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Abstract
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We presentclosed-formboundson the large deviation exponentand characterizeonfidencantenals for

the estimator

Index Terms

sensometworks, sensotife-time estimation,nonparametri@stimation large deviation analysis.

EDICS: 2-ESTM (EstimationTheory and Applications),2-PERF(StatisticalPerformanceAnalysis and

Error Bounds),3-CNET (CommunicationSystemsand Networks).

tCorrespondingauthor

This work was supportedn part by the Multidisciplinary University Researchnitiative (MURI) underthe Office of Naval
ResearchContractN00014-00-1-0564and Army ResearchLaboratory CTA on Communicationand Networks under Grant
DAAD19-01-2-0011 .Part of this work was presentedt the Asilomar Conferenceén Oct 2003and ICASSPin May 2004.

DRAFT



2 SUBMITTED TO IEEE TRANSACTION ON SIGNAL PROCESSNG, 2004

. INTRODUCTION

A. The Problem and Operation Setup

The large scalesensometworks may be usedin military andcivil applicationsto retrieve information
from large and possiblyunaccessiblareas.In suchnetworks the numberof operatingsensorsan vary
with time dueto batteryconsumptiorandexternalfactors.In mary casesthe densityof operatingsensors
may affect significantly somenetwork operationssuchasrouting, mediumaccessandalsoinformation
retrieval and processingThus knowing the numberof operatingnodesof a sensornetwork is crucial
to network operationaswell asnetwork maintenancekor instancean accurateestimationof operating

sensordacilitatesthe decisionto deploy new sensors.

Besidesthe numberof operatingsensorspne may also be interestedin other quantitiessuchasthe
distribution of the enepgy availableto eachsensarSuchinformationallows the estimationof the life-time
of the sensometwork and adjustingtransmissiorstratgjiesaccordingly A closelyrelatedproblemis to
estimatethe numberof sensordhat have certainattributes,say having temperaturaneasurements an
interval of interest[T1, T3]. This alsogeneralizeso the problemof estimatingclasshistogramof sensors

observingdifferentquantities.

We considerthe problemof estimatingoperatingsensoraindera specialsensometwork architecture:
SEnsorNetwork with Mobile Access(SENMA) [1]. A key featureof SENMA is the presenceof the
mobile accesgoints (APs) that have high processingpower and act as mobile basestationsfor sensors,
seeFig. 1. In SENMA, the sensoramay transmitthe collecteddatato the mobile accesgointsin the
form of paclets,and eachpaclket may containthe ID of the transmittingsensorIf a classhistogramis
required,thenthe datapacletswill includethe quantity of interest,besideghe sensorD. In Fig. 1, for
example,eachpaclet hasthe field “EL” (enegy level). We assumea randomaccessprotocol, suchas
slotted ALOHA [2], by which pacletscollectedby the mobile APs are asif they weredravn randomly

from the sensoffield.

A simple approachis to schedulethe transmissiorof eachsensorand countthe numberof sensors
obsened. Besidesthe complicationsof scheduling this methodrequiresa thoroughobsenation of the
network, at leaston the order O(NN) of the numberof operatingsensorsFor wirelesssensometworks
with unreliablelinks, paclet lossis inevitable, and retransmissiongsire necessaryrFor sensometworks
with enegy constraintssucha brute force approachdoesnot scalewell with the size of the network. If

arandomcollectionis used,and N is estimatedoy countingthe numberof distinct sensorobsened, a
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Fig. 1. The SensorNetwork with Mobile AccessPoint; the paclet structurecontainsan ID field andan EL “Energy Level”

field.

highernumberof transmissionspn the orderof O(N log N), is required. Whatis neededs a technique

that provides an accurateestimatebut requiresfar lessnumberof transmissions.

B. Summary of Results

We estimatethe numberof operatingsensordy exploiting statisticalpropertiesof the obsened data.
We proposean estimatorbasedon the Good-Turing estimatorof the missingmass—aechniqueinvented
by Turing in the secondworld war while trying to breakthe Enigmacode.Within the contet of paclet
transmissionin SENMA, the so-calledmissingmassis the conditionalprobability that, given a vector of
obsened sensorlDs (vector sample),the newly receved paclket comesfrom a new sensor The Good-
Turing nonparametri@stimator3] is the bestknown estimatorfor the missingmassof a randomsample.
By assumingthat the samplesare independentidentically distributed (i.i.d.) with uniform distribution,
we expressthe populationsize asa function of the missingmassandderive an estimatorfor the number
of operatingsensorsThis estimatorhasa simpleexpressiorandachiezesa performancesimilar to that of
the maximumlikelihood (ML) estimator It canbe appliedfurtherto the estimationof classhistograms;
two ways for estimatingfixed and time-varying classhistogramsare proposedand investigatedhrough
simulations.

Theperformancef the estimatotlis analyzedusingthe theoryof large deviationsfor occupang models
developedrecentlyby Dupuis,NuzmanandWhiting in [4]. This approachprovidesa characterizatiormf
the asymptotichehavior of the estimatomproposedwhenthe numberN of operatingsensorss very large

andthe sizeof the vectorsampleincreasegroportionalwith N with a fixedratio 5. Thelarge deviations

This correspondso the classicalcouponcollection problem.
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exponent,however, canonly be obtainedby solving a numericaloptimizationproblem.For a corvenient
performancevaluationandgaininginsightsinto the corvergencebehaior, we provide closed-formupper
andlower bounds,andusethemto derive approximatve confidencentervals for the relative error of the
estimator The simulationsshow thatthe confidenceantervals derived are accurateapproximationgor the

performanceof the estimator

C. Related work and organization

The Good-Turing nonparametricestimatoy describedfirst by Good [3], can be usedto estimate
probability distributions from datasampleshut it works the bestfor estimatingthe probability of those
elementghat did not appeayi.e., the missingmass.The applicationof Good-Turing algorithmis quite
broad[5], but the useof Good-Turing algorithmfor estimatingthe numberof operatingsensorsvasfirst
presentedn [6] with an abbreiatedanalysisin [7].

The analysisof the Good-Turing algorithm is much more challenging.The recentwork by Dupuis,
Nuzman,and Whiting [4] on the large deviation principle for the generaloccupang problemformsthe
basisof our analysisof the proposedestimator One canalsopursuethe alternatve frameavork developed
by McAllesterandSchapirg8] in which confidencentenalsfor the Good-Turing nonparametriestimator
are derived. For estimatingthe missing mass,the width of an e-confidenceinterval is upperbounded
by % + 2log (3?”) 210%1&, (n beingthe numberof available samples)which givesa boundon the
cornvergencerate of the estimator While this boundis generalandapplicableto casesvhenthereceved
samplesarenot i.i.d., it cant be appliedstraightforvard to the accurag of the resultingapproximation
of N, especiallywhenthe samplesizeis muchsmallerthan N.

