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Abstract

Thispaperinvestigatestheestimationof thenumberof operatingsensorsin asensornetwork in which

thedatacollectionis madeby a mobileaccesspoint.We proposeanestimatorbasedon theGood-Turing

estimatorof the missingmassandgeneralizeit to other relatedproblemssuchas the estimationof the

distribution of energy availableat sensors.Theestimatoris analyzedusingthe theoryof largedeviations.

We presentclosed-formboundson the largedeviation exponentandcharacterizeconfidenceintervals for

the estimator.
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I . INTRODUCTION

A. The Problem and Operation Setup

The large scalesensornetworks may be usedin military andcivil applicationsto retrieve information

from large andpossiblyunaccessibleareas.In suchnetworks the numberof operatingsensorscanvary

with time dueto batteryconsumptionandexternalfactors.In many cases,thedensityof operatingsensors

may affect significantlysomenetwork operations,suchasrouting,mediumaccess,andalsoinformation

retrieval and processing.Thus knowing the numberof operatingnodesof a sensornetwork is crucial

to network operationaswell asnetwork maintenance.For instance,an accurateestimationof operating

sensorsfacilitatesthe decisionto deploy new sensors.

Besidesthe numberof operatingsensors,one may also be interestedin other quantitiessuchas the

distribution of theenergy availableto eachsensor. Suchinformationallows theestimationof thelife-time

of the sensornetwork andadjustingtransmissionstrategiesaccordingly. A closely relatedproblemis to

estimatethe numberof sensorsthat have certainattributes,sayhaving temperaturemeasurementsin an

interval of interest � ���	�
����
 . This alsogeneralizesto theproblemof estimatingclasshistogramof sensors

observingdifferentquantities.

We considerthe problemof estimatingoperatingsensorsundera specialsensornetwork architecture:

SEnsorNetwork with Mobile Access(SENMA) [1]. A key featureof SENMA is the presenceof the

mobile accesspoints(APs) that have high processingpower andact asmobile basestationsfor sensors,

seeFig. 1. In SENMA, the sensorsmay transmit the collecteddatato the mobile accesspoints in the

form of packets,andeachpacket may containthe ID of the transmittingsensor. If a classhistogramis

required,thenthe datapacketswill includethe quantityof interest,besidesthe sensorID. In Fig. 1, for

example,eachpacket hasthe field “EL” (energy level). We assumea randomaccessprotocol, suchas

slottedALOHA [2], by which packetscollectedby the mobile APs areas if they weredrawn randomly

from the sensorfield.

A simple approachis to schedulethe transmissionof eachsensorand count the numberof sensors

observed. Besidesthe complicationsof scheduling,this methodrequiresa thoroughobservation of the

network, at leaston the order ������� of the numberof operatingsensors.For wirelesssensornetworks

with unreliablelinks, packet loss is inevitable, and retransmissionsare necessary. For sensornetworks

with energy constraints,sucha bruteforce approachdoesnot scalewell with the sizeof the network. If

a randomcollectionis used,and � is estimatedby countingthe numberof distinct sensorsobserved,a
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Fig. 1. The SensorNetwork with Mobile AccessPoint; the packet structurecontainsan ID field and an EL “Energy Level”

field.

highernumberof transmissions,on theorderof ��������������� , is required1. What is neededis a technique

that providesan accurateestimatebut requiresfar lessnumberof transmissions.

B. Summary of Results

We estimatethe numberof operatingsensorsby exploiting statisticalpropertiesof the observed data.

We proposeanestimatorbasedon theGood-Turing estimatorof themissingmass—atechniqueinvented

by Turing in the secondworld war while trying to breakthe Enigmacode.Within the context of packet

transmissionin SENMA, theso-calledmissingmassis the conditionalprobability that,givena vectorof

observed sensorIDs (vector sample),the newly received packet comesfrom a new sensor. The Good-

Turing nonparametricestimator[3] is thebestknown estimatorfor themissingmassof a randomsample.

By assumingthat the samplesare independent,identically distributed (i.i.d.) with uniform distribution,

we expressthe populationsizeasa functionof the missingmassandderive an estimatorfor the number

of operatingsensors.This estimatorhasa simpleexpressionandachievesa performancesimilar to thatof

the maximumlikelihood(ML) estimator. It canbe appliedfurther to the estimationof classhistograms;

two ways for estimatingfixed and time-varying classhistogramsareproposedand investigatedthrough

simulations.

Theperformanceof theestimatoris analyzedusingthetheoryof largedeviationsfor occupancy models

developedrecentlyby Dupuis,NuzmanandWhiting in [4]. This approachprovidesa characterizationof

theasymptoticbehavior of theestimatorproposed,whenthenumber� of operatingsensorsis very large

andthesizeof thevectorsampleincreasesproportionalwith � with a fixedratio � . The largedeviations

1This correspondsto the classicalcouponcollectionproblem.
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exponent,however, canonly be obtainedby solvinga numericaloptimizationproblem.For a convenient

performanceevaluationandgaininginsightsinto theconvergencebehavior, we provide closed-formupper

andlower bounds,andusethemto derive approximative confidenceintervals for the relative errorof the

estimator. Thesimulationsshow that theconfidenceintervalsderivedareaccurateapproximationsfor the

performanceof the estimator.

C. Related work and organization

The Good-Turing nonparametricestimator, describedfirst by Good [3], can be used to estimate

probability distributions from datasamples,but it works the bestfor estimatingthe probability of those

elementsthat did not appear, i.e., the missingmass.The applicationof Good-Turing algorithm is quite

broad[5], but theuseof Good-Turing algorithmfor estimatingthenumberof operatingsensorswasfirst

presentedin [6] with an abbreviatedanalysisin [7].

The analysisof the Good-Turing algorithm is much more challenging.The recentwork by Dupuis,

Nuzman,andWhiting [4] on the large deviation principle for the generaloccupancy problemforms the

basisof our analysisof theproposedestimator. Onecanalsopursuethealternative framework developed

by McAllesterandSchapire[8] in whichconfidenceintervalsfor theGood-Turingnonparametricestimator

are derived. For estimatingthe missingmass,the width of an � -confidenceinterval is upperbounded

by ��� "! �����$#	% �&('�) �+*-,/.10 %32 &/4� , ( 5 being the numberof available samples),which gives a boundon the

convergencerateof theestimator. While this boundis generalandapplicableto caseswhenthe received

samplesarenot i.i.d., it can’t be appliedstraightforward to the accuracy of the resultingapproximation

of N, especiallywhenthe samplesize is muchsmallerthanN.

In [9], Esty comparedthe asymptoticperformanceof the Good-Turing estimatorof the missingmass

andthat of theML parametricestimator. It wasshown (usingcombinatorics)that thedifferencebetween

theirasymptoticperformancewassmall.Thissuggeststhat,for thei.i.d. model,theGood-Turingestimator

can be usedto derive an estimatorof the total numberof sensorswith “good” asymptoticproperties.

However, theasymptoticresultsof [9] obtainedfor theGood-Turing estimatorof themissingmasscannot

be extendeddirectly to our problem.In subsectionIII-C we will justify why the resultsof [8] and [9]

do not apply directly to our problem.

Finally, we shouldmentionthat in our paperwe only usethe Good-Turing estimatorin its simplest

variant.Many improvementshave beenproposed.See,for example,the paperby Orlitsky, Santhanam,

andZhang[5] wheresmoothedvariantsof the Good-Turing estimatorareusedfor analysis.

