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Distributed Fusion with Multi-Bernoulli Filter based
on Generalized Covariance Intersection
Bailu Wang, Wei Yi*, Reza Hoseinnezhad, Suqi Li, Lingjiang Kong, Xiaobo Yang

Abstract—In this paper, we propose a distributed multi-object
tracking algorithm through the use of multi-Bernoulli (MB)
filter based on generalized Covariance Intersection (G-CI). Our
analyses show that the G-CI fusion with two MB posterior
distributions does not admit an accurate closed-form expression.
To solve this problem, we firstly approximate the fused posterior
as the unlabeled version ofδ-generalized labeled multi-Bernoulli
(δ-GLMB) distribution, referred to as generalized multi-Ber noulli
(GMB) distribution. Then, to allow the subsequent fusion with
another multi-Bernoulli posterior distribution, e.g., fu sion with
a third sensor node in the sensor network, or fusion in the
feedback working mode, we further approximate the fused GMB
posterior distribution as an MB distribution which matches its
first-order statistical moment. The proposed fusion algorithm is
implemented using sequential Monte Carlo technique and its
performance is highlighted by numerical results.

I. I NTRODUCTION

Distributed multi-sensor multi-object tracking (DMMT)
methods generally benefit from lower communication cost and
higher fault tolerance, compared with centralized multi-object
tracking solutions. As such, they have increasingly attracted
interest from tracking community. Devising DMMT solutions
becomes particularly challenging when the correlations be-
tween the estimates from different sensors are not known. The
optimal solution to this problem was developed in [1], but the
computational cost of calculating the common information can
make the solution intractable in many real-world applications.
An alternative is the suboptimal fusion technique, namely,
Generalized Covariance Intersection (G-CI) or exponential
mixture densities (EMD) [2] proposed by Mahler [3]. G-CI1

is the generalization of Covariance Intersection [4] whichonly
utilizes the mean and covariance and is limited to Gaussian
posteriors. The highlight of G-CI is that it is capable to
fuse both Gaussian [2] [5] and non-Gaussian multi-object
distributions from different sensors with completely unknown
correlations.
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1G-CI has been applied in the literature with various names such as
Chernoff fusion [5] and geometric mean density (GMD) [6].

Following the work of Mahler [3], Clarket al. [7] derived
several tractable formulations of G-CI fusion for special types
of multi-object distributions including Poisson, independent
identically distributed (i.i.d.) clusters and Bernoulli distribu-
tions. Using these formulations, a sequential Monte Carlo
(SMC) realization of the distributed fusion with probability hy-
pothesis density (PHD) filter was presented in [8]. Meanwhile,
the problem of DMMT with a Gaussian mixture cardinalized
PHD (GM-CPHD) filter was addressed in [9]. Furthermore,
the work of distributed detection and tracking with Bernoulli
filter over a Doppler-shift sensor network was completed in
[10].

In addition to the PHD and CPHD filters [11]–[15], the
multi-Bernoulli (MB) filter is also a promising multi-object
tracking algorithm in the framework of random finite sets
(RFS). Compared with PHD and CPHD filters, the MB filter
can be more efficient and accurate in problems that require
particle implementations or target individual existence proba-
bilities. The reason is that the MB filter [16], [17] directly
propagates the multi-object distribution, not its moments.
Furthermore, it does not require an additional process, such
as a clustering step, to extract the multi-object state estimate.
MB filters have been successfully applied in a host of practical
problems. Examples include radar tracking [18], image track-
ing [17], [19], ground target tracking [20], sensor control[21],
[22], audio and video data tracking [23], visual tracking and
cell tracking [24], and mobile multi-object tracking [25],[26].
Novel extensions of the MB recursion have also been proposed
in [27] for multiple models, and hybrid multi-Bernoulli and
Poisson multi-target filters were also proposed in [28]. To the
best of our knowledge, the problem of DMMT with MB filter
considering the unknown level of correlation among sensors
has not been well addressed. The challenge lies in intractability
of deriving a closed-form expression of G-CI fusion with MB
distributions.

Recently, the notion of labeled RFS was introduced to
address target trajectories and their uniqueness in [29]–[35].
To investigate the DMTT of labeled densities, Fantacciet
al. [36] derived the closed-form solutions of GCI fusion
with marginalizedδ-generalized labeled multi-Bernoulli (Mδ-
GLMB) and labeled multi-Bernoulli (LMB) densities based
on the assumption that different sensors share the same label
space. “Sharing the same space” demands that not only label
spaces from different sensors are the same numerically, but
also the same element from different sensors has the same
physical implication, or indeed denotes the same object. This
assumption is hardly valid in practice, which is also referred to
as the “label space mismatching” phenomenon and is analyzed

http://arxiv.org/abs/1603.08340v2


2

in detail in [37], [38]. Wanget al. [37], [38] have recently
suggested two promising solutions to cope with the “label
space mismatching” phenomenon.

