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Distributed Fusion with Multi-Bernoulli Filter based
on Generalized Covariance Intersection

Bailu Wang, Wei Yi*, Reza Hoseinnezhad, Suqi Li, Lingjiangng, Xiaobo Yang

Abstract—In this paper, we propose a distributed multi-object
tracking algorithm through the use of multi-Bernoulli (MB)
filter based on generalized Covariance Intersection (G-Cl)Our
analyses show that the G-CI fusion with two MB posterior
distributions does not admit an accurate closed-form exprssion.
To solve this problem, we firstly approximate the fused posteéor
as the unlabeled version ob-generalized labeled multi-Bernoulli
(6-GLMB) distribution, referred to as generalized multi-Ber noulli
(GMB) distribution. Then, to allow the subsequent fusion wth
another multi-Bernoulli posterior distribution, e.g., fu sion with
a third sensor node in the sensor network, or fusion in the
feedback working mode, we further approximate the fused GMB
posterior distribution as an MB distribution which matches its
first-order statistical moment. The proposed fusion algodhm is
implemented using sequential Monte Carlo technique and its
performance is highlighted by numerical results.

I. INTRODUCTION

Distributed multi-sensor multi-object tracking (DMMT

methods generally benefit from lower communication cost aP

higher fault tolerance, compared with centralized multtjeat
tracking solutions. As such, they have increasingly atidc

interest from tracking community. Devising DMMT solutiong®S & Clustering step, -0 _
pMB filters have been successfully applied in a host of prattic

becomes particularly challenging when the correlations

tween the estimates from different sensors are not knowa. TH

optimal solution to this problem was developed(inh [1], bud t
computational cost of calculating the common informatian c
make the solution intractable in many real-world applasi.

Following the work of Mahler[[B], Clarket al. [7] derived
several tractable formulations of G-Cl fusion for specjgdds
of multi-object distributions including Poisson, indepent
identically distributed (i.i.d.) clusters and Bernouliistfibu-
tions. Using these formulations, a sequential Monte Carlo
(SMC) realization of the distributed fusion with probatyilhy-
pothesis density (PHD) filter was presented_in [8]. Meanyhil
the problem of DMMT with a Gaussian mixture cardinalized
PHD (GM-CPHD) filter was addressed inl [9]. Furthermore,
the work of distributed detection and tracking with Berrioul
filter over a Doppler-shift sensor network was completed in
[10].

In addition to the PHD and CPHD filters [11]-[15], the
multi-Bernoulli (MB) filter is also a promising multi-objéc
tracking algorithm in the framework of random finite sets
(RFS). Compared with PHD and CPHD filters, the MB filter
can be more efficient and accurate in problems that require

)particle implementations or target individual existenceba-

Hities. The reason is that the MB filter [16], [17] directly
propagates the multi-object distribution, not its moments
Furthermore, it does not require an additional processh suc
to extract the multi-object statemneda.

oblems. Examples include radar trackihg![18], imagekirac

hing [17], [18], ground target tracking [20], sensor con{il],

[22], audio and video data tracking |23], visual trackinglan
cell tracking [24], and mobile multi-object tracking [2526].

An alternative is the suboptimal fusion technique, namelD',ovel extensions of the MB recursion have also been proposed

Generalized Covariance Intersection (G-Cl) or exponént
mixture densities (EMD)L]2] proposed by Mahlér [3]. [cl'ef
is the generalization of Covariance Intersectian [4] whacly

in [27] for multiple models, and hybrid multi-Bernoulli and
Poisson multi-target filters were also proposed_in [28]. i® t
best of our knowledge, the problem of DMMT with MB filter

utilizes the mean and covariance and is limited to Gaussi&ﬂns'de”ng the unknown level of correlation among sensors

posteriors. The highlight of G-CI is that it is capable t

fuse both Gaussiarn [[2] 5] and non-Gaussian muIti—objeEI

distributions from different sensors with completely uotum
correlations.
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1G-CI has been applied in the literature with various namesh sas
Chernoff fusion[[5] and geometric mean density (GMD) [6].

@as not been well addressed. The challenge lies in intriditab

deriving a closed-form expression of G-Cl fusion with MB
distributions.

Recently, the notion of labeled RFS was introduced to
address target trajectories and their uniqueness_in [38]—[
To investigate the DMTT of labeled densities, Fantaeti
al. [36] derived the closed-form solutions of GCI fusion
with marginalizedj-generalized labeled multi-Bernoulli
GLMB) and labeled multi-Bernoulli (LMB) densities based
on the assumption that different sensors share the samle labe
space. “Sharing the same space” demands that not only label
spaces from different sensors are the same numerically, but
also the same element from different sensors has the same
physical implication, or indeed denotes the same objeds Th
assumption is hardly valid in practice, which is also refdro
as the “label space mismatching” phenomenon and is analyzed
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in detail in [37], [38]. Wanget al. [37], [38] have recently and the inclusion function is given by
suggested two promising solutions to cope with the “label .

. e A1, fXCY
space mismatching” phenomenon. 1y(X) = . (2)

o . 0. otherwise
In some applications, the labels of the object are of great

importance; still there are many cases where one might saylhe vector integrals orX are using the standard inner
that “a threat is a threat” and we have no interest in whigbroduct notation. For functiona(x) and b(x) defined on
target is which. For example, in collision avoidance systemX, the inner product notation is represented (@sb) =
the objective is not to distinguish the identities of carst b [, a(x)b(x)dx.
to avoid them regardless of their identities. In such catbes,
labeled multi-object density is not required. Moreoverewh
there is uncertainty in labelling the targets, e.g., in enee B. Multi-object Bayesian Filter

of closely spaced targets, the labeled posterior will betimul . | L
modal and this may affect the performangel [39]. Hence, theF|n|te Set Statistics (FISST) proposed by Mabhler, has pro-

unlabeled filters still remain in current and widespread. us\éde(.j a rigorous a_nd 9'89"”.“ mathematu:_gl frgmework fpr the
MB filter is a kind of unlabeled filter and its successfu[nuIt"ObleCt detection, tracking and classification peybb in

applications spin over many areas as mentioned above. Hel?cém'f'ed Bayesian paradigm.

it is significant to explore the generalization of MB filter to N the FISST framework, the multi-object state at tirhe
distributed environment. is naturally represented as an RKS = {x¥ x5, ... xFl ¢

In this paper, the problem of DMMT with MB filters over” (%), whereX = R is the single object state space with the

a sensor network is investigated. The major contributioes glimensionv, F(X) is the space Oi finite subsets &t Each

two-fold: single object statex’ = [p¥  vF |7 € R” comprises the
ositionsp? € R¥/? and velocitiesv¥ € R*/2, where “T”

enotes the matrix transpose.

q Let Z* denotes the observation at timie and Z'** —

(Z',...,Z*) denotes the history of observation from tirhe

2) We implement the proposed fusion algorithm using smMg timek. The optimal muIti_—objgctF]?yesian_ filter prop?%]cates
techniqueThe main challenge with SMC implementatiorRF > Pased posterior densityX"|Z"") C(.)ndmoned onz™
of the proposed MB-fusion solution is that neither thd time with the following recursion [11]:
support nor the number of particles are guaranteed to be . 1.1, i~k b1y Lih—1n s k1
the same in different sensor nodes. To this end, a Kernérl(X Z )= [ SXIXT)m(XTZ )oX (3)
Density Estimation method [8],_[40],_[41] is employed to . g(ZF| Xk (Xk|ZR—1)
convert the local particle sets to a Gaussian Mixture model m(XHZ) = [ 9(ZF|XF)mn(XF|ZEF 1) XF 4)
(GMM) obtaining a continuous approximation.