The paperis organizedas follows. The modeland the motivation behindour approacharediscussed
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in SectionII. The Good-Turing basedestimatorand its applicationto classhistogramestimationare

presentedin SectionIII. The performanceanalysisbasedon the large deviations theory is presentedin

SectionIV. The simulationsandnumericalresultsarepresentedin SectionV. We concludethe paperin

SectionVI. Someproofsaredeferredto the Appendix.

I I . THE MODEL

The sensornetwork consideredhas � operatingsensors,eachhaving an ID that is an elementof set6
, with 7 6 7�89� . ThemobileAP collects 5 packets,eachof themcontainingthe ID of the transmitting

sensor. We denoteby :<;�= 6 the ID in the > -th received packet andby ?A@8B�C: � �1D1D1DE�/: � � the vector

sampleof received IDs. The unknown � is assumedto remainconstantduring collection.

For SENMA using a randomaccessprotocol suchas ALOHA, packet collection can be modeledas

an i.i.d. samplingwith uniform distribution, i.e., in eachtime slot the received packet canbe from any

of the sensorswith equalprobability:FHG = 6 IKJML @8ON�� :<;P8 G 
Q8 R� D (1)

This model is identical to an urn modelwith replacement.Note that someof the received packetsmay

comefrom the samesensor.

In a practical setup, the i.i.d. sampling assumptioncan be justified as follows. First, the access

point (AP) broadcastsa requestfor the information needed- i.e., want to know how many sensors

arefunctional.Eachslot, eachoperatingsensorflips a coin to decideon transmitinga packet in thatslot.

The probability of transmissionis the samefor all sensorsand is kept low enoughto avoid collisions

(with high probability). Also, we assumethat the probability of AP detectingcorrectly a transmitted

packet is the samefor all sensors.Theseconditionsarereasonablefor sensornetworks becausethe data

is transmittedat very low datarates,andjustify the i.i.d. samplingassumption.

For convenience,we introduceheresomenotationsthat will be usedlater. The vector samplemay

containmultiple packets from the samesensor. Therefore,we denoteS as the set of received (distinct)

IDs S @8�T G = 6UIWVYX =�T R �1D1D1DZ�/5\[]�/:_^K8 G [
whosesize `a8b7 S�7 representsthe total numberof (different) sensorsobserved.For the observed vector

sample ? , definethe multiplicity function ced IW6 fhg
, where cedK� G � gives the numberof samplesin? equalto

G
. Using the function ced , we partition S accordingto the numberof timesan ID appearsby
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denoting Si^$@8jT G = 6kI c d � G �l8 X [m� F X 8onp�1D1D1Dq�/5rD
Note that the sets Si^ dependon the observed sample ? , thus they are random.We use the notation`Q^s@8t7 Si^u7 for the sizesof the setsdefined.Therefore,̀Qv$@8j�xwy` representsthe numberof operating

sensorsthat are not in the current vector sample.The problemis to estimate� from ? . Since ` is

known, this is equivalent to estimating̀Qv , the numberof hiddenoperatingsensors.

Slightly more complicatedis the classpartitionmodel. Supposethat the set of sensorsis partitioned

into classes,andeachsensortransmitsin eachpacket its classindex (besidesits ID). For example,each

classcan contain thosesensorswith available energy in a specific interval; we want to estimatethe

numberof (operating)sensorsin eachclass.Assumethat the classof eachsensoris fixed during data

acquisition,andlet z denotethetotal numberof classesand {\� G � theclassof sensor

G
. Denoteby �|�~}r�

the numberof sensorsthat belongto class } . For eachclass }�8 R �1D1D1DE��z , we define ?��~}r� asa vector

madeof thoseelementsof ? belongingto class } , and the correspondingSQ�~}\� , `��~}r� :SQ�~}r� @8 T G = 6UIiVYX =HT R �1D1D1DZ�/5\[��1D-�1D�:_^�8 G ��{��C:_^��
89}l[`��~}r��@8 7 SQ�~}r�17�D
We make the extra assumptionthat zx� �_�����C5r�3�H� so that, with high probability, `��~}\�$� R � F } .

This assuresthat all classesappearin the currentvector sampleso that we don’t needto estimatethe

total numberof existing classes.In this setup,the problemis to estimatehow many sensorsare in each

class,i.e., the histogramvector �A8����a� R ���1D1D1DZ�3�|��z��/� (Fig. 2). In Fig. 2, in eachbar, the lower part

representsthe observed percentageof the nodesin eachclassand the upperpart the hiddenone. The

leftmost bar representsthe percentageof sensorsthat are not operating,and thus are assumedto have

zeroenergy available.

In the sameway as above, for each
X

and } , the set SW^p�~}r� containsthoseelementsthat belongto

class } andappearin ? exactly
X

timesSi^i�~}r� @8jT G = 6UI cedK� G �
8 X ��{\� G �l89}l[ � F X 8onp�1D1D1Dq�/5r� F }�8 R �1D1D1DZ��z��
and `Q^W�~}r� @8�7 Si^i�~}r�17 .

If the classof eachsensoris determinedby its available batteryenergy, this model is realistic only

if the batteryconsumptionduring the collection of the samplevector ? is negligible so that the class

of eachsensorcanbe consideredfixed andbatterylevels do not affect the transmissionprobabilities.A
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Fig. 2. The histogramof energy available to sensors.The sensorsthat are not operatingare consideredto have 0 energy

available ( the first bar). The figure is illustrative (is not the resultof a simulation).

moregeneralmodelin which the classof eachsensorcanvary duringdatacollectionwill be introduced

in subsectionIII-D.

I I I . ESTIMATION OF THE NUMBER OF OPERATING SENSORS AND CLASS HISTOGRAMS

A. Motivation: The Maximum Likelihood Estimator

The Maximum Likelihood (ML) estimatorwould be a naturalchoice.Becausethe observation space6
is not known in advance,the ML estimatormustbe basedon the vector ��` � �1D1D1D	��` � 
 (seee.g.,[10]).

Denoteby TE� � �1D1D1D�����[ the ` distinct elementsof
6

that appearin the vectorsample? . We haveN�����` � �1D1D1Dq��` � 
�7 ��
�8 # ��Z���q 3¡-¡-¡ �q¢ '� � £ 5c d ���¤�¥�¦c d ���§�E�§¨1¨1¨3c d ��� � ��©8 �«ª` � ª�` � ª1D1D1D1` � ª����¬wa`
��ª�� �<£ 5cedK��� � ��c�dK��� � �§¨1¨1¨­cedK�����M� © �
which gives ®� ML 8o¯±°­���_¯Z²��³ � N�����` � �1D1D1D	��` � 
�7 ��
Q8´¯±°3���_¯Z²��³ � �«ª� � ���µwa`
��ª D (2)

The above optimizationdoesnot have a closedform solution.To performthe search,we needan upper

boundon

®� ML . Taking the derivative with respectto � of the logarithmof ��¶� ¢ 0 ��· � 4 ¶ , we observe that

the derivative is negative for ��¸ � �� · � , which givesan upperbound.If 5¹8º` theneachsamplein the

collectionis new andthus �»�¼5 . Therefore,theoptimizationproblemabove canbesolvednumerically

and,in this case,the solutioncanbe obtainedeasily.
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For histogramestimation,the ML solutionbasedon the vectors ��` � �~}r���1D1D1Dq��` � �~}r�½
���}�8 R �1D1D1Dq��z , is

given by ®�¹¾$¿�8o¯±°3���_¯Z²À R� �ÂÁÃÄ+Å � �|�~}\��ª���a�~}r�\w|`��~}r�/��ª D
This problemrequiresa z -dimensionalsearch,which is considerablyharderthan estimating � only.

Moreover, in bothcases,besidesthedifficulty associatedwith thenumericalevaluation,theML solutions

give little insight into the problem,sincethe analysisis hard,if not impossible.

