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ABSTRACT 

It was proposed recently that quantized representations of the input source (e.g. images, video) can be used for 

the computation of the two-dimensional discrete wavelet transform (2D DWT) incrementally. The 

coarsely-quantized input source is used for the initial computation of the forward or inverse DWT and the result is 

successively refined with each new refinement of the source description via an embedded quantizer. This 

computation is based on the direct two-dimensional factorization of the DWT using the generalized spatial 

combinative lifting algorithm. In this correspondence we investigate the use of prediction for the computation of 

the results, i.e. exploiting the correlation of neighboring input samples (or transform coefficients) in order to reduce 

the dynamic range of the required computations, and thereby reduce the circuit activity required for the arithmetic 

operations of the forward or inverse transform. We focus on binomial factorizations of DWTs that include 

(amongst others) the popular 9/7 filter-pair. Based on an FPGA arithmetic co-processor testbed, we present 

energy-consumption results for the arithmetic operations of incremental refinement and prediction-based 

incremental refinement in comparison to the conventional (non-refinable) computation. Our tests with 

combinations of intra and error frames of video sequences show that the former can be 70% more energy efficient 

than the latter for computing to half precision and remains 15% more efficient for full-precision computation.  

Index Terms— Approximate Signal Processing, Discrete Wavelet Transform, Energy Consumption, Incremental 

Refinement of Computation, Lifting Scheme               EDICS:DSP-WAVL, MDS-ALGO 

I. INTRODUCTION 

The two-dimensional discrete wavelet transform (2D DWT) has been established as one of the main tools for 

image compression [1], image denoising and other popular image processing operations [2]. In the vast majority of 

applications, the transform coefficients are produced to the maximum degree of precision and then they are 

quantized and processed as appropriate [1]. However, it has been recognized that this wastes system resources for 

the cases where severe quantization would render the majority of the coefficients not being used at all, or used at 
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very low precision [3]. For example, this is commonly the case for low-bitrate image and video coding applications 

[3] and resource-constrained image and video processing operations [4]. For this reason, previous work proposed 

schemes for approximate computation of transforms and signal processing operations [3]. A property that has been 

recognized to be of great importance is incremental refinement of computation [4]-[6], where the transform 

representation of a signal (image, video) is produced incrementally with the use of embedded (bitplane-based) 

quantization. In our recent work [4], this design has been theoretically analyzed both for the forward and the inverse 

two-dimensional multilevel DWT using the generalization of the spatial combinative lifting algorithm (SCLA) of 

Meng and Wang [7]. The overall framework is depicted in Figure 1. There, the multilevel DWT decomposition of 

the input source (video frame) occurs independently for each quantization threshold (bitplane), starting from the 

most-significant bitplane (MSB) and going down to the least-significant bitplane (LSB). The results are 

accumulated after each multilevel SCLA computation to form an incrementally-refined output. Similarly, for the 

DWT reconstruction, the MSBs of the transform-coefficients are inserted first and the multilevel inverse DWT 

reconstructs the image incrementally. Each additional processing step requires additional energy consumption. If 

the processing resources are terminated, one receives the decomposed or reconstructed image with the 

best-possible quality (controlled by the number of bitplanes processed).  

 

Figure 1. Operational refinement of computation for the multilevel DWT decomposition and reconstruction. The 

SCLA calculation per bitplane performs two decomposition (or reconstruction) levels and the results are 

accumulated at the end before moving to the next bitplane.  

Although the framework of Figure 1 receives individual bits (per pixel or per wavelet coefficient), the dynamic 

range of computations performed is increasing according to: (i) the lifting coefficients of each lifting step; (ii) the 
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input-source statistics; (iii) the number of decomposition levels. In order to adapt the circuit activity according to 

varying input statistics, it is crucial to have arithmetic units that perform variable dynamic-range computation. 

Xanthopoulos [8] proposed a suitable framework for this purpose: for all arithmetic units, very low-cost 

“MSB-rejection” circuits are utilized, which identify the exact number of active bits within each element (adder or 

multiplier). In this paper, we use a “zero-detection” circuit to avoid performing parts of multiplications with zero 

inputs and demonstrate its effectiveness in conjunction with incremental computation on an FPGA arithmetic 

co-processor testbed.  

