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Abstract—We study the problem of distributed adaptive esti-
mation over networks where nodes cooperate to estimate physical
parameters that can vary over both space and time domains.
We use a set of basis functions to characterize the space-
varying nature of the parameters and propose a diffusion least
mean-squares (LMS) strategy to recover these parameters from
successive time measurements. We analyze the stability and
convergence of the proposed algorithm, and derive closed-form
expressions to predict its learning behavior and steady-state
performance in terms of mean-square error. We find that in
the estimation of the space-varying parameters using distributed
approaches, the covariance matrix of the regression data at
each node becomes rank-deficient. Our analysis reveals thatthe
proposed algorithm can overcome this difficulty to a large extent
by benefiting from the network stochastic matrices that are used
to combine exchanged information between nodes. We provide
computer experiments to illustrate and support the theoretical
findings.

Index Terms—Diffusion adaptation, distributed processing, pa-
rameter estimation, space-varying parameters, sensor networks,
interpolation.

I. INTRODUCTION

I N previous studies on diffusion algorithms for adapta-
tion over networks, including least-mean-squares (LMS)

or recursive least squares (RLS) types, the parameters being
estimated are often assumed to bespace-invariant [1]–[6]. In
other words, all agents are assumed to sense and measure
data that arise from an underlying physical model that is
represented by fixed parameters over the spatial domain.
Some studies considered particular applications of diffusion
strategies to data that arise from potentially different models
[7], [8]. However, the proposed techniques in these works are
not immediately applicable to scenarios where the estimation
parameters vary over space across the network. This situation
is encountered in many applications, including the monitoring
of fluid flow in underground porous media [9], the tracking
of population dispersal in ecology [10], the localization of
distributed sources in dynamic systems [11], and the modeling
of diffusion phenomena in inhomogeneous media [12]. In
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these applications, the space-varying parameters being esti-
mated usually result from discretization of the coefficients
of an underlying partial differential equation through spatial
sampling.

The estimation of spatially-varying parameters has been
addressed in several previous studies, including [13]–[17]. In
these works and other similar references on the topic, the solu-
tions typically rely on the use of a central processing (fusion)
unit and less attention is paid to distributed and in-network
processing solutions. Distributed algorithms are useful in large
networks when there is no powerful fusion center and when
the energy and communication resources of individual nodes
are limited. Many different classes of distributed algorithms
for parameter estimation over networks have been proposed
in the recent literature, including incremental method [18]–
[22], consensus methods [23]–[34], and diffusion methods [2],
[3], [6], [35]–[37]. Incremental techniques require to set-up a
cyclic path between nodes over the network and are there-
fore sensitive to link failures. Consensus techniques require
doubly-stochastic combination policies and can cause network
instability in applications involving continuous adaptation and
tracking [5]. In comparison, diffusion strategies demonstrate
a stable behavior over networks regardless of the topology
and endow networks with real-time adaptation and learning
abilities [5], [6], [36].

Motivated by these considerations, in this paper, we develop
a distributed LMS algorithm of the diffusion type to enable
the estimation and tracking of parameters that may vary over
both space and time. Our approach starts by introducing a
linear regression model to characterize space-time varying
phenomena over networks. This model is derived by discretiz-
ing a representative second-order partial differential equation
(PDE), which can be useful in characterizing many dynamic
systems with spatially-varying properties. We then introduce
a set of basis functions, e.g., shifted Chebyshev polynomials,
to represent the space-varying parameters of the underlying
phenomena in terms of a finite set of space-invariant expansion
coefficients. Building on this representation, we develop a
diffusion LMS strategy that cooperatively estimates, inter-
polates, and tracks the model parameters over the network.
We analyze the convergence and stability of the developed
algorithm, and derive closed-form expressions to characterize
the learning and convergence behavior of the nodes in mean-
square-error sense. It turns out that in the context of space-time
varying models, the covariance matrices of the regression data
at the various nodes can become rank deficient. This property
influences the learning behavior of the network and causes the
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estimates to become biased. We elaborate on how the judicious
use of stochastic combination matrices can help alleviate this
difficulty.

The paper is organized as follows. In Section II, we
introduce a space-varying linear regression model which is
motivated from a physical phenomenon characterized by a
PDE, and formulate an optimization problem to find the
unknown parameters of the introduced model. In Section
III, we derive a diffusion LMS algorithm that solves this
problem in a distributed and adaptive manner. We analyze the
performance of the algorithm in Section IV, and present the
numerical results of computer simulations in Section V. The
concluding remarks appear in Section VI.

Notation: Matrices are represented by upper-case and vec-
tors by lower-case letters. Boldface fonts are reserved for
random variables and normal fonts are used for deterministic
quantities. Superscript(·)T denotes transposition for real-
valued vectors and matrices and(·)∗ denotes conjugate trans-
position for complex-valued vectors and matrices. The symbol
E[·] is the expectation operator, Tr(·) represents the trace of
its matrix argument and diag{·} extracts the diagonal entries
of a matrix, or constructs a diagonal matrix from a vector.IM
represents the identity matrix of sizeM ×M (subscriptM is
omitted when the size can be understood from the context).
The vec(·) operator vectorizes a matrix by stacking its columns
on top of each other. A set of vectors are stacked into a column
vector by col{·}.

II. M ODELING AND PROBLEM FORMULATION

In this section, we motivate a linear regression model that
can be used to describe dynamic systems with spatially varying
properties. We derive the model from a representative second-
order one-dimensional PDE that is used to characterize the
evolution of the pressure distribution in inhomogeneous media
and features a diffusion coefficient and an input source, both
of which vary over space. Extension and generalization of the
proposed approach, in modeling space-varying phenomena, to
PDEs of higher order or defined over two-dimensional space
are generally straightforward (see, e.g., Section V-C).

The PDE we consider is expressed as [12], [38]:

∂f(x, t)

∂t
=

∂

∂x

(

θ(x)
∂f(x, t)

∂x

)

+ q(x, t) (1)

where (x, t) ∈ [0, L] × [0, T ] denote the space and time
variables with upper limitsL ∈ R

+ andT ∈ R
+, respectively,

f(x, t) : R
2 → R, represents the system distribution (e.g.,

pressure or temperature) under study,θ(x):R → R is the
space-varying diffusion coefficient andq(x, t):R2 → R is
the input distribution that includes sources and sinks. PDE
(1) is assumed to satisfy the Dirichlet boundary conditions1,
f(0, t) = f(L, t) = 0 for all t ∈ [0, T ]. The distribution of the
system att = 0 is given byf(x, 0) = y(x) for x ∈ [0, L]. It
is convenient to rewrite (1) as:

∂f(x, t)

∂t
= θ(x)

∂2f(x, t)

∂x2
+
∂θ(x)

∂x

∂f(x, t)

∂x
+ q(x, t) (2)

1Generalization of the boundary conditions to nonzero values is possible
as well.

and employ the finite difference method (FDM) to discretize
the PDE over the time and space domains [39]. ForN andP
given positive integers, let∆x = L/(N + 1) andxk = k∆x
for k ∈ {0, 1, 2, . . . , N +1}, and similarly, let∆t = T/P and
ti = i∆t for i ∈ {0, 1, 2, . . . , P}. We further introduce the
sampled values of the pressure distributionfk(i) , f(xk, ti),
input qk(i) , q(xk, ti), and space-varying coefficientθk ,

θ(xk). It can be verified that applying FDM to (2), yields the
following recursion:

fk(i) = uk,ih
o
k +∆t qk(i − 1), k ∈ {1, 2, . . . , N} (3)

where the vectorshok ∈ R
3×1 anduk,i ∈ R

1×3 are defined as

hok , [ho1,k, h
o
2,k, h

o
3,k]

T (4)

uk,i , [fk−1(i− 1), fk(i− 1), fk+1(i− 1)] (5)

the entrieshom,k ∈ R are:

ho1,k =
ν

4
(θk−1 + 4θk − θk+1) (6)

ho2,k = 1− 2ν θk (7)

ho3,k =
ν

4
(−θk−1 + 4θk + θk+1) (8)

and ν = ∆t/∆x2. Note that relation (3) is defined for
k ∈ {1, 2, · · · , N}, i.e., no data sampling is required to be
taken atx = {0, L} becausef0(i) and fN+1(i) respectively
correspond to the known boundary conditionsf(0, t) and
f(L, t). For monitoring purposes (e.g., estimation ofθ(x)),
sensor nodes collect noisy measurement samples off(x, t)
across the network. We denote these scalar measurement
samples by

zk(i) = fk(i) + nk(i) (9)

wherenk(i) ∈ R is random noise term. Substituting (3) into
(9) leads to

dk(i) = uk,ih
o
k + nk(i) (10)

where
dk(i) , zk(i)−∆t qk(i − 1) (11)