In some applications, the labels of the object are of great
importance; still there are many cases where one might say
that “a threat is a threat” and we have no interest in which
target is which. For example, in collision avoidance systems,
the objective is not to distinguish the identities of cars, but
to avoid them regardless of their identities. In such cases,the
labeled multi-object density is not required. Moreover, when
there is uncertainty in labelling the targets, e.g., in presence
of closely spaced targets, the labeled posterior will be multi-
modal and this may affect the performance [39]. Hence, the
unlabeled filters still remain in current and widespread use.
MB filter is a kind of unlabeled filter and its successful
applications spin over many areas as mentioned above. Hence,
it is significant to explore the generalization of MB filter to
distributed environment.

In this paper, the problem of DMMT with MB filters over
a sensor network is investigated. The major contributions are
two-fold:

1) We propose a distributed fusion algorithm, namely, GCI
fusion with MB filter (GCI-MB). A tractable closed-form
formulation of GCI fusion with MB posteriors are obtained
via two reasonable approximations.

2) We implement the proposed fusion algorithm using SMC
technique.The main challenge with SMC implementation
of the proposed MB-fusion solution is that neither the
support nor the number of particles are guaranteed to be
the same in different sensor nodes. To this end, a Kernel
Density Estimation method [8], [40], [41] is employed to
convert the local particle sets to a Gaussian Mixture model
(GMM) obtaining a continuous approximation.

In numerical results, the performance of the proposed fusion
algorithm with SMC implementation is verified.

Preliminary results have been announced in the conference
paper [42]. This paper presents a more complete theoretical
and numerical study. In Section II an overview of multi-object
tracking with RFS and G-CI fusion rule is given. Section
III describes our approach for DMMT. We firstly derive the
closed-form expression of the fused posterior by approxi-
mating it as generalized multi-Bernoulli (GMB) distribution.
Then we approximate the fused GMB posterior with an MB
distribution with matching first-order statistical moment. In
Section IV, we present the SMC based implementation of
the proposed distributed fusion algorithm. The performance of
the proposed algorithm is analyzed in two distributed multi-
object tracking scenarios in Section V. Then, some concluding
remarks are given in Section VI.

II. BACKGROUND

A. Notation

To admit arbitrary arguments like sets, vectors and integers,
the generalized Kronecker delta function is given by

δY(X) ,

{
1, if X = Y

0, otherwise
(1)

and the inclusion function is given by

1Y(X) ,

{
1, if X ⊆ Y

0. otherwise
(2)

The vector integrals onX are using the standard inner
product notation. For functionsa(x) and b(x) defined on
X, the inner product notation is represented as

〈
a, b
〉

=∫
X
a(x)b(x)dx.

B. Multi-object Bayesian Filter

Finite Set Statistics (FISST) proposed by Mahler, has pro-
vided a rigorous and elegant mathematical framework for the
multi-object detection, tracking and classification problems in
a unified Bayesian paradigm.

In the FISST framework, the multi-object state at timek
is naturally represented as an RFSXk = {xk

1 ,x
k
2 , . . . ,x

k
n} ∈

F(X), whereX = R
ν is the single object state space with the

dimensionν, F(X) is the space of finite subsets ofX. Each
single object statexk

i = [pk
i
⊤

vk
i
⊤
]⊤ ∈ R

ν comprises the
positionspk

i ∈ R
ν/2 and velocitiesvk

i ∈ R
ν/2, where “⊤”

denotes the matrix transpose.
Let Zk denotes the observation at timek and Z1:k =

(Z1, . . . ,Zk) denotes the history of observation from time1
to timek. The optimal multi-object Bayesian filter propagates
RFS based posterior densityπ(Xk|Z1:k) conditioned onZ1:k

in time with the following recursion [11]:

π(Xk|Z1:k−1)=

∫
f(Xk|Xk−1)π(Xk−1|Z1:k−1)δXk−1 (3)

π(Xk|Z1:k)=
g(Zk|Xk)π(Xk|Z1:k−1)∫

g(Zk|Xk)π(Xk|Z1:k−1)δXk
(4)

where f(Xk|Xk−1) is the multi-object Markov transition
function,g(Zk|Xk) is the multi-object likelihood function, and
set integral is defined by [11]
∫
f(X)δX=

∞∑

n=0

1

n!

∫
f({x1, · · · ,xn})dx1 · · · dxn. (5)

C. Multi-Bernoulli Distribution

A random setX with multi-Bernoulli (MB) distribution is
defined as the union ofM independent Bernoulli random
setsX(ℓ) [3],

X =

M⋃

ℓ=1

X(ℓ). (6)

The MB distribution is completely characterized by a set of
parameters{(r(ℓ), p(ℓ))}Mℓ=1, wherer(ℓ) denotes the existence
probability andp(ℓ)(·) denotes the probability density of theℓ-
th Bernoulli random set. The multi-object probability density
of an MB RFS is given by [3],

π({x1, . . . ,xn})

=
∑

1≤i1 6=...6=in≤M

Q(i1,··· ,in)
n∏

j=1

p(i
j)(xj)

(7)
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where

Q(i1,··· ,in) =
M∏

ℓ=1

(1− r(ℓ))
n∏

j=1

r(i
j )