The contribution of this paper is twofold: firstly, we propose incremental computation of the DWT with the use 

of prediction within each refinement layer (bitplane) of the input (Section II and III); in addition, via the utilized 

FPGA co-processor (introduced Section IV), we demonstrate the energy-distortion scalability offered by 

incremental computation and the proposed prediction-based incremental computation in comparison to the 

conventional (non-refinable) computation (Section V). Our results are relevant to DWT architectures localizing 

memory accesses to on-chip memory [9] [10], or to cases when the entire image can be stored on-chip, since energy 

consumption stems predominantly from arithmetic operations and not memory accesses in such cases [9] [10].  

II. OVERVIEW OF SCLA-BASED DWT UNDER INCREMENTAL REFINEMENT OF COMPUTATION 

The 2D DWT of an R C×  input matrix X  consisting of image intensity values is expressed in the spatial 

domain by
1
 T= ⋅ ⋅S XΕ Ε , where E  is the analysis polyphase matrix consisting of alternating rows of low- and 

high-pass filters shifted by two (in order to apply the DWT downsampling), and S  the 2D matrix of output wavelet 

coefficients. The Z-domain expression of the analysis matrix can be factored into K  lifting steps [11]: 
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where ( )
k
zP  and ( )

k
zU  are the k th prediction and update lifting matrices. The lower- or upper-triangular 2 2×  

matrices of (1) contain symmetric Laurent binomials [11] [12], with FXP
u( )ka  the fixed-point representation of the k th 

update filter coefficient (likewise for the predict step). Although the binomial lifting factorizations represented by 

(1) do not cover all possible factorizations, they do cover some of the most-popular ones found in practical 

applications [1] [11] [7] [12]. As an example, for the 9/7 filter-pair we have 2K = , i.e. two prediction and two 

update filters, each of which has two identical non-zero and non-unity taps, as shown in (1). Other popular 

filter-pairs also obey this rule, e.g. cubic B-spline filters [11], the 5/3 filter-pair [1] and the 7/5 filter-pair [14]. In 

 
1
 We are not concerned with the scaling performed after the lifting analysis and before the lifting synthesis [11] because all 

scaling factors can be incorporated into the subsequent encoding or processing stage [12]. In addition, for notational simplicity, 

we assume that the image dimensions are integer multiples of max2L , with maxL  the number of wavelet decomposition levels. 
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addition, all symmetric or antisymmetric factorizations can be expressed as binomial lifting factorizations [12]. 

A. Overview of Incremental SCLA Computation 

A reformulation of the 2D lifting scheme has been proposed in the spatial domain by Meng and Wang [7]: 

 ( ( )( )( ) )1 1 1 1
T T T T

K K K K
= ⋅ ⋅S U P U P X P U P U⋯ ⋯ , (2) 

This equation computes the 2D DWT in a series of steps, starting from the inner part, i.e. p
1 1 1

T= ⋅ ⋅M P X P , and 

working outwards toward the final result S . The computation is performed in squares of 2 2×  input samples (2D 

polyphase components), as it will be explained in the following.   

If we use double-deadzone embedded quantization of the input X  with basic partition cell 1∆ =  [1], each 

quantized coefficient quant[ , ]x r c  of input X  ( 0 r R≤ < , 0 c C≤ < ) is expressed as: 
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quant [ , ]
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[ , ] ( 1) 2 [ , ]
N

N
x r c n n

n

x r c x r c

−

=

= − ∑  (3) 

with [ , ]nx r c  the n th bit of quantized coefficient quant[ , ]x r c  (where 0[ , ]x r c  is the least-significant bit), and [ , ]Nx r c  

is the sign bit. This is the popular case of successive approximation quantization (SAQ) [1], where, starting from 

the sign bit, each additional bitplane corresponds to increased precision in the approximation of [ , ]x r c . In the 

expressions that follow, we use the signed bits of the input, i.e. x [ , ][ , ] ( 1) 2 [ , ]
Nn x r c n nr c x r c= − ⋅  denotes the n th 

signed bit of quantized coefficient quant[ , ]x r c . 