The space-dependent model (10) can be generalized to ac-
commodate higher order PDE’s, or to describe systems with
more than one spatial dimension. In the generalized form, we
assume thatuk,i is random due to the possibility of sampling
errors, and therefore represent it using boldface notationuk,i.
We also lethok anduk,i beM -dimensional vectors. In addition,
we denote the noise more generally by the symbolvk(i) to
account for different sources of errors, including the measure-
ment noise shown in (9) and modeling errors. Considering
this generalization, the space-varying regression model that
we shall consider is of the form:

dk(i) = uk,ih
o
k + vk(i) (12)

wheredk(i) ∈ R,uk,i ∈ R
1×M , hok ∈ R

M×1 andvk(i) ∈ R.
In this work, we study networks that monitor phenomena
characterized by regression models of the form (12), where
the objective is to estimate the space-varying parameter vectors
hok for k ∈ {1, 2, · · · , N}. In particular, we seek a distributed
solution in the form of an adaptive algorithm with a diffusion
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mode of cooperation to enable the nodes to estimate and
track these parameters over both space and time. The available
information for estimation of the{hok} are the measurement
samples,{dk(i),uk,i}, collected at theN spatial positionxk,
which we take to representN nodes.

Several studies, e.g., [13]–[15], solved space-varying pa-
rameter estimation problems usingnon-adaptive centralized
techniques. In centralized optimization, the space-varying pa-
rameters{hok} are found by minimizing the following global
cost function over the variables{hk}:

J(h1, . . . , hN ) ,

N∑

k=1

Jk(hk) (13)

where
Jk(hk) , E|dk(i)− uk,ihk|

2 (14)

To findhok using distributed mechanisms, however, preliminary
steps are required to transform the global cost (13) into a
suitable form convenient for decentralized optimization [2].
Observe from (6)-(8) that collaborative processing is beneficial
in this case because thehok of neighboring nodes are related
to each other through the space-dependent functionθ(x).

Remark 1. Note that if nodes individually estimate their own
space-varying parameters by minimizingJk(hk), then at each
time instant, they will need to transmit their estimates to
a fusion center for interpolation, in order to determine the
value of the model parameters over regions of space where no
measurements were collected. Using the proposed distributed
algorithm in Section III-B, it will be possible to update the
estimates and interpolate the results in a fully distributed
manner. Cooperation also helps the nodes refine their estimates
and perform more accurate interpolation. �

III. A DAPTIVE DISTRIBUTED OPTIMIZATION

In distributed optimization over networked systems, nodes
achieve their common objective through collaboration. Such
an objective may be defined as finding a global parameter
vector that minimizes a given cost function that encompasses
the entire set of nodes. For the problem stated in this study,
the unknown parameters in (13) are node-dependent. However,
as we explained in Section II, these space-varying parameters
are related through a well-defined function, e.g.,θ(x) over
the spatial domain. In the continuous space domain, the
entries of eachhok, i.e., {ho1,k, · · · , h

o
M,k} can be interpreted

as samples ofM unknown space-varying parameter functions
{ho1(x), · · · , h

o
M (x)} at location x = xk, as illustrated in

Fig. 1.
We can now use the well-established theory of interpolation

to find a set of linear expansion coefficients, common to all
the nodes, in order to estimate space-varying parameters using
distributed optimization. Specifically, we assume that them-th
unknown space-varying parameter function,hom(x) can be
expressed as a unique linear combination of someNb space
basis functions, i.e.,

hom(x) =Wm,1b1(x)+Wm,2b2(x)+· · ·+Wm,Nb
bNb

(x) (15)

where {Wm,n} are the unique expansion coefficients and
{bn(x)} are the basis functions. In the application examples

∆x

   N

x

0=x L=x

∆ x ∆N x∆ x

1
( )

oh x

2
( )

oh x

( )
o

Mh x

o

 h ,,,,

o

 h ,,,,

o

M h ,,,,

o

 h ,,,,

o

 h ,,,,

o

M h ,,,,

o

,,,,M N
h

o

 Nh ,,,,

o

 Nh ,,,,

Fig. 1: An example of the space-varying parameter estimation
problem over a one-dimensional network topology. The larger circles
on thex-axis represent the node locations atx = xk. These nodes
collect samples{dk(i),uk,i} to estimate the space-varying parame-
ters{ho

k}. For simplicity in defining the vectorsbk in (20), for this
example, we assume that the node positionsxk are uniformly spaced,
however, generalization to non-uniform spacing is straightforward.

treated in Section V, we adopt shifted Chebyshev polynomials
as basis functions, which are generated using the following
expressions [40]

b1(x) = 1, b2(x) = 2x− 1 (16)

bn+1(x) = 2(2x− 1)bn(x)− bn−1(x), 2 < n < Nb (17)

The choice of a suitable set of basis functions{bn(x)}
Nb

n=1

is application-specific and guided by multiple considerations
such as representation efficiency, low computational complex-
ity, interpolation capability, and other desirable properties,
such as orthogonality. Chebyshev basis functions yield good
results in terms of the above criteria and helps avoid the
Runge’s phenomenon at the endpoints of the space interval
[40].

The sampled version of them-th space-varying parameter
hom(x) in (15), atx = xk = k∆x, can be written as:

hom,k =WT
mbk (18)

where
Wm , [Wm,1,Wm,2, · · · ,Wm,Nb

]T (19)

bk , [b1,k, · · · , bNb,k]
T (20)

and each entrybn,k is obtained by sampling the corresponding
basis function at the same location, i.e.,

bn,k , bn(xk) = bn(k∆x) (21)

Collecting the sampled version of allM functionshom(x) for
m ∈ {1, · · · ,M} into a column vector as

hok = [ho1,k, h
o
2,k, · · · , h

o
M,k]

T (22)

and using (18), we arrive at:

hok =W obk (23)

where

W
o
,













W o
1,1 W o

1,2 . . . W o
1,Nb

W o
2,1 W o

2,2 . . . W o
2,Nb

...
... . . .

...

W o
M,1 W o

M,2 . . . W o
M,Nb













(24)
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Remark 2. Several other interpolation techniques can be used
to obtain the basis functionsbn(x), such as the so-called
kriging method [41]. The latter is a data-based weighting
approach, rather than a distance-based interpolation. It is
applicable in scenarios where the unknown random field to be
interpolated, in our casehok, is wide-sense stationary; accord-
ingly, it requires knowledge about the means and covariances
of the random field over space, as employed in [42]. If these
covariances are not available, then the variogram models,
describing the degree of spatial dependence of the random
field, are used to generate substitutes for these covariances
[43]. However,a-priori knowledge about the parameters of
variogram models, including nugget, sill, and range, are re-
quired to obtain the spatial covariances. In this work, since
neither the means and covariances nor the parameters of the
variogram models of the random fields are available, we focus
on interpolation techniques that rely on distance information
rather than the statistics of the random field to be interpolated.
�

Returning to equation (23), it is convenient to rearrange
W o into anMNb × 1 column vectorwo by stacking up the
columns ofW oT , i.e., wo = vec(W oT ), and defining the
block diagonal matrixBk ∈ R

M×MNb as:

Bk , IM ⊗ bTk (25)

Then, relation (23) can be rewritten in terms of the unique
parameter vectorwo as:

hok = Bkw
o (26)

so that substitutinghok from (26) into (12) yields:

dk(i) = uk,iBkw
o + vk(i) (27)

Subsequently, the global cost function (13) becomes:

J(w) =

N∑

k=1

E|dk(i)− uk,iBkw|
2 (28)

In the following, we elaborate on how the parameter vector
wo and, hence, the{hok} can be estimated from the data
{dk(i),uk,i} using centralized and distributed adaptive op-
timization.

A. Centralized Adaptive Solution

We begin by stating the assumed statistical conditions on
the data over the network.

Assumption 1. We assume that{dk(i),uk,i,vk(i)} in model
(27) satisfy the following conditions:

1) dk(i) and uk,i are zero-mean, jointly wide-sense sta-
tionary random processes with second-order moments:

rdu,k = E[dk(i)u
T
k,i] ∈ R

M×1 (29)

Ru,k = E[uT
k,iuk,i] ∈ R

M×M (30)

2) The regression data{uk,i} are i.i.d. over time, indepen-
dent over space, and their covariance matrices,Ru,k, are
positive definite for allk.

3) The noise processes{vk(i)} are zero-mean, i.i.d. over
time, and independent over space with variances{σ2

v,k}.

