṁq[3] + M̈q̈+ n̈

]
+[M+ J] q̈+n

= EJNEA(q, q̇, q̈,q[3],q[4]),

and with NE∗ the well-established algorithm for efficient

recursive computation of passivity-based controllers of rigid

robots introduced in [25], which yields

Mq̈+Cq̇a = NE∗
0(q, q̇, q̇a, q̈),

when gravity effects are not considered (here denoted by the

subscript 0). It is now easy to see that our proposed combined

ID/PB control law can be efficiently implemented as follows:

uIDPB = EJNEA(q, q̇, q̈,q[3],0)

− JK−1
(
NE∗

0(q, q̇,q
[3]
a +q[3]︸ ︷︷ ︸

=r

,q
[4]
a )+Λr

)
+ f(θ̇). (18)

Consequently, its variant with feedforward action simply be-

comes

u f f wdIDPB = EJNEA(qd , q̇d , q̈d ,q
[3]
d ,0)

− JK−1
(
NE∗

0(q, q̇,q
[3]
a +q[3]︸ ︷︷ ︸

=r

,q
[4]
a )+Λr

)
+ f(θ̇). (19)

Both recalled algorithms (EJNEA and NE∗) have linear

computational complexity and can be directly used for online

numerical computations. Our proposed control laws inherit

these features in light of (18) and (19), since two algorithms

with linear computational complexity are called once for each

sample when running online. In contrast, many other passivity-

based global tracking controllers for elastic joint robots (e.g.,

[15], [18]) require one to obtain the first and second derivative

of the matrices M, C that fulfill (3). To the best knowledge of

the authors, no algorithm exists yet for such obtainment with

linear computational complexity. Instead, with our proposed

schemes, the contributions of M̈, C̈, Ṁ, and Ċ can be included

within the computations of EJNEA, which runs with linear

computational complexity.

D. Analysis of Robustness

In this subsection, we consider the more general case in

which the external torque vector τext (sufficiently smooth) is

different from zero and the robot does not have sensors for

measuring it. We assume that the model is not perfect and that

only nominal model terms are available for feedback control.

We denote the nominal model terms with a subscript 0. We use

a subscript δ to denote the perturbation from the respective

real value. For example, for a generic model term or feedback

vector Ξ we can write

Ξ = Ξ0 +Ξδ , and consequently Ξδ = Ξ−Ξ0. (20)

Regarding the motor side dynamics, we assume that there is

no significant uncertainty in the knowledge of J and K. This

is justified by the fact that in reality such quantities can be

precisely estimated during the actuation unit calibration, before

the unit is mounted in the robot.

By performing similar algebraic manipulations as in the

previous section, it is not difficult to see that for the more

general case (τext 	= 0), the following relation can be obtained:

JK−1
(

Mq[4] +Cq[3] +η
)
+β = u+ JK−1d, (21)

where

η = 2Ṁq[3] + M̈q̈+Dq[3] + C̈q̇+ 2 Ċq̈+ g̈,

β =
(
M+ J

)
q̈+n+ f, and d = KJ−1τext + τ̈ext .
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Hereafter, we assume the external torque vector to be suffi-

ciently smooth and bounded so that

‖d‖< κd,

for a finite positive κd. The control commands computed with

the combined ID/PB control law having only nominal model

information can thus be rewritten as follows:

uIDPB0
= JK−1η0 +β 0 − JK−1

(
M0 q

[4]
a0 +C0 q

[3]
a0 +Λr0

)
,

(22)

where

η0 = 2Ṁ0 q
[3]
0 + M̈0 q̈0 +D0 q

[3]
0 + C̈0q̇+ 2 Ċ0q̈0 + g̈0,

β 0 =
(
M0 + J

)
q̈0 +n0 + f0.

It is important to notice that the variables that contain acce-

leration and jerk vectors are also nominal, since either they

are estimated in a direct model-based fashion or they are

obtained by an observer; their knowledge cannot be considered

as perfect for the assumed uncertainty scenario. In fact, the

terms used for feedback control are written as

r0 =
(
q
[3]
0 −q

[3]
d

)
+KCB3

(
q̈0 − q̈d

)
+KCB2ė+KCB1 e,

q
[3]
a0 =−q

[3]
d +KCB3

(
q̈0 − q̈d

)
+KCB2ė+KCB1 e,

q
[4]
a0 =−q

[4]
d +KCB3

(
q
[3]
0 −q

[3]
d

)
+KCB2

(
q̈0 − q̈d

)
+KCB1 ė.