We notethat the proposedestimatorof the numberof sensorsbasedon the Good-Turing estimatorof

the missingmasshasthe performancecloseto that of the ML estimator, but its simple formula is easy

to implementandanalyze.

B. Background: the Good-Turing estimator

Considera finite or countableset
6

, a probability distribution Æ on this set, and a sample ?U8�C: � �1D1D1DE�/: � � , where :<;�= 6 are i.i.d randomvariableswith distribution Æ . As before, for

G = 6 ,

denote
J L @8ON�� : ; 8 G 
 . Note that Æ neednot be uniform nor

6
finite.

Recall that, for each
X
, the set Si^ is composedof all the elementsof

6
that appearin the vector

sample ? exactly
X

times.Now we define ÆP^ to be the probability that the next sample,drawn (i.i.d.)

with distribution Æ , belongsto set Si^Æ�^$@8ÈÇL±ÉZÊ1Ë J§L 8"N�� : ��Ì � =¹Si^Y7 ?s
Q8ON�� ced��C: �±Ì � �
8 X 7 ?Í
�D
For

X 8În , Æ�v is the probability that the next observed sample : ��Ì � is new, i.e., : �±Ì � =�Siv . The

probability Æ�v is called the missingmassand R w|ÆPv the coverageof the sample ? . The probabilitiesÆ�^ dependon the sample? , thus they are randomvariables.

The following estimatorfor the missingmass,known asthe Good-Turing estimator, wasproposedin

[3]
®Æ�v(8 `P�5 D (3)

The missingmassis estimatedusing the numberof elementsthat appearin the sampleexactly once.

Someintuition abouttheGood-Turing estimatoris givenby its behavior in someextremesituations.First,

if all 5 elementsof ? aredifferent,this meansthat the samplesaredrawn from a very large collection,

andit is likely that the next samplewill be new aswell. The estimatorgives

®Æ�v(8 R . On the otherhand,

if all elementsof ? appearat least twice, this suggeststhat the collection is complete.The estimator

gives

®Æ�v(8on .
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C. Estimation of the Number of Operating Sensors and Class Histograms

TheGood-Turingestimatorcanbeusedto estimatethenumberof operatingsensors.Undertheuniform

distribution assumption,the missingmassis given byÆ v 8 R w `� D
Using the estimatedvalueof Æ�v in (3), we have the following estimatorfor � :®�»8 `R w

®Æ�v 8 `R w �Z�� D (4)

The relative error of this estimatorcanbe written asÏÏÏÏÏ
®�µwÐ�� ÏÏÏÏÏ 8 7 ÆPv¦w ®Æ�v+7R w � �� D

This formula explainswhy the resultsobtainedfor the performanceof the Good-Turing estimator(the

numerator)can’t be applieddirectly in our case.The resultsof [8] and[9] areonly for the numeratorof

the relative error on � . In our case,the denominatoris lessthanoneandcan take very low valuesfor

small samples,resultingin an increaseof the error. Moreover, thereis no guaranteethat the numerator

and denominatorare independent.A study of the propertiesof the denominatorand of the correlation

betweenthe two termswould be needed.

The estimationapproachcanbe usedfurther for estimationof classhistograms.For eachclass } , its

missingmassis the probability that the next sampleis new and it belongsto class }Æ�v]�~}\� @8ONrT	: �±Ì �<Ñ=¹S§��{\�C: �±Ì � �l89}Ò7 ?¹[]D (5)

The Good-Turing estimatorcanbe usedto estimatethe missingmassfor eachclassseparately®Æ v �~}\�l8 ` � �~}r�5 D
The formula above canbe justified asfollows. We label all thoseelementsof

6
that arenot in class }

with a new ID Ó , and,consequently, the new spaceof IDs
6"ÔÄ is given by :6 ÔÄ @8�T	ÓM[¦ÕÖT G = 6UI {\� G �
8º}
[]D

If the vector sample ? containsat least two elementsthat do not belongto class } , then, taking into

accountthe relabeling,the numberof elementsthat appearin ? only onceis equalto ` � �~}\� , and the

formula given beforefollows.
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To estimatethe numberof sensorsin eachclass,�|�~}r�
8º`��~}r�  `Qv��~}r� , we usethe relation Æ�v]�~}r�
8�q× 0 Ä+4� , andtheestimates

®� and

®Æ v �~}r� obtainedpreviously to get

®` v �~}r�
8 ®Æ v �~}\� ®� , andfurther,

®�|�~}r�
8`��~}r�  ®`�v±�~}r� . We obtain the estimator

®�$Ø§Ù (Good-Turing):®�$Ø§Ù��~}r�
8º`��~}r�  ` � �~}\� `5�wa` � D (6)

A differentestimatorcanbe obtainedby assuminga histogramscalinglaw:`��~}r�` Ú �|�~}r�� D
In other words, it is assumedthat the proportion of elementsfrom a classthat appearin the vector

sample? is thesameasthe proportionof theelementsof that classin set
6

. Substitutingtheunknown

quantitiesby the estimates,we have `��~}r�` 8
®�|�~}r�®� D

This givesthe following estimatordenoted

®�$Û����~}r� (histogramscaling):®�$Û����~}r�
8Ò`��~}r�  `��~}r� ` �5Üwa` � 8 `��~}r�R w � �� D (7)

We’ll seein the simulationssectionthat the histogramscalingestimatorhasslightly betterperformance

than the one derived previously by applying the Good-Turing formula to estimate Æ�v±�~}r� . For both

estimators,it canbe verified easily that Ý Ä ®�|�~}\�l8 ®� .

A third possibilitywould be to estimate�a�~}r� for each } by usingformula (4) for theelementsof the

respective class } (and thus ignoring all elementsof ? that arenot in class } ). It canbe checked that

the performanceof this estimatoris muchworsethanthe other two given in the currentsection.

D. Estimation of Time-Varying Class Histograms

In this sectionwe modify the estimatorsproposedbeforeso that they canbe usedfor the estimation

of time-varyingclasshistograms.In thesetupconsidered,theclassof eachsensorcanchangeduring the

collectiontime. It is assumed,however, that the uniform distribution of received IDs (1) still holds,i.e.,

it is not modifiedby theclasschangingprocess.This assumptionis suitableif theclassof eachsensoris

determinedby a quantitymeasuredby thesensor. However, for estimationof theavailablebatteryenergy,

the assumptionholds only if the sensorsdo not modify their transmissionstrategy as a function of the

availableenergy; also, the collection time is assumedshort enoughso that the variationof the number

of operatingsensorscanbe neglected.
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If the classesof sensorschangein time, we usean upperindex to show the variation in time of the

quantitiesinvolved. For example,denoteby { 0 ; 4 � G � the classof sensor

G
in time slot > . The classof

eachsensoris fixed during onetime slot, andthe packet received in oneslot > containsthe classof the

transmittingsensorin the currentslot > . The way in which the classof eachsensorchangesin time is

assumedknown. This meansthat for eachof the sensorsobserved,

F�G =OS and

F }�=9T R �1D1D1Dq��z�[ we

know NrTq{ 0 ��Ì � 4 � G �
89}�7 ?Ö��Þß[]D
The conditional probabilities given above dependon the systemcharacteristics.Some examplesare

discussedlater in this sectionand in SectionV-A.

For eachclass } we want to estimate� 0 ��Ì � 4 �~}r� , the numberof sensorsin class } in time slot 5  R .
Throughoutthis sectionit is assumedthat the estimationis donebasedon the vectorsample? with 5
elementsandon the correspondingvectorof received statesÞº@8��~{ 0à� 4 �C: � ���­{ 0á� 4 �C: � ���1D1D1Dq�­{ 0 �±4 �C: � �/� .