In numerical results, the performance of the proposed fusi
algorithm with SMC implementation is verified.

Preliminary results have been announced in the conferertéd
paper [42]. This paper presents a more complete theoretical >~ 1
and numerical study. In Section Il an overview of multi-atije FX)eX =" o /f({Xh X Ddxy - dxy. (5)
tracking with RFS and G-CI fusion rule is given. Section n=0 "
[Il describes our approach for DMMT. We firstly derive the
closed-form expression of the fused posterior by approxi: . T
mating it as generalized multi-Bernoulli (GMB) distribori. €. Mult-Bernoull Distribution
Then we approximate the fused GMB posterior with an MB A random setX with multi-Bernoulli (MB) distribution is
distribution with matching first-order statistical momeint  defined as the union ofif independent Bernoulli random
Section IV, we present the SMC based implementation sétsX(®) [3],
the proposed distributed fusion algorithm. The perforneamic
the proposed algorithm is analyzed in two distributed multi
object tracking scenarios in Section V. Then, some conotydi
remarks are given in Section VI. The MB distribution is completely characterized by a set of
parameterd (r©), p())}}1 | wherer(®) denotes the existence
probability andp(“)(-) denotes the probability density of tiie

1) We propose a distributed fusion algorithm, namely, Gcﬂ
fusion with MB filter (GCI-MB). A tractable closed-form
formulation of GCI fusion with MB posteriors are obtaine
via two reasonable approximations.

Where f(X¥|X*~1) is the multi-object Markov transition
function,g(Z*|X*) is the multi-object likelihood function, and
integral is defined by [11]

M
X =[Jx. (6)
=1

II. BACKGROUND th Bernoulli random set. The multi-object probability digys
A. Notation of an MB RFS is given byl [3],
To admit arbitrary arguments like sets, vectors and integer ({x1,..., %0 })
the generalized Kronecker delta function is given by no )
21 i 37
5 (X)é{l’ if X =Y (1) = 2 er e
Y 0, otherwise 1<it#. . At <M J=1



where In many applications, the computation of posterior given

M n @) common information between sensorgx*|Z{** N Z1*), is
QU ™) = H(l —r(®) H ri(” (8) not straightforward, and the above fusion rule cannot bityeas
=1 j=1 L=rt implemented. To overcome this issue, the G-CI fusion rule,

which specifically extends FISST to distributed environtsen
has been proposed by Mahlér [3]. Under this generalization,

. ] i ) the fused posterior is the geometric mean, or the exporentia

tribution is defined for labeled RFSs. It is parametrized as
follows [30] T (Xklzik’ Z%k) _

"X =AX) Y WO s )
(I,§)eF(L)xE

D. §-Generalized Labeled Multi Bernoulli Distribution

m (Xk|zik)w1 o (Xk|zé:k)w2
J mi(XE|ZYF ) my (XK Z3) 26X

wherew;, wy (w1 + wg = 1) are the parameters determining
. ) ] . the relative fusion weight of each nodes.

whereLL is a discrete label spac, is a discrete spac&  The fused posterior given by equatidni(14) minimizes the
denotes a point in the spagethe factorA(X) = 6)x|(£(X))  weighted sum of its Kullback-Leibler divergence (KLD) [9]

is included to guarantee unique labels, eath'(x) is a with respect to two given distributions,
probability density over the joint space of single-objeetes

(14)

and labels (thus, also denoted p$f)(z,¢) or by p“(z), 7 = argmin(wi Dia (7 || m1) + w2 D (m || m2)) - (15)
and eachw(®)(I) is a non-negative weight. The weights are )
normalized, where Dy, denotes the KLD defined as
Y. wPm=1 (10) / f(X)
w . A
D = X) 1o ox 16
= ke(fll9) f(X)log oX) (16)
An unlabeled’s-GLMB distribution has the following gen- where the integral in[{16) is generally a set integral. For
eral form [37]: convenience of notations, in what follows we omit explicit
n references to the time index
w({rn. o)=Y Y WO O ()
o (I,§)eFn(L)xE i=1 1. DISTRIBUTED FUSION WITH MB FILTERS

) . . ) (1_1) In this section, we present a tractable closed-form saiutio
where, (L) is the space of finite subsetslofwith cardinality ¢, _c| pased distributed fusion of multi-Bernoulli posites
n, I' e NI denlotes the vector constructed by StaCk'nﬁﬁat are locally formed in separate nodes of a sensor network
the eI_ements off in some sorted order denotes a per- Each local sensor performs MB filtering and outputs a MB
mutation of {1,---,n} and 3, denotes the sum over all joqiarior in the form of[{7). Depending on the type of the

such permutations. In this paper, we refer to the unlabelpgl, measyrement acquitted by the sensor node, the local
0-GLMB distribution as Generalized Multi-Bernoulli (GMB) \1p fiiter may use various observation models such as point

distribution. observation model[ [16] or image observation modell [17].
Through a practical approximation, we show that fusion of
E. Distributed Data Fusion two MB posteriors using G-Cl formulé(lL4) leads to a GMB-
. . pe multi-object density whose parameters can be directly
timiogsiﬁgrngg(;snn?gistailn tir(le(ijr If)cg: pi;g:};%;ﬁtzwfy)(‘ lculated in terms of the two MB distribution parameters.
Lk LE . L/ We then approximate the fused GMB distribution with an MB
and 72.(X |Z") which are t.)Oth Iabelgd RFS mUIt"ObJeCtdjstribution that has the same first moment. This can be fed
densities. Node 1 transmits its posterior to node 2 where

) . . ) . b'};\ck to the sensor network nodes for the next iteration aflloc
is to be fused with node 2 local posterior to obtain a 10|r}\t/|B filtering

posterior denoted by
mo(XF| 2, 25%) = mo (XM ZPF U Z3%)  (12) A, G-CI Fusion

where =, (X*|Z%, Z%) denotes the fused posterior of dis- When fusing MB distributions based on the G-Cl fusion for-
tributed fusion. It is important to note that common proceggula (14), the main challenge is that for each MB distributio
noise arises whenever both nodes track the same target atd), the termn(X)~ has a form of fractional order expo-
common observation noise arises after the nodes exchafggtial power of a sum(}_7"_, d;)*, which is computationally
their local estimates with one another. Thus, in practigal aintractable. Its value could be approximated using nuraéric
plications,; (X*|Z1*) andry(X*|Z1*) are not distribution solutions, such as grid based approximation. However, this
of independent variables. Considering the unknown level 8pproach suffers from the curse of dimensionality and is
correlation among nodes, the following solution to the dasi Prohibitively expensive in general. Therefore, a feasithel
problem was developed by Chong, Mori and Chérig [1], ~Practical approximation of-(X)“ is required.