By using (22) in (21) and after performing long but rather

straightforward algebraic manipulations, while keeping (20)

in mind, we obtain the following closed-loop relation:

Mṙ+Cr+Λr = ψ , (23)

where

ψ = Λrδ +Mq
[4]
aδ

+Cq
[3]
aδ
+Mδ q

[4]
a0 +Cδ q

[3]
a0

−ηδ −KJ−1β δ +d. (24)

In light of (24), we introduce additional assumptions.

Assumption 1: There exist positive constants κMδ
, κCδ

, and

κηβδ
that bound the deviation between the nominal and real

model terms (indicated with subscript δ ) as follows:

‖Mδ‖< κMδ
, ‖Cδ‖< κCδ

, ‖ηδ −KJ−1β δ‖< κηβδ
. (25)

This assumption implies that, although the designer does not

have perfect knowledge of the model terms, the deviation from

the real model (see also (20)) is not expected to be unbounded

in practice.3

Assumption 2: There exist positive constants κaδ and κ jδ

that bound the deviation between the real and the estimated

accelerations and jerks as follows:

‖q̈δ‖< κaδ , ‖q
[3]
δ
‖< κ jδ . (26)

This is reasonable when considering a well-calibrated estima-

tor of the accelerations and jerks, as well as limitations of real

3This is realistic considering that in real actuators, physical limits ensure
bounded velocities.

actuators.4 As a consequence of this assumption, and using the

relations

q
[4]
aδ

(20)
= KCB3q

[3]
δ
+KCB2q̈δ , q

[3]
aδ

(20)
= KCB3q̈δ ,

we can also write that

‖q
[4]
aδ‖< κasδ , ‖q

[3]
aδ‖< κa jδ , (27)

for some positive constants κasδ and κa jδ .

Assumption 3: There exist positive constants κM and κC so

that

‖M‖ ≤ κM (28)

and

‖C(q, q̇)‖ ≤ κC‖q̇‖. (29)

Since this last assumption is more common in the literature on

control of robot manipulators, we redirect the reader to related

books (e.g., [27]) for further details.

Within the considered uncertainty scenario and the above

mentioned assumptions, we can now show that our proposed

control scheme allows one to achieve, in principle, any user

desired tracking precision, upon proper selection of Λ and the

gains KCB3, KCB2, KCB1. We show this by considering the

following storage function:

V =
1

2
rT Mr,

with the derivative

V̇
(23)
= rT (−Cr−Λr+ψ

)
+

1

2
rT Ṁr

(3)
= rT

(
−Λr+ψ

)
≤−λmin(Λ)‖r‖2 + ‖r‖‖ψ‖, (30)

where λmin(Λ) is the minimum eigenvalue of the matrix Λ.

Now, we introduce a perturbation bounding function ρ as

ρ = κ +κν‖q̇‖+κMδ
‖q

[4]
a0‖+κCδ

‖q
[3]
a0‖+ϕp, (31)

where

κ = κMκasδ +κηβδ
+κd, κν = κCκa jδ , ϕp > 0,

and we use it directly for selecting the matrix Λ:

Λ = ρI,

with I being the identity matrix of proper dimensions. By

considering the assumptions, it can be shown that

(1+ ‖rδ‖)ρ > ‖ψ‖,

which allows us to rewrite (30) as

V̇ < ρ‖r‖(−‖r‖+ ‖rδ‖+ 1).

From the above inequality we can infer that V̇ < 0 for

‖r‖ ≥ κ jδ + ‖KCB3‖κaδ + 1 ≥ ‖rδ‖+ 1,

since

rδ
(20)
= q

[3]
δ +KCB3q̈δ . (32)

4Assessing boundedness of the error in the estimation of joint accelerations
and jerks is a crucial step in any case and must be performed before one uses
them for feedback control.
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From this result and considering that the inertia matrix (whose

minimum and maximum eigenvalues are denoted as λm > 0

and λM < ∞, respectively) is quadratically bounded by

λm‖x‖2 ≤ xT Mx ≤ λM‖x‖2,

it can be shown (e.g., mutatis mutandis from [34, Theorem 1])

that the trajectories r are ultimately bounded by

‖r‖ ≤ (‖rδ‖+ 1)