For incremental refinement of the computation of a 2D binomial factorization given by (2) under the SAQ 

approximation of each input sample [ , ]x r c  shown in (3), the computation of the first step, p
1 1 1

T= ⋅ ⋅M P X P , for 

each bitplane n , 0 n N≤ < , is [4] ( 0 2i R≤ < , 0 2j C≤ < ): 

 x1 [2 ,2 ] [2 ,2 ]n np i j i j=   (4) 

 ( )x x xFXP
1 p(1)[2 ,2 1] [2 ,2 1] [2 ,2 ] [2 ,2 2)]n n n np i j i j a i j i j+ = + + + +  (5) 

 ( )x x xFXP
1 p(1) 1 1[2 +1,2 +1] [2 +1,2 +1] [2 +1,2 ] [2 +1,2 +2] [2 ,2 +1] [2 +2,2 +1]n n n n n np i j i j a i j i j p i j p i j= + + + +  (6) 

 ( )x x xFXP
1 p(1)[2 1,2 ] [2 1,2 ] [2 ,2 ] [2 2,2 ]n n n np i j i j a i j i j+ = + + + +  (7) 

where 1 2 {0,1},2 {0,1}np i j + +   is the output quadrant of coefficients, as computed from the signed quantized 

values (signed bitplanes) x [ , ]n r c  of the input. Equation (4) is a simple copy operation between input and output, 

while (5)-(7) add to the input bit of each case a factor that depends on the n th signed bit values of the samples in the 

spatial neighbourhood of x 2 {0,1},2 {0,1}n i j + +   and the lifting-filter coefficient 
FXP
p(1)a .  

The second matrix product, u p
1 1 1 1

T= ⋅ ⋅M U M U , is produced by reusing the results of (4)-(7): 

 1 12 1,2 1 2 1,2 1n nu i j p i j   + + = + +      (8) 

 ( )FXP
1 1 u(1) 1 12 1,2 2 1,2 [2 1,2 1] [2 1,2 1]n n n nu i j p i j a p i j p i j   + = + + + − + + +     (9) 
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 ( )FXP
1 1 u(1) 1 1 1 12 ,2 2 ,2 [2 ,2 1] [2 ,2 1] [2 1,2 ] [2 1,2 ]n n n n n nu i j p i j a p i j p i j u i j u i j   = + − + + + − + +     (10) 

 ( )FXP
1 1 u(1) 1 12 ,2 1 2 ,2 1 [2 1,2 1] [2 1,2 1]n n n nu i j p i j a p i j p i j   + = + + − + + + +     (11) 

where 1 2 {0,1},2 {0,1}nu i j + +   is the output quadrant of coefficients, as computed for the output coefficients 

1 [ , ]
np r c  of (4)-(7). Again, (8) is a simple copy operation, while, for (9)-(11), the fixed-point lifting coefficient FXP

u(1)a  

is used to update the input. The remaining steps 2, ,k K= …  to complete the single-level decomposition using the 

2D lifting formulation of (2) are performed as in (4)-(7) and (8)-(11) with the replacement of the input with the 

output of each previous step and the replacement of the coefficients FXP
p(1)a  and FXP

u(1)a  by FXP
p( )ka  and FXP

u( )ka , 

respectively. All steps can be performed in-place as in the conventional lifting decomposition, with the reuse of the 

memory for the p
1M  and u

1M  arrays. Once all steps are completed, we perform the reordering and addition to the 

previous results for the high-frequency coefficients by: 

 1 1

1 1 1 1

HL , HL , [2 ,2 +1],    

LH , LH , [2 +1,2 ], HH , HH , [2 +1,2 +1],

n
K

n n
K K

i j i j u i j

i j i j u i j i j i j u i j

   ← +   
       ← + ← +       

 (12) 

where 1HL , 1LH  and 1HH  are the three high-frequency subbands of level one (see Figure 1) and a b←  assigns b  

to a . Notice that the low-frequency coefficients ( [2 ,2 ]n
K
u i j ) are not involved in this process, as they are the input 

for the subsequent decomposition level, as described in the following. 