Errlk R In [9], [43], the following approximation has been intro-
m (X217 ) (X*|Z) ). (13) duced to calculater(X)” wherer(X) is a single-object dis-

kgzl:k 1:k
o (X217, Z57) o : :
m(XFZi+ N Z5%) tribution formulated as a mixture afell separatedGaussian




components: Remark 1. In practical multi-object tracking scenarios, the
w HPD of posteriorp¥(x) is influenced by many factors,
(Z di) ~ de' (17) €.9. the true target states, the maneuverability and lsigna
. . noise (SNR) of targets. Usually the true single target state
corresponding to each Bernoulli component determines the
center of its HPD region. Furthermore, the width of HPD
region of a Bernoulli component is smaller with lower ma-
neuverability and higher SNR. In such practical scenatues,
MB distributions propagated through an MB filter (and G-CI
fused density in sensor network applications) can be easily
assumed to be mutually separated with very high confidence.

In the following, we derive a similar approximation for a
multi-object distributionm(X) that is formulated as an MB
distribution which is the union ofvell separatedBernoulli
components. Our derivation also clarifies what beingll
separatedmeans for Bernoulli components of the MB dis,
tribution.

In order to make the derivations presented in this sectio
more compact, we represent the MB distribution [ih (7) |Remark 2. In common SMC implementations of the MB
another form. For each cardinality < M, we denote the filter, there is a merging step after update, in which the
ensemble of all possible ordered combinationshoflistinct Bernoulli components whose means are too close to each
indices between 1 andl/, by the summing joint-index spaceother are merged into one Bernoulli component. Thus, we can
H(n), practically assume that the posteriors that are to be fused i

Hn) = {(i, ") e N"[1 < il £ ... £i" < M}, (18) tgeoieér;sor network are always well-separateds (very close
whereN is referred to as the set of all natural numbers.

Using this notation, the MB distributiofl(7) can be rewritte
as

Proposition 1. Assume that the Bernoulli componenta of an
MB posterior density, denoted by = {(r(“,p)(-))},_,,
are mutually A x 100% separated. Denote the HPD of
, i “)(x) by X,. For an indexing sequence
_ I 1.(9)) (o confidence\ for p'*(x) by X, g seq
m({x1, Xn}) Z Q Hlp (xi)- (19) I, € H(n), consider the multi-variate posterigx;.,,;I) =
IneHm) = [T, pM @) (x;) where x;., denotes(xi,...,x,). If the
Therefore, confidence level is close to one, then the HPD of confidence
w A" for p(x1.,; 1) can be approximated with

7T({X17 e 7xn})w = Z QIh’ Hp(lh(Z))(xl) . th’ ~ th’ = th(l) X th(g) X o+ X th(n)-
I,€H(n) i=1
' (20) Proof: The probability associated with the above HPD is

given by:
We will show that is the Bernoulli components of the MB
- p(xlzn; Ih)dxlzn

distribution are well-separated, the powered sum predente Pr(xi., € th’)
the above equation can be approximated by the sum of powers. X1,
Firstly, we introduce the concept of highest posterior dgns

/ H p T (x, )
X, =1

(HPD) region [44], which is important for the derivation tha
follows.

Definition 1. Let p(X|Z) be a posterior density function. A = H/ pIn @) (x,)dx;
region R in the space ofX is called an HPD of confidenck Xy, (i)
if

= A
a) Pr{X € R|Z} = ), zl;ll
b) for X; € R and X, ¢ R, = \". (22)
p(X1|Z) > p(X2|Z). (21) Furthermore consider twe-tuplesxy., € th andyi., ¢

. We argue that the conditiop(x1.,;I5) > p(y1.n;1In)
The posterior density for every point inside the HPD I’egIOﬁlo|ds for almost all possible pairs &f.,,, y1... Without loss
is greater than that for every point outside of region. Thugg generality, let us assume that the firs&K n elements of
the region includes the more probable valuesXof Usually, y1., are not in their correspondent HPD regions and the rest

the confidence\ is set to be very close to one, eg= 0.90. gare. The inverse conditiop(x1.,;In) < p(y1.n;In) can be
Thus, p(X|Z) is negligible forX ¢ R and can be approxi- rewritten as

mated with O. " "

. . (Tn () (5. (Tn (@) (v,
Defrnrtron 2. Consider an MB posterior 7 = Hp ") < Hp myi)-
{(r®, pt )}Ai . If X, is the HPD of confidence\ = =t _
for p(O(.), then the Bernoulli components af(X) are said We note that fori = 1,...,n, p®)(x;) > pIr®)(y;).
to be mutually\ x 100% separatedf, Thus, in order for the above inverse condition to hold, thet re
; of the elements ofy,., must associate with densities much
VA, XeNXy =0. larger than the ones af.,, in such a way that when multiplied




by the firstn densities, the product still becomes larger than  would be so small thaf)!" ]_[?:lp(lh(i))(xi) would be
the product of densities associated with elementsxpf,. still much larger than other terms with other indidgs.

We argue that when the confidence lewels large, the bulk - If the multi-object state value;., is in none of the
mass of distribution is covered by the HPD and the densities HPD spaces{XI,l}IheH (), then all the product terms
associated with values outside the HPD are expected to be appearing in the sum of RHS of equatidn](19) will be
negligible. Thus, the produdf;_ pIr()(y,) is expected to negligible, and the multi-object density at.,, will be

be so small that its product with the rest of the terms carlyare  very close to zero. Accuracy of approximation of multi-
become large enough to exceed the total product of densities object density is not of interest in such locations in the
atx;’s, []—, p" ) (x;). More precisely, the above inverse ~ multi-object state spack™.

condition can rarely be held, and For an arbitrary multi-object state value., =

p(x1niTn) > Py In) (x1,...,Xn), equation[(2]7) can be generalized to

holds for almost all possible pairs efi., € Xy, andyi., ¢ (X . X0 ) & Z th <Hp(1h(z)) )
Xy, - u L, €H(n)

Proposition 2. If the Bernoulli components of an MB posterior (28)
density denoted by = {(r(*), p(9(- )} _, are mutuallyA x  in which only one term from sum is dominant, depending on

100% separated and\ is very cIose tol (e g.A > 0.9), then which HPD regionx;.,, belongs to. [ |
To show a numerical example and demonstrate the intuition
T(xy. . %0 ) ~ Z th <Hp 1n(0)) (x ) ) behind this approximation, let us consider an MB distribu-
1,CH(n) tion with three Bernoulli components with probabilities of

(23) existencer” = 08, ¥ = 0.9 and ¥ = 0.9, and

o Dy @y N
Proof: From propositiori 11, ifX, is the HPD region of d(eg?mneSpl () ~ N(:3,0.2), py” (z) ~ N(x;4,0.2) and
~ N(z;7,0.2), with x € R. Since the densities are

p¥(x) with confidence), for each cardinality», the HPD P1 () _ _ _
regionXy, of each product terfi[?_, p™+ () (x,),T,, € H(n) Gaussians characterized by their mean and covariance, the

with confidence\” can be approximately represented as necessary condition of the)MB posterior being ngl-semiat

~ is reduced to the meang xp(¥)(x)dx and [xp)(x)dx

Xp, # Xy, =Xg,0) X - X X, (n)- (24) for any ¢ # ¢, being well-separated as measured by their
respective covariances. Fig. 4 shows numerical valueseof th
product terms for two hypotheses, one with cardinality 1,

and one with cardinality, = 2. The figure clearly exemplifies
how one product terms can significantly dominate the others,
validating the accuracy of approximatidn{28).