In the caseof time-varying classes,the formula (5) of the missingmassof class } becomesÆ 0 �±Ì � 4v �~}r� @8ONrT	: ��Ì ��Ñ=¹S§��{ 0 �±Ì � 4 �C: �±Ì � �r89}�7 ?¹[]D (8)

The assumptionthat the uniform distribution of received IDs is fixed simplifies the problemgreatly:

one could usethe previous methodsby substitutingthe fixed sets Si^i�~}r� with the correspondingsetsat

time 5  R , i.e., with S 0 ��Ì � 4^ �~}r� , definedasS 0 ��Ì � 4^ �~}r� @8�â G = 6UI cedK� G �
8 X ��{ 0 ��Ì � 4 � G �r89}�ã � F X 8onp�1D1D1Dq�/5r� F }�8 R �1D1D1Dq��z�D
Note that S 0 ��Ì � 4^ �~}r� is a subsetof S , i.e., is composedof elementsthat appearedin sample ? (that

has 5 elements).However, sinceoneelement

G = 6 may have different classesin different time slots,

in generalthe classof each

G =äS is unknown at time instant 5  R , thus the sets S 0 �±Ì � 4^ �~}\� are also

unknown.

Our approachis to use the estimators(6) and (7) given in the previous sectionby substitutingthe

quantities̀��~}\� and ` � �~}r� with estimatesof ` 0 �±Ì � 4 �~}r� and ` 0 �±Ì � 4� �~}\� , respectively. We use:®` 0 ��Ì � 4 �~}r� @8 å���` 0 ��Ì � 4 �~}\�17 ?Ö��Þ�
�8 ÇL±ÉZÊ NrTq{ 0 �±Ì � 4 � G �
8º}¦7 ?Ö��Þß[W� (9)®` 0 ��Ì � 4� �~}r�æ@8 å���` 0 ��Ì � 4� �~}\�17 ?Ö��Þ�
�8ºÇL±ÉZÊlçpèêéìë 0 L 4àÅ ��í NrTq{ 0 ��Ì � 4 � G �
89}�7 ?Ö��Þß[WD (10)

Since the expressionsabove are rathergeneral,we will seehow they apply in a couple of special

situations.
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First, if for each

G =«S the class { 0 �±Ì � 4 � G � can be determinedexactly, i.e., { 0 ��Ì � 4 � G ��8ïîr� G¤ð ?Ö��Þ�� ,
thenthe sets S 0 ��Ì � 4^ �~}r� canbe determinedexactly andthe estimator

®` 0 �±Ì � 4 �~}\� givesthe exact valueof` 0 �±Ì � 4 �~}\� .
A secondspecialcaseis when the classof eachsensorchangesindependentlyof the classof other

sensors.If for eachsensorthe classevolution processis Markov, then the probabilities NrTq{ 0 ��Ì � 4 � G �¦8}�7 ?Ö��Þß[ usedin (9) and (10) dependonly on the time slot of last apparitionof

G
in ? , >½ñ�ò L � G � @8�_¯Z²�T	> I :<;�8 G [ , andthe classof

G
at that moment, { 0 ;�óMô½õ 0 L 4à4 � G � :NrTq{ 0 ��Ì � 4 � G �
89}�7 ?Ö��Þß[�8´NrTq{ 0 �±Ì � 4 � G �l89}�7 > ñ�ò L � G ����{ 0 ;�óMô½õ 0 L 4à4 � G �­[]D

The lastexpressioncanbe determinedusingthe transitionmatrix of theMarkov chain.Suchan example

is analyzedin the simulationssection.

A final commentis about the convergencepropertiesof the two estimators(9,10). If the numberof

classesis finite and the classof eachsensorchangesindependentlyof the classof other sensors,and

if the collection is donesuchthat ` fhö
, and ` � fhö

respectively, then the convergenceof the two

estimatorscan be analyzedusing a form of the strong law of large numbers[11, Corollary 7.4.1, p.

214]. If the varianceof the quantitiesto be estimatedgoesto infinity, the Lindeberg-Fellercentrallimit

theorem[11, Theorem9.8.1,p. 315] canbe appliedto derive morepreciseresults.

IV. A PERFORMANCE ANALYSIS BASED ON THE THEORY OF LARGE DEVIATIONS

In this sectiona performanceanalysisof the Good-Turing-basedestimatorfor i.i.d. samplingmodel

is done.The analysisis basedon the theory of large deviations for occupancy problemsdevelopedby

Dupuis,NuzmanandWhiting in [4]. We useconfidenceintervals for the relative error to characterizethe

performanceof theestimator. Choosingan interval ��÷E�	�3÷ø�E���o÷q��ù R ù"÷ø� , we investigatethevariationof

the probability that the ratio ú�� falls outsidethis interval with the numberof sensors� andthe number

of samples5 . Our analysisis targetedto the casein which the numberof samplesis relatively small

comparedto the total numberof sensors,i.e., , for the ratio 5 Ñ � subunitary.

The large deviationsapproachis motivatedby the complicationsassociatedwith the analysisof exact

combinatorialexpressions.Furthermore,thanksto the large numberof sensors,the asymptoticresults

canpredict the performanceof the system.

A. Large Deviations Asymptotics for Occupancy Problems - The framework of [4]

Our presentationstartswith a shortoverview of the framework andresultsof [4]. In [4] theoccupancy

problemis explainedusingurnsandballs. The numberof operatingsensorscorrespondsto the number
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of availableurns,andthe numberof availablesamplesto the numberof balls.Thereare 5 balls that are

thrown (oneby one) in � urns,eachball falling in any of the urnswith equalprobability. The number

of balls in an urn correspondsto the numberof packetsreceived from a sensor.

Introducea constant� , andconsider5�8üûà�¤�¹ý . Fix an integer þÍ¸"n , andfor >r8onp�1D1D1DE�3þ denotebyÿ �; @8 ` ;�
the fraction of urns that containexactly > balls (or sensorsthat appear> times in the currentsample),

andby ÿ �� Ì @8 R w �Ç ; Å v ÿ �;
thefractionof urnsthatcontainmorethan þ balls(or sensorsthatappearmorethan þ timesin thecurrent

sample).Thus ÿ � @8�� ÿ �v � ÿ � � �1D1D1D	� ÿ �� � ÿ �� Ì 

is a randomprobabilityvectorthatspecifiestheoccupancy of theurnsafter ûà�¤�¹ý ballshave beenthrown.

The vector
ÿ � takesvaluesin the spaceof probability vectorson þ  y! points� � @8 ������ =	� � Ì � I ��

� n F�� ��n�� � �"þ  R ð � Ì �Ç
 Å v ��
 8 R ���� D

The behavior of the randomvector
ÿ � dependson the initial conditions,i.e., the initial distribution of

ballsin urns.Emptyinitial conditionsmeansthatall urnsareinitially empty, i.e., T ÿ �v ��n+�l8 R , ÿ �; ��n+�l8on ,ÿ �� Ì ��n+�l8oni[ .
The large deviations theory for occupancy problemscharacterizesthe behavior of the randomvectorÿ � when � f ö

while � is constantand 5 8 ûà�¤�¹ý . A large deviation principle (LDP) for the

randomvector
ÿ � is statedby [4, Corollary 2.3]. Furthermore,for the caseof empty initial conditions,

[4, Theorem2.5] gives the rate function in a convenientform. To presentthe large deviation principle

we introducefirst somemorenotations.

