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Abstract—We study the problem of distributed adaptive esti- these applications, the space-varying parameters beiitg es
mation over networks where nodes cooperate to estimate phigal mated usually result from discretization of the coeffickent

parameters that can vary over both space and time domains. ot 53 ynderlying partial differential equation through tiia
We use a set of basis functions to characterize the Space_sampling ying p q gh &al

varying nature of the parameters and propose a diffusion lesat . . . .
mean-squares (LMS) strategy to recover these parametersdm The estimation of spatially-varying parameters has been
successive time measurements. We analyze the stability andaddressed in several previous studies, including [13}-[h7

convergence of the proposed algorithm, and derive closedm  these works and other similar references on the topic, the so
expressions to predict its learning behavior and steady-ate tions typically rely on the use of a central processing (o

performance in terms of mean-square error. We find that in . L . o .
the estimation of the space-varying parameters using disiiouted unit and less attention is paid to distributed and in-nekwor

approaches, the covariance matrix of the regression data at Processing solutions. Distributed algorithms are usefidige
each node becomes rank-deficient. Our analysis reveals théte networks when there is no powerful fusion center and when
proposed algorithm can overcome this difficulty to a large etent  the energy and communication resources of individual nodes
by benefiting from the network stochastic matrices that are sed 50 |imited. Many different classes of distributed alguris
to combine exchanged information between nodes. We provide . -

for parameter estimation over networks have been proposed

computer experiments to illustrate and support the theoreical ) : . ;
findings. in the recent literature, including incremental method]{18

Index Terms—Diffusion adaptation, distributed processing, pa- [22], consensus methods [23]-[34], and diffusion methags [

rameter estimation, space-varying parameters, sensor netrks, 31 [6]; [35]-{37]. Incremental techniques require to-sgta
interpolation. cyclic path between nodes over the network and are there-

fore sensitive to link failures. Consensus techniquesirequ
doubly-stochastic combination policies and can causear&tw
_ _ e _ instability in applications involving continuous adajatand
N previous studies on diffusion algoritthms for adaptaracking [5]. In comparison, diffusion strategies demeoatst
tion over networks, including least-mean-squares (LMS3) stable behavior over networks regardless of the topology
or recursive least squares (RLS) types, the parameterg beidd endow networks with real-time adaptation and learning
estimated are often assumed todpace-invariant [1]-[6]. In  abilities [5], [6], [36].
other words, all agents are assumed to sense and measufgotivated by these considerations, in this paper, we develo
data that arise from an underlying physical model that g distributed LMS algorithm of the diffusion type to enable
represented by fixed parameters over the spatial domaife estimation and tracking of parameters that may vary over
Some §tud|es Con3|dereq particular app_llcatlo_ns of ddfus both space and time. Our approach starts by introducing a
strategies to data that arise from potentially differentele |inear regression model to characterize space-time varyin
[7], [8]. However, the proposed techniques in these works gshenomena over networks. This model is derived by diseretiz
not immediately applicable to scenarios where the estimatiing a representative second-order partial differentialagion
parameters vary over space across the network. This situaf{pDE), which can be useful in characterizing many dynamic
is encountered in many applications, including the momr systems with spatially-varying properties. We then introel
of fluid flow in underground porous media [9], the tracking set of basis functions, e.g., shifted Chebyshev polynismia
of population dispersal in ecology [10], the localizatioh oto represent the space-varying parameters of the undgrlyin
distributed sources in dynamic systems [11], and the mogeliphenomena in terms of a finite set of space-invariant expansi
of diffusion phenomena in inhomogeneous media [12]. lkvefficients. Building on this representation, we develop a
_ _ o diffusion LMS strategy that cooperatively estimates, rinte
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estimates to become biased. We elaborate on how the judiciand employ the finite difference method (FDM) to discretize
use of stochastic combination matrices can help allevizite tthe PDE over the time and space domains [39]. Koand P
difficulty. given positive integers, lehx = L/(N + 1) andxy, = kAx

The paper is organized as follows. In Section I, wéor k € {0,1,2,..., N+1}, and similarly, letAt = T'/P and
introduce a space-varying linear regression model which#s= iAt¢ for ¢ € {0,1,2,..., P}. We further introduce the
motivated from a physical phenomenon characterized bysampled values of the pressure distributjani) = f(x, t;),
PDE, and formulate an optimization problem to find thaput ¢, (i) £ ¢(zx,t;), and space-varying coefficiesti, =
unknown parameters of the introduced model. In Secti@zy). It can be verified that applying FDM to (2), yields the
lll, we derive a diffusion LMS algorithm that solves thisfollowing recursion:
problem in a distributed and adaptive manner. We analyze the o ,
performance of the algorithm in Section IV, and present the J+() = tkihk + Atgr(i —1), k€ {1,2,....N} (3
numerical results of computer simulations in Section V. Thghere the vectorgg € R3*! anduy ; € R'*? are defined as
concluding remarks appear in Section VI. T —

Notation: Matrices are represented by upper-case and vec- hi = [hS ks 1 g 3 1] (4)
tors by lower-case letters. Boldface fonts are reserved for g 2 [fre1(Gi— 1), fe(i — 1), frr1(i—1)] (5)
random variables and normal fonts are used for deterngnisti ,
quantities. Superscript-)” denotes transposition for real-"€ entries
valued vectors and matrices afg* denotes conjugate trans- o v
position for complex-valued veg'?(')rs and matrices. The syimb Lk = 1(91@71 40k = Okt) ©)
E[] is the expectation operator, (Ty represents the trace of h3p=1-2v0 @)
its matrix argument and didg} extracts the diagonal entries o v
of a matrix, or constructs aédi}agonal matrix from a vecloy. 3k = Z(_ekfl + 40+ k1) (8)

represents the identity matrix of size x M (subscriptM is g4 , — At/Az?. Note that relation (3) is defined for
omitted when the size can be understood from the conte>g).€ {1,2,---,N}, i.e., no data sampling is required to be

The veg-) operator vectorizes a matrix by stacking its columng,yen atr — {0, L} becausefy(i) and fx1(i) respectively
on top of each other. A set of vectors are stacked into a CO'“'E‘E'rrespond to the known boundary conditiofig), ) and
vector by cof }. f(L,t). For monitoring purposes (e.g., estimation @fr)),
sensor nodes collect noisy measurement samplef(eft)

Il. MODELING AND PROBLEM FORMULATION
. . . . . across the network. We denote these scalar measurement
In this section, we motivate a linear regression model thé‘émples by

can be _used to des_crlbe dynamic systems with spatlgllngryl 20(8) = fuli) + n(d) @)
properties. We derive the model from a representative secon

order one-dimensional PDE that is used to characterize thbereny (i) € R is random noise term. Substituting (3) into
evolution of the pressure distribution in inhomogeneoudime (9) leads to

.k € R are:

and features a diffusion coefficient and an input sourceh bot dp (1) = up,shj, + (i) (10)
of which vary over space. Extension and generalization ef t(}v ere
proposed approach, in modeling space-varying phenomena, (i) 2 2 (i) — At gu(i — 1) (11)
PDEs of higher order or defined over two-dimensional space B = 2R Bl
are generally straightforward (see, e.g., Section V-C). The space-dependent model (10) can be generalized to ac-
The PDE we consider is expressed as [12], [38]: commodate higher order PDE’s, or to describe systems with
Of(z.1) 5 Of (1) more than one spatial dimension. In the generalized form, we
= () ’ +q(,t) (1) assume thaty ; is random due to the possibility of sampling
ot Oz ( Oz ) errors, and therefore represent it using boldface notation

eWe also lethy anduy, ; be M-dimensional vectors. In addition,

where (x,t) € [0,L] x [0,T] denote the space and tim . .
variables with upper limitd. € R+ andT € R*, respectively, & denote the noise more generally by the symnq(i) to
account for different sources of errors, including the meas

f(z,t) : R? — R, represents the system distribution (e.gS : _ ! S
pressure or temperature) under study):R — R is the ment noise shown in (9) and modeling errors. Considering

space-varying diffusion coefficient ang(z,t):R? — R is this generalizf';\tion_, the space-varying regression mduti t
the input distribution that includes sources and sinks. pDEe shall consider is of the form:
(1) is assumed to satisfy the Dirichlet bognd_ary_ condittpns dy, (1) = wpihg + vi (i) (12)
£(0,¢) = f(L,t) =0 for all ¢ € [0, T]. The distribution of the
system att = 0 is given by f(z,0) = y(z) for z € [0, L]. It Wheredi(i) € R,uy; € R™M b € RM*! andwy(i) € R.
is convenient to rewrite (1) as: In this work, we study networks that monitor phenomena
) characterized by regression models of the form (12), where
f(@,t) _ g(x)a f(a,t) + 00(z) 0f(x,) +q(z,t) (2) the objectiveis to estimate the space-varying paramettore
ot ox? Or  Ox ’ hg for k € {1,2,---, N}. In particular, we seek a distributed
1Generalization of the boundary conditions to nonzero mlisepossible Solution in the form of an adaptive algorithm with a diffusio
as well.