1− r(ij)
. (8)

D. δ-Generalized Labeled Multi Bernoulli Distribution

A δ-Generalized Labeled Multi Bernoulli (δ-GLMB) dis-
tribution is defined for labeled RFSs. It is parametrized as
follows [30]:

π(X) = △(X)
∑

(I,ξ)∈F(L)×Ξ

ω(ξ)(I) δI(L(X))[p(ξ)]X (9)

whereL is a discrete label space,Ξ is a discrete space,ξ
denotes a point in the spaceΞ, the factor△(X) = δ|X|(L(X))
is included to guarantee unique labels, eachp(ξ)(x) is a
probability density over the joint space of single-object states
and labels (thus, also denoted byp(ξ)(x, ℓ) or by p(ℓ,ξ)(x),
and eachω(ξ)(I) is a non-negative weight. The weights are
normalized, ∑

(I,ξ)∈F(L)×Ξ

ω(ξ)(I) = 1. (10)

An unlabeledδ-GLMB distribution has the following gen-
eral form [37]:

π({x1, . . . , xn}) =
∑

σ

∑

(I,ξ)∈Fn(L)×Ξ

ω(I,ξ)
n∏

i=1

p(I
v(i),ξ)(xσ(i))

(11)
whereFn(L) is the space of finite subsets ofL with cardinality
n, Iv ∈ N

|I| denotes the vector constructed by stacking
the elements ofI in some sorted order,σ denotes a per-
mutation of {1, · · · , n} and

∑
σ denotes the sum over all

such permutations. In this paper, we refer to the unlabeled
δ-GLMB distribution as Generalized Multi-Bernoulli (GMB)
distribution.

E. Distributed Data Fusion

Consider two nodes 1 and 2 in a sensor network. At
time k, the nodes maintain their local posteriorsπ1(X

k|Z1:k
1 )

and π2(X
k|Z1:k

2 ) which are both labeled RFS multi-object
densities. Node 1 transmits its posterior to node 2 where it
is to be fused with node 2 local posterior to obtain a joint
posterior denoted by

πω(X
k|Z1:k

1 ,Z1:k
2 ) = πω(X

k|Z1:k
1 ∪ Z1:k

2 ) (12)

where πω(X
k|Zk

1 ,Z
k
2) denotes the fused posterior of dis-

tributed fusion. It is important to note that common process
noise arises whenever both nodes track the same target and
common observation noise arises after the nodes exchange
their local estimates with one another. Thus, in practical ap-
plications,π1(X

k|Z1:k
1 ) andπ2(X

k|Z1:k
2 ) are not distribution

of independent variables. Considering the unknown level of
correlation among nodes, the following solution to the fusion
problem was developed by Chong, Mori and Chang [1],

πω(X
k|Z1:k

1 ,Z1:k
2 ) ∝ π1(X

k|Z1:k
1 )π2(X

k|Z1:k
2 )

π(Xk|Z1:k
1 ∩ Z1:k

2 )
. (13)

In many applications, the computation of posterior given
common information between sensors,π(xk|Z1:k

1 ∩ Z1:k
2 ), is

not straightforward, and the above fusion rule cannot be easily
implemented. To overcome this issue, the G-CI fusion rule,
which specifically extends FISST to distributed environments,
has been proposed by Mahler [3]. Under this generalization,
the fused posterior is the geometric mean, or the exponential
mixture of the local posteriors,

πω(X
k|Z1:k

1 ,Z1:k
2 )=

π1(X
k|Z1:k

1 )ω1π2(X
k|Z1:k

2 )ω2

∫
π1(Xk|Z1:k

1 )ω1π2(Xk|Z1
2)

ω2δX
(14)

whereω1, ω2 (ω1 + ω2 = 1) are the parameters determining
the relative fusion weight of each nodes.

The fused posterior given by equation (14) minimizes the
weighted sum of its Kullback-Leibler divergence (KLD) [9]
with respect to two given distributions,

πω = argmin
π

(ω1DKL(π ‖ π1) + ω2DKL(π ‖ π2)) (15)

whereDKL denotes the KLD defined as

DKL(f ||g) ,
∫

f(X) log
f(X)

g(X)
δx (16)

where the integral in (16) is generally a set integral. For
convenience of notations, in what follows we omit explicit
references to the time indexk.

III. D ISTRIBUTED FUSION WITH MB FILTERS

In this section, we present a tractable closed-form solution
for G-CI based distributed fusion of multi-Bernoulli posteriors
that are locally formed in separate nodes of a sensor network.
Each local sensor performs MB filtering and outputs a MB
posterior in the form of (7). Depending on the type of the
local measurement acquitted by the sensor node, the local
MB filter may use various observation models such as point
observation model [16] or image observation model [17].
Through a practical approximation, we show that fusion of
two MB posteriors using G-CI formula (14) leads to a GMB-
type multi-object density whose parameters can be directly
calculated in terms of the two MB distribution parameters.
We then approximate the fused GMB distribution with an MB
distribution that has the same first moment. This can be fed
back to the sensor network nodes for the next iteration of local
MB filtering.