Note that since thex,s are mutually orthogonal, it is
reasonable and convenient to use g whose geometric
shape is rule, to approximate the trig, .

Given the applicable conditions that # ¢/,1 < ¢,¢' < M,
X¢NX, =0, we have

th n XIZ =0, VI, £1,, 1,,,I, € H(n). (25) thlljp<lh<f>><x,(i>> Example Probabilty
If the single-object state space is denotedshythe multi- forpont x =S DR ORS,
object state space with cardinality will be X™. For any 0zs » QWpM (x)=3.0x10-% x € X,
X1:n € X", we consider two possible cases: Pl - QD5 (x)=3.9x10 l
- If for somely, x1., € X, , then from[(2b), it cannot be in . . S QUM (x)
- Sh QWp® (x)=1.3x10""| 1, ch(1)
any other HPD regioiXy, ,, Iy # I,. Thus, among the 0os ~ Q% (x)
product termg ", pX»()) (x;) that appear in the sum of | A AL 3

H(2) = Ul Yo X(p)

RHS of equation[(119), only one of them will be dominan
and the others will have negligible values, i.e.

for point (x1, X2),

QU (g () =5.2x10-8 (x1,%2) € Xy,

2)=3.5x10"" ‘

QUM (33)p® (x) =8.2x10~

Q1 )y )~ 0 3 QI»Hp<I»<
(133) (1 )pM (x3) ~ 0 1,€H(2)

~ QPVp® (x1)p® (x3)

tl(xy. . .xa) = QU [[p™ P (x)  (26) | &

i=1

and therefore, o
QP (x1)p® (x2) ~ 0

Ih Iy Z))
W({Xl" ’ "x”}) Q (HP ) ’ (27) Fig. 1. Example of an MB distribution with three componeratsgd numerical
values of the product terms for an= 1 dimensional hypothesiX = {4}

. 1 and ann = 2 dimensional hypothesig = {4, 7}. The results show how in
It is important to note that the ter@™ is the prOba' each case, regardless of hypothesized dimension, onegpriedm in the sum

bility of joint existence of targets with labelk,, thus formed by MB density in[{I9) becomes much larger than others.

0 < Q™ < 1. This probability termQ' itself can

be smaller than some of the probability terms for other We note that the validity of the approximation [n119) is not
labels, i.e. for somd;,, we may haveQ' < Q. limited to Gaussian models. In the performance assessment
However, for those other terms, the product of densitisgction, the approximation is applied to the distributedtimu



object tracking scenarios in which the multi-target pdeter Fusion Maps
is not necessarily Gaussian distribution, and the reseltgyv Sensor1  Sensor2 | Sensor1  Sensor 2
the validity and rationality of the approximation. = @ 6, @ : 0o
[ ; ( )‘_’( : )

B. The GMB Fused Distribution = 0,

In this section, we present the MB distribution in a third i
form and define a fusion map describing the relationship Sensor 1 Sensorz 3 Sensor1  Sensor 2
between track outputs of two MB filters operating at two sen- ﬁ i O
sor nodes, in order to explore the intuitionistic matheo®ti [\ -~ ! !

structure of the fused distributions.
In addition to [7) and (19), the third form of MB distributionrig. 3. An example of fusion maps.
could be expressed as

T 0
(X0 ) = Z Z ? Hp o) (29) Proposition 3. The EMD~,(X) of two MB distributions in

o n 1/ 1 . . . .
7l (3T) can be approximated as a GMB distribution of the form
where _
ﬂ-w({xla s 7Xn}) =

11+ I -+
T T
(30) L—
ver  eeljr Z Z w9 Hpg]( )’9)(Xa(i)) (32)
andL2{1,..., M} is the index set of the MB distribution. 7 Th)eFnl)xOn =t
Consider two postenors output by two sensers= 1, 2, where

parametnzed byrs = {(7’3 Y )}zeLS, s=1,2,withlL, = Lo e
{1,---, M,}. Omitting the conditioning on the observations o® = aff )/C (33)
for convenience, we represen in the form of [31) as
) p ()1 pd ) (x) 2
I, - RUO)) - Py (x) = .0 , teh,0 €0 (34)
s = Z Z Q Hp : (Xa(i))a s=1,2. (31) Z
s Is€Fn(Ls) =1 with
Definition 3. Without loss of generality, assume tha | < o Je (0(0)) 1 \wa
|Lo|. A fusion map is a functiod : T € F(L,) — Ly such N /p Py (%) dx (35)
that 0(¢) =60(¢*)>0 implies¢=¢*. The set of all such fusion G0 (Q 1) (Qe(h))“? H Z7(6.0) (36)
maps is called fusion map space lbflenoted byo;, and the 2 el “
number of all fusion maps aof is A|M|2 where AY denotes ), '
N-permutations ofM. For notation convenience, we define Z Z " (37)
9(1) L {9(@’[ c I}. LeF(L1) 0€O
Proof: Firstly, applying [28) to the MB distribution of the
Sensor-1 Mapping Function § Sensor2  form (29), we can obtain

{(r(l) (1))} sul/:sct:- L 9(1) .:suAset {(7’2(1),]721) } w . Y% N
o R R :1’22{<rf““>npf<~“’>} P ey TR > (@) <_Hp§‘s< ”(xi)) . (38)

P {( ll<2), 11(2))} 2 VL(rf(”z”,pf(”z”)} : > os Is€F,(Ls) i=1

: I : : :

[(rf”‘):p;“”)} : (o e ) PIUD) (rﬂ“”»',p;"‘””)} : {(r;Mz;,p;Mz))} By substituting[(3B) into[(]4)., and utilizing Deﬁniltig)n he

L==—=—=—————====c== 1 numerator of[(I4) can be rewritten &s1(39), wheté"? and

(£,0) ; .

x) are shown in[(36) and(B4), respectively.