mode of cooperation to enable the nodes to estimate and T T e S v -
. . he R R
track these parameters over both space and time. The deailab ., TN -
information for estimation of thgh?} are the measurement \T/ y y
sar_nples,{dk(z'), uy,; }, collected at theV spatial positioncy, h(a) /'/\\N\'L/
which we take to represe¥ nodes. : : , , :
Several studies, e.g., [13]-[15], solved space-varying pa ' ' W
rameter estimation problems usimpn-adaptive centralized TR U "
techni : o : B@| A~ T T
echniques. In centralized optimization, the space-vayyia- i yd ~
o L T I T R et R N
rameters{_hk} are found by minimizing the following global e she ghs NA
cost function over the variableg, }: 4  o—eo—0— - —0
N
1 2 3 N -
T(ha, .- ) 2 Ti(he) 13) 2=0 =t
1 Fig. 1: An example of the space-varying parameter estimation
problem over a one-dimensional network topology. The lacjeles
where R on the z-axis represent the node locationsaat x. These nodes
Ji(hi) & Bldg (i) — wg i hi|? (14) collect samplegdy (i), ux,:} to estimate the space-varying parame-

. . Lo . .. ters{hy}. For simplicity in defining the vectors; in (20), for this
To find 2, using distributed mechanisms, however, preliminaRkample, we assume that the node positiongre uniformly spaced,
steps are required to transform the global cost (13) intohawever, generalization to non-uniform spacing is strdégtvard.

suitable form convenient for decentralized optimizati@j. [

Observe from (6)-(8) that collaborative processing is fie@ treated in Section V, we adopt shifted Chebyshev polynanial

in this case because thig of neighboring nodes are relatedys pasis functions, which are generated using the following
to each other through the space-dependent funéjon expressions [40]

Remark 1. Note that if nodes individually estimate their own b _1 b _o 1 16
space-varying parameters by minimizirg(hy ), then at each 1(2) =1, 2(z) = 2z — (16)
time instant, they will need to transmit their estimates tobn+1(z) =2(2z — 1)b,(2) — bp—1(x), 2<n <Ny (17)

a fusion center for interpolation, in order to determine th‘Fhe choice of a suitable set of basis functio{ria(a:)}Nb

. n=1
value of the model parameters over regions of space Whereigoapplication-specific and guided by multiple considenasi

measurements were collected. Using the proposed dISﬂdbuguch as representation efficiency, low computational cerapl

algt_ontrt]m n zeg:'uton Hll'?’ 'th'” be IFt)OS.S'ble fto”upc(jj.a:guthtelty' interpolation capability, and other desirable prdjesy;
estimates and nterpolate the Tesults in-a Tully distniule,, , oq orthogonality. Chebyshev basis functions yielddgoo

manner. Cooperation also he_lps the nqdes refine the"Etef‘m"?’esults in terms of the above criteria and helps avoid the
and perform more accurate interpolation. Runge’s phenomenon at the endpoints of the space interval
[40].

The sampled version of thex-th space-varying parameter
(z) in (15), atx =z, = kAx, can be written as:

I1l. ADAPTIVE DISTRIBUTED OPTIMIZATION

In distributed optimization over networked systems, nod%s
achieve their common objective through collaboration.fSuc ™
an objective may be defined as finding a global parameter mk = Wby, (18)
vector that minimizes a given cost function that encompmasse

_ L here
the entire set of nodes. For the problem stated in this stu&\f/, N T
the unknown parameters in (13) are node-dependent. However Win = Wit Wiz, s Wi, (19)
as we explained in Section II, these space-varying paramete b 2 b1, by k" (20)
are related through a well-defined function, effx) over

) 4 : . nd each entr is obtained by sampling the correspondin
the spatial domain. In the continuous space domain, tﬁ Vi y Ping P g

gsis function at the same location, i.e.,

entries of eachhy, i.e., {h{, -+ ,h9,,} can be interpreted

as samples o/ unknown space-varying parameter functions bk 2 b, (x1) = by (kAx) (21)
h? <o h8 at locationz = x4, as illustrated in . . .

I{Zigl(:i)’ hi (@)} vk Collecting the sampled version of all functionsh?, (z) for

We can now use the well-established theory of interpolatidhi € {1,---, M} into a column vector as
to find a set of linear expansion coefficients, common to all =[RS 4o BS s ah?w,k]T (22)
the nodes, in order to estimate space-varying parameterg us ) )
distributed optimization. Specifically, we assume thattheh @nd using (18), we arrive at:

unknown space—va_rying .parameter _funptim(x) can be ho = Wby, (23)
expressed as a unique linear combination of sd¥pespace h
; ; ; where
basis functions, i.e., WPy WPs ... Wiy,
ho () = Wi 1b1 ($)+Wm72b2(17)+~ < 4+Wp, N, bN, (z) (15) o & Wii Wi ... Wiy, (24)

where {W,, ,} are the unique expansion coefficients and : : :
{bn(x)} are the basis functions. In the application examples Wi Wi oo Wi,



Remark 2. Several other interpolation techniques can be used4) The noise process (i) is independent of the regression
to obtain the basis functiong,(z), such as the so-called dataw,, ; for all 7,5 andk,m. |

kriging method [41]. The latter is a data-based weighting The optimal parameter® that minimizes (28) can be found

approach, rather than a distance-based interpolations Itpy setting the gradient vector of(w) to zero. This yields the
applicable in scenarios where the unknown random field to Rjowing normal equations:

interpolated, in our cask?, is wide-sense stationary; accord- N N
ingly, it requires knowledge about the means and covarsnce R o _ 31
of the random field over space, as employed in [42]. If these (Z “"k)w N Zrd“’k (31)
covariances are not available, then the variogram models, B =t
describing the degree of spatial dependence of the randéiere {12k, 74} denote the second-order moments of
field, are used to generate substitutes for these covasante,:Br anddy(i):
[43]. However,a-prlc_)n knpwledge abogt the parameters of Rk 2 B'RusBr,  Faug 2 B raus (32)
variogram models, including nugget, sill, and range, are re
quired to obtain the spatial covariances. In this work, sindt is clear from (31) that Wheliff:l R, > 0, thenw® can
neither the means and covariances nor the parameters of ibedetermined uniquely. If, on the other ha@szl Ry is
variogram models of the random fields are available, we focsmgular, then we can use its pseudo-inverse to recover the
on interpolation techniques that rely on distance infofamat minimum-norm solution of (31). Once the global solution is
rather than the statistics of the random field to be intetpdla estimated, we can retrieve the space-varying parametesrgec
n h$ by substitutingw® into (26).