In [9], Esty comparedhe asymptoticperformanceof the Good-Turing estimatorof the missingmass
andthat of the ML parametricestimator It wasshowvn (usingcombinatorics}Yhatthe differencebetween
theirasymptotigperformancavassmall. This suggestshat,for thei.i.d. model,the Good-Turing estimator
can be usedto derive an estimatorof the total numberof sensorswith “good” asymptoticproperties.
However, theasymptotiaesultsof [9] obtainedfor the Good-Turing estimatorof the missingmasscannot
be extendeddirectly to our problem.In subsectionll-C we will justify why the resultsof [8] and[9]
do not apply directly to our problem.

Finally, we shouldmentionthatin our paperwe only usethe Good-Turing estimatorin its simplest
variant. Many improvementshave beenproposedSee,for example,the paperby Orlitsky, Santhanam,
and Zhang[5] wheresmoothedvariantsof the Good-Turing estimatorare usedfor analysis.

The paperis organizedas follows. The model and the motivation behindour approachare discussed
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in Sectionll. The Good-Turing basedestimatorand its applicationto class histogramestimationare
presentedn Sectionlll. The performanceanalysisbasedon the large deviationstheoryis presentedn
SectionlV. The simulationsand numericalresultsare presentedn SectionV. We concludethe paperin

SectionVI. Someproofsare deferredto the Appendix.

Il. THE MODEL

The sensometwork considerechas N operatingsensorseachhaving an ID thatis an elementof set
N, with |[N| = N. The mobile AP collectsn paclets,eachof themcontainingthe ID of the transmitting
sensaorWe denoteby X; € A the ID in the i-th receved packet and by X = (X1,...,X,) thevector
sampleof recevved IDs. The unknovn N is assumedo remainconstantduring collection.

For SENMA using a randomaccessrotocol suchas ALOHA, paclet collection can be modeledas
ani.i.d. samplingwith uniform distribution, i.e., in eachtime slot the receved paclet canbe from ary

of the sensorawith equalprobability:
A
Ve eN : p, =PX; =z] = —. (1)

This modelis identicalto an urn modelwith replacementNote that someof the receved paclets may
comefrom the samesensor

In a practical setup, the i.i.d. samplingassumptioncan be justified as follows. First, the access
point (AP) broadcastsa requestfor the information needed- i.e, want to know how mary sensors
arefunctional. Eachslot, eachoperatingsensofflips a coin to decideon transmitinga paclet in thatslot.
The probability of transmissioris the samefor all sensorsandis kept low enoughto avoid collisions
(with high probability). Also, we assumethat the probability of AP detectingcorrectly a transmitted
paclet is the samefor all sensorsTheseconditionsare reasonabldor sensometworks becausdahe data
is transmittedat very low datarates,andjustify thei.i.d. samplingassumption.

For cornvenience,we introducehere somenotationsthat will be usedlater The vector samplemay
containmultiple paclets from the samesensor Therefore,we denote$ asthe setof receved (distinct)

IDs
S2{zeN:Tke{l,. .. n}X,=1)

whosesize S = |§| representshe total numberof (different) sensorsobsened. For the obsered vector
sampleX, definethe multiplicity functiontx : N' — N, wheretx(z) givesthe numberof samplesin

X equalto z. Using the function tx, we partition 8§ accordingto the numberof timesan ID appeardy

DRAFT



6 SUBMITTED TO IEEE TRANSACTION ON SIGNAL PROCESSNG, 2004

denoting
S 2{zeN:tx(z)=k} , Vk=0,...,n.

Note that the setsS; dependon the obsered sampleX, thus they are random.We use the notation
Sk 2 |Sx| for the sizesof the setsdefined.Therefore,Sy EN-§ representshe numberof operating
sensorghat are not in the currentvector sample.The problemis to estimateN from X. Since S is
known, this is equivalentto estimatingSy, the numberof hiddenoperatingsensors.

Slightly more complicatedis the classpartitionmodel Supposehat the setof sensords partitioned
into classesandeachsensortransmitsin eachpaclet its classindex (besidedts ID). For example,each
classcan containthose sensorswith available enegy in a specific interval; we want to estimatethe
numberof (operating)sensordan eachclass.Assumethat the classof eachsensoris fixed during data
acquisition,andlet C denotethe total numberof classesand¢(z) the classof sensorz. Denoteby N(y)
the numberof sensorghat belongto classy. For eachclassy = 1,...,C, we defineX(y) asa vector

madeof thoseelementsof X belongingto classy, andthe corresponding (), S(¢) :
S(p) 2 {zeN:Tke{l,...,n}st. Xp=m, ¢(Xs) =0}

A

= [8(o)l-

We male the extra assumptiorthat C < min(n, N) so that, with high probability S(¢) > 1, V.
This assureghat all classesappearin the currentvector sampleso that we don't needto estimatethe
total numberof existing classesin this setup,the problemis to estimatehow mary sensorsarein each
class,i.e, the histogramvectorN = (N(1),...,N(C)) (Fig. 2). In Fig. 2, in eachbar, the lower part
representghe obsered percentagef the nodesin eachclassand the upperpart the hiddenone. The
leftmost bar representghe percentagef sensorghat are not operating,and thus are assumedo have
zeroenegy available.

In the sameway as above, for eachk and ¢, the setS,(¢) containsthoseelementsthat belongto

classy andappearin X exactly k& times
Sk () é{xE./\f:tx(ac) =k, ¢(z)=¢} , Vk=0,....,n, Vo=1,...,C,

A
and Si(¢) = |8x()]-

If the classof eachsensoris determinedby its available battery enegy, this modelis realistic only
if the battery consumptionduring the collection of the samplevector X is ngjligible so that the class

of eachsensorcanbe consideredixed and batterylevels do not affect the transmissiomprobabilities.A
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Fig. 2. The histogramof enegy available to sensors.The sensorsthat are not operatingare consideredto have 0 enegy
available ( the first bar). The figure is illustrative (is not the resultof a simulation).

moregeneralmodelin which the classof eachsensorcanvary during datacollectionwill beintroduced

in subsectiorll-D.

1. ESTIMATION OF THE NUMBER OF OPERATING SENSORS AND CLASS HISTOGRAMS

A. Motivation: The Maximum Likelihood Estimator

The Maximum Likelihood (ML) estimatorwould be a naturalchoice.Becausethe obsenation space
N is not known in adwvance,the ML estimatormustbe basedon the vector[Sy, ..., S,] (seeeg.,[10]).