For eachdiscreteprobability distribution �º= � � , definethe set �Í�C�
����� to be the set of all discrete

distributions
�

on the non-negative integers satisfying
� ; 8��P; for >¹8hnp�1D1D1Dq�3þ and the constraint

(conservation) �Ç ; Å v > � ; 8´�
D (11)

Note that the distributions in �Í�C�
����� arenot restrictedto
� � ; they mustagreewith � on the first þ  R

pointsandtheothervaluesarefree.Theconditionfor feasibility of �C�
����� is Ý �; Å v >���;  ��þ  R ��� � Ì �ä� ,
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with � � Ì @8 R w´Ý �; Å v �P; . In the sequel,the notation �H��Æs7�7�� � denotesthe Kullback-Leiblerdistance

betweentwo distributionsand � � is the Poissondistribution with parameter� i.e., �!�Q�C>��
8#"ø²�$P��w���� �&%; ¶ .
The following theoremstatesthe large deviation principle for the sequenceof randomprobability

vectors
ÿ � .

Theorem 1: [4, Corollary 2.3 andTheorem2.5]

The sequenceof randomvectors
ÿ � satisfiesthe large deviationsprinciple with rate function' �C�
�����
8 �(� (� �_�ì�*) É&+ 0 ��, - 4 �H� � 7�7 � �u�����/.��C�
�����(�ì�0.1"	¯��3�32M�/"ö ���546"1°57(�ì�5"

The minimizing argument
�98 =:�Í�C�
����� is unique.In particular, for any set ;=< � � that is the closure

of its interior we have ���ì��!> � R� �����lNrT ÿ � =	;K[�8�w��ì�6.�T ' �C�
����� I �ä=?;K[]D @
B. The Large Deviation Principle for Estimation of the Number of Operating Sensors

The large deviation principle presentedearlier can be appliedto the estimator(4) if we specify the

constantþ andthe optimizationdomain ; that appearin Theorem1. The relative error of estimator(4)

canbe written as
®�� 8 `� RR w �Z�� � � 8 R w ÿ �vR w ÿ � � �� D

Thereadermight notethat the lastequalityholdsonly for rational � andthecorrespondingpairs �C5r�3��� ;
a rigurousstatementis easyto justify andwould just bring someunnecessarycomplications.

We are interestedin the asymptoticbehavior of the probability of the following eventswhen � is

large A ®�� � ÷�¸ R6B � A ®�� �"÷�ù R6B D
Sinceonly

ÿ �v and
ÿ � � appearin the formulaof relative error, we have þ$8 R . Theoptimizationdomains

denotedby ; in Theorem1 will bedenotedby ;$�C�
�3÷	� ; asbefore,we have ;$�C�
�3÷	�C< � � , but in addition

to the feasibility condition,all distributions in ;$�C�
�3÷	� satisfy a condition imposedon the performance
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bound.If ÷�¸ R , ;$�C�
�3÷	� is given by the distributions
� =D� % which satisfy� v  � �� � � Ì 8 R (12)� �� |! � � Ì � � (13)R w � vR w � � �� � ÷�¸ R D (14)

If ÷ßù R , ;��C�l�3÷1� is given by the distributions
� =E� % which satisfy(12), (13) andR w � vR w � � �� � ÷�ù R D (15)

We introducethe notation Fl�C�
�3÷	� for the large deviationsexponentof Theorem1, andexpressit in a

moreconvenientform :Fl�C�
�3÷	� @8o���6.�T ' �C�l����� I �ä=	;$�C�
�3÷	�­[�8o�_����TG�Ö� � 7�7 �!�M� I � =DHÜ�C�l�3÷1�­[i� (16)

with H��C�
�3÷	� @8=I - É&J 0 �K, L 4 �Í�C�
����� the set of discreteprobability distributions on non-negative integers,

that satisfy the performanceboundsconditions(14) and (15) for ÷�¸ R and ÷ ù R respectively, and the

conservation condition(11):H 8 A � I Ç � ;�8 R � � � �M� v � ÷ wÐ��R wÐ÷÷ � �Ç ; Å v > � ;�8o� B D (17)

The solutionof the optimizationproblem(16) canbe found usingLagrangemultipliers [12]. For conve-

nient evaluations,closedform lower andupperboundsfor the function Fl�C�
�3÷	� areobtainedin the next

section.The cases÷�¸ R and ÷�ù R will be treatedseparately.

C. Bounds on the large deviations exponent F
�C�l�3÷1�
As written before,the function F
�C�l�3÷1� is given by the minimizationproblemFl�C�
�3÷	�l8 �_���) ÉON 0 ��, L 4 TO�Ö� � 7�7 �!�u�­[l� (18)

where the domain H��C�
�3÷	� is given by the distributions
�

over non-negative integers that satisfy the

conservationconstraint(11) andtheboundson the relative errorof the estimator(14) and(15) for ÷�¸ R
and ÷ ù R respectively. Using the propertiesof the optimizationregion HÜ�C�l�3÷1� , we derive upperand

lower boundsfor the exponent,i.e., determine� 8 �C�
�3÷	� and � 8 �C�
�3÷	� suchthat� 8 �C�
�3÷	�C�PF
�C�l�3÷1�Q�R� 8 �C�l�3÷1��D
The upper bound on the exponent can be found by consideringa point

�S8 =TH��C�
�3÷	� and setting� 8 �C�l�3÷1� @8U�H� � 8 7�7 � �Y� . The choiceis given in Proposition1.
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Lower boundson the exponentfunction Fl�C�
�3÷	� are obtainedby enlarging the optimizationdomain

so that for the new domainsthe solutioncan be found in closedform. More exactly, we choosea new

domain H 8 suchthat HV<MH 8 andset � 8 �C�
�3÷	� @8��_�ì�) ÉGNXW �H� � 7�7 � �u��D
Although the cases÷$¸ R and ÷$ù R can be treatedtogether, we treat them separatelyin order to take

advantageof a simplified boundthat canbe obtainedfor ÷�¸ R ; the case÷�ù R is treatedin Proposition

2 andthe case÷�¸ R in Proposition3.

Here we introducesomenotationsthat will be usedin the propositionsthat follow. Obviously, the

distributions in H��C�
�3÷	� mustsatisfy the feasibility condition(13), which canbe written as� v  tR! � � � R w R! �
D (19)

For any valueof ÷ZY8 R the boundaryof HÜ�C�l�3÷1� given by the performancebounds(14) and(15) is� � 8 � ÷ � v  � ÷¦w R÷ D (20)

The domain for the pair � � vq� � � � is the domainwith boundsgiven by
� v  � � � R , (19) and (20).

This domainis representedin Fig. 3 for ÷K¸ R and in Fig. 4 for ÷�ù R . Its boundarydeterminedby the

performancecondition(20) is a segmentwith endpoints� � v/¿ � � � ¿ � and � � v\[ � � � [ � . Thesetwo pointsare

given by � v/¿ @8 R wÐ�  � � R! ÷  �� � ¿ @8 �Üw � �÷  � %÷�� ! ÷  ���� v\[ @8 R wÐ�  � � R÷  �� � [ @8 �Üw � �÷  � %÷���÷  ��� D
As mentionedbefore,the next propositiongivesan upperboundon the large deviationsexponent.

Proposition 1: We have the following upperboundon the exponent:Fl�C�
�3÷	�Q�R� 8 �C�
�3÷	���
with � 8 �C�
�3÷	�l8U�H� � 8 �C�
�3÷	�17�7 � �M���
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� vRR w � �� v/¿R w��

� �

n
� � ¿
�

�]� �Q��n+���^� ��� R �/�

Fig. 3. The optimizationregion for _G` and _�a , bdcDe .