A. G-CI Fusion

When fusing MB distributions based on the G-CI fusion for-
mula (14), the main challenge is that for each MB distribution
π(X), the termπ(X)ω has a form of fractional order expo-
nential power of a sum,(

∑n
i=1 di)

ω, which is computationally
intractable. Its value could be approximated using numerical
solutions, such as grid based approximation. However, this
approach suffers from the curse of dimensionality and is
prohibitively expensive in general. Therefore, a feasibleand
practical approximation ofπ(X)

ω is required.
In [9], [43], the following approximation has been intro-

duced to calculateπ(X)
ω whereπ(X) is a single-object dis-

tribution formulated as a mixture ofwell separatedGaussian
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components:
(
∑

i

di

)ω

≈
∑

i

dωi . (17)

In the following, we derive a similar approximation for a
multi-object distributionπ(X) that is formulated as an MB
distribution which is the union ofwell separatedBernoulli
components. Our derivation also clarifies what beingwell
separatedmeans for Bernoulli components of the MB dis-
tribution.

In order to make the derivations presented in this section
more compact, we represent the MB distribution in (7) in
another form. For each cardinalityn ≤ M , we denote the
ensemble of all possible ordered combinations ofn distinct
indices between 1 andM , by the summing joint-index space
H(n),

H(n) = {(i1, · · · , in) ∈ N
n|1 ≤ i1 6= · · · 6= in ≤ M}, (18)

whereN is referred to as the set of all natural numbers.
Using this notation, the MB distribution (7) can be rewritten

as

π({x1, · · · ,xn}) =
∑

Ih∈H(n)

QIh

n∏

i=1

p(Ih(i))(xi). (19)

Therefore,

π({x1, · · · ,xn})ω =


 ∑

Ih∈H(n)

QIh

n∏

i=1

p(Ih(i))(xi)




ω

.

(20)

We will show that is the Bernoulli components of the MB
distribution are well-separated, the powered sum presented in
the above equation can be approximated by the sum of powers.
Firstly, we introduce the concept of highest posterior density
(HPD) region [44], which is important for the derivation that
follows.

Definition 1. Let p(X |Z) be a posterior density function. A
regionR in the space ofX is called an HPD of confidenceλ
if

a) Pr{X ∈ R|Z} = λ;
b) for X1 ∈ R andX2 /∈ R,

p(X1|Z) ≥ p(X2|Z). (21)

The posterior density for every point inside the HPD region
is greater than that for every point outside of region. Thus,
the region includes the more probable values ofX . Usually,
the confidenceλ is set to be very close to one, e.g.λ = 0.90.
Thus,p(X |Z) is negligible forX /∈ R and can be approxi-
mated with 0.

Definition 2. Consider an MB posterior π ={(
r(ℓ), p(ℓ)(·)

)}M
ℓ=1

. If Xℓ is the HPD of confidenceλ
for p(ℓ)(·), then the Bernoulli components ofπ(X) are said
to be mutuallyλ× 100% separatedif,

∀ℓ 6= ℓ′, Xℓ ∩Xℓ′ = ∅.

Remark 1. In practical multi-object tracking scenarios, the
HPD of posteriorp(ℓ)(x) is influenced by many factors,
e.g., the true target states, the maneuverability and signal-to-
noise (SNR) of targets. Usually the true single target state
corresponding to each Bernoulli component determines the
center of its HPD region. Furthermore, the width of HPD
region of a Bernoulli component is smaller with lower ma-
neuverability and higher SNR. In such practical scenarios,the
MB distributions propagated through an MB filter (and G-CI
fused density in sensor network applications) can be easily
assumed to be mutually separated with very high confidence.

Remark 2. In common SMC implementations of the MB
filter, there is a merging step after update, in which the
Bernoulli components whose means are too close to each
other are merged into one Bernoulli component. Thus, we can
practically assume that the posteriors that are to be fused in
the sensor network are always well-separated (λ is very close
to one).

Proposition 1. Assume that the Bernoulli components of an
MB posterior density, denoted byπ =

{(
r(ℓ), p(ℓ)(·)

)}M
ℓ=1

,
are mutually λ × 100% separated. Denote the HPD of
confidenceλ for p(ℓ)(x) by Xℓ. For an indexing sequence
Ih ∈ H(n), consider the multi-variate posteriorp(x1:n; Ih) =∏n

i=1 p
(Ih(i))(xi) where x1:n denotes(x1, . . . ,xn). If the

confidence levelλ is close to one, then the HPD of confidence
λn for p(x1:n; Ih) can be approximated with

XIh
≈ X̂Ih

= XIh(1) × XIh(2) × · · · × XIh(n).