Denoteby {Y1,...Ys} the S distinctelementsof A that appearin the vectorsampleX. We have

(s, $o.. )( n )
P[[S,...,Su]|N 2L 22eont
(151 V] Nm o \tx (1) tx(Y2) - tx(Ys)
_ N! ( n )
N Sl'SQ'Sn'(N—S)'Nn tx(Yi) tx(Yg)---tx(YS) ’
which gives
o N!
Ny = arj%;rgax]l”[[Sl,...,Sn”N] :ar]%;rfgax NN S) (2)

The above optimizationdoesnot have a closedform solution. To performthe searchwe needan upper

boundon N,, . Taking the derivative with respecto N of the logarithm of Uk 7, We obsenre that

N7 (N-3)!
the deriative is negatve for N > % which givesan upperbound.If n = S theneachsamplein the
collectionis new andthus N > n. Therefore the optimizationproblemabove canbe solved numerically

and, in this case the solution can be obtainedeasily
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For histogramestimationthe ML solutionbasedon the vectors[Si(¢),...,Sn(®)], ¢ =1,...,C,is

given by

C

\ = ar maxi N(SD)'
N = argmax 7 11 e s

This problemrequiresa C-dimensionalsearch,which is considerablyharderthan estimatingN only.

Moreover, in both caseshesideghe difficulty associatedavith the numericalevaluation,the ML solutions
give little insightinto the problem,sincethe analysisis hard,if notimpossible.

We notethat the proposedestimatorof the numberof sensordasedon the Good-Turing estimatorof
the missingmasshasthe performancecloseto that of the ML estimatoy but its simple formulais easy

to implementandanalyze.

B. Background: the Good-Turing estimator

Considera finite or countableset A/, a probability distribution P on this set,and a sampleX =
(X1,...,X,), where X; € N arei.i.d randomvariableswith distribution P. As before,for z € N,
denotep,, 4 P[X; = z]. Note that P neednot be uniform nor AV finite.

Recall that, for eachk, the set 8, is composedof all the elementsof A that appearin the vector
sampleX exactly & times. Now we define P, to be the probability that the next sample,drawvn (i.i.d.)
with distribution P, belongsto setS§y,

P2 > pe = P[Xnp1 € 8k[X] = Pltx (Xnp1) = kIX].

€8y
For £ = 0, P, is the probability that the next obsened sample X,,.; is new, i.e, X,.1 € 8. The

probability Py, is called the missingmassand1 — P, the coverageof the sampleX. The probabilities
P, dependon the sampleX, thusthey arerandomvariables.
The following estimatorfor the missingmass known asthe Good-Turing estimatoy was proposedn

[3]

B = 5 (3)
n

The missing massis estimatedusing the numberof elementsthat appearin the sampleexactly once.
Someintuition aboutthe Good-Turing estimatotis givenby its behaior in someextremesituations First,
if all n elementsof X aredifferent, this meansthat the samplesare drawvn from a very large collection,
andit is likely thatthe next samplewill be new aswell. The estimatorgives P, = 1. On the otherhand,
if all elementsof X appearat leasttwice, this suggestghat the collectionis complete.The estimator

gives By = 0.
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C. Estimation of the Number of Operating Sensors and Class Histograms

The Good-Turing estimatorcanbe usedto estimatehe numberof operatingsensorsnderthe uniform

distribution assumptionthe missingmassis given by

S
Pp=1-2.
0 N

Using the estimatedvalue of P, in (3), we have the following estimatorfor N:

N S S

= — = : 4
1-P 1-% )

n

The relative error of this estimatorcan be written as

‘N—N‘_ |Py — By

N 1— %

n
This formula explains why the resultsobtainedfor the performanceof the Good-Turing estimator(the
numerator)cant be applieddirectly in our case.The resultsof [8] and[9] areonly for the numeratorof
the relative erroron N. In our case,the denominatolis lessthan one and cantake very low valuesfor
small samplesyesultingin anincreaseof the error Moreover, thereis no guaranteahat the numerator
and denominatorare independentA study of the propertiesof the denominatorand of the correlation
betweenthe two termswould be needed.

The estimationapproachcan be usedfurther for estimationof classhistogramsFor eachclassy, its

missingmassis the probability that the next sampleis new andit belongsto classy

Py(p) = P{Xni1 &8, ¢(Xny1) = ¢ |X}. 5)

The Good-Turing estimatorcan be usedto estimatethe missingmassfor eachclassseparately

5 _ S1(p)

Po(p) n

The formula above can be justified asfollows. We label all thoseelementsof A thatarenot in classy

with a new ID y, and,consequentlythe new spaceof IDs N('p is given by :
Ny & gy Ufo € N g(a) = ).

If the vector sampleX containsat leasttwo elementsthat do not belongto classy, then,taking into
accountthe relabeling,the numberof elementsthat appearin X only onceis equalto S;(y), andthe

formula given beforefollows.
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To estimatethe numberof sensordn eachclass,N () = S(¢) + So(p), we usethe relation Py () =

So(¢) | andthe estimatesV and Py (y) obtainedpreviously to getSo(¢) = Po() N, andfurther N () =

S() + So(¢). We obtainthe estimatorNg (Good-Turing):

S

Nor () = S(p) + S1(0) — 5

(6)
A differentestimatorcan be obtainedby assuminga histogramscalinglaw:

S(e) , No)

S N
In otherwords, it is assumedhat the proportion of elementsfrom a classthat appearin the vector
sampleX is the sameasthe proportionof the elementsf that classin set /. Substitutingthe unknovn
guantitiesby the estimateswe have

M:N(w)
S N

This givesthe following estimatordenotedV ns(p) (histogramscaling):

St Sy

Nis(e) = S(0) +S(0) =g = 75

(7)

We'll seein the simulationssectionthat the histogramscalingestimatorhasslightly betterperformance
than the one derived previously by applying the Good-Turing formula to estimate Py(y). For both
estimatorsjt canbe verified easilythat y°, N(¢) = N.

A third possibility would be to estimateN (¢) for eachy by usingformula(4) for the elementof the
respectie classy (andthusignoring all elementsof X that are not in classy). It canbe checled that

the performanceof this estimatoris muchworsethanthe othertwo givenin the currentsection.

D. Estimation of Time-Varying Class Histograms

In this sectionwe modify the estimatorgproposedoeforeso that they can be usedfor the estimation
of time-varying classhistogramsin the setupconsideredihe classof eachsensorcanchangeduringthe
collectiontime. It is assumedhowever, that the uniform distribution of receved IDs (1) still holds,i.e.,
it is not modifiedby the classchangingprocessThis assumptioris suitableif the classof eachsensolis
determinedy a quantitymeasuredby the sensorHowever, for estimationof the availablebatteryenegy,
the assumptiorholdsonly if the sensorgdo not modify their transmissiorstrat@y as a function of the
available enepy; also, the collectiontime is assumedhort enoughso that the variation of the number

of operatingsensor<an be neglected.
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If the classesf sensorschangein time, we usean upperindex to show the variationin time of the
quantitiesinvolved. For example, denoteby ¢(%) () the classof sensorz in time slot 5. The classof
eachsensoiis fixed during onetime slot, andthe paclet receved in oneslot i containsthe classof the
transmittingsensorin the currentslot 1. The way in which the classof eachsensorchangesn time is
assumedknown. This meansthat for eachof the sensorsobsered,Vz € 8 andVy € {1,...,C} we

know

P{¢"* ) (z) = o|X, @}.