B. Multilevel Extension  

The multilevel extension of the bitwise computation of the DWT for maxL  levels was performed in our previous 

work [4] via a “frequency-first” incremental refinement of computation: for each input bitplane n , the 

lifting-scheme computation is continued for all subsequent levels after the first level and the results are 

accumulated at the end, before moving to the next input bitplane. This is achieved by reformulating the first 

prediction step of (4)-(7) for all levels l , max2 l L≤ ≤  by ( 0 2li R≤ < , 0 2lj C≤ < ): 

1 2 ,2 4 ,4n n
Kp i j u i j   =      (13) 

( )FXP
1 p(1)2 ,2 1 4 , 4 2 [4 ,4 ] [4 , 4 4]n n n n

K K K
p i j u i j a u i j u i j   + = + + + +     (14) 

( )FXP
1 p(1) 1 12 +1,2 +1 4 +2,4 +2 + [4 +2, 4 ]+ [4 +2,4 +4] [2 ,2 +1]+ [2 +2,2 +1]n n n n n n

K K K
p i j u i j a u i j u i j p i j p i j   = +     (15) 

( )FXP
1 p(1)2 1,2 4 2, 4 [4 , 4 ] [4 4,4 ]n n n n

K K K
p i j u i j a u i j u i j   + = + + + +     (16) 

where we use the low-frequency outputs 4 {0,2}, 4 {0,2}n
Ku i j + +   of the last update step of the previous level. 

The subsequent update step and all additional pairs of lifting steps, as well as the incrementation of all 

high-frequency subbands, HL ,LH ,HH
l l l

, are performed as shown previously, with: 0 2li R≤ < , 0 2lj C≤ < . 

The low-frequency subband coefficients produced at the last decomposition level are incremented by:  

 
max max

LL , LL , [2 ,2 ]n
L L K

i j i j u i j   ← +     (17) 
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This process is then carried out for the next bitplanes 1, , 0n − … . Source code for the entire process is available [13].  

C. Inverse SCLA and Inverse DWT 

Concerning the inverse SCLA, the process is exactly anti-symmetric, as in the conventional lifting computation: 

all lifting steps are performed in reverse order by solving the forward bitwise lifting equations for the coefficients 

being predicted or updated during the forward transform. More explicitly, (8)-(11) are inverted by solving for 

1 [2 {0,1},2 {0,1}]np i j+ +  and replacing the terms 1 [ , ]
np i i  inside the parentheses of (9) and (11) by 1 [ , ]

nu i i . These 

equations would then perform the inverse update step and derive 1 [2 {0,1},2 {0,1}]np i j+ +  from inputs 

1 [2 {0,1},2 {0,1}]nu i j+ + . Inversion of (4)-(7) occurs as for (8)-(11), with x [ , ]n
i i  inside the parentheses of (5) and 

(7) replaced by 1 [ , ]
np i i . The inversion equations are executed in reverse order; first the inverted (11), followed by 

the inverted (10), up to the inverted (4).  

For the K th pair of lifting steps, the inputs [2 {0,1},2 {0,1}]n
K
u i j+ +  consist of the n th signed bitplane of the 

input wavelet coefficients 
max

LL [ , ],HL [ , ], LH [ , ],HH [ , ]
L l l l
i j i j i j i j , max max, 1, ,1l L L= − … ; they are linked via (12) 

and (17) (if maxl L= ). Hence, in the inverse transform, the signed bits of the input low and high-frequency wavelet 

coefficients of all decomposition levels are used, starting from the coarsest level, inverting all lifting steps, and 

increasing the resolution up to the pixel domain. All levels are inverted within each increment layer n , and the final 

reconstructed increments for all pixels are added to the output pixels (see the right side of Figure 1) in order to 

progressively reduce the distortion of the reconstructed image. This process is then carried out for the next 

bitplanes 1, , 0n − … . Source code for the inverse transform is available online [13]. 

III. PREDICTIVE INCREMENTAL REFINEMENT OF COMPUTATION FOR THE DWT 

Since neighboring input pixels or transform coefficients are expected to be correlated
2
, we can attempt to reduce 

the required computations for the incremental computation algorithm presented previously by introducing a 

prediction scheme between the pixels or coefficients of the input. For each of the 2 2×  input 2D polyphase 

components of each lifting step, we form the prediction in the direction of the 2D lifting-based filtering presented in 

the previous section.  

A. Proposed Formulation 

The first component of the first step [shown in (4)] remains unchanged as this is simply an assignment operation. 