4) The noise processvk(i) is independent of the regression
dataum,j for all i, j andk,m. �

The optimal parameterwo that minimizes (28) can be found
by setting the gradient vector ofJ(w) to zero. This yields the
following normal equations:

( N∑

k=1

R̄u,k

)

wo =
N∑

k=1

r̄du,k (31)

where {R̄u,k, r̄du,k} denote the second-order moments of
uk,iBk anddk(i):

R̄u,k , BT
k Ru,kBk, r̄du,k , BT

k rdu,k (32)

It is clear from (31) that when
∑N

k=1 R̄u,k > 0, thenwo can
be determined uniquely. If, on the other hand,

∑N

k=1 R̄u,k is
singular, then we can use its pseudo-inverse to recover the
minimum-norm solution of (31). Once the global solution is
estimated, we can retrieve the space-varying parameter vectors
hok by substitutingwo into (26).

Alternatively the solutionwo of (31) can be sought itera-
tively by using the following steepest descent recursion:

w
(c)
i = w

(c)
i−1 + µ

N∑

k=1

(
r̄du,k − R̄u,kw

(c)
i−1

)
(33)

whereµ > 0 is a step-size parameter andw(c)
i is the estimate

of wo at thei-th iteration. Recursion (33) requires the central-
ized processor to have knowledge of the covariance matrices,
R̄u,k, and cross covariance vectors,r̄du,k, across all nodes.
In practice, these moments are unknown in advance, and we
therefore use their instantaneous approximations in (33).This
substitution leads to the centralized LMS strategy (34)–(35)
for space-varying parameter estimation over networks.

Algorithm 1 : Centralized LMS

w
(c)
i = w

(c)
i−1 + µ

N∑

k=1

BT
k u

T
k,i

(
dk(i)− uk,iBkw

(c)
i−1

)
(34)

hk,i = Bkw
(c)
i , k ∈ {1, 2, · · · , N} (35)

In this algorithm, at any given time instanti, each node
transmits its data{uk,i,dk(i)} to the central processing unit to
updatew(c)

i−1. Subsequently, the algorithm obtains an estimate
for the space-varying parameters,hk,i, by using the updated
estimatew(c)

i , and the basis function matrix at locationk,
(i.e.,Bk). This latter step can also be used as an interpolation
mechanism to estimate the space-varying parameters at loca-
tions other than the pre-determined locations{xk}, by using
the corresponding matrixB(x) for some desired locationx.

B. Adaptive Diffusion Strategy

There are different distributed optimization techniques that
can be applied to (28) in order to estimatewo and consequently
obtain the optimal space-varying parametershok. Let Nk de-
note the index set of the neighbors of nodek, i.e., the nodes
with which nodek can share information (includingk itself).
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One possible optimization strategy is to decouple the global
cost (28) and write it as a set of constrained optimization
problems with local variableswk, [44], i.e.,

min
wk

∑

ℓ∈Nk

cℓ,kE|dℓ(i)− uℓ,iBkwk|
2

subject to wk = w (36)

wherecℓ,k are nonnegative entries of a right-stochastic matrix
C ∈ R

N×N satisfying:
cℓ,k = 0 if ℓ /∈ Nk and C1 = 1 (37)

and1 is the column vector with unit entries.
The optimization problem (36) can be solved using, for

example, the alternating directions method of multipliers
(ADMM) [44], [45]. In the algorithm derived using this
method, the Lagrangian multipliers associated with the con-
straints need to be updated at every iteration during the opti-
mization process. To this end, information about the network
topology is required to establish a hierarchical communication
structure between nodes. In addition, the constraints imposed
by (36) require all agents to agree on an exact solution; this
requirement degrades the learning and tracking abilities of the
nodes over the network. When some nodes observe relevant
data, it is advantageous for them to be able to respond quickly
to the data without being critically constrained by perfect
agreement at that stage. Doing so, would enable information
to diffuse more rapidly across the network.

A technique that does not suffer from these difficulties and
endows networks with adaptation and learning abilities in real-
time is the diffusion strategy [2], [3], [6], [35], [36]. In this
technique, minimizing the global cost (28) motivates solving
the following unconstrained local optimization problem for
k ∈ {1, · · · , N} [2]:

min
w

( ∑

ℓ∈Nk

cℓ,kE|dℓ(i)− uℓ,iBkw|
2

+
∑

ℓ∈Nk\{k}

pℓ,k‖w − ψℓ‖
2
)

(38)

whereψℓ is the available estimate of the global parameter at
nodeℓ, Nk\{k} denotes setNk excluding nodek, and{pℓ,k}
are nonnegative scaling parameters. Following the arguments
in [2], [3], [6], the minimization of (38) leads to a general
form of the diffusion strategy described by (39)–(42), which
can be specialized to several simpler yet useful forms.

Algorithm 2 : Diffusion LMS

φk,i−1 =
∑

ℓ∈Nk

a
(1)
ℓ,kwℓ,i−1 (39)

ψk,i = φk,i−1 + µk

∑

ℓ∈Nk

cℓ,kB
T
ℓ u

T
ℓ,i

(
dℓ(i)− uℓ,iBℓφk,i−1

)

(40)

wk,i =
∑

ℓ∈Nk

a
(2)
ℓ,kψℓ,i (41)

hk,i = Bkwk,i (42)

In this algorithm, µk > 0 is the step-size at nodek,
{wk,i,ψk,i,φk,i−1} are intermediate estimates ofwo, hk,i is

an intermediate estimate ofhok, and{a
(1)
ℓ,k, a

(2)
ℓ,k} are nonneg-

ative entries of left-stochastic matricesA1, A2 ∈ R
N×N that

satisfy:

a
(1)
ℓ,k = a

(2)
ℓ,k = 0 if ℓ /∈ Nk (43)

AT
1 1 = 1 AT

2 1 = 1 (44)

Each nodek in the first combination step fuses{wℓ,i−1}ℓ∈Nk

in a convex manner to generateφk,i−1. In the following step,
named adaptation, each nodek uses its own data and that
of neighboring nodes, i.e.,

{
uℓ,i,dℓ(i)

}

ℓ∈Nk
to adaptively

updateφk,i−1 to an intermediate estimateψk,i. In the third
step, which is also a combination, the intermediate estimates
{ψℓ,i}ℓ∈Nk

are fused to further align the global parameter
estimate at nodek to that of its neighbors. Subsequently, the
desired space-varying parameterhk,i is obtained fromwk,i.
Note that each step in the algorithm runs concurrently over
the network.

Remark 3. The main difference between Algorithm 2 and the
previously developed diffusion LMS strategies in, e.g., [2], [6],
[35] is in the transformed domain regression datauℓ,iBℓ in
(40) which now have singular covariance matrices. Moreover,
there is an additional interpolation step (42). �

Remark 4. The proposed diffusion LMS algorithm estimates
NM spatially dependent variables{hok} usingNbM global
invariant coefficients inwo. From the computational com-
plexity and energy efficiency point of view, it seems this
is advantageous when the number of nodes,N , is greater
than the number of basis functionsNb. However, even if this
is not the case, using the estimatedNbM global invariant
coefficients, the algorithm not only can estimate the space-
varying parameters at the locations of theN nodes, but
can also estimate the space-varying parameters at locations
where no measurements are available. Therefore, even when
N < Nb, the algorithm is still useful as it can perform
interpolation. �

There are different choices for the combination matrices
{A1, A2, C}. For example, the choiceA1 = A2 = C = I
reduces the above diffusion algorithm to the non-cooperative
case where each node runs an individual LMS filter without
coordination with its neighbors. SelectingC = I simplifies the
adaptation step (40) to the case where nodek uses only its
own data{dk(i),uk,i} to perform local adaptation. Choosing
A1 = I and A2 = A, for some left-stochastic matrixA,
removes the first combination step and the algorithm reduces
to an adaptation step followed by combination (this variantof
the algorithm has the Adapt-then-Combine or ATC diffusion
structure) [2], [6]. Likewise, choosingA1 = A andA2 = I re-
moves the second combination step and the algorithm reduces
to a combination step followed by adaptation (this variant
has the Combine-then-Adapt (CTA) structure of diffusion [2],
[6]). Often in practice, either the ATC or CTA version of the
algorithm is used withC set toC = I such as using the
following ATC diffusion version described by equations (45)–
(47).
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Algorithm 3 : Diffusion ATC

ψk,i = wk,i−1 + µkB
T
k u

T
k,i

(
dk(i)− uk,iBkwk,i−1

)
(45)

wk,i =
∑

ℓ∈Nk

aℓ,kψℓ,i (46)

hk,i = Bkwk,i (47)

Nevertheless for generality, we shall study the performance
of Algorithm 2 for arbitrary matrices{A1, A2, C} with C
right-stochastic and{A1, A2} left-stochastic. The results can
then be specialized to various situations of interest, including
ATC, CTA, and the non-cooperative case.