The conditional probabilities given above dependon the systemcharacteristicsSome examplesare
discussedater in this sectionandin SectionV-A.

For eachclassy we wantto estimateN (1) (), the numberof sensorsn classy in time slotn + 1.
Throughoutthis sectionit is assumedhat the estimationis donebasedon the vector sampleX with n
elementsand on the correspondingectorof received statesd 2 (¢ (X;), 2 (Xa), ..., ¢™ (X,,)).

In the caseof time-varying classesthe formula (5) of the missingmassof classy becomes
P(0) 2 P{Xp41 €8, 6D (Xir) = 9 X} (8)

The assumptiorthat the uniform distribution of receved IDs is fixed simplifies the problemgreatly:
one could usethe previous methodsby substitutingthe fixed setsS(¢) with the correspondingsetsat

timen + 1, i.e,, with 82”“)(90), definedas
(D)) & {xEN tx(z) = k, ¢V (z) :(p} . Vk=0,...,n, Vo=1,...,C.

Note that 8,&"“)(@) is a subsetof 8, i.e, is composedof elementsthat appearedn sampleX (that
hasn elements)However, sinceone elementz € A/ may have differentclassesn differenttime slots,
in generalthe classof eachz € § is unknowvn at time instantn + 1, thusthe setsS,(C”“)(gp) are also
unknown.

Our approachis to usethe estimators(6) and (7) given in the previous sectionby substitutingthe

quantitiesS () and Sy () with estimatesof S*+1) () and S§"+1)(<p), respectrely. We use:

S0 () 2 ESMD ()X, 8] = 3 P{¢™) (2) = ¢[X, 8}, ©)
TES

A(n A n n

$ () 2 ESTTY (9)1X, 8] = Y 1= PL87 ) (2) = ¢IX, 8). (10)
€S

Since the expressionsabove are rathergeneral,we will seehow they apply in a couple of special

situations.
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First, if for eachz € § the class¢(™*1 (z) canbe determinedexactly, i.e., ("D (z) = f(z; X, @),
thenthe setssg”rl) (¢) canbe determinedexactly andthe estimatorS(+1) () givesthe exactvalue of
ST+ ().

A secondspecialcaseis whenthe classof eachsensorchangesndependentlyof the classof other

sensorslf for eachsensorthe classevolution processis Markov, thenthe probabilitiesP{ ¢+ (z)

e

o|X,®} usedin (9) and (10) dependonly on the time slot of last apparitionof z in X, ipeq(x)

max{i : X; = 2}, andthe classof = at that moment,¢(ime=(2)) (z):

P{" ) (@) = ¢|X, 8} = P{" D (@) = plimaa(), 7o) (@)}

The lastexpressioncanbe determinedusingthe transitionmatrix of the Markov chain.Suchan example
is analyzedin the simulationssection.

A final commentis aboutthe corvergencepropertiesof the two estimators(9,10). If the numberof
classesds finite and the classof eachsensorchangesndependentlyof the classof other sensorsand
if the collectionis donesuchthat S — oo, andS; — oo respectiely, thenthe cornvergenceof the two
estimatorscan be analyzedusing a form of the stronglaw of large numbers[11, Corollary 7.4.1, p.
214]. If the varianceof the quantitiesto be estimatedgoesto infinity, the Lindebeg-Feller centrallimit

theorem[11, Theorem9.8.1,p. 315] canbe appliedto derive more preciseresults.

IV. A PERFORMANCE ANALYSIS BASED ON THE THEORY OF LARGE DEVIATIONS

In this sectiona performanceanalysisof the Good-Turing-basedestimatorfor i.i.d. samplingmodel
is done.The analysisis basedon the theory of large deviationsfor occupang problemsdevelopedby
Dupuis,NuzmanandWhiting in [4]. We useconfidenceantenalsfor therelative errorto characterizéhe
performancef the estimator Choosinganintenal (ci,c2), ¢1 <1 < cq, We investigatethe variation of
the probability that the ratio % falls outsidethis interval with the numberof sensorsV andthe number
of samplesn. Our analysisis targetedto the casein which the numberof samplesis relatively small
comparedo the total numberof sensorsj.e,, , for theratio n/N sulunitary

The large deviationsapproachs motivatedby the complicationsassociatedvith the analysisof exact
combinatorialexpressions Furthermore thanksto the large numberof sensorsthe asymptoticresults

canpredictthe performanceof the system.

A. Large Deviations Asymptotics for Occupancy Problems - The framework of [4]

Our presentatiorstartswith a shortovervien of the frameavork andresultsof [4]. In [4] the occupang

problemis explainedusingurns and balls. The numberof operatingsensorscorresponds$o the number
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of availableurns,andthe numberof available samplego the numberof balls. Therearen ballsthatare
thrown (one by one)in N urns,eachball falling in ary of the urnswith equalprobability The number
of ballsin anurn correspondgo the numberof pacletsreceved from a sensor

Introducea constants, andconsidern = SN |. Fix aninteger I > 0, andfor i = 0,..., I denoteby

A S;
Pf:ﬁ

the fraction of urnsthat containexactly ; balls (or sensorghat appear: timesin the currentsample),

andby

I
Y 21-30ry
i=0
thefractionof urnsthatcontainmorethan balls (or sensorghatappeamorethan’ timesin the current

sample).Thus
r¥ 2y, oy, vy, Y]

is arandomprobability vectorthatspecifiegshe occupang of theurnsafter | 3N | ballshave beenthrown.

The vectorT'V takesvaluesin the spaceof probability vectorson I + 2 points

I+1
YERM?: 4, >0V), 0<j<T+1; Y y=1
j=0

Q2

The behaior of the randomvectorr'V dependsn theinitial conditions,i.e., theinitial distribution of
ballsin urns.Emptyinitial conditionsmeanghatall urnsareinitially emptyi.e, {T'(0) = 1,TY(0) =0,
Y. (0) = 0}.

The large deviationstheory for occupang problemscharacterizeshe behaior of the randomvector
I'N when N — oo while g is constantandn = [3N]. A large deviation principle (LDP) for the
randomvectorT'V is statedby [4, Corollary 2.3]. Furthermorefor the caseof emptyinitial conditions,
[4, Theorem2.5] givesthe rate function in a corvenientform. To presentthe large deviation principle
we introducefirst somemore notations.