The second component applies the lifting filter along the j -axis. By writing (5) with the replacement of j  by 1j −  

and subtracting the resulting expression from (5) we get the increment of computation for 1 [2 ,2 1]np i j +  if we have 

previously computed 1 [2 ,2 1]np i j − . This is given by:  

 
2
 The DWT should decorrelate the input signal. However, in practice, neighboring subband coefficients remain correlated. 

Image compression and denoising applications use this by forming context models based on each coefficient’s neighborhood.  
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 ( ) ( )x x x xFXP
1 1 p(1)[2 ,2 1] [2 ,2 1] [2 ,2 1] [2 ,2 1] [2 ,2 2] [2 ,2 2]n n n n n np i j p i j i j i j a i j i j+ = − + + − − + + − −  (18) 

Notice that (18) assumes that the calculation is applied “rows-first”, i.e. for each position 1, , 2 1j C= −…  within 

each row 0,1, , 2 1i R= −… . Furthermore, if x x[2 ,2 2] [2 ,2 2]n ni j i j− = + , we avoid the multiply-accumulate step 

with factor FXP
p(1)a  in (18), which is performed by the original incremental lifting of (5). Hence, with a multiplier 

design that is dynamically adjustable to the input sparsity, we expect to have decreased circuit activity for the 

multiplication operations.  

 The third polyphase component [shown in (6)] applies diagonal filtering along both the i  and the j -axis by 

reusing the results of the second component computed previously. For this reason, we break the computation in two 

parts, with the first part performing prediction across the j -axis and the second performing prediction across the 

i -axis and incrementing the result of the previous computation. The first part is: 

 
( )

( )
x x

x x

1,part 1,part

FXP
p(1)

[2 1,2 1] [2 1,2 1] [2 1,2 1] [2 1,2 1]

[2 1,2 2] [2 1,2 2]

n n n n

n n

p i j p i j i j i j

a i j i j

+ + = + − + + + − + −

+ + + − + −
  (19) 

and it is applied for each position 1, , 2 1j C= −…  within each row 0,1, , 2 1i R= −… . The second part is: 

  ( )FXP
1 1 p(1) 1,part 1,part[2 1,2 1] [2 1,2 1] [2 2,2 1] [2 2,2 1]n n n np i j p i j a p i j p i j+ + = − + + + + − − +    (20) 

and it is applied for each 1, , 2 1i R= −…  within each column 0,1, , 2 1j C= −… . Similarly as before, if 

x x[2 1,2 2] [2 1,2 2]n ni j i j+ + = + −  in (19), or 1,part 1,part[2 2,2 1] [2 2,2 1]n np i j p i j+ + − +≃  in (20), we reduce the 

circuit activity required for the costly multiply-accumulate operations performed by the incremental lifting of (6). 

However, since (19) and (20) involve two multiplications, this may not be cost-effective in comparison to (6). 

Hence, we can selectively disable these operations and perform (6) instead if this is deemed to be more efficient.  

 Finally, the last component of the quadrant of computation of the first lifting step [shown in (7)] is written in the 

same manner as the second component, albeit applying the prediction in the i -axis: 

 ( ) ( )x x x xFXP
1 1 p(1)[2 1,2 ] [2 1,2 ] [2 1,2 ] [2 1,2 ] [2 2,2 ] [2 2,2 ]n n n n n np i j p i j i j i j a i j i j+ = − + + − − + + − −  (21) 

and it is applied for each 1, , 2 1i R= −…  within each column 0,1, , 2 1j C= −… . 

 The second lifting step [update step of (8)-(11)] is modified in the same manner by applying the prediction as 

shown in (18)-(21). The expressions can be derived following the same rules and are omitted for brevity of 

description. Subsequent pairs of lifting steps follow the same rules. One final aspect relates to the border treatment 

of the prediction-based incremental refinement of the DWT computation. This is performed by applying the 

original equations for incremental refinement for the initial row ( 0i = ) or the initial column ( 0j = ) of each case.  