√
λM

λm
,

(32)

≤ (κ jδ + ‖KCB3‖κaδ + 1)

√
λM

λm

. (33)

The reader may now realize that there is no direct gain that

can be used to shrink the bounds of r. Actually, increasing

the gains, and in particular KCB3, enlarges these bounds. The

solution is not to focus on shrinking the bounds of r but on

exploiting (14) instead. In fact, for the sake of simplicity, we

consider the transfer function in (14) to be the result of a

series of first-order low-pass filters5 for each coordinate j and

positive KG:

G j(s) =
e j(s)

r j(s)
=

1

(s+KG)3
=

1

s3 + 3KG s2 + 3K2
G s+K3

G

,

which leads to the gains KCB3 = 3KG I, KCB2 = 3K2
G I, and

KCB1 = K3
G I. With this choice and ‖r‖ ultimately bounded by

(33), we get that for the jth coordinate

‖e j‖ ≤
(κ jδ + ‖KCB3‖κaδ + 1)

K3
G

√
λM

λm

≤
( (κ jδ + 1)

K3
G

+
3κaδ

K2
G

)√λM

λm

,

which shows that the bounds of the tracking error can be made

arbitrarily small by selecting a large enough tuning parameter

KG.6

IV. EXPERIMENTS

In this section, we first describe the robot testbed follo-

wed by the presentation of three experiments. In particular,

we show the tracking performance of the proposed control-

lers when fast trajectories are required and when significant

unknown payload is present. With fast trajectories we refer to

trajectories that are fast enough to let us approach (and even

reach) the torque/current saturation of actuators during motion.

We additionally show how the reduction of the gains affects

the performance of our proposed feedforward-ID/PB controller

with respect to a simple PD-based scheme, which leads to

realizing safer physical human-robot interaction tasks. For all

the experiments shown next, the desired trajectories have been

5Please note that in practice other choices of this transfer function can
be made, provided that it is stable and sufficiently suppressing (i.e., with
sufficiently low H∞ norm).

6Even if we explicated the precise meaning of all bounds considered, we
acknowledge that in practice it is difficult to obtain them exactly for properly
computing (31). A practical solution is to find from tuning iterations a large
enough constant ρ that provides satisfactory tracking in conjunction with a
large enough KG.

TABLE I
ACTUATOR SPECIFICATIONS FOR ONE ARM. THE ARMS ARE SYMMETRIC

AND JOINT INDICES REFER TO FIG.1.

type
gear joint velocity peak sensor
ratio index max. torque stiffness

[rad/s] [Nm] [Nm/rad]

Medium A 160 1, 2 5.7 147 6 000
Medium B 160 3, 4 8.2 147 6 000
Small A 100 5, 6 11.6 55 21 000
Small B 100 7 20.3 27 21 000

computed using 7th order polynomials between point to point

motions in joint space. The details of these trajectories can be

found in the appendix.

A. Description of the Robot Testbed

The experimental testbed is the right arm of the bi-manual

robotic platform depicted in Fig. 1. The platform has been

designed to display human-compatible size, weight, strengths

and physical resilience to be capable of both soft interaction

as well as harsh manipulation tasks. An in-depth description

of the design approach and the platform features are reported

in [5].

The specifications of the actuators are listed in Tab. I. The

joints with indices 1 to 4 are the first ones in the kinematic

chain carrying the highest load. They display a stiffness of

6000 Nm/rad. The joints with indices 5 to 7 are subject to

lower loads with a stiffness of 21000 Nm/rad. This is well in

the order of the harmonic gear stiffness at this actuator size

and considered rigid for the purpose of this paper.

The arm is therefore a mixed chain of elastic (indices 1

to 4) and rigid (indices 5 to 7) joints, which implies that the

dynamics cannot be directly modeled by (1). However, the

implementation of our proposed controllers in the presence

of mixed rigid/elastic joints is straightforward considering the

work in [35]. By following that approach, we create virtual

elastic joints for the last three axes of the arm by using

dynamic feedback terms in the controller itself. As mentioned

in [35], we are able to choose the stiffness and the rotor inertia:

here we choose the stiffness to be 100 Nm/rad and the rotor

inertia to be 10−3 kgm2. These dynamic feedback terms aim

at reproducing elastic-joint motor-side dynamics effects for

the rigid axes only, so that our controllers can consider the

system as fully composed of elastic joints. The description of

the approach we implement for handling mixed rigid/elastic

joints exceeds the scope of this paper and we redirect the

interested reader to [35] for further details.