For eachdiscreteprobability distribution w € €y, definethe set F(3,w) to be the setof all discrete
distributions v on the non-n@atve integers satisfyingy; = w; for ¢ = 0,...,7 and the constraint

(consenration)

S iy = 6. (1)
=0

Note that the distributionsin F (3, w) arenot restrictedto Q; they mustagreewith w onthefirst I + 1

pointsandthe othervaluesarefree. The conditionfor feasibility of (3, w) is Zfzo iw;+ (I +1)wry < B,
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with wr4 21 ZLO wj. In the sequel,the notation D(P||Q) denotesthe Kullback-Leiblerdistance
betweentwo distributionsand?P; is the Poissondistribution with parametefs i.e., Pg(i) = exp(—ﬂ)f.—:.
The following theoremstatesthe large deviation principle for the sequenceof random probability
vectorsT'V,
Theorem 1: [4, Corollary 2.3 and Theorem2.5]
The sequencef randomvectorsT? satisfiesthe large deviations principle with rate function
min,ep(gw) D(V|[Pg), if (B,w) is feasible
J(B,w) =
00 otherwise
The minimizing agumenty* € F(5,w) is unique.In particular for ary set A C €2y thatis the closure

of its interior we have

lim — log P{TN € A} = —inf{J(B,w) : w € A}.
N—oo N

B. The Large Deviation Principle for Estimation of the Number of Operating Sensors

The large deviation principle presentecearlier can be appliedto the estimator(4) if we specify the
constant/ andthe optimizationdomain A that appeatin Theoreml. The relatve error of estimator(4)

canbe written as

~

N § 1 1-T¥
N N S N N1
NON1-{E 1-TY

Thereademight notethatthe lastequalityholdsonly for rational 3 andthe correspondingpairs (n, N);
a rigurousstatementis easyto justify andwould just bring someunnecessargomplications.

We are interestedin the asymptoticbehaior of the probability of the following eventswhen N is

Noesab, IV ooy
N=¢ , NS¢ .

Sinceonly 'Y andT'¥ appeaiin the formulaof relative error, we have I = 1. The optimizationdomains

large

denotedby A in Theoreml will be denotedby A(S, ¢); asbefore,we have A(S,c) C Q4, butin addition

to the feasibility condition, all distributionsin A(g3, c) satisfy a conditionimposedon the performance
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bound.If ¢ > 1, A(B,¢) is given by the distributionsy € R® which satisfy

Y+v+yme = 1 (12)
Mn+2ny < B (13)
ke ST (14)
1- M3
If ¢ <1, A(B,c) is given by the distributionsy € R?* which satisfy(12), (13) and
1= N < c<l, (15)
1—- iV

We introducethe notation J (g3, ¢) for the large deviationsexponentof Theoreml, and expressit in a
more corvenientform :

)2

J(B,¢) = inf{T(B;w) : we A(B,c)} =min{D(v[[Pg) : 7€ F(B;c)}, (16)

with F (8, c) 4 Uwea(s,e) F(B,w) the setof discreteprobability distributions on non-nejative integers,
that satisfy the performanceboundsconditions(14) and (15) for ¢ > 1 andc¢ < 1 respectrely, andthe

conseration condition (11):

f={7:2%=1, M 270%—[3?, Zm:ﬁ}- 17)
1=0

The solutionof the optimizationproblem(16) canbe found using Lagrangemultipliers [12]. For corve-
nient evaluations,closedform lower and upperboundsfor the function J(3, c) are obtainedin the next

section.The casesc > 1 ande¢ < 1 will be treatedseparately

C. Bounds on the large deviations exponent J(3, ¢)

As written before,the function J(4, ¢) is given by the minimization problem

J(B,c) = ,Yerg%g,c) {D(YIPg)}, (18)

where the domain (g3, c) is given by the distributions v over non-ngatve integers that satisfy the
conseration constraint(11) andthe boundson the relative error of the estimator(14) and(15) for ¢ > 1
andc < 1 respectiely. Using the propertiesof the optimizationregion F(g, c), we derive upperand

lower boundsfor the exponent,i.e., determineD*(g, c¢) and D, (3, c) suchthat

D*(,B,C) S J(ﬁ,C) S D*(,B,C)

The upper bound on the exponentcan be found by consideringa point v* € F(8,¢) and setting

D*(B,¢) 2 D(v*||Pg). The choiceis givenin Propositionl.
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Lower boundson the exponentfunction J(3, c) are obtainedby enlaging the optimization domain
so that for the new domainsthe solutioncan be found in closedform. More exactly, we choosea new

domainF, suchthat F C F, andset
D,(8.¢) £ min D(y||Ps)
NV YEF. 7 Bl

Although the casesc > 1 andc¢ < 1 can be treatedtogethey we treatthem separatelyin orderto take
adwantageof a simplified boundthat can be obtainedfor ¢ > 1; the casec < 1 is treatedin Proposition
2 andthe casec > 1 in Proposition3.

Here we introduce somenotationsthat will be usedin the propositionsthat follow. Obviously, the

distributionsin F (3, ¢) mustsatisfy the feasibility condition (13), which canbe written as

1 1
Yo + 5’71 >1- 55 (19)

For ary valueof ¢ # 1 the boundaryof F(g, c) given by the performancebounds(14) and(15) is

m =Lyt (20)
C C

The domainfor the pair (vg,71) is the domainwith boundsgiven by vy + v1 < 1, (19) and (20).
This domainis representedh Fig. 3 for ¢ > 1 andin Fig. 4 for ¢ < 1. Its boundarydeterminedby the

performancecondition (20) is a segmentwith endpoints(yor,y1z) and (v, yiv). Thesetwo pointsare

given by
o 2 1=+ B
nr 2 ﬁ—ﬁ;+%
o 2 1=+ 6
o 2 ﬁ_ﬁ;*c(cﬂ-iﬁ)'

As mentionedbefore,the next propositiongives an upperboundon the large deviations exponent.

Proposition 1: We have the following upperboundon the exponent:
J(B,c) < D*(B,c),
with
D*(B,¢) = D(v*(8,)||Pp),
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g

V1L

1-8 o 1-% 1 Y0

Fig. 3. The optimizationregion for vy and~i, ¢ > 1.

!
p
P0), Ps (1
YiL
0
1-8 yr 1-8 1 Yo

Fig. 4. The optimizationregion for vy and~1, ¢ < 1.

and
* A * *
’Y(/B,C) = [707""’7410"",07"']
« A B B
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Yo ( 6)70,L+670,U
« A B B
= 12 =
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*
>

A (1_§>573
Y= 3) 6(c+p)
B

,83

o, PN

*
(1>
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O
One can checkthat the point y* proposedbelongsto the optimizationdomain,with the pair (v, v7)
on the boundaryof the domain.One canconsiderinsteadthe simplervarianty* = [yo.., v1,., 1 — Yo,z —
71,1, 0, ... ], which givesa simpler expression However, this last choicewould give a tight boundonly
for small valuesof g, andit is quite uselessfor derving approximatve confidenceintervals for the
estimatorproposed.The boundgiven in the propositionis tight in a large interval (up to 8 =~ %) and
provides an excellentapproximationfor the confidenceintenals; theseare discussedn the simulations
results- SubsectiorvV-B.