Fig. 2. The sketches of the fusion map defined in Definitionat.ghy subset Pe ( ) ) ) ) P y
I € F(L1), there is a subset(I) € F(L2) whose elements are one-to-one  Thus, the denominator C df {f14) can be computed as:

matching with the elements df.
C :/ww({xl, oo xp 10X

Remark 3. Each fusion map denotes a hypothesis that a set of

o0
tracks in sensor 2 are one-to-one matching with a set of grack — Z Z Z @SJI]’B) (40)
in sensor 1 in the sense that the matched tracks belong to the n=0 I, € Fp(L1) 6€61,
same targets, which is shown as in Hig. 2. The fusion map B —(1.0)
plays a similar role to the measurement-track associatiap m - Z Z Wes

in 5-GLMB filter [31]. For mstance consider two sensors, and her L) 6eon

their posteriors are{(r1 ),p1 )}eer, and {(r2 ),pg )}eeL,, Finally, by substituting[(39) and_(#0) intb([14), we obtaliret
respectively, wherd.; = {1,2} andL, = {1,2}. According fused density as the form df{32), which is a GMB distribution
to the Definition 3, there exist six fusion maps which arthe unlabeled version of GLMB distributiof [29], [30], [37]
shown as in Fig.13. [ ]
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C. MB Approximation
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In Section IlI-A, we have approximated the fused distribu- " LEFA(L1)0EOL O

tion as a GMB distribution. In practical scenarios, the G-ClI

_ 1,0), (6,0
fusion in a sensor network is usually realized by sequéwtial = > > > wlOpl? ()
applying the G-CI fusion rule[]9], since a sensor network "=!U1.0)€Fn(L1)xOr teh
always has more than two sensors. In addition, in order to— Z Z 17, (0w pE0) (%)

enhance the performance of a sensor network further, the /cr, 1, c7(L,)0co;,

feedback work mode is sometimes enabled. Thus, the fused
> PP (xa).

lely

posterior needs to be in the same form of the local posteriors™
and it is necessary to approximate the GMB formed fused 43)
posterior as an MB distribution. Motivated by [16] and [[31],

in which the multi-object distribution is approximated byaet Equation [48) proves that the MB distribution with paramete
moment matching, we further seek an MB approximation thétrl”, pi)}eer, shown in [41) and[42) matches exactly
matches the first-order moment of the GMB formed fusdtie first-order statistical moment of the GMB distribution

posterior in [3R). produced by[(32). ]

Remark 4. Fusion [I#) with MB densities can be easily
Proposition 4. Suppose the fused posterior has been appro&¥tended toN, > 2 sensors by sequentially applying the
imated as a GMB of form{32). The MB distribution thaPairwise fusion[(4ll) and (#2y; 1 times, where the ordering
matches exactly the first-order moment of the fused poster®f Pairwise fusions is irrelevant. Similar approach hasrbee

7o (X) is mme(X) = {(+?, pl¥ . Where widely used in distributed fusion, such as GCI fusion with
(X) is mue(X) = {{r", po) eer. CPHD filters [9] and LMB filters [[35].
rD = 3" > 1 @w? (41)
LeF(L,)0€Or, Remark 5. To implement the GCI fusion with MB densities

algorithm, we need to firstly compute tlﬁf’e) andpff’e) un-
P = > > 1, (é)wffl"e)pff’e)(x)/rg)- (42) " der each hypothesis according fol(35) dnd (34), then compute
the ) and pﬁf) (x) according to[(4I1) and(42). However, it
can be seen froni_(#1) and {42) that the number of hypotheses
: . _ .. grows exponentially with the number of targets. In order to
Proof: According to Propositio]3, a GMB distribution e qyce the computational burden, we can perform truncation

shown in[[32) is used to approximate the fused posterior of Gt the GMB density using the ranked assignment stratedy [29]
Cl fusion with two MB distributions, and its first order momen[3O] or parallel filtering by grouping targets [31].

can be computed as

LEeF(L) 0Oy,



Local MB | Local MB directly because each node has its own particle filter wih it
Loty | Lariy own support. Therefore, we use a a kernel density estimation

Sensor Network

! I
,d/i ~ ! v v I | (KDE) [8] method to create continuous approximations of the
node n.;e,/ Jarget 55” [ | G-CI Rule | | | local posteriors. These posteriors are then sampled from to
T KT Se” \e L _________ 1 _________ I | compute the G-CI fusion using different particle supports.
\\-,,\?-‘-""l nodeﬁc’;“\-\\ \E/ g [Zd] -z Fusio,,Mapi § For the detail of SMC implementation of MB filter, the
N ,/ \ Y ‘/—k\ g_ » £ | reader is referred td_[16][ [17]. We present the SMC imple-
s /\ e 7| mentation of GCI-MB fusion directly.
Yy | |
: first-order approx .! I
I

A. SMC Implementation of GCI-MB
Let us denote the particle representation of each noded loc

GCI-MB Fusion f) (Z) f) .
MB distribution by rd 2 {Csmas Xs mS} L with
Fig. 4. A sensor network is shown in the left. Each node monitors ° 7 tels
targets and exchange posterior with its neighbours. Thegsed L®
GCI-MB fusion algorihtm is employed to complete the disttéd Z ¢ 6 0. (x), s=1,2 (44)

fusion task over the sensor network, and the process diagf&tTI-
MB fusion algorithm is shown in the right. ms=1

Where(g,)ns is the weight associated with the-th particle
xg% which is a point generated from theth density, and
the Lf) denotes the number of particles representing/thie

ensity.

D. Summary

In this section, we proposed a distributed multi-sensotimul
(I\)Abéegt ire;)clf[lng ar:gorltf;m baged fon thCI fusggl rl\ljllBe aBn In Section 1ll, we derived the closed-form expression of
emploljlrrllg l:v:/(())nreasgs:b?;\,\;?prézrenrarlﬁonso taz fused posteilthe fused posterior as an MB distribution with its MB param-

eters shown in Proposition 4. The implementation of GCI-
density of two MB densities after GCI-MB is also an MB positiof P

distributi Theref b Al Vi he seid MB is equivalent to calculate the MB parameters of the
Istr ut|oq. ereiore, Dy sequentially applying the fused posterior, including the existing probabilityf) and its
form solution of GCI-MB, we can complete another fusio

Yensityp(®) (x) conditional on existence, € L;. During the
process between the previously fused results and a thisbsen Tom ?Jltf)n (x r2>cess the arametpfl,!s < andlZ £,6) m%ﬂ)
node. In addition, the MB formed density after GCI-MB als puting p P

facilitates the feedback process to further improve théofus ) an d [4p) are Fhe key fa(_:tors .
performance. As it was mentioned earlier, two posteriors presented by

The process diaaram of GCI-MB fusion is shown in riah articles from two nodes cannot directly be fused via GCI;MB
art OprI 3 ang the proposed method is emplo ec? Freach node has its own set of particles. Neither the stippor
P 9. Prop Ployed Lbr the number of particles are guaranteed to be the same.
complete the distributed fusion for a sensor network as ahO\qzhus we employ KDE, in which the estimated density is a

Ifrc;rlzftsgigo?fn';%/]vo?k H(]:Tuggg\?rllzt?oﬁ;oc\;\zr,:/glsttfgsgon schemeum of kernel function shifted to particle pomts We asatei
achp" (x),£ € L with the parameteE( and use the

1) Local filtering: each local sensor node runs MB f||ter|n ensny given by
2) Information exchange: each node exchanges its posterior

with their neighbors; L
3) Posterior fusing: each node performs GCI-MB fusion by 5\ (x) (E) Z N (x x{) g)) lel, (45)
sequentially applying the fused posterior. me=1

4) Feedback: to further improve the performance of the GCI-
MB fusion, the fused MB density is fed back to each local
node. meanxé)ns and covarianc&!”.