The dynamics model computation is carried out online on

an Intel NUC with 3 GB DDR-3 RAM and a Core i5-3427U

processor (3M cache) running at 1.8 GHz.

B. Validation of the Dynamical Model

Even though the proposed control scheme introduces in-

teresting robustness characteristics to model mismatches as

we analyzed in the previous section, its structure is model-

based. Therefore, the closer the nominal model is to the real

robot dynamics, the better the closed-loop performance is
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Fig. 2. Evaluation of model accuracy for a closed-loop trajectory tracking control test. The model prediction is computed offline by using the recursive
Newton-Euler algorithm for which we use zero-phase digital filtering for estimating the acceleration.

Fig. 3. Example result showing the quality of the estimation of acceleration
and jerk for the second axis of the robot while performing a trajectory tracking
control test.

under a realistic selection of gains. In our experiments we

obtain the nominal model of the rigid-link assembly from CAD

data. For the motor side, we use data from the motor data

sheets, and we employ a simple identification procedure for

obtaining friction estimates as described below. We consider

the following simple friction model for the ith coordinate of

the motor-side dynamics:

fi(θi) = βv,iθ̇i +βc,isign(θ̇i),

where βv,i and βc,i are the viscous and static friction coeffi-

cients, respectively. For obtaining these coefficients, the follo-

wing regression is performed for the ith axis with an elastic

joint and using k samples from a closed-loop identification test

[ βv,i βc,i ]
T = (ΦT Φ)−1ΦT b,

where7

Φ =

⎡
⎢⎣ θ̇i(1) sign(θ̇i(1))

...
...

θ̇i(k) sign(θ̇i(k))

⎤
⎥⎦ ,

b =

⎡
⎢⎣ ui(1)− τe,i(1)− Jiθ̈i(1)

...

ui(k)− τe,i(k)− Jiθ̈i(k)

⎤
⎥⎦ .

The estimation of the friction coefficients of the axes with

rigid joints is performed in a similar way by evaluating the

model of the rigid-link assembly using a recursive Newton-

Euler algorithm in place of the measured τe. In all experiments

discussed below, the motor-side friction terms have been

compensated by feedforward action, using the desired velocity

vector. We made this choice to avoid torque flickering from

imperfect static friction compensation at low speeds due to

noisy velocity readings.

In Fig. 2 we show the results presenting the match of

the model derived using CAD data, motor data-sheets, and

identified friction coefficients. This figure shows the prediction

obtained using the model and the real torque measurements for

the axes equipped with elastic joints. Similarly, for the axes

with rigid joints, we show the applied actuation torque and

compare it with the prediction of the model. From Fig. 2, a

reasonably good match can be observed. These results may

be improved after performing identification procedures for the

dynamic model parameters of the arm (see e.g., [36]–[38]).

However, we have not implemented such an approach since

one of the purposes of this paper is to show that the proposed

controllers provide good performance even if only nominal

parameters from CAD data are used.

C. Practical Estimation of Joint Acceleration and Jerk

In practice, torque sensor readings are subject to noise and

measurement biases emerging from unmodeled friction in the

7The acceleration data have been obtained using zero-phase digital filtering
on the double numerical differentiation of the joint position data.
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Fig. 4. Experiments of tracking control with fast desired trajectory. The dashed lines in the bottom right plot represent the current commands required from
the controllers for the first joint (uc,1), where a saturation is experienced. The trajectory used for this test is in the appendix.

link flange support. Together with the model inaccuracies,

these effects do not allow us to obtain sufficiently accurate

estimates of joint accelerations and jerks using (15) and (16)

or to use the observer proposed in [24]. Therefore, we resort to

using a simple kinematic Kalman filter with a structure similar

to that of [33], using available joint position and velocity

readings from the motor. These estimates are additionally

filtered by a first-order low-pass filter with cutoff frequency at

5 rad/s for an additional practical suppression of undesired

spectral components. For designing the kinematic Kalman

filter, we consider the following model:

ẋ(t) =

⎡
⎢⎣

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

⎤
⎥⎦ x(t)+

⎡
⎢⎣

0

0

0

1

⎤
⎥⎦ w(t),

y(t) =
[

1 0 0 0

0 1 0 0

]
x(t)+ ξ (t),

where x(t) = [q q̇ q̈ q[3]]T , y(t) is the vector of the available

measurements, w(t) is the unbiased white process noise with

a known covariance, and ξ (t) is the vector of unbiased white

measurement noise with known covariance matrix. Similar

to the considerations made in [39] for q̈, within this model

w(t) represents a surrogate of q[4] and its covariance can be

considered in practice as a tuning parameter. The results of a

test for showing the estimation quality of the acceleration and

jerk is presented in Fig. 3. This figure shows the results for

the second axis only since the results of the other axes do not

differ significantly.