The combination matrices{A1, A2, C} are normally ob-
tained using some well-known available combination rules
such as the Metropolis or uniform combination rules [2], [24],
[35]. These matrices can also be treated as free variables
in the optimization procedure and used to further enhance
the performance of the diffusion strategies. Depending on
the network topology and the quality of the communication
links between nodes, the optimized values of the combination
matrices differ from one case to another [6], [46]–[48].

IV. PERFORMANCEANALYSIS

In this section, we analyze the performance of the diffusion
strategy (39)-(42) in the mean and mean-square sense and
derive expressions to characterize the network mean-square
deviation (MSD) and excess mean-square error (EMSE). In
the analysis, we need to consider the fact that the covariance
matrices{R̄u,k}Nk=1 defined in (32) are now rank-deficient
since we haveNb > 1. We explain in the sequel the
ramifications that follow from this rank-deficiency.

A. Mean Convergence

We introduce the local weight-error vectors

w̃k,i , wo−wk,i, ψ̃k,i , wo−ψk,i, φ̃k,i , wo−φk,i (48)

and define the network error vectors:

φ̃i , col{φ̃1,i, . . . , φ̃N,i} (49)

ψ̃i , col{ψ̃1,i, . . . , ψ̃N,i} (50)

w̃i , col{w̃1,i, . . . , w̃N,i} (51)

We collect the estimates from across the network into the block
vector:

wi , col{w1,i, . . . ,wN,i} (52)

and introduce the following extended combination matrices:

A1 , A1 ⊗ IMNb
(53)

A2 , A2 ⊗ IMNb
(54)

C , C ⊗ IMNb
(55)

We further define the block diagonal matrices and vectors:

Ri , diag
{ ∑

ℓ∈Nk

cℓ,kB
T
ℓ u

T
ℓ,iuℓ,iBℓ : k = 1, · · · , N

}

(56)

M , diag
{
µ1IMNb

, . . . , µNIMNb

}
(57)

ti , col
{ ∑

ℓ∈Nk

cℓ,kB
T
ℓ u

T
ℓ,idℓ(i) : k = 1, · · · , N

}

(58)

gi , CT col
{
BT

1 u
T
1,iv1(i), · · · , B

T
Nu

T
N,ivN (i)

}
(59)

and introduce the expected values ofRi andti:

R , E[Ri] = diag
{
R1, · · · , RN

}
(60)

r , E[ti] = col
{
r1, · · · , rN

}
(61)

where
Rk ,

∑

ℓ∈Nk

cℓ,k R̄u,ℓ (62)

rk ,
∑

ℓ∈Nk

cℓ,k r̄du,ℓ (63)

We also introduce an indicator matrix operator, denoted by
Ind(·), such that for any real-valued matrixX with (k, j)-th
entryXk,j , the corresponding entry ofY = Ind(X) is:

Yk,j =

{

1, if Xk,j > 0

0, otherwise
(64)

Now from (39)–(41), we obtain:

wi = Biwi−1 +AT
2 Mti (65)

where
Bi , AT

2 (I −MRi)A
T
1 (66)

In turn, making use of (27) in (65), we can verify that the
network error vector follows the recursion

w̃i = Biw̃i−1 −AT
2 Mgi (67)

By taking the expectation of both sides of (67) and using
Assumption 1, we arrive at:

E[w̃i] = BE[w̃i−1] (68)

where in this relation:

B , E[Bi] = AT
2 (I −MR)AT

1 (69)

To obtain (68), we used the fact that the expectation of the
second term in (67), i.e.,E[AT

2 Mgi], is zero becausevk(i)
is independent ofuk,i andE[vk(i)] = 0. The rank-deficient
matrices{R̄u,k} appear insideR in (69). We now verify that
despite having rank-deficient matrixR, recursion (68) still
guarantees a bounded mean error vector in steady-state.

To proceed, we introduce the eigendecomposition:

Rk = QkΛkQ
T
k (70)

whereQk = [qk,1, · · · , qk,MNb
] is a unitary matrix with col-

umn eigenvectorsqk,j andΛk = diag{λk(1), · · · , λk(MNb)}
is a diagonal matrix with eigenvaluesλk(j) ≥ 0. For this
decomposition, we assume that the eigenvalues ofRk are
arranged in descending order, i.e,λmax(Rk) , λk(1) ≥
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λk(2) ≥ · · · ≥ λk(MNb), and the rank ofRk is Lk ≤
MNb. If we define Q , diag{Q1, . . . , QN} and Λ ,

diag{Λ1, · · · ,ΛN}, then the network covariance matrix,R,
given by (60) can be expressed as:

R = QΛQT (71)

We now note that the mean estimate vector,E[w̃i], expressed
by (68) will be asymptotically unbiased if the spectral radius
of B, denoted byρ(B), is strictly less than one. Let us examine
under what conditions this requirement is satisfied. SinceA1

andA2 are left-stochastic matrices andR is block-diagonal,
we have from [6] that:

ρ(B) = ρ
(

AT
2 (I −MR)AT

1

)

≤ ρ
(
I −MR

)
(72)

Therefore, if R is positive-definite, then choosing
µk < 2/λmax(Rk) ensures convergence of the algorithm
in the mean so thatE[w̃i] → 0 as i→ ∞. However, whenR
is singular, it may hold thatρ(B) = 1, in which case choosing
the step-sizes according to the above bound guarantees the
boundedness of the mean error,E[w̃i], but not necessarily
that it converges to zero. The following result clarifies these
observations.

Theorem 1. If the step-sizes are chosen to satisfy

0 < µk <
2

λmax(Rk)
(73)

then, under Assumption 1, the diffusion algorithm is stablein
the mean in the following sense: (a) Ifρ(B) < 1, thenE[w̃i]
converges to zero and (b) ifρ(B) = 1 then

lim
i→∞

∥
∥E[w̃i]

∥
∥
b,∞

≤ ‖I − Ind(Λ)‖b,∞
∥
∥E[w̃−1]

∥
∥
b,∞

(74)

where‖·‖b,∞ stands for the block-maximum norm, as defined
in [6], [47].

Proof: See Appendix A.
In what follows, we examine recursion (65) and derive an

expression for the asymptotic value ofE[wi]—see (89) further
ahead. Before doing so, we first comment on a special case
of interest, namely, result (76) below.

Special case: Consider a network withA1 = A2 = I and
an arbitrary right stochastic matrixC satisfying (37). Using
(27) and (62)-(63), it can be verified that the following linear
system of equations holds at each nodek:

Rkw
o = rk (75)

We show in Appendix B that under condition (73) the mean
estimate of the diffusion LMS algorithm at each nodek will
converge to:

lim
i→∞

E[wk,i] = R†
krk +

MNb∑

n=Lk+1

qk,nq
T
k,nE[wk,−1] (76)

whereR†
k represents the pseudo-inverse ofRk, andwk,−1 is

the node initial value. This result is consistent with the mean
estimate of the stand-alone LMS filter with rank-deficient input
data (which corresponds to the situationA1 = A2 = C = I)
[49]. Note thatR†

krk in (76) corresponds to the minimum-
norm solution ofRkw = rk. Therefore, the second term on

the right hand side of (76) is the deviation of the node estimate
from this minimum-norm solution. The presence of this term
after convergence is due to the zero eigenvalues ofRk. If
Rk were full-rank so thatLk = MNb, then this term would
disappear and the node estimate will converge, in the mean,
to its optimal value,wo. We point out that even though the
matrices R̄u,ℓ are rank deficient sinceNb > 1, it is still
possible for the matricesRk to be full rank owing to the
linear combination operation in (62). This illustrates oneof the
benefits of employing the right-stochastic matrixC. However,
if despite usingC, Rk still remains rank-deficient, the second
term on the right-hand side of (76) can be annihilated by
proper node initialization (e.g., by settingE[wk,−1] = 0). By
doing so, the mean estimate of each node will then approach
the unique minimum-norm solution,R†

krk.

General case: Let us now find the mean estimate of the
network for arbitrary left-stochastic matricesA1 and A2.
Considering definitions (60)-(61) and relation (75) and noting
thatAT

1 (1⊗w
o) = AT

2 (1⊗w
o) = (1⊗wo), it can be verified

that(1⊗wo) satisfies the following linear system of equations:

(I − B)(1 ⊗ wo) = AT
2 Mr (77)

This is a useful intermediate result that will be applied in our
argument.