Take node 4 as an example. In the first step, the localNext, we describe the computation 8" for p@(x),e €
measurements are used to update a local MB posterior. The
node then exchanges its posterior with nodes 3, 4, 5 and 8n order to find the kernel paramet&é@ for the members
and collects their posteriors. In the next step, it seqaénti of the Bernoulli component, we first find a transform that
performs GCI-MB fusion three times, and finally at feedbaattiagonalizes the empirical covariance of these points & th
stage, the fused posterior is fed back to local sensor nodegransformed domain. Then, the problem of finding the kernel
4, 5 and 8 to further improve the fusion performance. parameters in multiple-dimensions reduces to independent

single dimensional problems.

V. IMPLEMENTATION OF GCI-MB FUSION ALGORITHM The transform is given by the inverse square root of the

The conventional SMC implementation of MB filter is€mpirical covariance matriX', of Bernoulli component. We
used to compute the fusion of local information. To fustansform a”ngn/ € {ngn/|m' =1,...,L"} using
information from different sensor nodes, we must be able to © ©
compute [[411) and(42). However, this cannot be carried out Ysm = WXy (46)

ere/\/(x xfzns,z:@) is a Gaussian distribution with



w, =1, (47)  2) Estimation ofZ{""? : Using the proposal densitys(x)
given in [52), the IS est|mate " is given by

Given that the covariance Q;‘r( ), is diagonal, the gye o) &

dimensional Gaussian kernel in the transformed domain sim- Z.,

[ W (62 w
plifies to > P () 95 ()22 (55)
, / ‘ w 0(0)) _(6(¢ w
s 1y =y Oy o ope LD o) 4 LY O ()2
(o) = TT o (32 20). . o
o V2mha % where Py; is the union of the input particle sefs {51).

(48)  We substitute the KDEs A (x,n0) and Y (x,,/) into

(55) to achieve computational feasibility and obtain
where diaeis the dimensionality of the state space &nds are

the bandwidth (BW) parameters of the 1-D Gaussian kernels. Z(Z o2
The BW hy for each dimension can be found using one Z ]/9< )( )“149(@1))( )2 (56)
of the well established methods in the literature [35]. In ()A(f)( ) +L(9(f>>49(f>>( ,)wz'

. . . o X, €Py Ll Py
particular, we use the following rule-of-thumb (RUT) [45]:

4\ /5 (49) B. Pseudo-code
har = o (3_]\7) A brief summary of the SMC implementation of GCI-MB

is presented in the following algorithm. The first inputs loé t
algorithm are the particle sefs {44) of local MB posterioosr
th sensors.

Step 1. Under each, € F(L,), create the map spa€¥(I;).

Step 2. Under eacli1,0) € F(L;) x ©([), for each? €
The covariance matrix that specifies the kernels in (39) for I1,6(¢) € 0(1,):

the members of the Bernoulli componéhis given by

whereoy is the empirical standard deviation qfs and N
is the number of these points. The reason for this chmced
its simplicity and low computational complexity compared t
other methods such dsast squares cross-validatidd6].

e Compute the KDE parameters q’)‘(f)(x) and

» = T,ATT ) (x) in @8), respectively;
T, = W;! (50) e According to [51), construct the sample sBt
! 5 o 5 drawn from the IS densityf (52);
Ay = diaghi, b, - -, ha,,,)- e Evaluate KDEs of the input local densities at each
o 0.6) ) particles in this set according tb_(45).
~ 1) Estimation of the Parametef; ” (x) : The union of the « Evaluate the IS weights for this sample set accord-
input particle sets, i.e., ing to (53);
4 (A€ °
Py 2 {x! 27“ —— U{Xg,fni)}mz e (51) \;F\!/:sgahr?glfepims (sasljnple set and obtain the normalized

can be seen asy = L + LY samples drawn from the o Evaluate the quantityz’"”) according to[(56);
mixture important samping (IS) density Step 3. Calculate the weighiv,; (19 for each (I,0) €

LOpO (er 4 LOOROO) (y0y0n F (L) x ©r, according tol(383),[(36) and_(#0).
1P 2 Po (52) Step 4. Calculate each fused MB parametét and its den-

ng) + Lée(z)) sity p()(x), ¢ € L,, according to[(4R) and (41).
The output of the algorithm is a set of partlcles representin
%he fused posteriors with parametef§ andp(®)(x).

nis(x) =

Therefore,Py; given by [51) is a convenient particle set t
represenpff’e)(x) and the IS weights fok,,, € Py are given

by V. PERFORMANCEASSESSMENT
o o P (3 )21 pPE) (5, )2 (53) In this section, the performance of the proposed GCI-MB
m ng)pgl)(xm/)“’l +L§9<E>)p§9(z))(xm/)“2' fusion algorithm is examined in two tracking scenarios in

terms of the optimal sub-pattern assignment (OSPA) €r@jr [4
In order to compute the IS weights ii_{53), evaluationgCI-MB is implemented using the SMC approach proposed
of both P1 )(x,) and p((’“))(xm ) at all points of P, in Section IV. Since this paper does not focus on the problem

are necessary. After obtaining the KDEs 1@1{ (%) and of weight selection, we choose the Metropolis weights [80] i
(9(5))( ) using [@5) respectively, feasible esumatef,gfs GCI-MB fusion for convenience (we note that this may have

are computed by substituting these evaluations (53): an impact on the fusion performance).
The MB filter for image data, also referred to as MB
~ f)(f)( Xom/ 54 track-before-detect (MB-TBD) filter [17] is used to estimat
G L(z)%z)( Yo +L§9<E>)ﬁ§9(m(xm/)“2' (54) local sensors’ posteriors. Local filters adopt the “stadtiar
R target motion model [11] without target births. Each single
After resampling {(/, Xm }m/=1..,, W€ obtain equally target with a four-dimensional state vector containingttie-
weighted samples to repres "9)(x). dimensional positions and velocities is initialized witlegion

)wllf)\ge(f)) (Xm/)wg
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around the correct target positions, and follows a constaht Scenario 1

velocity model. The probability of survival ig; = 0.95. Scenario 1 involves two parallel targets with the same
An image observation model is used similarly as|[17]. Th\?elocity as shown in Fig[]5, thus thé; between target
surveillance region is divided int® resolution cells denoted gtates consisting of target position and velocity is corabe

as Vi, Va,---,Vp C RU/;. At ktimke k, we repregent. the determined by the physical distance. For this scenario wlyap
observations at timé asz" = (21, 23, , zp)" € R, with 3 point spread function with the blurring factéf = 1. U (x)

z; the observation data obtained from tfiih cell. A target s the 3 x 3 pixels square region whose center is closest to

with statex illuminates a set of pixels denoted Hy(x). (. p. ). The SMC trials use00 particles per hypothesized
Targets are assumed to be rigid bodies, which means thakk.

the regions affected by different targets do not overlag, i.