Proof: The probability associated with the above HPD is
given by:

Pr(x1:n ∈ X̂Ih
) =

∫

X̂Ih

p(x1:n; Ih)dx1:n

=

∫

X̂Ih

n∏

i=1

p(Ih(i))(xi)dxi

=

n∏

i=1

∫

XIh(i)

p(Ih(i))(xi)dxi

=

n∏

i=1

λ

= λn. (22)

Furthermore, consider twon-tuplesx1:n ∈ X̂Ih
and y1:n /∈

X̂Ih
. We argue that the conditionp(x1:n; Ih) > p(y1:n; Ih)

holds for almost all possible pairs ofx1:n,y1:n. Without loss
of generality, let us assume that the firstn 6 n elements of
y1:n are not in their correspondent HPD regions and the rest
are. The inverse conditionp(x1:n; Ih) < p(y1:n; Ih) can be
rewritten as

n∏

i=1

p(Ih(i))(xi) <

n∏

i=1

p(Ih(i))(yi).

We note that fori = 1, . . . , n, p(Ih(i))(xi) > p(Ih(i))(yi).
Thus, in order for the above inverse condition to hold, the rest
of the elements ofy1:n must associate with densities much
larger than the ones atx1:n in such a way that when multiplied
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by the firstn densities, the product still becomes larger than
the product of densities associated with elements ofx1:n.
We argue that when the confidence levelλ is large, the bulk
mass of distribution is covered by the HPD and the densities
associated with values outside the HPD are expected to be
negligible. Thus, the product

∏
n

i=1 p
(Ih(i))(yi) is expected to

be so small that its product with the rest of the terms can rarely
become large enough to exceed the total product of densities
at xi’s,

∏n
i=1 p

(Ih(i))(xi). More precisely, the above inverse
condition can rarely be held, and

p(x1:n; Ih) > p(y1:n; Ih)

holds for almost all possible pairs ofx1:n ∈ X̂Ih
andy1:n /∈

X̂Ih
.

Proposition 2. If the Bernoulli components of an MB posterior
density denoted byπ =

{(
r(ℓ), p(ℓ)(·)

)}M
ℓ=1

are mutuallyλ×
100% separated andλ is very close to1 (e.g.λ > 0.9), then

π({x1,. . .,xn})ω ≈
∑

Ih∈H(n)

(
QIh

)ω
(

n∏

i=1

p(Ih(i))(xi)

)ω

.

(23)

Proof: From proposition 1, ifXℓ is the HPD region of
p(ℓ)(x) with confidenceλ, for each cardinalityn, the HPD
regionXIh

of each product term
∏n

i=1 p
(Ih(i))(xi), Ih ∈ H(n)

with confidenceλn can be approximately represented as

XIh
≈ X̂Ih

= XIh(1) × · · · × XIh(n). (24)

Note that since thexns are mutually orthogonal, it is
reasonable and convenient to use theX̂Ih

whose geometric
shape is rule, to approximate the trueXIh

.
Given the applicable conditions that∀ℓ 6= ℓ′, 1 ≤ ℓ, ℓ′ ≤ M ,

Xℓ ∩ Xℓ′ = ∅, we have

X̂Ih
∩ X̂I

′

h
= ∅, ∀Ih 6= I′h, Ih, I

′
h ∈ H(n). (25)

If the single-object state space is denoted byX, the multi-
object state space with cardinalityn will be X

n. For any
x1:n ∈ X

n, we consider two possible cases:

- If for someIh, x1:n ∈ X̂Ih
, then from (25), it cannot be in

any other HPD region̂XIh′
, Ih′ 6= Ih. Thus, among the

product terms
∏n

i=1 p
(Ih(i))(xi) that appear in the sum of

RHS of equation (19), only one of them will be dominant
and the others will have negligible values, i.e.

π({x1,. . .,xn}) ≈ QIh

n∏

i=1

p(Ih(i))(xi) (26)

and therefore,

π({x1,. . .,xn})ω ≈
(
QIh

)ω
(

n∏

i=1

p(Ih(i))(xi)

)ω

. (27)

It is important to note that the termQIh is the proba-
bility of joint existence of targets with labelsIh, thus
0 6 QIh 6 1. This probability termQIh itself can
be smaller than some of the probability terms for other
labels, i.e. for someIh′ , we may haveQIh < QIh′ .
However, for those other terms, the product of densities

would be so small thatQIh
∏n

i=1 p
(Ih(i))(xi) would be

still much larger than other terms with other indicesIh′ .
- If the multi-object state valuex1:n is in none of the

HPD spaces{X̂Ih
}Ih∈H(n), then all the product terms

appearing in the sum of RHS of equation (19) will be
negligible, and the multi-object density atx1:n will be
very close to zero. Accuracy of approximation of multi-
object density is not of interest in such locations in the
multi-object state spaceXn.

For an arbitrary multi-object state valuex1:n =
(x1, . . . ,xn), equation (27) can be generalized to

π({x1,. . .,xn})ω ≈
∑

Ih∈H(n)

(
QIh

)ω
(

n∏

i=1

p(Ih(i))(xi)

)ω

(28)

in which only one term from sum is dominant, depending on
which HPD regionx1:n belongs to.