� vRR w � �� v/¿R w��

� �

n
� � ¿
� �]� �Q��n+���^� ��� R �/�

Fig. 4. The optimizationregion for _G` and _�a , bdfDe .
and � 8 �C�
�3÷	��@8 � � 8v �1D1D1Dq� � 8g �3np�1D1D1DE�3np�1D1D1D�
� 8v @8 £ R w � h © � v , ¿  � h � v , [� 8� @8 £ R w � h © � � , ¿  � h � � , [� 8� @8 R w � 8v w � 8� w £ R w � h © � %h ��÷  ���� 8% @8 £ R w � i © � %h ��÷  �\�� 8g @8 � h � %h �  �\� D

DRAFT



18 SUBMITTED TO IEEE TRANSACTION ON SIGNAL PROCESSING, 2004@
Onecancheckthat the point

� 8
proposedbelongsto the optimizationdomain,with the pair � � 8v � � 8� �

on theboundaryof thedomain.Onecanconsiderinsteadthe simplervariant
� 8 8ï� � v , ¿¤� � � , ¿�� R w � v , ¿�w� � , ¿¤�3np�1D1D1D­
 , which givesa simplerexpression.However, this last choicewould give a tight boundonly

for small valuesof � , and it is quite uselessfor deriving approximative confidenceintervals for the

estimatorproposed.The boundgiven in the propositionis tight in a large interval (up to � Ú �� ) and

providesan excellentapproximationfor the confidenceintervals; thesearediscussedin the simulations

results- SubsectionV-B.

Introducethe notations: j� v � ¿ @8 R w � v/¿Íw � � ¿ � j� � ¿ @8 R w � � ¿j� �K, v � @8 R w:�!����n+��wk� ��� R � � j�!��, � @8 R wk� ��� R ��D
The following quantitiesdefinedwill be usedin Proposition2 and their significanceis explainedin its

proof : l� v @8 ��� R w«÷1�  ÷X"ø²*$P��w(���ø� R  �\�÷  �l� ��@8 � ����n+�  �!�Q� R ��w l� v andl� 8 , v @8 R w � ! w R!
l� � ð (21)m v @8 � v , [Üw � v , ¿ ð m �(@8 � � , [¹w � � , ¿z � @8 £

l� v�!�Q��n+� © @ × £
l� ��!��� R � © @ � (22)z�� @8 R w

l� �R wk� ��� R � �!�Q��n+��w £ R w � ! wbR!
l� � © D (23)

Proposition 2: If ÷�ù R , we have the following lower boundon the exponent� 8 �C�
�3÷	�C�PF
�C�l�3÷1�
where � 8 �C�
�3÷	� is given by

� 8 �C�
�3÷	�l8 �(((((� (((((� �<v >êî z � ù R� � >êî z � ¸ Ron 5qpÈz � ¸"n� L�rts �&u s >êî z � ¸ Ron 5qpÈz � ù"n �
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with �<v @8 l� vQ����� l� v� ����n+�  � R w l� vE�i����� R w
l� vR wv�!�Q��n+�� � @8 l� � ����� l� �� ��� R �  � R w

l� � �i����� R w
l� �R wv�!�Q� R �� Lwrxs �yu s @8 l� 8 , vQ����� l� 8 , v� ����n+�  l� � �����

l� ��!�Q� R �  � R w
l� 8 , v¦w l� � �i�ì��� R w

l� 8 , v¦w l� �R wk� ����n+�rw:�!��� R � DProof:seetheAppendix.
@

Proposition 3: For any �O=o� np� R � and ÷<¸ � 0à� ÌXz�{}| 0 · � 4à4�¥0à� · z�{}| 0 · � 4à4 , we have the following lower boundon the

exponent.In particular, the boundholds for all ÷ß¸ R D�n�~ ! R :� 8 �C�
�3÷	�l8 �(� (� � v/¿ß�ì��� ) ×����� 0 v 4  � � ¿������ ) � ���� 0�� 4  j� v � ¿ß�����M�) × � ���*��� × � >êî�� ����n+� � · ) � �� · ��� 0�� 4 ù � v/¿� � ¿ß�ì��� ) � ���� 0�� 4  j� � ¿��������) � ������� � oc������&�(>x�O� D
Proof:seetheAppendix.

@
NotethatProposition3 doesnot provide a lower boundfor all pairs �C�
�3÷	� . Althougha solutionsimilar

to the one given in Proposition2 can be given using an identical technique,the constraintimposedin

Proposition3 holdsfor mostpracticalsituations,the boundobtainedis tight andhasa relatively simple

expression.

Using the boundson the error exponent,we can study its behavior for small � , by taking the limits

of the bounds[7]. For ÷�¸ R , we have the following behavior of F
�C�l�3÷1� :�ì�ì�� > v Fl�C�
�3÷	�� � 8 ÷¦w R wÐ�ì����÷	�! ÷ @8��sD (24)

For ÷�ù R , the upperboundis identical :���ì�� > v Fl�C�
�3÷	�� � � ÷¦w R w��ì����÷	�! ÷ D
The lower boundobtainedherefor ÷�ù R is not tight (it gives �ì����� > v�� 0 �K, L 4�&� =«��np� ö � ). This canbe seen

in the simulationssection.

However, it canbeshown that (24) holdsin this caseaswell. The first stepof theproof is to compute

the limits when � f n for � Lwrxs �yu s Ñ � � and for �Ö� �98 7�7á�]�!����n+���^� ��� R ��� j� ��, v � �/� Ñ � � , with
�S8

definedafter

Proposition1. Both limits areequalto the RHS of (24). Then the result canbe extendedto the restof

the distributions of interest(thosethat can be lead to the minimum value) that lie on the boundaryof

the extendeddomainconsidered(

lH 8 �C�
�3÷	� , in the appendix,the proof of Proposition3).

Also, the simulationsrevealedthat if a certain performanceis required,then when the numberof

sensorsis increased,the ratio � necessaryto achieve a certain performancedecreases.In fact, in the

DRAFT



20 SUBMITTED TO IEEE TRANSACTION ON SIGNAL PROCESSING, 2004

simulationsmade,the remarkablerelationshold (

lN is the empiricalprobability):lN A ®�� � ÷�¸ R B ù�"ø²*$��ew(�vF
�C�l�3÷1�/��� (25)lN A ®� � �ä÷�ù R B ù�"ø²�$ ��w(�vFl�C�
�3÷	�/�QD (26)

This suggeststhat the right handside expressionthat usesthe exponentcould be an upperboundfor

the true probability N â ú�� � ÷ ã . If this is true, then by using the asymptoticbehavior of Fl�C�
�3÷	�Ü8� � �  �� �C� � � , with � definedin (24), a stronglarge deviationsresultwill follow. The main implication

of sucha result is that onecanachieve reliableestimationusingonly 5H8��_�t� �H�eîr����� samples,withîr����� f ö
.

V. SIMULATIONS AND NUMERICAL RESULTS

A. The Performance of Algorithms Presented in Section III

In this subsectionwe investigateby simulationstheperformanceof thealgorithmspresentedin Section

III. For eachsimulationthe total numberof ( operating) sensors� is fixed. The performancemeasure

usedis the confidenceinterval for the relative estimationerror. In figures,the

G
-axis representsthe ratio� @8 �� betweenthe lenght 5 of the vectorsampleand � . For a fixed �_=O��np� R � , ��� R , and for each

vector samplelength 5 , we determinedexperimentallytwo quantities ÷�[ (upperbound,“UB” in plots

legends)and ÷ ¿ (lower bound,“LB” in plots legends)suchthatlN A ®� � ¸ä÷�[«¸ R B 8o�]�lN A ®�� ù"÷ø¿�ù R B 8´�+�
wherewe denotedby

lN the observed empiricalprobability of an event.Thus,for given � , 5 and � , we

have lN A ®�� =Ð��÷ø¿P�3÷�[r� B 8 R w ! �]D
Theplotspresentedcanbeusedto determinethesizeof thevectorsamplenecessaryto achievea required

performance.