Next, if we iterate recursion (65) and apply the expectation
operator, we then obtain

E[wi] = Bi+1
E[w−1] +

i∑

j=0

BjAT
2 Mr (78)

The mean estimate of the network can be found by computing
the limit of this expression fori → ∞. To find the limit
of the first term on the right hand side of (78), we evaluate
limi→∞ Bi and find conditions under which it converges. For
this purpose, we introduce the Jordan decomposition of matrix
B as [50]:

B = ZΓZ−1 (79)

whereZ is an invertible matrix, andΓ is a block diagonal
matrix of the form

Γ = diag
{

Γ1,Γ2, · · · ,Γs

}

(80)

where thel-th Jordan block,Γl ∈ C
ml×ml , can be expressed

as:
Γl = γlIml

+Nml
(81)

In this relation,Nml
is some nilpotent matrix of sizeml×ml.

Using decomposition (79), we can expressBi as

Bi = ZΓiZ−1 (82)

SinceΓ is block diagonal, we have

Γi = diag
{

Γi
1,Γ

i
2, · · · ,Γ

i
s

}

(83)

From this relation, it is deduced thatlimi→∞ Bi exists if
limi→∞ Γi

l exists for all l ∈ {1, · · · , s}. Using (81), we can
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write [50]:

lim
i→∞

Γi
l = lim

i→∞
γi−ml

l

(

γ
ml

l Iml
+

ml−1∑

p=1

(
i

p

)

γml−p
l Np

ml

)

(84)

When i→ ∞, γi−ml

l becomes the dominant factor in this
expression. Note that under condition (73), we haveρ(B) ≤ 1
which in turn implies that the magnitude of the eigenvalues
of B are bounded as0 ≤ |γn| ≤ 1. Without loss of
generality, we assume that the eigenvalues ofB are arranged
as |γ1| ≤ · · · ≤ |γL| < |γL+1| = · · · = |γs| = 1. Now we
examine the limit (84) for every|γl| in this range. Clearly for
|γl| < 1, the limit is zero (an obvious conclusion since in this
caseΓl is a stable matrix). For|γl| = 1, the limit is the identity
matrix if γl = 1 andml = 1. However, the limit does not exist
for unit magnitude complex eigenvalues and eigenvalues with
value -1, even whenml = 1. Motivated by these observations,
we introduce the following definition.

Definition: We refer to matrixB aspower convergent if (a)
its eigenvaluesγn satisfy0 ≤ |γn| ≤ 1, (b) its unit magnitude
eigenvalues are all equal to one, and (c) its Jordan blocks
associated withγn = 1 are all of size1× 1. �

Example 1: AssumeNb = 1, Bk = IM , and uniform step-
sizes and covariance matrices across the agents, i.e.,µk ≡ µ,
Ru,k ≡ Ru for all k. Assume further thatC is doubly-
stochastic (i.e.,CT1 = 1 = C1) andRu is singular. Then,
in this case, the matrixB can be written as the Kronecker
productB = AT

2 A
T
1 ⊗ (IM − µRu). For strongly-connected

networks whereA1A2 is a primitive matrix, it follows from
the Perron-Frobenius Theorem [51] thatA1A2 has a single
unit-magnitude eigenvalue at one, while all other eigenvalues
have magnitude less than one. We conclude in this case, from
the properties of Kronecker products and under condition
(73), thatB is a power-convergent matrix. �

Example 2: AssumeM = 2, N = 3, Nb = 1, Bk = IM , and
uniform step-sizes and covariance matrices across the agents
again. LetA2 = I = C and select

A1 = A =






1/2 0 0

1/2 0 1

0 1 0




 (85)

which is not primitive. Let furtherRu = diag{β, 0} denote
a singular covariance matrix. Then, it can be verified in this
case the corresponding matrixB will have an eigenvalue with
value−1 and is not power convergent. �

Returning to the above definition and assumingB is power
convergent, then this means that the Jordan decomposition (79)
can be rewritten as:

B = [Z1 Z2
︸ ︷︷ ︸

Z

]

[
J 0

0 I

]

︸ ︷︷ ︸

Γ

[
Z̄1

Z̄2

]

︸ ︷︷ ︸

Z−1

(86)

whereJ is a Jordan matrix with all eigenvalues strictly inside
the unit circle, and the identity matrix insideΓ accounts for
the eigenvalues with value one. In (86) we further partitionZ

andZ−1 in accordance with the size ofJ . Using (86), it is
straightforward to verify that

lim
i→∞

Bi+1 = Z2Z̄2 (87)

and if we multiply both sides of (77) from the left bȳZ2, it
also follows that

Z̄2A
T
2 Mr = 0 (88)

Using these relations, we can now establish the following
result, which describes the limiting behavior of the weight
vector estimate.

Theorem 2. If the step-sizes{µ1, · · · , µN} satisfy (73) and
matrix B is power convergent, then the mean estimate of the
network given by (78) asymptotically converges to:

lim
i→∞

E[wi] = (Z2Z̄2)E[w−1] + (I − B)−AT
2 Mr (89)

where the notationX− denotes a (reflexive) generalized
inverse for the matrixX . In this case, the generalized inverse
for I − B is given by

(I − B)− = Z1(I − J)−1Z̄1 (90)

which is in terms of the factors{Z1, Z̄1, J} defined in (86).

Proof: See Appendix C.
We also argue in Appendix C that the quantity on the right-

hand side of (89) is invariant under basis transformations for
the Jordan factors{Z1, Z̄1,Z2, Z̄2}. It can be verified that if
A1 = A2 = I thenB will be symmetric and the result (89)
will reduce to (76). Now note that the first term on the right
hand side of (89) is due to the zero eigenvalues ofI − B.
From this expression, we observe that different initialization
values generally lead to different estimates. However, if we
setE[w−1] = 0, the algorithm converges to:

lim
i→∞

E[wi] = (I − B)−AT
2 Mr (91)

In other words, the diffusion LMS algorithm will converge on
average to a generalized inverse solution of the linear system
of equations defined by (77).

When matrix B is stable so thatρ(B) < 1 then the
factorization (86) reduces to the formB = Z1JZ̄1 andI −B
will be full-rank. In that case, the first term on the right hand
side of (89) will be zero and the generalized inverse will
coincide with the actual matrix inverse so that (89) becomes

lim
i→∞

E[wi] = (I − B)−1AT
2 Mr (92)

Comparing (92) with (77), we conclude that:

lim
i→∞

E[wi] = 1 ⊗ wo (93)

which implies that the mean estimate of each node will be
wo. This result is in agreement with the previously developed
mean-convergence analysis of diffusion LMS when the regres-
sion data have full rank covariance matrices [6].

B. Mean-Square Error Convergence

We now examine the mean-square stability of the error
recursion (67) in the rank-deficient scenario. We begin by
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deriving an error variance relation as in [52], [53]. To find
this relation, we form the weighted square “norm” of (67),
and compute its expectation to obtain:

E‖w̃i‖
2
Σ = E

(
‖w̃i−1‖

2
Σ

′

)
+ E[gTi MA2ΣA

T
2 Mgi] (94)

where‖x‖2Σ = xTΣx and Σ ≥ 0 is an arbitrary weighting
matrix of compatible dimension that we are free to choose. In
this expression,

Σ
′ = A1(I −MRi)

TA2ΣA
T
2 (I −MRi)A

T
1 (95)

Under the temporal and spatial independence conditions on
the regression data from Assumption 1, we can write:

E
(
‖w̃i−1‖

2
Σ′

)
= E‖w̃i−1‖

2
E[Σ′] (96)

so that (94) becomes:

E‖w̃i‖
2
Σ = E‖w̃i−1‖

2
Σ′ +Tr[ΣAT

2 MGMA2] (97)

whereG , E[gig
T
i ] is given by

G = CTdiag
{
σ2
v,1R̄u,1, . . . , σ

2
v,N R̄u,N

}
C (98)

and

Σ′ , E[Σ′] = BTΣB +O(M2) ≈ BTΣB (99)

We shall employ (99) under the assumption of sufficiently
small step-sizes where terms that depend on higher-order
powers of the step-sizes are ignored. We next introduce

Y , AT
2 MGMA2 (100)

and use (97) to write:

E‖w̃i‖
2
Σ = E‖w̃i−1‖

2
Σ′ +Tr(ΣY) (101)

From (101), we arrive at

E‖w̃i‖
2
Σ =E‖w̃−1‖

2
(BT )i+1ΣBi+1 +

i
∑

j=0

Tr
(

(BT )jΣBjY
)

(102)

To prove the convergence and stability of the algorithm in the
mean-square sense, we examine the convergence of the terms
on the right hand side of (102).