The modification for the calculation performed for the subsequent levels [(14)-(16)] is performed as follows [we 

omit (13) since it is just an assignment operation]. For (14), for each 1 2lj C≤ <  of each row 0 2li R≤ < : 
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 ( ) ( )FXP
1 1 p(1)2 ,2 1 2 ,2 1 4 , 4 2 4 , 4 2 [4 , 4 4] [4 , 4 4]n n n n n n

K K K K
p i j p i j u i j u i j a u i j u i j       + = − + + − − + + − −        . (22) 

For (15), for each 1 2lj C≤ <  of each row 0 2li R≤ < , we first calculate: 

 
( )

( )
1,part 1,part

FXP
p(1)

2 1,2 1 2 1,2 1 4 2, 4 2 4 2, 4 2

[4 2, 4 4] [4 2, 4 4]

n n n n
K K

n n
K K

p i j p i j u i j u i j

a u i j u i j

       + + = + − + + + − + −       
+ + + − + −

 (23) 

and then, for each 1 2li R≤ <  of each column 0 2lj C≤ <  we calculate 1 2 1,2 1np i j + +   with (20). Similarly 

as before, if (23) and (20) are deemed to be inefficient, we can apply (15) instead.  

Finally, for (16), for each 1 2lj C≤ <  of each row 0 2li R≤ <  we have: 

 ( ) ( )FXP
1 1 p(1)2 1,2 2 1,2 4 2, 4 4 2, 4 [4 4, 4 ] [4 4, 4 ]n n n n n n

K K K K
p i j p i j u i j u i j a u i j u i j       + = − + + − − + + − −        . (24) 

The calculations at the borders are performed by applying the original equations for incremental refinement 

[(13)-(16)] for the initial row ( 0i = ) or the initial column ( 0j = ) of each case. Indicative source code for the 

proposed approach (forward and inverse) is available online [13]. 

B. Discussion 

The proposed prediction-based incremental refinement of computation is applied per input bitplane. As such, it 

can be selectively applied to some input bitplanes, e.g. the four most-significant ones, and the original equations 

(4)-(11) can be applied for the remaining bitplanes. In addition, it can be applied selectively on some parts of the 

lifting steps, e.g. we can apply (6) instead of the proposed (19) and (20), or even on selected input frames where the 

correlation between neighboring input samples is stronger (this is actually used in the experimental results of 

Section V). This creates a “hybrid” approach that uses prediction only on some parts of the computation. This can 

be beneficial because, for example, correlation between neighbouring inputs is expected to decrease when moving 

to lower bitplanes, since this corresponds to the low-amplitude parts of the input image, which are expected to 

contain fine-grain noise. Similarly, decreased correlation between neighboring samples is observed when dealing 

with error frames instead of video frames, since error frames are the result of temporal prediction.  

Even though the description of the paper focused on single-bitplane inputs, a number of bitplanes can be 

inserted together and the computation can utilize all of them together as one increment layer. For example, for an 

8-bit input image, the three MSBs can be processed first, followed by the three intermediate bitplanes and the two 

LSBs. This creates only three increment layers of computation. This can reduce the expected overhead when 

increasing the number of increment layers. In our recent work on software designs for incremental image 

processing [6], we found that three or four increment layers provide for sufficient quality-complexity scalability 

without significant overhead in the overall execution time. From the implementation perspective, a crucial element 

needed in order to take advantage of the reduction of the multiplication bitwidth is a multiplier unit with adjustable 

circuit activity according to the input bit patterns. This is the topic of the following section.  
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IV. FGPA-BASED ARITHMETIC CO-PROCESSOR TESTBED FOR ENERGY MEASUREMENTS  

In order to substantiate the potential benefits of the proposed computation in a real environment, we setup an 

experimental testbed consisting of a main platform (personal computer) realizing the transform decomposition or 

reconstruction algorithmic flow in software. All arithmetic operations (multiplications, additions) are transferred to 

a Xilinx Virtex II XC2V1500 FPGA and are computed based on customized designs of multipliers and adders 

placed on the FPGA. We then measure and report the energy consumption of these operations for the different 

algorithms (conventional, incremental refinement and prediction-based incremental refinement). We used the ISE 

8.2 FPGA development environment with the XPower 8.2 tool [15] for this purpose and all our results relate to the 

dynamic energy dissipation reported by the tool.  