Introducethe notations:

A _ A
Yo =1—vr—mr , YrL=1-—mr

Ppot 21—=Ps(0) = Ps(1) , Pg121—Ps(1).

The following quantitiesdefinedwill be usedin Proposition2 and their significanceis explainedin its

proof :
5, A B(1 —c) + cexp(—=F)(1+ B)
0 c+p
71 = Pg(0) +Ps(1) —F and
- 1.
duo 21525, (21)
A, £ Yo,u — Yo,L ; A1 2 Y,U — V1,L
A Yo Ao Y A
@ = (Pﬂ(m) (%(1)) (22)
A 1-% _({_B_1

Proposition 2: If ¢ < 1, we have the following lower boundon the exponent
D.(B,c) < J(B,¢)
where D, (3, c) is given by

Dy ’Lf Ci <1
D,.(B,c) = { Dy if Ci1>1land Cy>0,

Deorner ’Lf Ci>1land Cy <0
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with
AL Yo - — %o
Dy = Aolog =— + (1 —%0)log
Ps(0) 1—Pg(0)
A 2%l - -M
Dy = #log + (1 —41) log
Ps(1) 1—Pg(1)
A Ys,0 - " . . — Yx,0 — V1
Dcorner = ’Y*,O log ’ + Y1 lOg T (1 - ’Y*,O - ’Yl) IOg ’ .
_ Ps(0) Ps(1) 1—"P3(0) —Ps(1)
Proof: seethe Appendix. O

Proposition 3: For ary 5 € [0,1) andc¢ > %, we have the following lower boundon the

exponent.In particular the boundholdsfor all ¢ > 1.0821:

’Y 1L :
Du(f.c) = Yor 10g 7G5 + Y11 log 75y + Yoz log 2 if Ps(0) Lty ey < fyOL
vz log Fity + YL log L. e otherwise
Proof: seethe Appendix. O

Note that Proposition3 doesnot provide a lower boundfor all pairs (3, ¢). Althougha solutionsimilar
to the one given in Proposition2 can be given using an identical technique the constraintimposedin
Proposition3 holdsfor mostpracticalsituations the boundobtainedis tight and hasa relatvely simple
expression.

Using the boundson the error exponent,we can study its behaior for small 3, by taking the limits

of the bounds[7]. For ¢ > 1, we have the following behaior of J(g,¢) :

. J(B,c) c—1—In(c)
%1_% g2 2c

>

B. (24)

For ¢ < 1, the upperboundis identical:

lim J(B,¢) < c—1 —ln(c).
B—0 (32 2c

The lower boundobtainednherefor ¢ < 1 is not tight (it giveslimg_, % € (0,00)). This canbe seen
in the simulationssection.

However, it canbe shavn that(24) holdsin this caseaswell. Thefirst stepof the proofis to compute
the limits when 8 — 0 for Deorner/B? andfor D(v*||(Ps(0), Ps(1), Pso1))/ 5%, with v* definedafter
Proposition1. Both limits are equalto the RHS of (24). Thenthe resultcan be extendedto the rest of
the distributions of interest(thosethat can be lead to the minimum value) that lie on the boundaryof
the extendeddomainconsidered F, (3, ¢), in the appendixthe proof of Proposition3).

Also, the simulationsrevealedthat if a certain performanceis required,then when the number of

sensords increasedthe ratio § necessaryo achieve a certain performancedecreasesln fact, in the
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simulationsmade,the remarkablerelationshold (P is the empirical probability):

P {% > 1} < exp (—=NJ(B,c)), (25)

1@{% <e< 1} < exp (=NJ(B,c)). (26)

This suggestdhat the right hand side expressionthat usesthe exponentcould be an upperbound for
the true probabilityIP{% > c}. If this is true, then by using the asymptoticbehaior of J(3,c) =
(2B + o((?), with B definedin (24), a stronglarge deviationsresultwill follow. The main implication
of sucha resultis that one can achieve reliable estimationusingonly n = O(v/N) f(N) sampleswith

f(N) = .

V. SIMULATIONS AND NUMERICAL RESULTS
A. The Performance of Algorithms Presented in Section I11

In this subsectiorwe investigateby simulationsthe performancef the algorithmspresentedn Section
lll. For eachsimulationthe total numberof ( operating) sensorsV is fixed. The performancemeasure
usedis the confidencenterval for the relatve estimationerror In figures,the z-axis representshe ratio
I} 2 + betweenthe lenghtn of the vectorsampleand N. For a fixede € (0,1), € < 1, andfor each
vector samplelength n, we determinedexperimentallytwo quantitiescy (upperbound,“UB” in plots

legends)and ¢y, (lower bound,“LB” in plots legends)suchthat

- [N
]P){N>CU>1}:€,
- [N
]P{N<CL<1}:€,

wherewe denotedby P the obsened empirical probability of an event. Thus, for given N, n ande, we

have

- [N
P){jv E(CL,CU)} =1-2¢

Theplotspresentedanbe usedto determinghe sizeof the vectorsamplenecessaryo achieve arequired
performance.
In Fig. 5 the performanceof the Good-Turing estimatoris comparedto the performanceof the ML

estimatorgivenby (2). For the situationanalyzedj.e.,, N = 1000, 10000 Monte-Carloruns,ande = 0.01,
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the confidenceintenals for the two methodsare virtually identical. Other combinationsof parameters

shovedthatthe performancdossby usingthe Good-Turing estimatorinsteadof the ML oneis negligible.

N=1000, Monte=10000, £ =102

:
— ML-UB
W — ML-LB
v <7 GT-UB
1.8 \ GT-LB

L \
16 \

g !
= \
2 )
£ S \
° 1.4 \
3 \
[} o
5 S
= \
€ 12f A
: \7 <=
I = —Z
w v 7)177 . lfv’
1k

0.8

Fig. 5. ML vs Good-Turing; the performanceifferenceis negligible

For the histogramestimationcase,we consideragain N = 1000; the sensordelongto 4 classesthe
ratios% for ¢ =1,...,4 aregivenin the vectorC, = [0.1,0.2,0.3,0.4].

In Fig. 6 arerepresentednly the performanceplotsfor ¢ = 1 (N (1) = 100) andy = 4 (N (4) = 400),
aswell asthe performancelotsfor estimationof N. Theplotsrevealthatthe performancef the proposed
estimatordor the numberof operatingsensorsn eachclassis betterwhenthe numberof sensorsn each
classis larger Also, one can seethat the performanceof the estimatorfor the “larger” classess very
closeto the performancef the Good-Turing estimatorof the total numberof samplesThe performance
plots also reveal that the performanceof the estimator(7) basedon histogramscalingis slightly better
thanthe one of the estimator(6) derived by applyingthe Good-Turing formula onceagain.