x # x* = U(x) N U(x*) = 0. Assuming that the values of 5

different pixels are independently distributed condiédnon
the multi-object staté(k,_the_multi-object likelihood function 45 Distance of two trdcks
g(Z*|X*) of Z* = {z*} is given by:
£
9(ZMX*) = f(2") ] 9:(x) (57) S s Meeessess 1
) OO
where 33
P k >
gz(X) = H M 0 O Fusion results
: Py, (25) X Start of track
JEU(x) J art of tracks
—— True tracks
f(zk) _ ﬁp (zk) 2, 5 10 15 20 25 30 35 40 45
- Ho\~j X-Coordinate / m
J=1

Fig. 5. The scenario of distributed sensor network with two sensors

with Pg, (2;|x) the observation density function for thigh tracking two parallel targets.

cell occupied by the target state and Py, (z;?) the noise

density for thejth cell. For different applications?;, (2]x) . . iy : N
. S 1) Experiment 1:Propositior B applies the approximation
and PHO(zﬂx) have different distributions, such as Gaus ) Bxp b bp bp

, J0ATg I ) S in (23) to obtain the GMB formed fused posterior. In Section
stan d!str|bgt|o_n [1.7]’ Raylelgh distribution and Compakn lll, a Gaussian example had been provided to prove the
Gaussian distribution [51], etc.

reasonable of the approximation [n123). In order to back up
) ) ) that the approximation if.(23) is generalized enough to stipp

i In the followmg experiments, we consider a WOthe non-Gaussian case, the MB filter for image data is used to
dimensional scenario oveéi0 x 50 resolution cells with cell provide the multi-object estimations. Hence, we first exzni

lengthsd, = d, = 1 m. The interval between the SensOLe tiveness of[(23) in terms of the absolute error between
observations isI' = 1 s. The probability densities of thew(f()w andP(}A() at a given multi-target state estimatiof,
intensityzé-c of pixel j, at timek, adopt Gaussian distribution

'which is defined by

namely,
B py(R) = [n(%)” ~ PX) (59
klg) — k. T N -
P, (2f1x) = N | 25 Z aj (x),0 wherer(X)« is in the form of [20) and
xeXF w
Py, (z;“) :N(zf;O,UN) p(f() — Z (th)“’ <Hp(1h(i))(§i)> (59)
where o7 (x) is the power contribution from target state IneH(n) =1

to the jth cell ando™ is the noise power. Herey] (x) is The KDE method in[(45) is adopted to estimate the values of
described by a point spread function[17], for example, 7(X)« and P(X).

540,07 (620 — po)? + (3,0 — py)? As m_entioned in section IlI-A, the approximaﬁon 23) is
i (X) = —— <— 52 ) mainly influenced by the target SNR and Euclidean distance

b between target states denoted &y (this paper mainly fo-

where o7 is the source intensityy? is the blurring factor, cusses on the influence df; and SNR). Hence, the approx-
(pz,py) is the position of the state, andj = (a,b) denotes imation error of [2B) is evaluated b¥;.. py for different
the position of thejth cell in two-dimensionality image of the dg and different SNR values in this experiment. The physical
surveillance region. The SNR is defined b§log(c? /o). distancedr varies within 2-6 m and SNR varies fron6
Here, the source intensity” is assumed to be the samedB to 18 dB. It is important to note that when targets are
deterministic value for all the sensors. In practical sc@sa closely spaced, e.g. whefiy = 2 m,3 m, sometimes their
the o7 is always the random value and follows differenstate estimates may interfere with each other, making the
distributions among different sensols [52], however, ihig distance between their estimations approacl,t@s shown
the scope of this paper. in Fig.[8. The detail analysis of this phenomenon is given in

2
2moj;



50

: o d=2
0.8 —w-d=3
45¢ : ce-d=
5 o e-d=4
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Fig. 6. Target state estimation for two parallel targets with the
between target states equals to 2m. 1.05 \
— OO QTR =R=R
. . i 0.9f = wuwooee®T"
[17]. Moreover, when this phenomenon arises, the relatiipns o
between the approximation error and the distance betwee PP
target states cannot be reflected correctly. Hence, we campt 0750 0. 5 o 0000
a measure of efficiency of estimation to evaluate the validit &
of the average approximation error. When the OSPA of ¢ 0.6f 0 d=2|1
multi-object state estimation is lower than a fixed value, we -%-d=3
refer to this multi-object state as an efficient estimatibhe 0.45- 'e'gfg ]
proportion of efficient estimations is defined by d:6
N . 0.3 i i i i
_ IVefficient (60) 6 8 10 12 14 16 18
Niotal SNR/dB
where Neticient IS the number of efficient estimations, and (b)

11

thmz is the total number of muItl-.obJect state est|mat|on%ﬂé 7. (a) The approximation error betweEl(20) (23psat; between
which equals to the frame number times the number of Monige target states and SNRs for efficient estimations, (8)ptoportion of

Carlo (MC) runs. The approximate error is averaged ovefficient estimations among 30 frames times 100 MC runs wafie between
Nefiicient €Stimations among 30 frames times 100 MC runs. frue target states and SNRs.
The approximation error under SMC implementation of MB
filter is shown in Fig[7 (a). The approximation error is ob-
served to be smaller with the bigger distandgsbetween the t0 support the non-Gaussian case.
target states. More specifically, the approximation is gahe ~ As expected, the above discussions are in accordance with
acceptable whedz > 3 m, especially whenly > 4 m, the the analyses in Section IlI-A. Thus we come to conclusiot tha
approximation error is very close €for all investigated SNRs when thedr between target states meets the targets separated
ranging from6 dB to 18 dB. Thus the HPD regions are provedondition @z > 3 m for this simulation scenario), or the SNRs
to be separated whety > 3 m. The results also suggest thagre large although they are nearly in proximity, the approxi
for a larger SNR, the approximation error is small even whenation [23) is acceptable. In addition, the approximati®n i
the targets are in proximity , e.gz = 3 m. The larger SNR more sensitive to the distaneh:; between target states than
will lead to the smaller width of the HPD regions, and thuto the SNR.
the smallerd; between target states could be tolerated. 2) Experiment 2:To prove the effectiveness of the GMB
To further supplement the reasonableness of approximatapproximation in[(3R) described in Section IlI-A, we examin
(23) for non-Gaussian cases, we provide the proportion hie sensor fusion performance for two sensors under differe
efficient estimations in Figl]7 (b). It can be seen that th&; between target states consisting of target position and
proportion of efficient estimations is close toqwhich means velocity. SNR is fixed at 15 dB in order to reduce its influ-
that the target state estimates are reliable) for large SNRRace on approximatiod (P3). The distanég varies within
Indeed, this occurs whedr > 4 m with SNR > 6 dB or {1,2,3,4,8,12} m. The SMC trials use00 particles per
whendg = 3 m with SNR > 14 dB. Overall, the results hypothesized track. The OSPA errors are averaged over 30
shown in Fig.[7 (a) show that the approximatidn](23) iffames and 100 MC runs. Fif] 8 shows the average OSPA
acceptable when the estimations of target states are afficierrors for both the local filter and GCI-MB fusion algorithm
and the approximatio (23) can be applied to perform fusiamersus the distancég. It can be seen that the performance
for practical scenarios with the above conditions. Thesalte of GCI-MB fusion is better than local MB-TBD filter at each
conform that the approximation ifi (23) is generalized emougalue ofdr. More specifically, the performance gains of fusion
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Fig. 8. The average OSPA error with different distance of tracks
(averaged over 100 MC runs). Fig. 9. The scenario of distributed sensor network with three ssnso
tracking three targets.