In a manner similar to (88), it is shown in Appendix D that
the following property holds:

Z̄2Y = 0, YZ̄T
2 = 0 (103)

Exploiting this result, we can arrive at the following statement,
which establishes that relation (102) converges asi→ ∞ and
determines its limiting value.

Theorem 3. Assume the step-sizes are sufficiently small and
satisfy (73). Assume also thatB is power convergent. Under
these conditions, relation (102) converges to

lim
i→∞

E‖w̃i‖
2
Σ = E‖w̃−1‖

2
(Z2Z̄2)TΣZ2Z̄2

+
(
vec(Y)

)T
(I −F)−1vec(Σ) (104)

where
F ,

(
(Z1 ⊗Z1)(J ⊗ J)(Z̄1 ⊗ Z̄1)

)T
(105)

and factors{Z1, Z̄1, J} are defined in (86).

Proof: See Appendix D.
In a manner similar to the proof at the end of Appendix C,

the term on the right hand side of (104) is invariant under basis
transformations on the factors{Z1, Z̄1,Z2, Z̄2}. Note that the
first term on the right hand side of (104) is the network penalty
due to rank-deficiency. When the node covariance matrices are
full rank, then choosing step-sizes according to (73) leadsto
ρ(B) < 1. When this holds, thenB = Z1JZ̄1. In this case,
the first term on the right hand side of (104) will be zero, and
F = (B ⊗ B)T . In this case, we obtain:

lim
i→∞

E‖w̃i‖
2
Σ =

(
vec(Y)

)T
(I −F)−1vec(Σ) (106)

which is in agreement with the mean-square analysis of
diffusion LMS strategies for regression data with full rank
covariance matrices given in [2], [6].

C. Learning Curves

For eachk, the MSD and EMSE measures are defined as:

ηk = lim
i→∞

E‖h̃k,i‖
2 = lim

i→∞
E‖w̃k,i‖

2
BT

k
Bk

(107)

ζk = lim
i→∞

E‖uk,ih̃k,i−1‖
2 = lim

i→∞
E‖w̃k,i−1‖

2
R̄u,k

(108)

whereh̃k,i = hok − hk,i. These parameters can be computed
from the network error vector (104) through proper selection
of the weighting matrixΣ as follows:

ηk = lim
i→∞

E‖w̃i‖
2
Σmsdk

, ζk = lim
i→∞

E‖w̃i−1‖
2
Σemsek

, (109)

where

Σmsdk
= diag(ek)⊗ (BT

k Bk), Σemsek = diag(ek)⊗ R̄u,k

(110)
and{ek}Nk=1 denote the vectors of a canonical basis set inN
dimensional space. The network MSD and EMSE measures
are defined as

ηnet =
1

N

N∑

k=1

ηk, ζnet =
1

N

N∑

k=1

ζk (111)

We can also define MSD and EMSE measures over time as

ηk(i) = E‖h̃k,i‖
2 = E‖w̃i‖

2
Σmsdk

(112)

ζk(i) = E‖uk,ih̃k,i−1‖
2 = E‖w̃i−1‖

2
Σemsek

(113)

Using (102), it can be verified that these measures evolve
according to the following dynamics:

ηk(i) = ηk(i− 1)− ‖wo‖Hi(I−H)σmsdk
+ αTHiσmsdk

(114)

ζk(i) = ζk(i− 1)− ‖wo‖Hi(I−H)σemsek
+ αTHiσemsek

(115)

where

H = (B ⊗ B)T (116)

α = vec(Y) (117)

σmsdk
= vec(Σmsdk

) (118)

σemsek = vec(Σemsek) (119)
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To obtain (114) and (115), we setE[wk,−1] = 0 for all k.

V. COMPUTER EXPERIMENTS

In this section, we examine the performance of the diffusion
strategy (39)-(42) and compare the simulation results with
the analytical findings. In addition, we present a simulation
example that shows the application of the proposed algorithm
in the estimation of space-varying parameters for a physical
phenomenon modeled by a PDE system over two spatial
dimensions.

A. Performance of the Distributed Solution

We consider a one-dimensional network topology, illustrated
by Fig. 1, with L = 1 and equally spaced nodes along
the x direction. We chooseA1 as the identity matrix, and
computeA2 and C based on the uniform combination and
Metropolis rules [2], [6], respectively. We chooseM = 2
and Nb = 5 and generate the unknown global parameter
wo randomly for each experiment. We obtainBk using the
shifted Chebyshev polynomials given by (17) and compute
the space varying parametershok according to (26). The
measurement datadk(i), k ∈ {1, 2, · · · , N} are generated
using the regression model (12). The SNR for each nodek
is computed as SNRk = E‖uk,ih

o
k‖

2/σ2
v,k. The noise and the

entries of the regression data are white Gaussian and satisfy
Assumption 1. The noise variances,{σ2

v,k}, and the trace of
the covariance matrices,{Tr(Ru,k)}, are uniformly distributed
between[0.05, 0.1] and [1, 5], respectively.

Figure 2 illustrates the simulation results for a network with
N = 4 nodes. For this experiment, we setµk = 0.01 for all
k and initialize each node at zero. In the legend of the figure,
we use the subscripth to denote the MSD for̃hk,i and the
subscriptw to refer to the MSD of̃wk,i. The simulation curves
are obtained by averaging over300 independent runs. it can
be seen that the simulated and theoretical results match well
in all cases. To obtain the analytical results, we use expression
(104) to assess the steady-state values and expression (114) to
generate the theoretical learning curves.

Two important points in Fig. 2 need to be highlighted. First,
note from the top plot that the network MSD forw̃k,i is larger
than that forh̃k,i. This is because

E‖h̃k,i‖
2 = E‖w̃k,i‖

2
BT

k
Bk

(120)

so that the MSD of̃hk,i is a weighted version of the MSD
of w̃k,i. In this experiment, the weighting leads to a lower
estimation error. Second, note from the bottom plot that
while the MSD values ofw̃k,i are largely independent of
the node index, the same is not true for the MSD values of
h̃k,i. In previous studies on diffusion LMS strategies, it has
been shown that, for strongly-connected networks, the network
nodes approach a uniform MSD performance level [36]. The
result in Fig. 2(b) supports this conclusion where it is seen
that the MSD ofw̃k,i for nodes 2 and 4 converge to the same
MSD level. However, note that the MSD of̃hk,i is different
for nodes 2 and 4. This difference in behavior is due to the
difference in weighting across nodes from (120).
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Fig. 2: The network MSD learning curve forN = 4.

B. Comparison with Centralized Solution

We next compare the performance of the diffusion strategy
(39)-(42) with the centralized solution (34)–(35). We consider
a network withN = 10 nodes with the topology illustrated
by Fig. 1. In this experiment, we setµk = 0.02 for all k,
while the other network parameters are obtained following
the same construction described for Fig. 2. As the results in
Fig. 3 indicate, the diffusion and centralized LMS solutions
tend to the same MSD performance level in thew domain.
This conclusion is consistent with prior studies on the per-
formance of diffusion strategies in the full-rank case over
strongly-connected networks [36]. However, discrepancies in
performance are seen between the distributed and centralized
implementations in theh domain, and the discrepancy tends
to become larger for larger values ofN . This is because, in
moving from thew domain to theh domain, the inherent
aggregation of information that is performed by the centralized
solution leads to enhanced estimates for thehok variables. For
example, if the estimateswk,i which are generated by the
distributed solution are averaged prior to computing thehk,i,
then it can be observed that the MSD values ofh̃k,i for both
the centralized and the distributed solution will be similar.

In these experiments, we also observe that if we increase
the number of basis functions,Nb, then both the centralized
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Fig. 3: The network MSD learning curve forN = 10.

and diffusion algorithms will converge faster but their steady-
state MSD performance will degrade. Therefore, in choosing
the number of basis functions,Nb, there is a trade off between
convergence speed and MSD performance.