All arithmetic operations are performed in signed fixed-point representation and require (maximally) a 12-bit 

integer part plus a 12-bit fractional part, which ensures reconstruction peak-signal-to-noise (PSNR) values above 

55dB for up to 6 levels of decomposition [16]. All our arithmetic units restrict their output to 24 bits, which is 

comparable or less than related designs [16] [17]. The multiplier design separates the integer and fractional parts 

into three 4-bit parts (IA3~IA1 and FA1~FA3) and then performs a cascade realization of the multiplication, whose 

intermediate operations are depicted in Figure 2(a). Since the result will always be contained within the 12 plus 12 

bit output, only the intermediate operations contributing to the retained part of the output of Figure 2(a) are 

performed. Furthermore, each individual 4-bit multiplication of Figure 2(a) is enabled based on a zero-detection 

circuit. This circuit checks all inputs A[0:3] and B[0:3] of the 4-bit multiplier and raises the CE (circuit enabling) 

signal only when the multiplication will have non-zero output, as shown by Figure 2(b); otherwise the default zero 

result is obtained without activating the multiplier.  

(a)  (b)  

Figure 2: (a) Operations of the 24-bit multiplier. (b) Zero-detection circuit for the activation of each 4-bit multiplier.  



IEEE Transactions on Signal Processing - T-SP-09192-2009, to appear. 10

The use of the zero-detection circuit ensures that the overall multiplier design is adjusted to: (i) each lifting 

coefficient’s active bitwidth without customizing the multiplier design to a particular lifting scheme; (ii) the input’s 

varying statistics and varying dynamic range; (iii) the output’s range (24 bits). This design was found to consume 

less energy than the standard 24-bit cascade multiplier with the same throughput and latency. 

Concerning the adder’s design, even though we designed a bitwidth-adaptive adder unit, our measurements 

indicated that the energy consumption of this design is comparable to that of a standard 24-bit adder, and overall 

more than an order of magnitude smaller than the average energy consumption of the adaptive multiplier design. 

Hence, we resorted to using a standard 24-bit adder for all additions performed.  

Both the multiplier and adder designs operate in one clock cycle. Representative results for the dynamic energy 

consumption measured for each combination of inputs when clocked at 75MHz, as well as the layout of the 

multiplier design are provided online [13]. 

V. EXPERIMENTAL RESULTS 

We examine the energy consumption of the proposed approach for individual cases of forward and inverse 

DWT applied to YUV intra frames as well as to YUV error frames produced by motion-compensated prediction. 

Two schemes are used for comparison purposes: conventional (non-refinable) computation and incremental 

refinement of DWT computation as proposed in our previous work [4]. All 300 frames of the CIF sequences Stefan, 

Coastguard and Foreman were used for the experiments of this section. Image distortion is measured using the 

PSNR across luminance (Y) and chrominance (U and V) channels of each video frame: 

4PSNR(Y) PSNR(U) PSNR(V)
mean_PSNR=

6

+ +
 in order to produce one metric including all channels. The 

PSNR of each channel C {Y,U,V}∈  is measured as: 
2

10

255
PSNR(C) 10 log

MSE(C)
= ,  where MSE(C)  is the mean 

squared error. For the forward DWT, PSNR is measured by inverting the produced decomposition via a software 

implementation of the inverse DWT with double-precision floating-point representation [13].  

Energy consumption is measured via the testbed presented in Section IV, which includes one adder and one 

multiplier clocked at 35MHz for the conventional approach and at 75MHz for the incremental approaches. The 

clock frequencies were chosen so as to allow for processing of 25 frames/sec when using all input bitplanes: since 

the incremental approaches are performing more arithmetic operations (multiple increments but with smaller 

bitwidth), we increased the clock frequency for these cases in order to ensure they complete the frame processing at 

the same time with the conventional approach. The 9/7 [11] and 7/5 [14] filter-pairs were chosen for our 

comparisons since they present state-of-the-art compression performance with moderate complexity. The lifting 

coefficients of the 9/7 and 7/5 filter-pairs can be found in [11] and [14], respectively. The conventional approach is 

using all input bitplanes simultaneously, while the incremental approaches are breaking the computation into two 
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layers: for the forward DWT, the four MSBs are inserted first, followed by the 4 LSBs; for the inverse DWT, the 8 

MSBs are inserted first, followed by the 4 LSBs. This creates two layers of computation labeled as “half-precision” 

and “full-precision” results. All utilized error frames in our experiments were produced by a spatial-domain 

motion-compensated prediction scheme [18] using successive (frame-by-frame) prediction and within a 

group-of-pictures (GOP) of 16 frames. Four wavelet decomposition levels were performed. No wavelet-coefficient 

coding was performed in order to avoid artificial thresholding of wavelet coefficients before the inverse DWT.  