Returning to equation (23), it is convenient to rearrange Alternatively the solutionw® of (31) can be sought itera-
We into an M N, x 1 column vectorw® by stacking up the tively by using the following steepest descent recursion:

k=1

columns of Wl ie., w® = vec(We°?), and defining the N
block diagonal matrixB;, € RM*MN» gg: w'” =l + 1> (Faus — Rupw?)) (33
By 2 Iy ® b (25) =1

uwhereu > 0 is a step-size parameter am;jc) is the estimate
6f w® at thei-th iteration. Recursion (33) requires the central-
ized processor to have knowledge of the covariance matrices
h; = Brw’ (26) Ruyk, and cross covariance vectorsy, ,, across all nodes.
o ) , In practice, these moments are unknown in advance, and we
so that substituting;; from (26) into (12) yields: therefore use their instantaneous approximations in (B3
dy, (i) = wp, ; Brw® + vy (i) (27) substitution leads to the centralized LMS strategy (34)(3
for space-varying parameter estimation over networks.

Then, relation (23) can be rewritten in terms of the uniq
parameter vectow® as:

Subsequently, the global cost function (13) becomes:

Algorithm 1 : Centralized LMS

N
J(w) = " Eldx(i) — uz; Byw|? (28) N
k=1 c c . c
wg ) ngl + MZB;{u;‘gi(dk(z) - uk7inw521) (34)
k=1
hi; = Byw'®, ke{1,2,-- N} (35)

In the following, we elaborate on how the parameter vector
w® and, hence, thgh?} can be estimated from the data
{dx(i),ur;} using centralized and distributed adaptive op-
timization.

: . . In this algorithm, at any given time instarit each node
A. Centralized Adaptive Solution transmits its datduy, ;, di (i)} to the central processing unit to

We begin by stating the assumed statistical conditions QBdatewEi)l. Subsequently, the algorithm obtains an estimate

the data over the network. for the space-varying parametefs, ;, by using the updated
Assumption 1. We assume thakdy, (i), usi, v(i)} in model estimatew ", and the basis function matrix at locatidn
(27) satisfy the following conditions: (i.e., By). This latter step can also be used as an interpolation

1) di(i) and u,; are zero-mean, jointly wide-sense stamechanism to estimate the space-varying parameters at loca
tionary random processes with second-order momentgons other than the pre-determined locatidnsg }, by using
P = E[dk(i)uf,i] c RMx1 (29) the corresponding matri®(x) for some desired location.

Ru i = Eluy juy, i) € R (30) B. Adaptive Diffusion Srategy
2) The regression datguy ;} are i.i.d. over time, indepen-  There are different distributed optimization techniqurest t
dent over space, and their covariance matriégs,, are can be applied to (28) in order to estimate and consequently
positive definite for allk. obtain the optimal space-varying parametifs Let A, de-
3) The noise process€w (i)} are zero-mean, i.i.d. overnote the index set of the neighbors of ndde.e., the nodes
time, and independent over space with variar{e%%g}. with which nodek can share information (including itself).



One possible optimization strategy is to decouple the dloda this algorithm, ux, > 0 is the step-size at nodé,
cost (28) and write it as a set of constrained optimizatiofwy. ;, ¥y, ;, ¢, ;1 } are intermediate estimates of, h; ; is

problems with local variablesy, [44], i.e., an intermediate estimate @f, and {a{'},a{’)} are nonneg-

min Z co rE|do(i) — wei Bywy|? ative entries of left-stochastic matricels, A, € RY*Y that

we e " satisfy:

subject to wy, = w (36) al') =al?) =0 if0¢ N, (43)
wherec, ;, are nonnegative entries of a right-stochastic matrix AT1=1 Al1=1 (44)
C € RVXN satisfying: . . L

Each node in the first combination step fusésv, ;_
cox=0if L¢ N, and C1=1 (37) p fUSg80r.i—1 } e

in a convex manner to generagg ; ;. In the following step,
and1 is the column vector with unit entries. named adaptation, each nodeuses its own data and that

The optimization problem (36) can be solved using, fdf neighboring nodes, he{usi, di(i)} .\, to adaptively
example, the alternating directions method of multiplierdPdated; ;_, to an intermediate estimai,, ;. In the third
(ADMM) [44], [45]. In the algorithm derived using this step, which is also a combmatlon,_the intermediate esémat
method, the Lagrangian multipliers associated with the- cof¥¢,i}¢en; are fused to further align the global parameter
straints need to be updated at every iteration during the ogtStimate at nodé to that of its neighbors. Subsequently, the
mization process. To this end, information about the netwof€Sired space-varying parametey ; is obtained fromuwy;.
topology is required to establish a hierarchical commutivea Note that each step in the algorithm runs concurrently over
structure between nodes. In addition, the constraints sego the network.
by (36) require all agents to agree on an exact solution; tlRemark 3. The main difference between Algorithm 2 and the
requirement degrades the learning and tracking abilitigked previously developed diffusion LMS strategies in, e.g}, [&],
nodes over the network. When some nodes observe relevi@3 is in the transformed domain regression datg B, in
data, it is advantageous for them to be able to respond quick#0) which now have singular covariance matrices. Morgover
to the data without being critically constrained by perfeghere is an additional interpolation step (42). [ |

agreement at that stage. Doing so, would enable informatiﬁgmrk 4. The proposed diffusion LMS algorithm estimates

to diffuse more rapidly across the network. e NM spatially dependent variablds:{} using N, M global
A technique that does not suffer from these difficulties ang, aiant coefficients inw®. From the computational com-

endows networks with adaptation and learning abilitiessd-r plexity and energy efficiency point of view, it seems this
time is the diffusion strategy [2], [3], [6], [35], [36]. InhiS i 5qyantageous when the number of nod®s, is greater
technique, minimizing the global cost (28) motivates SWVi an the number of basis function,. However, even if this
the following unconstrained local optimization problenT fo, o+ the case, using the estimatd@) global invariant

ke{l,-- N}[2L: coefficients, the algorithm not only can estimate the space-
min( Z coxElde(i) — ug: Byw|? varying para.meters at the Ioca‘uqns of té nodes, but _

E v can also estimate the space-varying parameters at losation

) where no measurements are available. Therefore, even when
+ Y perllw— | ) (38) N < N,, the algorithm is still useful as it can perform

LeN\{k} interpolation. L

whereyy, is the available estimate of the global parameter at There are different choices for the combination matrices

node?, Ny \{k} denotes set;, excluding node:, and{p,x} 14, A, C}. For example, the choicel; = Ay = C = I

are nonnegative scaling parameters. Following the argtsnefequces the above diffusion algorithm to the non-coopezati

in [2], [3], [6], the minimization of (38) leads to a generakase where each node runs an individual LMS filter without

form of the diffusion strategy described by (39)—(42), whiccqordination with its neighbors. Selectify= I simplifies the

can be specialized to several simpler yet useful forms. adaptation step (40) to the case where nédeses only its
own data{dy (i), ux,} to perform local adaptation. Choosing

Algorithm 2 : Diffusion LMS A; = I and A, = A, for some left-stochastic matrid,
removes the first combination step and the algorithm reduces
b1 = Z agl,gwe,iq (39) to an adaptation step followed by combination (this varizit
' teN, the algorithm has the Adapt-then-Combine or ATC diffusion

structure) [2], [6]. Likewise, choosing; = A and A, = I re-

_ ) T,T. S\ . ) ’ 4 ;
Vii = Guica + 1 D corBi U (de(i) — weiBedia) moves the second combination step and the algorithm reduces

Nk (40) to a combination step followed by adaptation (this variant
@ has the Combine-then-Adapt (CTA) structure of diffusioh [2
wii= Y ag, (41) [6]). Often in practice, either the ATC or CTA version of the
LeNK algorithm is used withC' set toC' = I such as using the
hi; = Brwyg,; (42) following ATC diffusion version described by equations 45

(47).