In Fig. 5 the performanceof the Good-Turing estimatoris comparedto the performanceof the ML

estimatorgivenby (2). For thesituationanalyzed,i.e., �»8 R n�n�n , R n�n�n�n Monte-Carloruns,and ��8onpD�n R ,
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the confidenceintervals for the two methodsare virtually identical.Other combinationsof parameters

showedthattheperformancelossby usingtheGood-Turingestimatorinsteadof theML oneis negligible.
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Fig. 5. ML vs Good-Turing; the performancedifferenceis negligible

For the histogramestimationcase,we consideragain �Î8 R n�n�n ; the sensorsbelongto � classes,the

ratios � 0 Ä]4� for }�8 R �1D1D1DE�^� aregiven in the vector �o�(8ï� npD R �3npD ! �3npD i �3npD��±
 .
In Fig. 6 arerepresentedonly theperformanceplotsfor }�8 R ( �a� R ��8 R n�n ) and }�8#� ( �|�]�W�
8#�]n�n ),

aswell astheperformanceplotsfor estimationof � . Theplotsrevealthattheperformanceof theproposed

estimatorsfor thenumberof operatingsensorsin eachclassis betterwhenthenumberof sensorsin each

classis larger. Also, one can seethat the performanceof the estimatorfor the “larger” classesis very

closeto the performanceof theGood-Turing estimatorof the total numberof samples.The performance

plots also reveal that the performanceof the estimator(7) basedon histogramscalingis slightly better

thanthe oneof the estimator(6) derived by applyingthe Good-Turing formula onceagain.

In the next examplethe numberof sensorsin eachclassvariesduring datacollection. In the setup

consideredeachsensorcanbelongto oneof � classes,and initially all sensorsare in class R .
The classof eachsensoris a Markov chain with � transientstatesand with one absorbingstate,

as representedin Fig. 7. Eachsensorcan changeits classin any time slot, but only by increasingits

classindex by one.The sensorswhich belongto class � can’t changethe classanymore.Eachsensor

changesits classindependentlyof theothersensorsandof the receptionprocess,with a fixedprobabilityJ v¹8��D  R n · g . This model can be a good approximationfor the variation of the remainingbattery
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Fig. 6. Histogramestimationusingestimators(6) - “GT” and(7) - “HS”
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Fig. 7. The Markov Processrepresentingthe variationof the classof onesensor

energy of the sensors;eachclasscorrespondingto a certaininterval for the energy. The randomnessof

transitionsbetweenclassesis createdby a MAC protocolwhich variesthe transmissionpower from slot

to slot (e.g.,function of the quality of the uplink wirelesschannel).

The total numberof sensorsis � 8 R n�n�n . Confidenceintervals for the estimationof the numberof

sensorsin classesR , � and � usingthe variantof the estimator(7) aregiven in Figs.8, 9, and10. It can

be observed that for the transientstatesR and � the relative error for estimationis not monotonicwith

the increaseof the numberof samples.This happensbecausewhen the time passesand more samples

arecollected,fewer sensorshave classescorrespondingto the transientstatesof the Markov chain.The

relative error cantake large valuesif the estimatedvariablesareextremelysmall.On the otherhand,for

class � that correspondsto the uniqueabsorbingstateof the Markov chain,the variationof the relative

error with the numberof samplesavailable is similar to the variationof the relative error for the total
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numberof operatingsensors,asexpected.

For the time-varying casewe representedonly the performanceof the estimatorbasedon histogram

scaling,but theobservationmadepreviously thattheestimator(6) hasa slightly worseperformanceholds

for time-varying classesaswell.
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Fig. 10. Histogramestimationfor time-varying classes;classcorrespondingto the absorbingstate5

B. Performance Bounds Using the Large Deviation Approximation

In Fig. 11 theconfidenceintervals for therelative errorof theestimatorarerepresentedfor �x8 R h n�n�n
and �Í8bnpD�n�n R . The way curves were obtainedwas explainedin SubsectionV-A. Threemore pairs of

curvesarerepresentedin Fig. 11, theelementsof a pair correspondingto the two cases÷�¸ R and ÷�ù R .
Thefirst pair is givenby thequantity ÷ obtainedusingthelargedeviationsformula �� ��������8�w
Fl�C�
�3÷	� .

Theothertwo pairsareobtainedin thesameway but usinginsteadof F
�C�l�3÷1� theupperandlower bounds� 8 �C�l�3÷1� and � 8 �C�
�3÷	� derived before,i.e., solving �� �ì�����_8tw0� 8 �C�
�3÷	� and �� �ì���l�_8�w0� 8 �C�
�3÷	� for÷�¸ R and ÷�ù R .
Onemight notethat for ÷�¸ R thecurvesobtainedusingtheboundson theerrorexponentareexcellent

approximationsto the curve obtainedusing the computedexponent.On the other hand,for ÷_ù R , the

curve obtainedusing � 8 is tight (if �Ðù"npD¡� ), while the oneobtainedusing � 8 is quite loosefor small� andreasonabletight for large � . Actually, it canbe shown that with the techniqueused( replacingthe

conservationcondition(11) with the equivalentcondition(19) for � � v±� � � � ), the bestlower boundon the

exponentis loosefor small � .

For the numericalresultsrepresentedin Fig. 11 the relations(25) and (26) mentionedin the end of

SectionIV hold: lN A ®� � � ÷�¸ R B ù�"ø²�$ ��w(�vFl�C�
�3÷	�/�Q�
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Fig. 11. Confidenceintervals for the performanceof proposedestimator. The way they wereobtainedis given in the legend.lN A ®� � �ä÷�ù R B ù�"ø²�$ ��w(�vFl�C�
�3÷	�/�QD
If theserelationsaretrue in general,thena stronglarge deviation resultwill follow.

VI. CONCLUSIONS

The estimatorof the numberof operatingsensorsbasedon the Good-Turing estimatorwas shown

to achieve a performancesimilar to the ML estimator. It can also be usedto solve more complicated

problemslike classhistogramestimation.Its simple expressionallowed us to perform a performance

analysisusingthe principle of large deviations.We provide closedform upperandlower boundsfor the

large deviationsexponent,which areusedfurther to characterizethe behavior of the exponentfor small
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� andto derive approximative confidenceintervals for the performanceof the estimatorproposed.

The large deviations analysisand the simulationssuggestedthat one can achieve reliable estimation

using only 5ä8¢�_�t� ���eîr���H� samples,with îr����� fæö
. In fact, the last statement(but not the large

deviation one) was alreadyshown in [13]. In contrast,under the samei.i.d. randomcollection model

with uniform distribution, the numberof samplesnecessaryto achieve a completecollection(with high

probability) is �j�ì���l�  �_����� . Thus,an estimationapproachcan reducedramaticallythe numberof

necessarysamples.

An accuratemodelingof a specificcommunicationsystemwould requirechangesin the basicmodel

consideredin this paper. An examplewasinvestigatedin [6], wherethe vectorsampleis collectedusing

a receiver with multi-packet reception(MPR) capability. For the samenumberof available samples,

the model mismatchintroducesa slight degradationof estimator’s performance.However, for a certain

requiredperformance,the MPR capabilityof the mobile accesspoint reducesdramaticallythe necessary

samplecollectiontime.

Finally, we notethat the proposedalgorithmsarenot restrictedto SENMA. For other typesof sensor

networks, for examplethe multihopad hoc sensornetworkswith gateway nodes,theproposedalgorithm

canbeeasilyimplementedat thegateway nodesor fusioncenter. However, theperformanceanalysisthat

dependson the i.i.d. randomcollectionmodelof SENMA may not apply.