In the next examplethe numberof sensordn eachclassvariesduring datacollection. In the setup
considereceachsensorcan belongto oneof 5 classesandinitially all sensorsarein classl.

The classof eachsensoris a Markov chain with 4 transientstatesand with one absorbingstate,
asrepresentedn Fig. 7. Eachsensorcan changeits classin any time slot, but only by increasingits
classindex by one. The sensorswhich belongto class5 cant changethe classanymore. Eachsensor
changests classindependenthof the othersensorsandof the receptionprocesswith a fixed probability

po = 5 x 10™*. This model can be a good approximationfor the variation of the remainingbattery
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N=1000, Monte=10000, class %=[0.1, 0.2,0.3,0.4 ], € =1072
22 T T T T T T

T
t —— class 1;GT, UB
\ +- class 1;HS, UB
oL N\ -5~ class 4,GT, UB ||
AN\ ®- class 4;HS, UB
N\ <7 Nhat; UB
N\ Nhat; LB
181 PN : : #- class 4;HS, LB [
W\ N\ - class 4,GT, LB
N %~ class 1;HS, LB
\ : . —%- class 1,GT, LB |

16 N\
\ \
\%\
14 N N
VAR

e-confidence interval

Fig. 7. The Markov Procesgepresentinghe variationof the classof one sensor

enegy of the sensorsgachclasscorrespondingo a certaininterval for the enegy. The randomnes®sf
transitionsbetweenclassess createdby a MAC protocolwhich variesthe transmissiorpower from slot
to slot (e.g..function of the quality of the uplink wirelesschannel).

The total numberof sensords N = 1000. Confidenceintervals for the estimationof the numberof
sensorsn classesdl, 4 and5 usingthe variantof the estimator(7) aregivenin Figs. 8, 9, and10. It can
be obsened that for the transientstatesl and4 the relative error for estimationis not monotonicwith
the increaseof the numberof samples.This happensdecausevhen the time passesaand more samples
are collected,fewer sensordhave classesorrespondingo the transientstatesof the Markov chain. The
relative error cantake large valuesif the estimatedvariablesare extremelysmall. On the otherhand,for
classb that correspondso the unigueabsorbingstateof the Markov chain, the variation of the relatve

error with the numberof samplesavailable is similar to the variation of the relative error for the total
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numberof operatingsensorsas expected.
For the time-varying casewe representeanly the performanceof the estimatorbasedon histogram
scaling,but the obsenationmadepreviously thatthe estimaton(6) hasa slightly worseperformanceéiolds

for time-varying classesaswell.

class=1
2 T T T T T
. *~ HS, le-2, UB
18- o v HS,1le-1,UB ||
A HS, le-1,LB
16l = HS,1le-2,LB ||
*
= 1.4F v . v .|
2
£ 12} v v 1
Q
Q
s 1 1
il
S A A
S 0.8 A - i A q
- 0.6¢ i . g
0.4f -
0.2f 4
0 i i i i i i
0 0.2 0.4 0.6 0.8 1 1.2 1.4
B

Fig. 8. Histogramestimationfor time-varying classestlasscorrespondingo the transientstatel

class=4
2 ¥ T T T T
+ HS, le-2,UB
18- v HS, 1le-1,UB |
4 HS, le-1,LB
16t = HS, le-2,LB ||
= 1.4+ ¥ v
2 . -
2 12} v : : Y
‘© v v v v
o
g R ]
kel A A
= A A
§ 0.8k . p - - - . §
|
“ 06 " ,
0.41 8
0.2f .
0 I I I I I I
0 0.2 0.4 0.6 0.8 1 1.2 1.4
B

Fig. 9. Histogramestimationfor time-varying classestlasscorrespondingo the transientstate4
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class=5

T
HS, 1le-2, UB

: -
18l v HS, le-1,UB ||
4 HS, le-1,LB
16l = HS, le-2, LB ||
’ A
= 1.4+
2
2 12} v . .
§ 1 M v v v L4
S a A A 4 t
€ A " b
S 0.8r .
| &
“ 06
w
0.41
0.2
0 |
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Fig. 10. Histogramestimationfor time-varying classesglasscorrespondingo the absorbingstate5

B. Performance Bounds Using the Large Deviation Approximation

In Fig. 11 the confidencantenrvals for therelative error of the estimatorarerepresentefbr N = 16000
ande = 0.001. The way curves were obtainedwas explainedin SubsectionvV-A. Three more pairs of
curvesarerepresenteih Fig. 11, the elementsof a pair correspondingo thetwo cases: > 1 andc < 1.

Thefirst pairis givenby the quantityc obtainedusingthelarge da/iationsformula% loge = —J(B,¢).
The othertwo pairsareobtainedn the sameway but usinginsteadof J(g, ¢) the upperandlower bounds
D*(B,¢) and D,(B, c) derived before,i.e, solving 4 loge = —D*(8,¢) and + loge = —D, (8, c) for
c>1ande< 1.

Onemight notethatfor ¢ > 1 the curvesobtainedusingthe boundson the error exponentareexcellent
approximationgo the curve obtainedusing the computedexponent.On the other hand,for ¢ < 1, the
curve obtainedusing D* is tight (if 5 < 0.5 ), while the one obtainedusing D, is quite loosefor small
[ andreasonablégight for large 8. Actually, it canbe shovn thatwith the techniqueused( replacingthe
conseration condition(11) with the equivalentcondition (19) for (v, 1)), the bestlower boundon the
exponentis loosefor small 5.

For the numericalresultsrepresentedn Fig. 11 the relations(25) and (26) mentionedin the end of

SectionlV hold:
]’P) {

2=

>c> 1} <exp (—NJ(B,c)),

DRAFT



BUDIANU, BEN-DAVID AND TONG: ESTIMATION OF THE NUMBER OF OPERATING SENSORS... 25

N=16000 £=0.001

25 T T T T T T T
Sim -c>1
Sim - c<1
=8 theory c>1
—©— upper bnd c>1
== theory c<1
2 —— lower bnd c<1 |

Q@' lower bnd c>1
& upper bnd c<1

n

g

SISO R

E

(]

(8]

c

(0]

o

c

3

o 1r

w

0.5
O | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fig. 11. Confidenceintervals for the performanceof proposedestimator The way they were obtainedis given in the legend.

P{% <c< 1} <exp(—NJ(B,c)).

If theserelationsaretrue in generalthena stronglarge deviation resultwill follow.

VI. CONCLUSIONS

The estimatorof the numberof operatingsensorshasedon the Good-Turing estimatorwas shovn
to achieve a performancesimilar to the ML estimator It can also be usedto solve more complicated
problemslike classhistogramestimation.lts simple expressionallowed us to perform a performance
analysisusingthe principle of large deviations.We provide closedform upperandlower boundsfor the

large deviations exponent,which are usedfurther to characterizehe behaior of the exponentfor small
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£ andto derive approximatve confidenceintenals for the performanceof the estimatorproposed.