Algorithm 3 : Diffusion ATC We further define the block diagonal matrices and vectors:

,lpk,i = Wki-1 —+ ,LLkB]Z-"U’%:Z (dk(l) — uk.,inwk,’L'fl) (45) RZ é d|ag{ Z Cg7kaug:iuf7iBg k= 1’ N 7N} (56)

iy Z . (46) LeENY,
i = a i i
; LEN, L M & diag{ i Iun,, - - - v Inn, (57)
hy; = Bywy,; 47 t= COI{ > cerBlufd(i) k=1, ’N} 58)
LEN
g; £ C" col{ B uf jv1(i), -, Byuy ;vn (i)} (59)

Nevertheless for generality, we shall study the perforrean@nd introduce the expected valuesRf and¢;:

of Algorithm 2 for arbitrary matrices{ A4, A2, C} with C R £ E[R;| =diag{R:, - ,Rn} (60)
right-stochastic and A;, A>} left-stochastic. The results can

A

then be specialized to various situations of interest uiticlg r = Eft] = COI{Tlv o vTN} (61)
ATC, CTA, and the non-cooperative case. where

The combination matrice$A;, A, C} are normally ob- Ry & Z cok Rus (62)
tained using some well-known available combination rules LEN,
such as the Metropolis or uniform combination rules [2],][24 N _
[35]. These matrices can also be treated as free variables Tk :Zg\; Co.k Tdu,L (63)

k

in the optimization procedure and used to further enhance
the performance of the diffusion strategies. Depending e also introduce an indicator matrix operator, denoted by
the network topology and the quality of the communicatiolnd(-), such that for any real-valued matrixX with (%, j)-th
links between nodes, the optimized values of the combinatiéntry Xy ;, the corresponding entry &f = Ind(X) is:

matrices differ from one case to another [6], [46]-[48]. 1 X >0
’ k,j
Yi; = 64
Fd { 0, otherwise (64)
IV. PERFORMANCEANALYSIS Now from (39)—(41), we obtain:
In this section, we analyze the performance of the diffusion w; = Biw;_q + A Mt; (65)
strategy (39)-(42) in the mean and mean-square sense arﬁde re
derive expressions to characterize the network mean-squar B, 2 AT(T — MR)AT (66)
T — 2 - ) 1

deviation (MSD) and excess mean-square error (EMSE). In
the analysis, we need to consider the fact that the covaiame turn, making use of (27) in (65), we can verify that the
matrices { R, . }1_, defined in (32) are now rank-deficientnetwork error vector follows the recursion
since we haveN, > 1. We explain in the sequel the ~ -
ramifications that follow from this Fank-deficiency. | W, = By — A3 Mg, (67)
By taking the expectation of both sides of (67) and using
Assumption 1, we arrive at:

A. Mean Convergence Elw;] = BE[w;_1] (68)

We introduce the local weight-error vectors where in this relation:

Wi £ 07 Wi, Yy 20—y, Py £ 0 =Py (48) B2E[B)] = AT (I - MR)A] (69)
and define the network error vectors: To obtain (68), we used the fact that the expectation of the
o COl{é)l,ia . .,¢N7i} (49) second term in (67), i.eE[A3 Mg,], is zero because (i)

B, 2 col{ib, S (50) is independent ofs;,; and E[v(i)] = 0. The rank-deficient

i Lares s WN,i matrices{ R, »} appear insidéR in (69). We now verify that

w; £ col{wy;,..., Wy} (51) despite having rank-deficient matriR, recursion (68) still

We collect the estimates from across the network into thekbloguarantees a bounded mean error vector in steady-state.

vector: To proceed, we introduce the eigendecomposition:
wi = COHwG,- Wi} (52) Ry = QuAvQf (70)
and introduce the following extended combination matrices . . L
whereQy = [gk.1,- - ,qk,MN,] IS @ unitary matrix with col-
AL 2 A1 @ Tyn, (53) umn eigenvectors, ; and Ay = diag{Ax(1), -, Ae(MNy)}
Ay 2 A, ® Inn, (54) is a diagonal matrix with eigenvalues;(j) > 0. For this

decomposition, we assume that the eigenvalueszpfare
cecCcwl (55) : - : A
= MNy arranged in descending order, i.8y.x(Rr) = (1) >



Ae(2) > - > M(MN), and the rank ofRy is Ly < the right hand side of (76) is the deviation of the node esttma

MNy. If we define Q@ £ diag{Q:,...,Qy} and A £ from this minimum-norm solution. The presence of this term
diag{A1,--- ,An}, then the network covariance matriR, after convergence is due to the zero eigenvaluedpf If
given by (60) can be expressed as: Rj, were full-rank so thatl, = M N, then this term would

R — QAT (71) disappear and the node estimate will converge, in the mean,
- to its optimal valuew®. We point out that even though the

We now note that the mean estimate vecRjip;], expressed matrices R, , are rank deficient sinceV, > 1, it is still

by (68) will be asymptotically unbiased if the spectral tei possible for the matricedz, to be full rank owing to the

of B, denoted by(B), is strictly less than one. Let us examindinear combination operation in (62). This illustrates @fithe

under what conditions this requirement is satisfied. Singe benefits of employing the right-stochastic maifix However,

and A, are left-stochastic matrices arl is block-diagonal, if despite using”, Ry still remains rank-deficient, the second
we have from [6] that: term on the right-hand side of (76) can be annihilated by

r . proper node initialization (e.g., by settifijw 1] = 0). By
p(B) = P(A2 (- MR)A1) < P(I - MR) (72) doing so, the mean estimate of each node will then approach

. .. _ . T
Therefore, if R is positive-definite, then choosingthe unique minimum-norm solution?, .

e < 2/Amax(Ri) ensures convergence of the algorithm

in the mean so thdt[w;] — 0 asi — oo. However, wherR General case: Let us now find the mean estimate of the
is singular, it may hold that(B) = 1, in which case choosing network for arbitrary left-stochastic matriced; and A.
the step-sizes according to the above bound guarantees @e@sidering definitions (60)-(61) and relation (75) andimgt
boundedness of the mean erréifw;], but not necessarily thatAf (1®w?) = A7 (1®w’) = (L®w°), it can be verified
that it converges to zero. The following result clarifiessie that(1®@w?) satisfies the following linear system of equations:

observations. (I -B)(1®w’) = A Mr (77)

Theorem 1. If the step-sizes are chosen to satisfy o ) _ ) o
This is a useful intermediate result that will be applied ur o

0<pux < (73) argument.

2
/\max(Rk)
then, under Assumption 1, the diffusion algorithm is stahle
the mean in the following sense: (a)4{5B) < 1, thenE[w;]
converges to zero and (b) i(B) = 1 then

Hlpoe < I = d(A)[lp.00 [[E[@ 1], .. (74) Elw;] = B Elw_ 1] + > B A Mr (78)
. . 7=0
Yxh[eegel[\;l%,oo stands for the block-maximum norm, as Oleflne‘ilhe mean estimate of the network can be found by computing
. ] the limit of this expression foi — oo. To find the limit
Proof: See Appendix A. B of the first term on the right hand side of (78), we evaluate

In what follows, we examine recursion (65) and derive af,,, |  5i and find conditions under which it converges. For

expression for the asymptotic valuelfuw;|—see (89) further g hurpose, we introduce the Jordan decomposition ofimatr
ahead. Before doing so, we first comment on a special cage,q [50]:

of interest, namely, result (76) below.