algorithm are stable whedr > 3 m. Whendg < 2 m,

both algorithms perform poorly almost at the same level. The posteriors from its neighbours, it operates GCI fusion
reason is that when targets are in proximity thereby viotati leading to fused posterior denoted ;.

the rigid targets assumption, the performance of MB-TBM2: At time k£ —1, the fused posteriors are fed back to
degrades heavily leading to the performance degradation of corresponding local filters. Then at tinte each sensor
the fusion a|gorithm_ This is also the reason Why we use the Operates the local filter on the local distribution denoted
efficient estimations to evaluate the error of approximmatio by fis. and operate the GCI fusion on the fused one
(23) in Experiment 1. Also note that the fusion and tracking ~ denoted byfy;,.

performances afg = 1 m seem better than those &t = 2 1) Experiment 1:In this experiment, the performance of
m because the state estimates are prone to be the middle ofttlee GCI-MB fusion is evaluated by comparison with that of
two tracks when the regions illuminated by different objecthe local MB-TBD filters in two work modes, and how the
exhibit the superposition, and thus the estimated¢gat= 1 m performance advantage gained from sensor fusion increases
are nearer to the true target states than thoskg;at 2 m. In  with more sensors is also provided. In the sensor network,
summary, the above results verify that the GMB approxinmati@ach sensor choose the MB-TBD filter as the local filters. The
is reasonable and effective whdg > 3 m. SMC trials use200 particles per hypothesized track.

Figs[10 and11 show the OSPA errors of both the local filter

Remark 6._The required minimurt ; S equal to 3 times the and the GCI-MB fusion for sensor 1 and sensor 2 working in
cell resolution of the sensor network in the above expertaien -
modes M1 andM?2. For sensor 3, results similar to sensor 1

scenario, which is comparable to the regions affected t(;%
: ; - e expected.
targets. Indeed, our experience with empirical data sutges

that the distance between targets is mostly larger than 8gim Sensor 1 or 3

the cell resolution in most practical scenarios. 0.25 :
B. Scenario 2
) ) e 0.2 A 1
To assess the efficacy of the proposed GCI-MB fusion, — 8
sensor network scenario involving three targets is constle 2 e o b
as shown in Fig]9. In this scenario, we apply a point spre: :':J 0.05[ /N P00 0 00 1y 0000, 000000 o
function with the blurring factos; = 1. U(x) is the5 x5 & I X P A I R
pixels square region whose center is closes{ip, p,). In @)
this sensor network, each sensor has the same quality and % 0.1r
only exchange posteriors with its neighbours. In particule 3
both sensors 1 and 3 perform GCI fusion with two posterio 2 0.05t
from sensor 2 and the local filter, while sensor 2 perforn
GCI fusion with three posteriors from sensor 1, sensor 3 a |
the local filter by applying the pairwise fusiofh {41) twice 0 ‘ ‘ ‘ ‘ ‘
There are two V\yorkpfn)(/)dgs in tfr:is sensor netva({)rk)given | 0 > 1,9 1 20 2 30
rame Number / k

follow:
Fig. 10. The average OSPA error of sensor 1 (averaged over 400
M1: Attime k each sensor performs filtering locally, resulting/C runs).
in a local posterior denoted byyj,,. After receiving
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Fig. 11. The average OSPA error of sensor 2 (averaged over 40@. 12. The performance comparison between GCI-PHD and GClI-
MC runs). MB fusion at sensor 2 (averaged over 400 MC runs).

It can be seen from figurés[l0 4nd 11 that when the local fB_HD for sensor 2 working iM 1. The curves shown in Fig. 112

ters receive feedback from GCI-MB fusiol @), they perform illustrate the performance difference between GCI-MB dusi

significantly bet’Fer tharM1. The theoretical gnaly3|s of theand GCI-PHD fusion, and their corresponding local filters,
performance gain of the feedback on the fusion can reference

[47], [48]. The significant enhancement in performance (irespe_ctively. It_ can be seen that when the performances of
terms of OSPA errors) also verifies the effectiveness of M acking or fusion algorithms reach a stable level, the OSPA
approximation and the GCl-fusion devised and presentederror of the GCI-MB fusion is significantly lower than the

: I-PHD fusion, and the similar performance difference can
this work. To demonstrate how the performance advantage . . .

) N . e observed from their local filters. The reason is that the MB
gained from sensor fusion increases with more sensors,

computed the OSPA errors averaged over 400 MC runs andﬂ%D filter is a closed-form solution for the TBD observation

frames, and compared the results for the case when there is [iodel while the PHD-TBD filter is an approximate solution,
' . ‘mese results highlight the utility of the proposed GCI-MB

sensor only, with the case of two sensors and the case of thfrt?s?on algorithm

sensors. In each case, both molfesandM 2 were examined. '

The results are presented in Talgle | and demonstrate the

efficacy of the proposed sensor fusion algorithm in the form

of the enhanced average errors achieved with more sensors. VI. CONCLUSION

TABLE |

AVERAGE OSPA ERRORVSNUMBER OF SENSORS This paper investigates the problem of distributed multi-

object tracking (DMMT) with multi-object multi-Bernoulli
(MB) filter based on generalized Covariance Intersection. B
employing two reasonable approximations, a tractableedos
form formulation of GCI fusion with MB posteriors (GCI-
OSPA of M1 (m) 0.1715 0.1282 0.1163 MB) is derived. A particle implementation of the proposed
OSPA of M2 (m) 0.1715 0.1166 0.1093  GCI-MB fusion is also given, and its efficacy and robustness
are demonstrated in numerical results. Future work wilktac
two major issues. Firstly, the number of hypotheses to be ac-
2) Experiment 2:In order to further demonstrate the utilitycounted for in the proposed distributed tracking soluticowg
of the proposed GCI-MB fusion, its performance is comparaxkponentially with the number of targets. Further resedsch
with the GCI fusion with PHD filter (GCI-PHD) proposed inneeded to investigate efficient implementations of GCI-MB
[8]. For local sensors, the PHD-TBD filter proposed [in|[14ih which irrelevant hypotheses are detected and pruneg, earl
and the MB-TBD filter are adopted in the GCI-PHD fusiorso the computational cost is limited in presence of numerous
and GCI-MB fusion respectively. The number of particles falargets. Secondly, if targets move to close proximity ofheac
PHD-TBD filter is 600, while the number of particles is 20®ther, Bernoulli components of the posteriors may not be
per hypothesized track in the MB-TBD filter. Other paramgtewell-separated. This will have an impact on the accuracy
are set to be the same for PHD-TBD and MB-TBD filters. of the approximation made in derivation of the GCI-MB
Fig. 12 shows the OSPA errors of the local PHD-TBD filtefusion. Further work will address the GCI-MB fusion problem
the GCI-PHD fusion, the local MB-TBD filter and the GCI-considering targets in proximity.

Number of sensor One Two Three
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