D. Experimental Results

The first experiment we show aims at verifying the tracking

performance of the proposed controllers, when no payload is

used for fast required trajectories. For this purpose we first

present the performance of a PD control with feedforward

friction compensation, which results from removing all other

model terms as well as the acceleration and jerk feedback from

our proposed control law:

uPDFC =−JK−1Λ(KCB2ė+KCB1 e)+ f(θ̇).

Next, we introduce the model knowledge and test our proposed

combined ID/PB scheme. To complete the test, we include

the version of our proposed scheme with the feedforward

inverse-dynamics part. The results of this experiment are

collected in Fig. 4: the performance provided by the proposed

schemes can be clearly noticed by the norm of the tracking

error in joint space ‖e‖ and in task space ‖eee‖. In particu-

lar, the zoomed part of the tracking error plots shows that

when the trajectory becomes fast, the combined feedforward-

ID/PB control scheme provides the best performance. This

is expected since the filtering procedure for cleaning the

acceleration and jerk introduces an unavoidable phase lag also

noticeable from Fig. 3. It is worth noting that this experiment

has been performed in very dynamic conditions for the robot

considered, up to its physical actuation limits. This can also be

observed from Fig. 4, where the desired actuation current and

its saturated execution for the first axis of the robot are shown.

This also shows the good behavior of the proposed controllers

during and right after actuator saturation. The gains that we

used in this experiment are

KCB3 = 103diag([60, 120, 120, 120, 2000, 2000, 2000]),

KCB2 = 103diag([2, 3.5, 3.5, 3.5, 50, 50, 50]),

KCB1 = diag([50, 50, 50, 50, 375, 375, 375]),

Λ = diag([70, 40, 40, 40, 20, 20, 20]).

The second experiment shows how unexpected payloads

affect the performance of our approach. The results of this
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Fig. 5. Test results for trajectory tracking with different payloads. The trajectory used for this test is in the appendix.

Fig. 6. Tracking test for a sawing motion with online gains reduction. Starting
from the gains of the first experiment, the tuning matrix Λ is reduced during
motion of 25% (orange area) and of 50% (red area). The trajectory used for
this test is in the appendix.

experiment are shown in Fig. 5. In the top of this figure, the

considered robot setups are shown. The test is performed for

the plain robot, for a 2kg payload, and for a 4kg payload. Even

when a payload differs from zero, we continue using nominal

model information. Therefore, the additional contribution to

the dynamics of the payloads are not present in the controller

and generate a perturbation on the closed-loop system as

analyzed in the previous section. Remarkably, by observing the

evolution over time of the trajectory tracking errors in Fig. 5,

we see good performance from both controllers, without any

sign of instability and oscillations. In this case, the perfor-

mance of the combined ID/PB controller and the feedforward-

ID/PB are not easily distinguishable due to the relatively

slow speed of the desired trajectory. In fact, when trajectories

are sufficiently slow, the effect of the delay introduced by

our practical approach for estimating accelerations and jerks

becomes negligible. The dynamics of this trajectory has been

limited to comply with the physical limits of the robot for

carrying a 4kg payload reliably. The gains that we have used

in this experiment are the same as those of the previous one.

In the last experiment, we show the benefit of our proposed

controller with feedforward action with respect to its reduced

PD version when manually reducing the gains. The reduction

of the gains may be desired to obtain a task execution with low

impedance. On the other hand, this would not be practical for

control schemes whose tracking performance is significantly

corrupted by this practice. For this test, we let the robot

perform a sawing motion. In Fig. 6 we can observe that

the oscillatory behavior of the error for the PD controller

significantly increases when reducing the gains. From the

previously mentioned gains, we decrease all entries of Λ to

50% and 25% of their original values (orange and red areas

in Fig. 6, respectively). In particular, the peak-to-peak value

of the oscillations raises from about 0.128 rad to 0.205 rad.