To show a numerical example and demonstrate the intuition
behind this approximation, let us consider an MB distribu-
tion with three Bernoulli components with probabilities of
existencer(1)1 = 0.8, r

(2)
1 = 0.9 and r

(3)
1 = 0.9, and

densitiesp(1)1 (x) ∼ N (x; 3, 0.2), p(2)1 (x) ∼ N (x; 4, 0.2) and
p
(3)
1 (x) ∼ N (x; 7, 0.2), with x ∈ R. Since the densities are

Gaussians characterized by their mean and covariance, the
necessary condition of the MB posterior being well-separated
is reduced to the means

∫
xp(ℓ)(x)dx and

∫
xp(ℓ

′)(x)dx
for any ℓ 6= ℓ′, being well-separated as measured by their
respective covariances. Fig. 4 shows numerical values of the
product terms for two hypotheses, one with cardinalityn = 1,
and one with cardinalityn = 2. The figure clearly exemplifies
how one product terms can significantly dominate the others,
validating the accuracy of approximation (28).

             Example Probability

n
=
1

n
=
2

n∏

i=1

p
(Ih(i))(x

σ(i))QIh

for point             ,  

for point    ,  

2 3 4 5 6 7 8
2

3

4

5

6

7

8

2 3 4 5 6 7 8
(

����

���

��	


��


����

���

����

���

x1

x
2

X(3,2)

X(3,1)

∑

Ih∈H(1)

QIhp(Ih)(x)

≈ Q2p(2)(x)

∑

Ih∈H(2)

QIh

2∏

i=1

p(Ih(i))(xi)

≈ Q(2,3)p(2)(x1)p
(3)(x2)

H(1) = X1 ∪ X2 ∪ X3

x ∈ XIh

H(2) = ∪
3
j=1 ∪

3
k=1 X(j,k)

(x1,x2) ∈ XIh

Q(2,3)p(2)(x1)p
(3)(x2)=3.5×10−1

Q(1,2)p(1)(x1)p
(2)(x2)=8.2×10−56

Q(1,2)p(2)(x1)p
(1)(x2) ≈ 0

Q(1,3)p(3)(x1)p
(1)(x2) ≈ 0

Q(2,3)p(3)(x1)p
(2)(x2) ≈ 0

Q(3)p(3)(x)=1.3×10−196

Q(2)p(2)(x)=3.9×10−2

Q(1)p(1)(x)=3.0×10−23

x = 4

(x1,x2) = (4, 7) Q(1,3)p(1)(x1)p
(3)(x2)=5.3×10−6

X1 X2 X3

x

(x1,x2)

Fig. 1. Example of an MB distribution with three components,and numerical
values of the product terms for ann = 1 dimensional hypothesisX = {4}
and ann = 2 dimensional hypothesisx = {4, 7}. The results show how in
each case, regardless of hypothesized dimension, one product term in the sum
formed by MB density in (19) becomes much larger than others.

We note that the validity of the approximation in (19) is not
limited to Gaussian models. In the performance assessment
section, the approximation is applied to the distributed multi-
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object tracking scenarios in which the multi-target posterior
is not necessarily Gaussian distribution, and the results verify
the validity and rationality of the approximation.

B. The GMB Fused Distribution

In this section, we present the MB distribution in a third
form and define a fusion map describing the relationship
between track outputs of two MB filters operating at two sen-
sor nodes, in order to explore the intuitionistic mathematical
structure of the fused distributions.

In addition to (7) and (19), the third form of MB distribution
could be expressed as

π({x1,. . .,xn}) =
∑

σ

∑

I∈Fn(L)

QI
n∏

i=1

p(I
v(i))(xσ(i)) (29)

where

QI =
∏

ℓ′∈I

r(ℓ
′)
∏

ℓ∈L/I

(1− r(ℓ)) (30)

andL,{1, . . . ,M} is the index set of the MB distribution.
Consider two posteriors output by two sensorss = 1, 2,

parametrized byπs = {(r(ℓ)s , p
(ℓ)
s )}ℓ∈Ls

, s = 1, 2, with Ls =
{1, · · · ,Ms}. Omitting the conditioning on the observations
for convenience, we representπs in the form of (31) as

πs =
∑

σs

∑

Is∈Fn(Ls)

QIs

n∏

i=1

p(I
v
s(i))(xσ(i)), s = 1, 2. (31)

Definition 3. Without loss of generality, assume that|L1| ≤
|L2|. A fusion map is a functionθ : I ∈F(L1) → L2 such
that θ(ℓ)= θ(ℓ∗)>0 implies ℓ= ℓ∗. The set of all such fusion
maps is called fusion map space ofI denoted byΘI , and the
number of all fusion maps ofI is AM2

|I| , whereAM
N denotes

N -permutations ofM . For notation convenience, we define
θ(I) , {θ(ℓ), ℓ ∈ I}.