Special case: Consider a network witd; = A, = I and B=2zrz-" (79)
an arbitrary right stochastic matrik' satisfying (37). Using
(27) and (62)-(63), it can be verified that the following kme
system of equations holds at each ndde

Rkwo =Tk (75)

We show in Appendix B that under condition (73) the meaWh'ere thel-th Jordan block]; € C™*™, can be expressed
estimate of the diffusion LMS algorithm at each nodeavill

Next, if we iterate recursion (65) and apply the expectation
operator, we then obtain

lim ||E[@;
71— 00

where Z is an invertible matrix, and" is a block diagonal
matrix of the form

r— diag{l“l,l“g,--- ,rs} (80)

converge to: Ly = Ylm, + Nim, (81)
MN, In this relation,N,,,, is some nilpotent matrix of sizey; x m;.

llggo Elwy ;] = erk + Z qkmqg:nE[wky,l] (76) Using decomposition (79), we can expré¥sas
b Bi=2zriz-! (82)

whereRL represents the pseudo-inverseR)f, andwy, 1 is
the node initial value. This result is consistent with theame
estimate of the stand-alone LMS filter with rank-deficieptin i — diag{l“} i 7Fi} (83)
data (which corresponds to the situatidn = A, = C = I)

[49]. Note thatR,TCrk in (76) corresponds to the minimum-From this relation, it is deduced thaim; .., B¢ exists if
norm solution of R,w = 7. Therefore, the second term onlim;_. ., Ff exists for alll € {1,---,s}. Using (81), we can

Sincel is block diagonal, we have



write [50]: and Z~! in accordance with the size of. Using (86), it is
mi—1 . straightforward to verify that
. i i—m m b, - ; >
A Ti= o l<” et 2 <p>” | pr”) lim B = 2,2 87)
p= K3 o0
(84)  and if we multiply both sides of (77) from the left b, it

When i — oo, 7/~™ becomes the dominant factor in this2!S0 follows that
expression. Note that under condition (73), we hai#8) < 1 Zo AT Mr =0 (88)
which in turn implies that the magnitude of the eigenvalues
of B are bounded a®) < |y,| < 1. Without loss of Using these relations, we can now establish the following
generality, we assume that the eigenvaluesafre arranged result, which describes the limiting behavior of the weight
as|yi| < -+ < || < [7e4a]l = -+ = |7s| = 1. Now we Vector estimate.
examine the limit (84) for everyy| in this range. Clearly for Theorem 2. If the step-sizes{u,--- ,un} satisfy (73) and
|| < 1, the limit is zero (an obvious conclusion since in thignatrix B is power convergent, then the mean estimate of the
casel'; is a stable matrix). Fory| = 1, the limit is the identity network given by (78) asymptotically converges to:
matrix if v, = 1 andm; = 1. However, the limit does not exist . _ o7
for unit magnitude complex eigenvalues and eigenvaluds wit Z-ILTOE[W] = (2222) Elw ]+ (I = B)" A, Mr (89)
value -1, even whem,; = 1. Motivated by these observations
we introduce the following definition.

Definition: We refer to matrixi3 aspower convergent if (a)
its eigenvalues,, satisfy0 < |v,| < 1, (b) its unit magnitude

Wwhere the notationX~ denotes a (reflexive) generalized
inverse for the matrixX. In this case, the generalized inverse
for I — B is given by

eigenvalues are all equal to one, and (c) its Jordan blocks I-B) =zI-J)"2 (90)
associated withy, = 1 are all of sizel x 1. ) which is in terms of the factor§z,, Z,,.J} defined in (86).
Example 1: AssumeN, = 1, By, = I, and uniform step- .

Proof: See Appendix C. ]

sizes and covariance matrices across the agentsyj.es, , ! : ] )
We also argue in Appendix C that the quantity on the right-

R.r = R, for all k. Assume further that is doubly- " o . ) ;
hand side of (89) is invariant under basis transformatioms f

stochastic (i.e.071 = 1 = C1) and R,, is singular. Then, v 2 ' ;
in this case, the matri8 can be written as the KroneckertN® Jordan factor§zy, 21, 2,, 2}. It can be verified that if
= Ao = I then B will be symmetric and the result (89)

productB = AT AT ® (I, — pR,). For strongly-connected A_l ) 4
networks whered; 4 is a primitive matrix, it follows from will redyce to (76)._Now note that the fII:St term on the right
the Perron-Frobenius Theorem [51] thai A, has a single Nand side of (89) is due to the zero eigenvalued of 5.
unit-magnitude eigenvalue at one, while all other eigarsl FTOM this expression, we observe that different initialora
have magnitude less than one. We conclude in this case, fréfiues generally lead to different est|matgs. However, &f w
the properties of Kronecker products and under conditiGtE[w-1] = 0, the algorithm converges to:
(73), thatBB is a power-convergent matrix. | lim Ejw;] = (I — B)" A Mr (91)

71— 00
Example 2: AssumeM =2, N =3, N, = 1, B, = Iy, and In other words, the diffusion LMS algorithm will converge on
uniform step-sizes and covariance matrices across theisag@verage to a generalized inverse solution of the lineaesyst

again. LetA, = I = C and select of equations defined by (77).
1/2 0 When matrix 5 is stable so thatp(B) < 1 then the

factorization (86) reduces to the forth= Z,.J 2, andI — B
Ar=A=1]1/2 0 (85) will be full-rank. In that case, the first term on the right ban
0 1 side of (89) will be zero and the generalized inverse will
coincide with the actual matrix inverse so that (89) becomes

S = O

which is not primitive. Let furtherR,, = diag{3,0} denote
a singular covariance matrix. Then, it can be verified in this lim E[w;] = (I — B)"* AT Mr (92)
case the corresponding matdikwill have an eigenvalue with ) HOO.
value —1 and is not power convergent. m Comparing (92) with (77), we conclude that:
Returning to the above definition and assumiis power lim Ew,] =1 @ w’ (93)
convergent, then this means that the Jordan decomposit®n ( 100
can be rewritten as: which implies that the mean estimate of each node will be
J 0o Z, w®. This result is in agreement with the previously developed
B=[2 2 0 I z (86) mean-convergence analysis of diffusion LMS when the regres
e 2 sion data have full rank covariance matrices [6].

r z-1
whereJ is a Jordan matrix with all eigenvalues strictly insidd- Mean-Square Error Convergence

the unit circle, and the identity matrix insidé accounts for We now examine the mean-square stability of the error
the eigenvalues with value one. In (86) we further partitibn recursion (67) in the rank-deficient scenario. We begin by



deriving an error variance relation as in [52], [53]. To find  Proof: See Appendix D. ]
this relation, we form the weighted square “norm” of (67), In a manner similar to the proof at the end of Appendix C,
and compute its expectation to obtain: the term on the right hand side of (104) is invariant undersbas
- - transformations on the factofsZ:, Z,, 25, Z>}. Note that the
Bl|di]l5; = E(ll@i-1]5) + Elgi MAEA; Mg,] - (94) first term on the right hand sige of (104) is tge network psnalt
where||z||Z = 27Xz and ¥ > 0 is an arbitrary weighting due to rank-deficiency. When the node covariance matriees ar
matrix of compatible dimension that we are free to choose. full rank, then choosing step-sizes according to (73) leads
this expression, p(B) < 1. When this holds, thel8 = Z;JZ;. In this case,
, T . . the first term on the right hand side of (104) will be zero, and
= Al - MRa)T ABA (I = MRi) A 99) r= (B® B)T. In this case, we obtain:
Under the temporal and spatial independence conditions on

. ~ 12 _ T . 1
the regression data from Assumption 1, we can write: iligloEHuh”E (Vec(y)) (I = F)" vee(2) (106)

- - which is in agreement with the mean-square analysis of
E(|lwi-1l3) = Ell@illfs, (96) T 9 . . quare y
diffusion LMS strategies for regression data with full rank
so that (94) becomes: covariance matrices given in [2], [6].