In contrast, the peak-to-peak error of the feedforward-ID/PB

control is not significantly affected and raises only from

0.046 rad to 0.065 rad. The reduced amplitude oscillations

allow more precise movements and lead to safer conditions for

letting e.g., a human establish a physical interaction with the

arm. All previously discussed experiments can be seen in the

video attachment. Finally, we report that the maximum total

execution time of our proposed controller is about 0.14 ms on

the available target machine.

V. CONCLUSIONS

A novel control approach for robots with elastic joints,

combining the efficient implementability of classical inverse-

dynamics control with the robustness of passivity-based con-

trollers, is presented. In principle, and under reasonable as-

sumptions, any user-defined tracking performance can be

ultimately met. Of course, in practice the performance is

limited due to actuator limitations (e.g., limited sampling rate,

saturation, and measurement noise), which have not been

considered in the theoretical analysis of this paper. However,

they surely represent an interesting path to investigate for

future work, together with the application on a robot arm with

lower joint stiffness. Please note that we did not perform an

optimization of the tracking performance (e.g., by fine tuning

procedures) nor it was the scope of this paper: rather, our focus

was a fair comparison among the tested schemes.

Our proposed combined ID/PB controller, together with its

feedforward inverse-dynamics version has been experimen-

tally applied with success to a 7 degrees-of-freedom robot
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manipulator with mixed rigid/elastic joints. The controllers

have also shown good tracking performance when a significant

(unknown for the control) payload has been used. Finally, the

limited degradation of the tracking performance when reducing

the gains (Λ in particular) can be exploited as a useful feature

for safe physical human-robot interaction tasks, since the robot

can behave more compliantly.

APPENDIX A

EXPERIMENATAL TRAJECTORIES

The reference trajectories used for the experiments are a

result of point-to-point motions in joint space using 7th order

polynomials with null initial/final velocity, acceleration and

jerk. The points are specified in Tab. II, III, and IV for the

experiments in Fig. 6, 5, and 4, respectively.

TABLE II
SPECIFICATIONS OF THE POINT-TO-POINT MOTIONS FOR THE EXPERIMENT

OF FIG. 6.

Time q1 q2 q3 q4 q5 q6 q7

(s) (rad) (rad) (rad) (rad) (rad) (rad) (rad)
0 −π/4 π/8 0 π/2 π/6 π/4 −π/8

0.5 π/12 π/8 0 π/4 π/6 π/8 −π/8
1 −π/4 π/8 0 π/2 π/6 π/4 −π/8

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

20 π/12 π/8 0 π/4 π/6 π/8 −π/8

TABLE III
SPECIFICATIONS OF THE POINT-TO-POINT MOTIONS FOR THE EXPERIMENT

OF FIG. 5.

Time q1 q2 q3 q4 q5 q6 q7

(s) (rad) (rad) (rad) (rad) (rad) (rad) (rad)
0 0 0.1 0 0 0 0 −π/8
2 0 π/8 0 0 0 0 −π/8
5 π/2 π/4 0 π/2 −π/2 π/4 −π/4
8 π/4 π/2 π/2 π/2 π/2 −π/4 −π/8

11 −π/4 π/4 π/4 π/4 −π/4 π/4 −π/4
14 π/2 π/4 0 π/8 π/4 −π/4 −π/10
17 π/2 π/2 π/2 π/2 π/4 π/4 −π/4
20 0 π/8 0 0 0 0 −π/8

TABLE IV
SPECIFICATIONS OF THE POINT-TO-POINT MOTIONS FOR THE EXPERIMENT

OF FIG. 4.

Time q1 q2 q3 q4 q5 q6 q7

(s) (rad) (rad) (rad) (rad) (rad) (rad) (rad)
0 0 0.1 0 0 0 0 −π/8
2 0 π/8 0 0 0 0 −π/8
4 π/2 π/4 0 π/2 −π/2 π/4 −π/4
6 π/4 π/2 π/2 π/2 π/2 −π/4 −π/8
8 −π/4 π/4 π/4 π/4 −π/4 π/4 −π/4
9 π/2 π/4 0 π/8 π/4 −π/4 −π/10

10 π/2 π/2 π/2 π/2 π/4 π/4 −π/4
11 0 π/8 0 0 0 0 −π/8
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