( (1))Iθ

( (2))Iθ

( ( ))I nθ

{ }(1) (1)

1 1( , )r p

{ }(2) (2)

1 1( , )r p

⋮

Sensor-1

{ }1 1( ) ( )

1 1( , )M M
r p

{ }(1) (1)

1 1( , )I I
r p

{ }(2) (2)

1 1( , )I I
r p

⋮
{ }( ) ( )

1 1( , )I n I n
r p

{ }( (1)) ( (1))

2 2( , )I I
r p

θ θ

⋮
{ }( ( )) ( ( ))

2 2( , )I n I n
r p

θ θ

{ }( (2)) ( (2))

2 2( , )I I
r p

θ θ

{ }(1) (1)

2 2( , )r p

{ }(2) (2)

2 2( , )r p

⋮

Sensor-2

{ }2 2( ) ( )

2 2( , )M M
r p

Mapping Functionθ

I ( )Iθ A 

subset 

of 

2L1L

A 

subset 

of

Fig. 2. The sketches of the fusion map defined in Definition 1. For any subset
I ∈ F(L1), there is a subsetθ(I) ∈ F(L2) whose elements are one-to-one
matching with the elements ofI.

Remark 3. Each fusion map denotes a hypothesis that a set of
tracks in sensor 2 are one-to-one matching with a set of tracks
in sensor 1 in the sense that the matched tracks belong to the
same targets, which is shown as in Fig. 2. The fusion map
plays a similar role to the measurement-track association map
in δ-GLMB filter [31]. For instance, consider two sensors, and
their posteriors are{(r(ℓ)1 , p

(ℓ)
1 )}ℓ∈L1 and {(r(ℓ)2 , p

(ℓ)
2 )}ℓ∈L2,

respectively, whereL1 = {1, 2} andL2 = {1, 2}. According
to the Definition 3, there exist six fusion maps which are
shown as in Fig. 3.

Fusion Maps

θ1 θ2

θ3 θ4

θ5 θ6

n
=

1
n
=

2

1 1 1 2

2 1 2 1

1
2

1
2

1
2

2
1

Sensor 1 Sensor 2 Sensor 1 Sensor 2

Sensor 1 Sensor 2 Sensor 1 Sensor 2

Fig. 3. An example of fusion maps.

Proposition 3. The EMDπω(X) of two MB distributions in
(31) can be approximated as a GMB distribution of the form

π̃ω({x1, . . . ,xn}) =
∑

σ

∑

(I1,θ)∈Fn(L1)×ΘI1

w(I1,θ)
ω

n∏

i=1

p
(Iv1(i),θ)
ω (xσ(i))

(32)

where

w(I1,θ)
ω = w̃(I1,θ)

ω

/
C (33)

p(ℓ,θ)ω (x) =
p
(ℓ)
1 (x)ω1p

(θ(ℓ))
2 (x)ω2

Z
(ℓ,θ)
ω

, ℓ ∈ I1, θ ∈ ΘI1 (34)

with

Z(ℓ,θ)
ω =

∫
p
(ℓ)
1 (x)ω1p

(θ(ℓ))
2 (x)ω2dx (35)

w̃(I1,θ)
ω =

(
QI1

1

)ω1
(
Q

θ(I1)
2

)ω2 ∏

ℓ∈I1

Z(ℓ,θ)
ω (36)

C =
∑

I1∈F(L1)

∑

θ∈ΘI1

w̃(I1,θ)
ω . (37)

Proof: Firstly, applying (23) to the MB distribution of the
form (29), we can obtain

πs(X)ω ≈
∑

σs

∑

Is∈Fn(Ls)

(
QIs
)ω
(

n∏

i=1

p
(Ivs (i))
s (xi)

)ω

. (38)

By substituting (38) into (14), and utilizing Definition 1, the
numerator of (14) can be rewritten as (39), wherew̃

(I1,θ)
ω and

p
(ℓ,θ)
ω (x) are shown in (36) and (34), respectively.

Thus, the denominator C of (14) can be computed as:

C =

∫
π̃ω({x1, . . . ,xn})δX

=

∞∑

n=0

∑

I1∈Fn(L1)

∑

θ∈ΘI1

w̃(I1,θ)
ω

=
∑

I1∈F(L1)

∑

θ∈ΘI1

w̃(I1,θ)
ω .

(40)

Finally, by substituting (39) and (40) into (14), we obtain the
fused density as the form of (32), which is a GMB distribution,
the unlabeled version of GLMB distribution [29], [30], [37].
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π̃ω({x1, . . . ,xn})

=
∑

σ1

∑

I1∈Fn(L1)

∑

σ2

∑

I2∈Fn(L2)

(
QI1

1

n∏

i=1

p
(Iv1(i))
1 (xσ1(i))

)ω1
(
QI2

2

n∏

i=1

p
(Iv2(i))
2 (xσ2(i))

)ω2

=
∑

σ1

∑

I1∈Fn(L1)

∑

σ2

∑

I2∈Fn(L2)

(
QI1

1

)ω1
(
QI2

2

)ω2
n∏

i=1

(
p
(Iv1(i))
1 (xσ1(i))

)ω1
(
p
(Iv2(i))
2 (xσ2(i))

)ω2

=
∑

σ

∑

I1∈Fn(L1)

∑

θ∈ΘI1

(
QI1

1

)ω1
(
QI2

2

)ω2
n∏

i=1

∫ (
p
(Iv1(i))
1 (xσ(i))