C. Example: Two-Dimensional Process Estimation

In this example, we consider a two-dimensional network
with 13×13 nodes that are equally spaced over the unit square
(x, y) ∈ [0, 1]× [0, 1] with ∆x = ∆y = 1/12 (see Fig. 4(a)).
This network monitors a physical processf(x, y) described
by the Poisson PDE:

∂2f(x, y)

∂x2
+
∂2f(x, y)

∂y2
= h(x, y) (121)

whereh(x, y) : [0, 1]2 → R is an unknown input function.
The PDE satisfies the following boundary conditions:

f(x, 0) = f(0, y) = f(x, 1) = f(1, y) = 0

For this problem, the objective is to estimateh(x, y), given
noisy measurements collected byN = Nx × Ny = 11 × 11
nodes corresponding to theinterior points of the network. To
discretize the PDE, we employ the finite difference method
(FDM) with uniform spacing of∆x and ∆y. We define
xk1

, k1∆x, yk2
, k2∆y and introduce the sampled values
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fk1,k2
, f(xk1

, yk2
) and hok1,k2

, h(xk1
, yk2

). We use the
central difference scheme [39] to approximate the second order
partial derivatives:

∂2f(x, y, t)

∂x2
≈

1

∆x2
[fk1+1,k2

− 2fk1,k2
+ fk1−1,k2

] (122)

∂2f(x, y, t)

∂y2
≈

1

∆y2
[fk1,k2+1 − 2fk1,k2

+ fk1,k2−1] (123)

This leads to the following discretized input function:

hok1,k2
=

1

∆x2
(
fk1+1,k2

+ fk1,k2+1 + fk1−1,k2

+ fk1,k2−1 − 4fk1,k2

)
(124)

For this example, the unknown input process is

hok1,k2
= e−κ

(
(k1−4)2+(k2−4)2

)

− 5e−κ

(
(k1−8)2+(k2−8)2

)

+ 1
(125)

whereκ = (Nx − 1)2/4.
To obtain fk1,k2

, we solve (121) using the Jacobi over-
relaxation method [45]. Figure 4(b) illustrates the valuesof
fk1,k2

over the spatial domain. For the estimation ofhk1,k2
,
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Fig. 6: True and estimatedhok1,k2
by diffusion LMS.

the given information are the noisy measurement samples
zk1,k2

(i) = fk1,k2
+nk1,k2

(i). In this relation, the noise pro-
cessnk1,k2

(i) is zero mean, temporally white and independent
over space. For this network, the two dimensional reference
signal is the distorted version ofhok1,k2

which is represented
by dk1,k2

(i). The reference signal is obtained from (124) with
fk1,k2

replaced by their noisy measured sampleszk1,k2
(i), i.e.,

dk1,k2
(i) =

1

∆x2

(

zk1+1,k2
(i) + zk1,k2+1(i) + zk1−1,k2

(i)

+ zk1,k2−1(i)− 4zk1,k2
(i)
)

(126)

According to (126), the linear regression model for this
problem takes the following form:

dk1,k2
(i) =uk1,k2

(i)hok1,k2
+ vk1,k2

(i) (127)

where uk1,k2
(i) = 1. Therefore, in this example, we are

led to a linear model (127) withdeterministic as opposed to
random regression data. Although we only studied the case of
random regression data in this article, this example is meant
to illustrate that the diffusion strategy can still be applied to
models involving deterministic data in a manner similar to [1],
[54].

To representhok1,k2
as a space-invariant parameter vector,

we use two-dimensional shifted Chebyshev basis functions
[55]. Using this representation,hok1,k2

can be expressed as:

hok1,k2
=

Nb∑

n=1

wo
n pn,k1,k2

(128)

where each element of the two-dimensional basis set is:

pn,k1,k2
= bn1,k1

bn2,k2
(129)

where {bn1,k1
} and {bn2,k2

} are the one-dimensional
shifted Chebyshev polynomials in thex and y directions,
respectively–recall (21).

In the network, each interior node communicates with its
four immediate neighbors. We useA1 = I and computeC
andA2 by using the Metropolis and relative degree rules [2],
[6], [35]. All nodes are initialized at zero andµk = 0.01 for all
k. The signal-to-noise ratio (SNR) of the network is uniformly
distributed in the range[20, 30]dB and is shown in Fig. 5.

Figures 6(a) and 6(b) show three dimensional views
of the true and estimated input process using the pro-
posed diffusion LMS algorithm after3000 iterations. Fig-
ure 7 illustrates the MSD of the estimated source, i.e.,
limi→∞ E‖hok1,k2

− hk1,k2
(i)‖2.
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Fig. 7: Network steady-state MSD performance in dB.

VI. CONCLUSION

By combining interpolation and distributed adaptive opti-
mization, we proposed a diffusion LMS strategy for estimation
and tracking of space-time varying parameters over networks.
The proposed algorithm can find the space-varying parameters
not only at the node locations but also at spaces where no
measurement is collected. We showed that if the network
experiences data with rank-deficient covariance matrices,the
non-cooperative LMS algorithm will converge to different
solutions at different nodes. In contrast, the diffusion LMS
algorithm is able to alleviate the rank-deficiency problem
through its use of combination matrices especially since, as
shown by (72),ρ(B) ≤ ρ(I − MR), where I − MR is
the coefficient matrix that governs the dynamics of the non-
cooperative solution. Nevertheless, if these mechanisms fail to
mitigate the deleterious effect of the rank-deficient data,then
the algorithm converges to a solution space where the error
is bounded. We analyzed the performance of the algorithm in
transient and steady-state regimes, and gave conditions under
which the algorithm is stable in the mean and mean-square
sense.

APPENDIX A
MEAN ERROR CONVERGENCE

Based on the rank ofR = diag{R1, · · · , RN}, we have two
possible cases:

a) Rk > 0 ∀k ∈ {1, · · · , N}: As (68) implies,E[w̃i]
converges to zero ifρ(B) < 1. In [6], it was shown that when
R > 0, choosing the step-sizes according to (73) guarantees
ρ(B) < 1.

b) ∃k ∈ {1, · · · , N} for which Rk is rank-deficient: For
this case, we first show that

∥
∥Bi+1

∥
∥
b,∞

≤
∥
∥
(
I −MΛ)i+1

∥
∥
b,∞

(130)

where‖ · ‖b,∞ denotes the block-maximum norm for block
vectors with block entries of sizeMNb×1 and block matrices
with blocks of sizeMNb×MNb. To this end, we note that for
the left-stochastic matricesA1 andA2, we have‖AT

1 ‖b,∞ =
‖AT

2 ‖b,∞ = 1 [6], and use the sub-multiplicative property of
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the block maximum norm [46] to write:
∥
∥Bi+1

∥
∥
b,∞

≤ ‖AT
2 ‖b,∞ ‖I −MR‖b,∞ ‖AT

1 ‖b,∞ × · · ·

× ‖AT
2 ‖b,∞ ‖I −MR‖b,∞ ‖AT

1 ‖b,∞

=
∥
∥I −MR

∥
∥
i+1

b,∞
(131)

If we introduce the (block) eigendecomposition ofR (71) into
(131) and consider the fact that the block-maximum norm is
invariant under block-diagonal unitary matrix transformations
[6], [47], then inequality (131) takes the form:

∥
∥Bi+1

∥
∥
b,∞

≤
∥
∥I −MΛ

∥
∥
i+1

b,∞
(132)

Using the property‖X‖b,∞ = ρ(X) for a block diagonal
Hermitian matrixX [6], we obtain:
∥
∥(I −MΛ)i+1

∥
∥
b,∞

=ρ
(

(I −MΛ)i+1
)

= max
1≤k≤N

1≤n≤MNb

∣
∣
∣

(
1− µkλk(n)

)i+1
∣
∣
∣

=
(

max
1≤k≤N

1≤n≤MNb

|1− µkλk(n)|
)i+1

=
(

ρ(I −MΛ)
)i+1

=
∥
∥I −MΛ

∥
∥
i+1

b,∞
(133)

Using (133) in (132), we arrive at (130). We now proceed
to show the boundedness of the mean error for case (b). We
iterate (68) to get:

E[w̃i] = Bi+1
E[w̃−1] (134)

Applying the block maximum norm to (134) and using in-
equality (130), we obtain:

lim
i→∞

∥
∥E[w̃i]

∥
∥
b,∞

≤ lim
i→∞

∥
∥(I −MΛ)i+1

∥
∥
b,∞

∥
∥E[w̃−1]

∥
∥
b,∞

(135)

The value oflimi→∞ ‖(I−MΛ)i+1‖b,∞ can be computed by
evaluating the limits of its diagonal entries. Consideringthe
step-sizes as in (73), the diagonal entries are computed as:

lim
i→∞

(
1− µkλk(n)

)i+1
=

{

1, if λk(n) = 0

0, otherwise
(136)

Therefore, (135) reads as:

lim
i→∞

∥
∥E[w̃i]

∥
∥
b,∞

≤ ‖I − Ind(Λ)‖b,∞
∥
∥E[w̃−1]

∥
∥
b,∞

(137)

APPENDIX B
MEAN BEHAVIOR WHEN (A1 = A2 = I )