Ell@;|% = E||wi—1 3 + Tr[SAL MGMA,) (97)
whereG 2 E[g,g7] is given by C. Learning Curves

T y = y = For eachk, the MSD and EMSE measures are defined as:
G==C dlag{crvleu_rl, e ,O'U,NR%N}C (98) o o
o M= lim E|lhui]? = lim Bl p, (107)
= lim E|ug by 1|? = lim E|wg,; 1% 108
S 2] B'SB+ oM ~BTsB  (99) O T L Eluedein = T Bl i, (108)
We shall employ (99) under the assumption of sufficientfynerehsx i = hj. — hy ;. These parameters can be computed
small step-sizes where terms that depend on higher-ordf&m the network error vector (104) through proper selectio

powers of the step-sizes are ignored. We next introduce ~©Of the weighting matrix> as follows:

Y 2 ATMGM A, (100) = lim Ellwill3, . G = lim w3, . (109)
and use (97) to write: where
E||w;||% = E||w;_1 % + Tr(ZY) (101)  Yimsa, = diagler) ® (B Br), Semse, = diaglex) @ Ry
(110)

From (101), we arrive at and{e,}2_, denote the vectors of a canonical basis seVin

dimensional space. The network MSD and EMSE measures

El|@;||% =Ell@-1|{sryit15npir1 + Zﬂ((BTVEBJ’y) (102) _ o defined as

j=0
N N
ili i i 1 1
To prove the convergence and_stablhty of the algorithm m th Tnet = — Z T, Coot = — Z o (111)
mean-square sense, we examine the convergence of the terms N — N —

the right hand side of (102). . .
on the ng and side of (102) We can also define MSD and EMSE measures over time as

In a manner similar to (88), it is shown in Appendix D that , T .
the following property holds: () Elhrqll” = Elwlls,,., (112)

2,y=0, YZ{ =0 (103) G0) = Ellug il =Blbials,,, (113)
Using (102), it can be verified that these measures evolve
according to the following dynamics:

Exploiting this result, we can arrive at the following staent,
which establishes that relation (102) converges asoo and
determines its limiting value. (1) = (i — 1) = [[0° i (- #) 0, T AT H o msa,

Theorem 3. Assume the step-sizes are sufficiently small and (114)

satisfy (73). Assume also th#t is power convergent. Under

N on Tqgi
these conditions. relation (102) converges to k(l) =(k (Z - 1) - Hw | H(I—H)Temse,, +a' H O'ems(e:llc-15)
Jim E|lw; ||} = E||ﬁ’—1||%z2z2)T22222 where

T _

+ (vec(V))" (I — F) vec(T) (104) H = (BeaB)T (116)

where T o« = ) -
. -

F= ((Zl & Zl)(J by J)(Zl ® Zl)) (105) Omsd, = VeC(Edek) (118)

and factors{ Z;, Z;, J} are defined in (86). Oemser, = vec(Temsey,) (119)
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To obtain (114) and (115), we sB{w;, _1] = 0 for all k.

V. COMPUTEREXPERIMENTS

In this section, we examine the performance of the diffusion
strategy (39)-(42) and compare the simulation results with
the analytical findings. In addition, we present a simulatio
example that shows the application of the proposed alguorith
in the estimation of space-varying parameters for a phiysica
phenomenon modeled by a PDE system over two spatial
dimensions.

A. Performance of the Distributed Solution

We consider a one-dimensional network topology, illustat
by Fig. 1, with L 1 and equally spaced nodes along
the = direction. We choosed; as the identity matrix, and
compute A, and C based on the uniform combination and
Metropolis rules [2], [6], respectively. We choogd = 2
and N, = 5 and generate the unknown global parameter
w® randomly for each experiment. We obtal#), using the
shifted Chebyshev polynomials given by (17) and compute
the space varying parametefg according to (26). The
measurement datdy (i), ¥ € {1,2,---,N} are generated

MSD in dB

MSDw, Simulation
O MSDw, Analysis (113)
A MSDw, Analysis(103)

— .= =MSDy, Simulation
@ MSDy, Analysis(113)
+ MSDy , Analysis (103)

‘n

b ]
# + ¢+ 2 % % + PE-B -0 E-E -

I I
100 200

I
300

i i
500 600
Time i

I
400

I I
700 800

(a) The network MSD.

I
900

1000

MSDw, Node 4,
X MSDw, Node
A MSDy, Node 4,
.. MSDw, Node 2,
O MSDw, Node 2,
% MSDw, Node 2,

¢

v

MSDy, for node 4,
MSDy, for node 4,
MSDy, for node 4,

= = .MSDy, for node 2,

Simulation

1, Analysis (113)

Analysis (103)
Simulation
Analysis(113)
Anallysis(103)
Simulation
Analysis(113)
Analysis(103)
Simulation
Analysis (113)

o MSDy, for node 2,
+ l\ISI)}l for node 2,

using the regression model (12). The SNR for each node W3
is computed as SNR= E||uy ;12||?/o2 . The noise and the Ry
entries of the regression data are white Gaussian andysatisf ol R
Assumption 1. The noise variances;?, }, and the trace of TYVVVETY
the covariance matrice§Tr(R., )}, are uniformly distributed trececRRSIVISSIASTRLITTESNLSN
between[0.05,0.1] and[1, 5], respectively.

Figure 2 illustrates the simulation results for a networkhwi
N = 4 nodes. For this experiment, we set = 0.01 for all
k and initialize each node at zero. In the legend of the figure,
we use the subscript to denote the MSD foﬁ,m- and the
subscriptw to refer to the MSD ofw;, ;. The simulation curves B. Comparison with Centralized Solution

are obtained by averaging ovae0 independent runs. it can We next compare the performance of the diffusion strategy

be seen that the simulated and theoretical results matdh V‘(%b)-(42) with the centralized solution (34)—(35). We ddes
in all cases. To obtain the analytical results, we use eses network with ' = 10 nodes with the topology illustrated

(104) to assess the steady-state values and expression@ll y Fig. 1. In this experiment, we set, — 0.02 for all &

genera.te the theoreﬁca! Iegrnlng cu;ves.b highlighted. Fi while the other network parameters are obtained following
TW]? |mpcr>]rtant pcilntshln Fr:g' 2 nee kto e f'9 '9 tle ) I:'rSEhe same construction described for Fig. 2. As the results in

note from the top plot that the network MSD fary,; is larger g -3 indicate, the diffusion and centralized LMS solution

than that forhy,;. This is because tend to the same MSD performance level in thedomain.
E||hyi||? = E||wg | 2 g (120) This conclusion is_consistent_with prior studies on the per-
kO formance of diffusion strategies in the full-rank case over
so that the MSD oifzk,i is a weighted version of the MSD strongly-connected networks [36]. However, discrepasaie
of wy ;. In this experiment, the weighting leads to a loweperformance are seen between the distributed and ceettaliz
estimation error. Second, note from the bottom plot thanplementations in thé domain, and the discrepancy tends
while the MSD values ofw,; are largely independent ofto become larger for larger values 8f. This is because, in
the node index, the same is not true for the MSD values ofoving from thew domain to theh domain, the inherent
fzk_,i. In previous studies on diffusion LMS strategies, it hagggregation of information that is performed by the ceizeal
been shown that, for strongly-connected networks, theorétw solution leads to enhanced estimates for iljevariables. For
nodes approach a uniform MSD performance level [36]. Trexample, if the estimates; ; which are generated by the
result in Fig. 2(b) supports this conclusion where it is seatistributed solution are averaged prior to computing khe,
that the MSD ofw;, ; for nodes 2 and 4 converge to the samthen it can be observed that the MSD valueshpf; for both
MSD level. However, note that the MSD dif;m— is different the centralized and the distributed solution will be simila
for nodes 2 and 4. This difference in behavior is due to theln these experiments, we also observe that if we increase
difference in weighting across nodes from (120). the number of basis functiongy;, then both the centralized

Analysis (103)

500 1000 1500

Time i

(b) The MSD at some individual nodes.
Fig. 2: The network MSD learning curve fay = 4.




11

@ Boundary points

*+ MSDw, Diffusion, Analysis
1 )
B === MSDw, Diffusion, Simulation © Sensor nodes

N MSDw, Centralized, Analysis

& 0 MSDw, Centralized, Simulation
N © MSDy, Diffusion, Analysis

Sx = - = MSDy, Diffusion, Simulation

O  MSDy, Centralized, Analysis i

MSDy,, Centralized, Simulation

MSD in dB

p - —
A, M 0,220y
Ay . v
.
Apay, Ve
o AAAAA: At A
©600.000000005.58666 65848 ¢
=)o
SO

(a) Network topology.