The large deviations analysisand the simulationssuggestedhat one can achieve reliable estimation
usingonly n = O(v/N)f(N) sampleswith f(N) — oo. In fact, the last statemenibut not the large
deviation one) was alreadyshown in [13]. In contrast,underthe samei.i.d. randomcollection model
with uniform distribution, the numberof samplesnecessaryo achieve a completecollection (with high
probability) is N'log N + O(N). Thus, an estimationapproachcan reducedramaticallythe numberof
necessarngamples.

An accuratemodelingof a specificcommunicationsystemwould requirechangesn the basicmodel
consideredn this paper An examplewasinvestigatedn [6], wherethe vectorsampleis collectedusing
a recever with multi-paclet reception(MPR) capability For the samenumberof available samples,
the model mismatchintroducesa slight degradationof estimators performanceHowever, for a certain
requiredperformancethe MPR capability of the mobile accesgoint reducesdramaticallythe necessary
samplecollectiontime.

Finally, we notethat the proposedalgorithmsare not restrictedto SENMA. For othertypesof sensor
networks, for examplethe multihop ad hoc sensometworks with gatevay nodesthe proposedalgorithm
canbe easilyimplementedat the gatavay nodesor fusion center However, the performanceanalysisthat

dependsn thei.i.d. randomcollection modelof SENMA may not apply.

APPENDIX
Proof of Proposition 2

Considerthe following domain
[e.e]
- Jé; 1-c 1 B
*\M,C) = : i = 1; <v——-pF—, -y >1—=53.
Fi(Bs ) {7 Z;% M<Y — B~ nt+sm 5
The differencebetweenf, (8, ¢) and F(8, ¢) is that the conseration condition (11) in the definition
of F(B,c) is replacedby condition (19) derived for the pair (yg,71). From the corvexity property of
Kullback-Leiblerdistance[12], we know that the optimizing solution 4, must be on the boundaryof
the optimizationdomain.Taking into accountthe position of the Poissondistribution with respecto this

domain(Fig. 12), in our casethe solutionmustsatisfy

=t s (27)
C C

Moreover, if thefirst two elements(yy, 1) of a distribution ~ are given, the distribution that minimizes

D(~||P(B)) andthe correspondingninimized value are known in closedform (for 7 > 1 the elements
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7+, Of the solutionare proportionalto Pg()). Thusthe optimizationproblem
Y. = arg min D (.|| Pg)
vEF.
reducedo an optimizationproblemwith only one parameten\ € [0, 1], thatindicatesthe positionof the
pair (3x,0, ¥«,1) ontheboundaryof thedomain.This optimizationproblemcanbe solvedonly numerically
A simpler boundcan be obtainedby replacing F, (3, ¢) with a domainthat is not corvex arymore,
but is the union of two corvex domains.The domainthat containsthe solution can be found by testing

one simple condition. The detailedstepsare given belov; the domainsareillustratedin Fig. 12.

Al

e @/////////
. v -

Fig. 12. The optimizationregion for the pair (vo,v1), ¢ < 1, detail.

Choose(¥p,41) on the boundary(20) suchthat
Yo+ = Pp(0) + Ps(1).
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This givesthe solution

B(1 —c) + cexp(=pB)(1 + B))
c+p

1 = Ps0) +Ps(1) — Fo.

Yo =
Considerthe following domainF. (8, ¢):

‘7:*(/3’ C) = F*,l(ﬁa C) U]:*,Q(ﬁa C)a
with
00 1 ﬁ
-7:*,1(/6’6) = {’7 LM S’?la Z’Yz = 1a ’YO-I_ 571 > 1—- 51 Y0 +71 S;?O-I_;?l}’
=0

and

00
Fe2(B,c) = {’Y Fw>q0 D=1 1+ %71 >1— g Yo+m = %Jr%} :

The optimizationsolutionsovereachzofodomains]-"*,l, Fi 2 provide the solutionsgivenin the text of
the lemma.

Theteston C; givenby (22) giveswhich of the domainscontainsthe minimum. As mentionecbefore,
given ary point (vyo,71) on the boundary(20), we know the optimizing distribution; the position of
this point can be parametrizedising only one parameterA € [0, 1]. The derivative with respectto the
parameterk of the minimized Kullback-LeiblerdistanceD(5())||Pg) can be computedand analyzed
easily( but thevalue ) for which it vanishescant be computedn closedform). Theteston C is a test
on the sign of the derivative mentionedfor A correspondingo the pair (79,41) is positive or negative;
this determinesawhich of the two domainscontainsthe solution of the minimization problemover the
domainF, (5, c)

The teston C5 given by (23) is necessaryo assurethat once4; is fixed, the optimizing value of
~o ( without ary other constraints) doesnot fall outsideof the optimizationregion, i.e., the feasibility

condition(19) is satisfied.If thisis not the case onecanchoosethe value given by condition(19), value

denotedby 7, 0. A similar discussionput more detailed,is givenin the proof of Proposition3.

Proof of Proposition 3

As before, the lower boundis obtainedby finding a corvex domain F,, F C F,, and solving the

optimizationproblemover F,. The choicemadeis

1 B
~7:*={’YIZ’Yz‘=1, Y12 YL,L ’Yo+§’7121—§}-
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Denote
A .
VY« = arg mlnD(7||Pﬂ)a
yEF.
and

D,(B,c) min D(4([Pg) = D(7:[[Pg)-

First, we needto checkthat Pz ¢ F,. This means

Ps(1) < m,

or, Bexp(—pf) <

Z:é which gives
B(1 + exp(—P))

2(1 —exp(—p))
A calculationof the RHS will give thatfor g € (0, 1] the conditionis true for all ¢ > 1.0821, which is

c>

enoughfor mostpracticalsituations.In this case,y; » = 711, which simplifiesthe solution.
If the condition~y, + %71 >1 —g from the definition of F, is ignored,thenthe minimumof D(vy||Pp)

is

+ YL log
'Pﬁ .

)

D*(/Ba ) Y1L IOg Pﬂ( )

The constraintyy + 371 > 1 — g is irrelevant if the optimizing o . belongsto the domainF,, i.e, :

1—71L
[ ——— < .

If the condition above is not satisfied,then we have v . = 77, andthe restof the distribution is
determinedaccordingly which givesthe first formula used.
The condition (to usethe first formula) is

Ps(0) )
1—-Pg(1) 1—mz

of,
2
B 1 PO a,
3?2 —2Bc+2c+p 1—-"Ps(1)
This is
(1-T)— BT a
= H(f).
©> A=) (B)
Onecanfind
L HB) -1 _ 1
BT "6
Thus, an approximatve conditionfor smallc > 1 is 8 < 6(c — 1).
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