SettingA1 = A2 = I in the diffusion recursions (39)-(41)
and subtractingwo from both sides of (40), we get:

w̃k,i = w̃k,i−1 − µk

∑

ℓ∈Nk

cℓ,kB
T
ℓ u

T
ℓ,i(dℓ(i)− uℓ,iBℓwk,i−1)

(138)
Under Assumption 1 and usingdℓ(i) = uℓ,iBℓw

o+vℓ(i), we
obtain:

E[w̃k,i] = Qk[I − µkΛk]Q
T
k E[w̃k,i−1] (139)

We definepk,i , QT
k w̃k,i and start from some initial condition

to arrive at

E[pk,i] = [I − µkΛk]E[pk,i−1] = [I − µkΛk]
i+1

E[pk,−1]

If we choose the step-sizes according to (73) then we get:

lim
i→∞

E[pk,i] =
[
I − Ind(Λk)

]
E[pk,−1] (140)

Equivalently, this can be written as:

lim
i→∞

E[w̃k,i] = Qk

[
I − Ind(Λk)

]
QT

k E[w̃k,−1] (141)

This result indicates that the mean error does not grow
unbounded. Now from (75), we can verify that:

QkInd(Λk)Q
T
kw

o = R†
krk (142)

Then, upon substitution of̃wk,i = wo −wk,i into (141), we
obtain:

lim
i→∞

E[wk,i] = QkInd(Λk)Q
T
kw

o +Qk[I − Ind(Λk)]Q
T
k E[wk,−1]

= R†
krk +

MNb∑

n=Lk+1

qk,nq
T
k,nE[wk,−1] (143)

APPENDIX C
PROOF OFLEMMA 2

From (87), we readily deduce that

lim
i→∞

Bi+1
E[w−1] = (Z2Z̄2)E[w−1] (144)

On the other hand, from (86), we have

lim
i→∞

i∑

j=0

BjAT
2 Mr = lim

i→∞

i∑

j=0

(
Z1J

jZ̄1 + Z2Z̄2

)
AT

2 Mr

(145)
Using (88), the term involvingZ̄2 cancels out and the above
reduces to

lim
i→∞

i∑

j=0

BjAT
2 Mr = lim

i→∞

i∑

j=0

(
Z1J

jZ̄1

)
AT

2 Mr

= Z1(I − J)−1Z̄1A
T
2 Mr (146)

sinceρ(J) < 1. We now verify that the matrix

X− = Z1(I − J)−1Z̄1 (147)

is a (reflexive) generalized inverse for the matrixX = (I−B).
Recall that a (reflexive) generalized inverse for a matrixY is
any matrixY − that satisfies the two conditions [56]:

Y Y −Y = Y (148)

Y −Y Y − = Y − (149)

To verify these conditions, we first note fromZZ−1 = I and
Z−1Z = I in (86) that the following relations hold:

Z1Z̄1 + Z2Z̄2 = I (150)

Z̄1Z2 = 0 (151)

Z̄2Z1 = 0 (152)

Z̄1Z1 = I (153)

Z̄2Z2 = I (154)
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We further note thatX can be expressed as:

X = (I − B) = Z1(I − J)Z̄1 (155)

It is then easy to verify that the matrices{X,X−} satisfy
conditions (148) and (149), as claimed. Therefore, (146) can
be expressed as:

lim
i→∞

i∑

j=0

BjAT
2 Mr = (I − B)−AT

2 Mr (156)

Substituting (144) and (156) into (78) leads to (89).
Let us now verify that the right-hand side of (89) remains

invariant under basis transformations for the Jordan factors
{Z1, Z̄1,Z2, Z̄2}. To begin with, the Jordan decomposition
(86) is not unique. Let us assume, however, that we fix the
central term diag{J, I} to remain invariant and allow the
Jordan factors{Z1, Z̄1,Z2, Z̄2} to vary. It follows from (86)
that

Z̄2B = Z̄2, BZ2 = Z2 (157)

so that the columns ofZ2 and the rows ofZ̄2 correspond
to right and left-eigenvectors ofB, respectively, associated
with the eigenvalues with value one. If we replaceZ2 by any
transformation of the formZ2X2, whereX2 is invertible, then
by (154),Z̄2 should be replaced byX−1

2 Z̄2. This conclusion
can also be seen as follows. The new factorZ is given by

Z ,
[

Z1 Z2X2

]

=
[

Z1 Z2

]

[

I 0

0 X2

]

(158)

and, hence, the newZ−1 becomes

Z−1 =

[

Z̄1

X−1
2 Z̄2

]

(159)

which confirms thatZ̄2 is replaced byX−1
2 Z̄2. It follows that

the productZ2Z̄2 remains invariant under arbitrary invertible
transformationsX2. Moreover, from (86) we also have that

Z̄1B = JZ̄1, BZ1 = Z1J (160)

Assume we replaceZ1 by any transformation of the form
Z1X1, whereX1 is invertible, then by (153),Z̄1 should be
replaced byX−1

1 Z̄1. However, since we want to maintainJ
invariant, then this implies that the transformationX1 must
also satisfy

X−1
1 JX1 = J (161)

It follows that the productZ1(I − J)−1Z̄1 remains invariant
under such invertible transformationsX1, since

Z1(I − J)−1Z̄1 = Z1X1X
−1
1 (I − J)−1X1X

−1
1 Z̄1

= Z1X1(I −X−1
1 JX1)

−1X−1
1 Z̄1

= Z1X1(I − J)−1X−1
1 Z̄1 (162)

APPENDIX D
PROOF OF LEMMA 3

We first establish that̄Z2Y andYZ̄T
2 are both equal to zero.

Indeed, we start by replacingr in (88) by its expression from

(61) and (63) asr = CT col{r̄du,1, · · · , r̄du,N} that leads to:

Z̄2A
T
2 MCT col{r̄du,1, · · · , r̄du,N} = 0 (163)

By further replacinḡrdu,k by their values from (32), we obtain:

Z̄2A
T
2 MCTdiag{BT

1 , · · · , B
T
N}col{rdu,1, · · · , rdu,N} = 0

(164)
This relation must hold regardless of the cross-correlation
vectors{rdu,k}. Therefore,

Z̄2A
T
2 MCTdiag{BT

1 , · · · , B
T
N} = 0 (165)

We now define

V = diag{σ2
v,1IMNb

, · · · , σ2
v,NIMNb

} (166)

and rewrite expression (100) as

Y = AT
2 MCTdiag{BT

1 , · · · , B
T
N}diag{Ru,1, · · · , Ru,N}

× diag{B1, · · · , BN} V CMA2 (167)

Multiplying this from the left byZ̄2 and comparing the result
with (165), we conclude that

Z̄2Y = 0 (168)

Noting thatY is symmetric, we then obtain:

YZ̄T
2 = 0 (169)

Returning to recursion (102), we note first from (86) thatB
can be rewritten as

B = Z1JZ̄1 + Z2Z̄2 (170)

SinceB is power convergent, the first term on the right hand
side of (102) converges to

lim
i→∞

E‖w̃−1‖
2
(BT )i+1ΣBi+1 = E‖w̃−1‖

2
(Z2Z̄2)TΣZ2Z̄2

(171)

Substituting (170) into the second term on the right hand side
of (102) and using (168) and (169), we arrive at

lim
i→∞

i∑

j=0

Tr
(

(BT )jΣBjY
)

=Tr
(

lim
i→∞

i∑

j=0

(Z1J
jZ̄1)

T

× Σ(Z1J
jZ̄1)Y

)

(172)

If matricesX1, X2 andΣ are of compatible dimensions, then
the following relations hold [6]:

Tr(X1X2) =
(
vec(XT

2 )
)T

vec(X1) (173)

vec(X1ΣX2) = (XT
2 ⊗X1)vec(Σ) (174)

Using these relations in (172), we obtain

Tr
(

lim
i→∞

i∑

j=0

(BT )jΣBjY
)

=
(

vec(YT )
)T

×
(

lim
i→∞

i∑

j=0

(Z1J
jZ̄1)

T ⊗ (Z1J
jZ̄1)

T
)

vec(Σ) (175)
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This is equivalent to:

Tr
( ∞∑

j=0

(BT )jΣBjY
)

=
(
vec(Y)

)T
( ∞∑

j=0

F j
)

vec(Σ) (176)

where

F =
(

(Z1 ⊗Z1)(J ⊗ J)(Z̄1 ⊗ Z̄1)
)T

(177)

Sinceρ(J ⊗ J) < 1, the series converges and we obtain:

Tr
(

lim
i→∞

i∑

j=0

(BT )jΣBjY
)

=
(

vec(Y)
)T

(I −F)−1vec(Σ)

(178)

Upon substitution of (171) and (178) into (102), we arrive at
(104).
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