TN ST O TS S BN T BT B R S

| 1 1 . N N N
500 1000 1500 2000 2500 3000 3500 4000
Time i

(a) Ny = 5.

ooo2

ooo1

3 + MSDy, Diffusion, Analysis
= = = MSDw, Diffusion, Simulation
A MSDw, Centralized, Analysis
0 e MSDw, Centralized, Simulation

oooot

O10f =y dooo2
Ay o MSDy, Diffusion, Analysis

N R MSDy,, Diffusion, Simulation 0odo3

0o0o4

o15F) AR o MSDy, Centralized, Analysis
A MSDy,, Centralized, Simulation

MSD in dB
>> *
,(

Y
AR i
ml!!allt‘kkﬂ-‘-‘-‘t‘AAA‘kM

(b) f, K, Over the space.

#00000-000000:00000000500 Fig. 4: Spatial distribution off («,y) over the network grid

{(‘rkl7yk2)}'

O30

035 I I I I I I I
0 500 1000 1500 2000 2500 3000 3500 4000

Time i

(b) N = 10.
Fig. 3: The network MSD learning curve fd¥ = 10.

and diffusion algorithms will converge faster but theiragtg-

-

; a0

] a0

; 2

! 2

state MSD performance will degrade. Therefore, in choosing o oo oo T

the number of basis functiond],, there is a trade off between  Fig. 5: Spatial distribution of SNR over the network.
convergence speed and MSD performance.

fk17k2 £ f(kaykz) and hzl,k2 £ h(xklvykz)' We use the

C. Example: Two-Dimensional Process Estimation central difference scheme [39] to approximate the secodelror
partial derivatives:

In this example, we consider a two-dimensional network

. . 2
with 13 x 13 nodes that are equally spaced over the unit squared”f(,y,1) 1 Ly N 122
(r.) € [0.1] x [0.1] with Az = Ay = 1/12 (see Fig. 4(a). 027 Az rttke = 2frike + fa-ik] (122)
i i i i 0 Y, t 1
gcltshge;\gl(;;ko?gg?rs a phy5|ca| proceﬁ&,y) described fg[;y2y ) ~ Ayz [fk?17k72+1 - 2fk:1>7€2 + f]i?17k72—1] (123)
O?f(x,y) 0%f(z,y) he.y) (121) This leads to the following discretized input function:
= n\z,y

ox? Oy?

where h(z,y) : [0, 1]> — R is an unknown input function.
The PDE satisfies the following boundary conditions:

f(:c,O):f(O,y):f(x,l):f(l,y):O

For this problem, the objective is to estimatér,y), given hf, ., =¢~
noisy measurements collected By = N, x N, = 11 x 11

nodes corresponding to thieterior points of the network. To wherex = (N, — 1)?/4.

discretize the PDE, we employ the finite difference method To obtain f%, »,, we solve (121) using the Jacobi over-
(FDM) with uniform spacing of Az and Ay. We define relaxation method [45]. Figure 4(b) illustrates the valads
T, = kiAz, yr, = k2Ay and introduce the sampled valuesy;, , over the spatial domain. For the estimation/af .,

o 1
hkhkz :sz (fk1+17k2 + fklka"rl + fkl—l,kg
+ frrka—1 = 4k1 k2 (124)
For this example, the unknown input process is

w((k1—4)>+(k2—9)?) _ 5e—n((k1—s)2+(k2—s)2) 1
(125)
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the given information are the noisy measurement samples
Zhk1 ks (1) = fry ke + My i, (4). In this relation, the noise pro-

cessny, k., (i) is zero mean, temporally white and independent
over space. For this network, the two dimensional reference

!
N T e

v
@nN

T

Fig. 7: Network steady-state MSD performance in dB.

signal is the distorted version af; , which is represented VI. CONCLUSION
by dy, x, (7). The reference signal is obtained from (124) with
k., replaced by their noisy measured sampigsy, (i), i.e., By combining interpolation and distributed adaptive opti-

) 1 , , , mization, we proposed a diffusion LMS strategy for estioati
iy ks (1) N (z’ﬁ“x’w () + 2k ko1 (1) + Zl-1 () ang tracking of space-time varying parameters over netsvork
. ) The proposed algorithm can find the space-varying parameter
_1(6) —4 ) 126 .
2k -1(0) = 4280k () (126) not only at the node locations but also at spaces where no
According to (126), the linear regression model for thigl€asurement is collected. We showed that if the network

problem takes the following form: experiences data with rank-deficient covariance matrites,
' ' . non-cooperative LMS algorithm will converge to different
ey s (1) =Wy o (DR, gy + Vo ko (4) (127)  solutions at different nodes. In contrast, the diffusion &M

where uy, 1, (i) = 1. Therefore, in this example, we arealgorithm is able to alleviate the rank-deficiency problem
1,R2 - . 1] y

led to a linear model (127) witkieterministic as opposed to through its use of combination matrices especially sin_ee, a
random regression data. Although we only studied the caseS8PWn bY (72).p(B) < p(I — MR), where — MR is

random regression data in this article, this example is medfi€ coefficient lmgtrlx that gﬁv?rns tfheh dynamlcrs] Of_;!:qe ?on—
to illustrate that the diffusion strategy can still be applito COOPerative solution. Nevertheless, if these mechaniarto

models involving deterministic data in a manner similartf [ mitigate t_he deleterious effect of th_e rank-deficient deten
[54]. the algorithm converges to a solution space where the error
is bounded. We analyzed the performance of the algorithm in

o r .
To representy, ,,, as a space-invariant parameter Vectof,qjent ang steady-state regimes, and gave conditicsher un
we use two-dimensional shifted Chebyshev basis function

[55]. Using this representationg. , can be expressed as: Which the algorithm is stable in the mean and mean-square

sense.
Ny
Piks = D W Pk o (128)
n=1 APPENDIXA
where each element of the two-dimensional basis set is: MEAN ERROR CONVERGENCE
Prky ks = bnl,kl bnz,kz (129)

Based on the rank 0® = diag{R;,--- , Ry}, we have two
where {b,, x,} and {b.,1,} are the one-dimensionalpossible cases:
shifted Chebyshev polynomials in the and y directions, a) Ry > 0 Vk € {1,---,N}: As (68) implies, E[w;,]
respectively—recall (21). converges to zero i5(B) < 1. In [6], it was shown that when
In the network, each interior node communicates with if8 > 0, choosing the step-sizes according to (73) guarantees
four immediate neighbors. We usé = I and computeC p(B) < 1.
and A, by using the Metropolis and relative degree rules [2], b) 3k € {1,---, N} for which Ry, is rank-deficient: For
[6], [35]. All nodes are initialized at zero and, = 0.01 for all  this case, we first show that
k. The signal-to-noise ratio (SNR) of the network is unifoyml i1 il
distributed in the rang€&0, 30]dB and is shown in Fig. 5. 15" Hb,oo < [ = M) Hb,oo (130)
Figures 6(a) and 6(b) show three dimensional viewshere| - ||, denotes the block-maximum norm for block
of the true and estimated input process using the preectors with block entries of siz& N, x 1 and block matrices
posed diffusion LMS algorithm afteBO00 iterations. Fig- with blocks of sizeM N, x M N,. To this end, we note that for
ure 7 illustrates the MSD of the estimated source, i.ahe left-stochastic matriced; and A,, we have|| AT, . =
lim; o0 Bl A7, 1, — Py ks (1) A% ]ls.0 = 1 [6], and use the sub-multiplicative property of
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the block maximum norm [46] to write: We definep, £ Q¥4y,,; and start from some initial condition

i to arrive at
1BHY, oo < AT Nl oo 11 = MRl 00 AT lp00 % - »
% AT oo 17—~ MRl 00 AT 10 Elpil = [T = phlElpyia] = [T = el ™ Elpy,
- HI _ MRHHI (131) If we choose the step-sizes according to (73) then we get:
b,00
If we introduce the (block) eigendecomposition®f(71) into Zliglo Elpy,i] = [I - Ind(Ak)]E[pk,—l] (140)

(131) and consider the fact that the block-maximum norm
invariant under block-diagonal unitary matrix transfotioas
[6], [47], then inequality (131) takes the form: lim E[wy,;] = Qk[ — Ind(Ax)] QF E[tg, 1] (141)

1—00
1Bl e < (17— MA]