The results are reported in Table 1. As seen from the top half of the table, when used for intra frames, the 

proposed approach provides benefits in comparison to the original algorithm for incremental refinement of 

computation [4] by decreasing its energy consumption and making it comparable to conventional computation. In 

addition, the proposed scheme brings significant benefits in terms of energy reduction for half-precision 

computation. However, when used for error frames, the proposed approach does not provide any improvement in 

comparison to incremental refinement [4]; instead, energy consumption is increased, sometimes by a significant 

amount. This is attributed to the failure of the prediction scheme due to reduced correlation between neighboring 

coefficients of error frames. These observations hold for both filter-pairs and both forward and inverse DWT. 

There are some minor discrepancies in PSNR between the different approaches caused by the fixed-point 

precision chosen for the example cases presented, in the order of 0.03dB. All visual artifacts observed in the 

reconstructed images and error frames at each terminating quantization precision (bitplane) are typical of 

low-bitrate wavelet-based quantization and coding approaches studied in the literature [19]. 

 

Frame 
Type 

Full Precision Half Precision 

Conventional Incremental [4] Proposed mean_PSNR Incremental [4] Proposed mean_PSNR

9/7 forward DWT 

Intra 22.3 +24.8% +14.6% 56.7dB -34.4% -43.5% 29.5dB 

Error 16.8 -5.2% +9.2% 57.7dB -74.5% -63.1% 37.2dB 

9/7 inverse DWT 

Intra 21.9 +14.7% +10.4% 57.6dB -39.4% -45.7% 33.3dB 

Error 16.5 -37.7% +10.3% 57.7dB -82.4% -52.3% 36.7dB 

7/5 forward DWT 

Intra 17.0 +25.5% +16.6% 56.7dB -34.8% -43.6% 29.5dB 

Error 13.4 -08.0% -04.0% 57.7dB -77.5% -68.3% 37.2dB 

7/5 inverse DWT 

Intra 15.9 +8.7% +2.7% 57.6dB -36.2% -48.1% 33.3dB 

Error 12.9 -39.8% -30.1% 57.7dB -84.4% -50.7% 36.7dB 

GOP with: 
 1 Intra (I) 

&  
 15 Error (P) 

frames 

Conventional Proposed (I)+Incremental (P) mean_PSNR Proposed (I)+Incremental (P) mean_PSNR

9/7 forward DWT 

18.3 -13.3% 57.4dB -69.4% 33.7dB 

9/7 inverse DWT 

17.1 -17.1% 57.7dB  -72.8% 35.4dB 

Table 1. Energy consumption (in micro-Joule per frame) and PSNR results per intra frame and error frame. The 

results of incremental refinement [4] and the proposed prediction-based incremental refinement approaches are 

presented as the percentile difference to the energy consumption reported for the conventional approach.  
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The bottom half of Table 1 shows the energy consumption in a video coding scenario where 1 intra frame and 15 

error frames are transformed, when the proposed approach is used for the intra frames and incremental refinement 

[4] is used for the error frames. This “hybrid” approach provides for lower energy consumption for full-precision 

computation in comparison to the conventional (non-refinable) computation. Moreover, in such video applications, 

energy consumption is reduced significantly (by more than 70% on average) by terminating at half-precision (first 

increment layer), as shown by the bottom half of Table 1.  

VI. CONCLUSIONS 

We propose a prediction-based method for incremental computation of the forward and inverse discrete wavelet 

transform (DWT) under a bitplane-based formulation of the 2D lifting decomposition. The proposed approach 

applies prediction of neighboring pixels or wavelet coefficients in the direction of the lifting-based filtering. This is 

performed for each of the 2D polyphase components of the direct 2D computation of the multilevel DWT 

decomposition. Based on FPGA-based comparisons with conventional computation, we verified that the proposed 

approach and incremental refinement has comparative energy consumption in full-precision computation, with the 

proposed approach providing an improvement for intra frames. At the same time, these approaches can terminate at 

intermediate energy-distortion points (e.g. half-precision) with significant decrease in energy consumption.  
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