APPENDIX

Proof of Proposition 2

Considerthe following domainlH 8 �C�l�3÷1�l8 A � I �Ç ; Å v � ;�8 R ð � � � � v � ÷ w�� R wÐ÷÷ � � v  R! � � � R w � ! B D
The differencebetween

lH 8 �C�
�3÷	� and H��C�
�3÷	� is that the conservation condition(11) in the definition

of HÜ�C�l�3÷1� is replacedby condition (19) derived for the pair � � v±� � � � . From the convexity propertyof

Kullback-Leiblerdistance[12], we know that the optimizing solution

l� 8
must be on the boundaryof

theoptimizationdomain.Taking into accountthepositionof the Poissondistribution with respectto this

domain(Fig. 12), in our case,the solutionmustsatisfy� � 8 � v � ÷ w�� R wÐ÷÷ D (27)

Moreover, if the first two elements� � v±� � � � of a distribution
�

aregiven, the distribution that minimizes�H� � 7�7 �Í�C���/� and the correspondingminimizedvalueareknown in closedform (for >�¸ R the elements
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BUDIANU, BEN-DAVID AND TONG: ESTIMATION OF THE NUMBER OF OPERATING SENSORS... 27� 8 , ; of the solutionareproportionalto � ���C>�� ). Thusthe optimizationprobleml� 8 8o¯±°3���_�ì�) É0£NXW �H� � 8 7�7 � �Y�
reducesto an optimizationproblemwith only oneparameter¤Ü=«� np� R 
 , that indicatesthe positionof the

pair � l� 8 , vZ� l� 8 , � � on theboundaryof thedomain.Thisoptimizationproblemcanbesolvedonly numerically.

A simpler boundcan be obtainedby replacing

lH 8 �C�
�3÷	� with a domainthat is not convex anymore,

but is the union of two convex domains.The domainthat containsthe solutioncanbe found by testing

onesimplecondition.The detailedstepsaregiven below; the domainsare illustratedin Fig. 12.

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥

¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦

§ § § § § § § § § § § § § § § § §§ § § § § § § § § § § § § § § § §§ § § § § § § § § § § § § § § § §§ § § § § § § § § § § § § § § § §§ § § § § § § § § § § § § § § § §§ § § § § § § § § § § § § § § § §§ § § § § § § § § § § § § § § § §§ § § § § § § § § § § § § § § § §§ § § § § § § § § § § § § § § § §§ § § § § § § § § § § § § § § § §§ § § § § § § § § § § § § § § § §§ § § § § § § § § § § § § § § § §§ § § § § § § § § § § § § § § § §§ § § § § § § § § § § § § § § § §§ § § § § § § § § § § § § § § § §§ § § § § § § § § § § § § § § § §§ § § § § § § § § § § § § § § § §

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

� vRR w � �� v/¿ l� vR w��

� �

n

l� �� � ¿
�

�]�!����n+���^� ��� R �/�

Fig. 12. The optimizationregion for the pair ©ª_ `}« _ a�¬ , b­fDe , detail.

Choose� l� v±� l� � � on the boundary(20) suchthatl� v  l� � 8U�!�Q��n+�  � ��� R ��D
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This givesthe solution l� væ8 ��� R w«÷1�  ÷X"ø²*$P��w(���ø� R  �\�/�÷  �l� � 8 � ����n+�  � ��� R ��w l� v±D
Considerthe following domain H 8 �C�l�3÷1� :

H 8 �C�
�3÷	�l8®H 8 , �q�C�l�3÷1�¤Õ¯H 8 , �]�C�
�3÷	���
with H 8 , � �C�l�3÷1��8 A � I � � � l� � � �Ç ; Å v � ;�8 R � � v  tR! � � � R w � ! � � v  � � �

l� v  l� � B �
and H 8 , �]�C�
�3÷	�l8 A � I � v � l� v � �Ç ; Å v � ; 8 R � � v  R! � � � R w � ! � � v  � � � l� v  l� � B D

The optimizationsolutionsover eachof domainsH 8 , � , H 8 , � provide the solutionsgiven in the text of

the lemma.

Theteston z � givenby (22) giveswhich of thedomainscontainstheminimum.As mentionedbefore,

given any point � � v±� � � � on the boundary(20), we know the optimizing distribution; the position of

this point can be parametrizedusing only one parameter, ¤«=´� np� R 
 . The derivative with respectto the

parameter¤ of the minimized Kullback-Leiblerdistance�Ö� l� �w¤§�17�7 � �M� can be computedand analyzed

easily( but thevalue ¤ for which it vanishescan’t be computedin closedform). The teston z � is a test

on the sign of the derivative mentionedfor ¤ correspondingto the pair � l� v±� l� � � is positive or negative;

this determineswhich of the two domainscontainsthe solution of the minimization problemover the

domain H 8 �C�
�3÷	�
The test on z � given by (23) is necessaryto assurethat once

l� � is fixed, the optimizing value of� v ( without any other constraints) doesnot fall outsideof the optimizationregion, i.e., the feasibility

condition(19) is satisfied.If this is not thecase,onecanchoosethevaluegivenby condition(19), value

denotedby

l� 8 , v . A similar discussion,but moredetailed,is given in the proof of Proposition3.

Proof of Proposition 3

As before,the lower bound is obtainedby finding a convex domain H 8 , H°<¢H 8 , and solving the

optimizationproblemover H 8 . The choicemadeisH 8 8²± � I Ç � ;¤8 R � � � �M� � , ¿¤� � v  R! � � � R w � !´³ D
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Denote � 8 @8o¯±°3���_�ì�) ÉONXW �H� � 7�7 � �Y�¥�
and � 8 �C�
�3÷	��@8t�_���) ÉON W �Ö� � 7�7 �!�u�
8U�H� � 8 7�7 � �Y�¥D

First, we needto checkthat �!� Ñ=EH 8 . This means�!��� R �µ� � � ¿��
or, �¶"ø²�$P��w���� �"� L · �  L Ì �   , which gives ÷�¸ ��� R  "ø²�$P��w����/�! � R wk"ø²�$P��w����/� D

A calculationof the RHS will give that for �a=a��np� R 
 the condition is true for all ÷K¸ R D�n�~ ! R , which is

enoughfor mostpracticalsituations.In this case,
� � , 8 8 � � ¿ , which simplifiesthe solution.

If thecondition
� v  �� � � � R w � � from thedefinitionof H 8 is ignored,thentheminimumof �Ö� � 7�7 �!�M�

is

� 8 �C�l�3÷1��8 � � ¿������ � � ¿� ��� R �  
j� � ¿������ j� � ¿j� ��, � D

The constraint
� v  �� � � � R w � � is irrelevant if the optimizing

� v , 8 belongsto the domain H 8 , i.e., :� v , 8 @8#� ����n+�ÒR w � � ¿R wk�!�Q� R � �M� v/¿ D
If the condition above is not satisfied,then we have

� v , 8 8 � v/¿ and the rest of the distribution is

determinedaccordingly, which givesthe first formula used.

The condition(to usethe first formula) is� ����n+�R wk�!�Q� R � ù � v/¿R w � � ¿
or, � �� � w ! �P÷  |! ÷  � ù R w �!�Q��n+�R wk� ��� R � @8O�
This is ÷�¸ � � � R w����Pw����! ��� R wÐ��� @8U·a�C�\��D
Onecanfind �ì�ì�� > v ·a�C���\w R� 8 Rh D
Thus,an approximative conditionfor small ÷ � R is ��ù h ��÷�w R � .
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