?quivalently, this can be written as:

i+1
b,00

(132) This result indicates that the mean error does not grow

Using the property|X[ls. = p(X) for a block diagonal unbounded. Now from (75), we can verify that:

Hermitian matrix X [6], we obtain: QrInd(Ap)QFw® = Rzm (142)
(1 = MAY |, :p((I - MA)“Fl) Then, upon substitution ooy ; = w® — wy,; into (141), we
' i obtain:
T gk ‘(1_Mk)\k(n)) ‘ lim E = QiInd(Ar)Qp w’ I —Ind(Ax)]QLE
T Jim E[wy,i] = QuInd(Ax)Qk w” + QI — Ind(Ak)]Qk Elwr, -1
_ 1 \ i+1 M Ny
_( max 11— k(n)l) =Rire+ Y qrndl Elwi 1] (143)
1<n<MN, n=Lr+1
i+1
:(P(I - MA)) APPENDIXC
:HI _ MAHZH (133) PR(.)OF OFLEMMA 2
e From (87), we readily deduce that
Using (133) in (132), we arrive at (130). We now proceed ] i _
to show the boundedness of the mean error for case (b). We Jim B E[w_] = (2222) E[w -] (144)
iterate (68) to get: On the other hand, from (86), we have
Elw;| = B+ 'E[w -] (134) i i
: J AT S T J =z 4 T
Applying the block maximum norm to (134) and using in- Z-ILI&ZB Az Mr = lim : (207721 + 22 22) Ay Mr
equality (130), we obtain: 7=0 7=0 (145)
lim H]E[ﬁ’imb _ < lim H(I _ MA)iJrle N HE[’a}_l]Hb . Using (88), the term involvingZ, cancels out and the above
11— 00 4 11— 00 ) El

(135) reduces to‘

The value oflim;_, ., ||(1 — MA)*+1||; o can be computed by lim Y B AT Mr = lim > (2107 2,) A Mr
evaluating the limits of its diagonal entries. Considerthg =0 0

step-sizes as in (73), the diagonal entries are computed as: =Z(I-J) "2, A Mr (146)
i 1, ifA =0 i . .
i (1 — pehe(n) ™+ = { ! thk(n)' (136) sincep(J) < 1. We now verify that the matrix
i—00 R otherwise X~ =z (I . J)ilzl (147)

Therefore, (135) reads as: is a (reflexive) generalized inverse for the matkix= (I —B).

lim ||IE[ﬁ;i]||b o < [I1 — Ind(A)||p.00 HE[,&)*l]Hb - (137) Recall that a (reflexive) generalized inverse for a matfixs
preo ' ' any matrixY ~ that satisfies the two conditions [56]:
APPENDIX B YY'Y=Y (148)
MEAN BEHAVIOR WHEN (A1 = A; = 1) YYY =Y~ (149)
SettingA; = A, = I in the diffusion recursions (39)-(41) 14 verify these conditions, we first note frofiz ' = I and
and subtractingy® from both sides of (40), we get: Z-1Z = I in (86) that the following relations hold:
Wy = Whi—1 — [k Z co B ug ;(do(i) — wgi Bewp,i—1) 212+ 202y =1 (150)
LeN, =
& (138) Z12,=0 (151)
Under Assumption 1 and usirdy (i) = wg;Bew® +v,(i), we 232, =0 (152)
obtain: Z,2 =1 (153)

E[y,;] = Qu[I — k] Qf E[twp,;—1] (139) 292y =1 (154)
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We further note thafX can be expressed as: (61) and (63) as = CTCO|{qu_’1, .-+, Tqy,N} that leads to:
X=I-B)=2z21-J))z% (155) Zo AT MCTcolFgu 1, Faun} =0 (163)

It is then easy to verify that the matricgsX, X~} satisfy By further replacing g, 1 by their values from (32), we obtain:
conditions (148) .and (149), as claimed. Therefore, (146) CaZ_QAgMCTdiag{Bf, e BTYcOHrgu, g} =0
be expressed as: , , (164)
R i AT . This relation must hold regardless of the cross-correfatio
}EEO Z B Ay Mr = (I = B)” Ay Mr (156) vectors{rq, r }. Therefore,
j=0
Substituting (144) and (156) into (78) leads to (89).
Let us now verify that the right-hand side of (89) remaing/e now define
invariant under basis transformations for the Jordan facto : 2 2
{21, 21,25, 25}. To begin with, the Jordan decomposition V =diaglo, 1 Inn,, s ou v I, b (166)
(86) is not unique. Let us assume, however, that we fix th@d rewrite expression (100) as
central term diag/, 7} to remain invariant and allow the T . -
Jordan factorg 21, 21, Z», 2} to vary. It follows from (86) Y = A2 MC diag{B;,---, By }diag{Ru,1,- -+, Run}
that B B x diag{B1,--- , By} VCMA, (167)
ZoB =2y, BZy= 2, (157)

ZoAE MCTdiag{BT,--- ,BL} =0 (165)

Multiplying this from the left byZ, and comparing the result
so that the columns of, and the rows ofZ, correspond with (165), we conclude that

to right and left-eigenvectors oB, respectively, associated 2,9 =0 (168)
with the eigenvalues with value one. If we replage by any 2
transformation of the forng, X5, whereA5 is invertible, then Noting that) is symmetric, we then obtain:
by (154), 2, should be replaced by, ! Z,. This conclusion o
can also be seen as follows. The new fac¥ois given by Yz, =0 (169)
Returning to recursion (102), we note first from (86) tiffat
I 0 ] can be rewritten as

ZE2[ 21 ZX | =[Z 22}{0)( (158)
2 _ _
B=2Z1JZ1+ 2,2, (170)

and, hence, the ne® ! becomes ) ] ) )
SinceB is power convergent, the first term on the right hand

(159) side of (102) converges to

Z

zt = -
X2,

_ _ o L iliriloE||w_1|\§BT)i+1EBi+l =Elw-1l{z,2,)rnz,2, (171)
which confirms thatZ, is replaced byX, ~ Zs. It follows that o ) ] )
the product, 2, remains invariant under arbitrary invertibleSubstituting (170) into the second term on the right hand sid
transformationst,. Moreover, from (86) we also have that ©f (102) and using (168) and (169), we arrive at

1— 00 1— 00
Assume we replaceZ; by any transformation of the form j=0 j=0
Z1, where)ﬁ is invertible, then by (153)Z2, shoqld t_)e % E(Zlez_l)y) (172)
replaced byX; " Z;. However, since we want to maintaih
invariant, then this implies that the transformatidh must If matrices X, X, andX are of compatible dimensions, then

also satisfy the following relations hold [6]:
x7HIx = 161
Ja=J ) (161) Tr (X1 X5) = (vee(XT))  vec(X1) (173)
It follows that the productz; (I — J)~!Z; remains invariant vee(X12Xs) = (XI ® X;)vec(S) (174)
under such invertible transformatioAs, since
. L . 1= Using these relations in (172), we obtain
Z(I—-J0)'z = zxx (- J)tuartz _
_ 1l s ’ _ ) T
= Zi(-x7tux) a2 Tr( lim Z(BT)JZBJJJ) _ (vec(yT))
= zZx(I-ntartz, (162) 0
X (hm Y (&FE) e (Zlﬂz"l)T)vec(z) (175)
1— 00
APPENDIXD 7=0

PROOF OF LEMMA 3

We first establish thag,) andy ZJ" are both equal to zero.
Indeed, we start by replacingin (88) by its expression from



This is equivalent to:

o0

Tr(Z(BT)jZBJy) = (Vec(y))T(i]-'j)vec(Z) (176)
§=0 =0
where

_ _ T
F=(@ez)UeNEed) a7

Sincep(J ® J) < 1, the series converges and we obtain:

e

i(BT)jEBjy) = (VeC(y))T(I — f)_lvec(E)

j=

lim
1—00

(178)

[19]

[20]

[21]

[22]

(23]

[24]

Upon substitution of (171) and (178) into (102), we arrive at

(104).
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