)ω1
(
p
(θ(Iv1(i)))
2 (xσ(i))

)ω2

dxσ(i)

×
n∏

i=1

(
p
(Iv

1 (i))
1 (xσ1(i))

)ω1
(
p
(θ(Iv

1 (i)))
2 (xσ1(i))

)ω2

∫ (
p
(Iv1(i))
1 (xσ1(i))

)ω1
(
p
(θ(Iv1(i)))
2 (xσ1(i))

)ω2

dxσ(i)

=
∑

σ

∑

I1∈Fn(L1)

∑

θ∈ΘI1

w̃(I1,θ)
ω

n∏

i=1

p(I
v(i),θ)

ω (xσ(i))

(39)

C. MB Approximation

In Section III-A, we have approximated the fused distribu-
tion as a GMB distribution. In practical scenarios, the G-CI
fusion in a sensor network is usually realized by sequentially
applying the G-CI fusion rule [9], since a sensor network
always has more than two sensors. In addition, in order to
enhance the performance of a sensor network further, the
feedback work mode is sometimes enabled. Thus, the fused
posterior needs to be in the same form of the local posteriors,
and it is necessary to approximate the GMB formed fused
posterior as an MB distribution. Motivated by [16] and [31],
in which the multi-object distribution is approximated by exact
moment matching, we further seek an MB approximation that
matches the first-order moment of the GMB formed fused
posterior in (32).

Proposition 4. Suppose the fused posterior has been approx-
imated as a GMB of form (32). The MB distribution that
matches exactly the first-order moment of the fused posterior
πω(X) is πMB(X) = {(r(ℓ)ω , p

(ℓ)
ω )}ℓ∈L1 , where

r(ℓ)ω =
∑

I1∈F(L1)

∑

θ∈ΘI1

1I1(ℓ)w
(I1,θ)
ω (41)

p(ℓ)ω (x) =
∑

I1∈F(L1)

∑

θ∈ΘI1

1I1(ℓ)w
(I1,θ)
ω p(ℓ,θ)ω (x)

/
r(ℓ)ω . (42)

Proof: According to Proposition 3, a GMB distribution
shown in (32) is used to approximate the fused posterior of G-
CI fusion with two MB distributions, and its first order moment
can be computed as

v(x1)

=

∞∑

n=1

1

(n−1)!

∫
π̂ω({x1,x2, · · · ,xn})dx2, · · · , dxn

=

∞∑

n=1

1

(n−1)!

∑

I1∈Fn(L1)

∑

θ∈ΘI1

∑

σ

w(I1,θ)
ω p(I

v(σ−1(1)),θ)
ω (x1)

=

∞∑

n=1

∑

(I1,θ)∈Fn(L1)×ΘI1

∑

ℓ∈I1

w(I1,θ)
ω p(ℓ,θ)ω (x1)

=
∑

ℓ∈L1

∑

I1∈F(L1)

∑

θ∈ΘI1

1I1(ℓ)w
(I1,θ)
ω p(ℓ,θ)ω (x1)

=
∑

ℓ∈L1

r(ℓ)ω p(ℓ)ω (x1).

(43)

Equation (43) proves that the MB distribution with parameters
{(r(ℓ)ω , p

(ℓ)
ω )}ℓ∈L1 shown in (41) and (42) matches exactly

the first-order statistical moment of the GMB distribution
produced by (32).

Remark 4. Fusion (14) with MB densities can be easily
extended toNs > 2 sensors by sequentially applying the
pairwise fusion (41) and (42)Ns−1 times, where the ordering
of pairwise fusions is irrelevant. Similar approach has been
widely used in distributed fusion, such as GCI fusion with
CPHD filters [9] and LMB filters [36].

Remark 5. To implement the GCI fusion with MB densities
algorithm, we need to firstly compute theZ(ℓ,θ)

ω andp(ℓ,θ)ω un-
der each hypothesis according to (35) and (34), then compute
the r

(ℓ)
ω and p

(ℓ)
ω (x) according to (41) and (42). However, it

can be seen from (41) and (42) that the number of hypotheses
grows exponentially with the number of targets. In order to
reduce the computational burden, we can perform truncation
of the GMB density using the ranked assignment strategy [29],
[30] or parallel filtering by grouping targets [31].
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Fig. 4. A sensor network is shown in the left. Each node monitors
targets and exchange posterior with its neighbours. The proposed
GCI-MB fusion algorihtm is employed to complete the distributed
fusion task over the sensor network, and the process diagramof GCI-
MB fusion algorithm is shown in the right.

D. Summary

In this section, we proposed a distributed multi-sensor multi-
object tracking algorithm based on G-CI fusion rule and
MB distribution, henceforward referred to as GCI-MB. By
employing two reasonable approximations, the fused posterior
density of two MB densities after GCI-MB is also an MB
distribution. Therefore, by sequentially applying the closed
form solution of GCI-MB, we can complete another fusion
process between the previously fused results and a third sensor
node. In addition, the MB formed density after GCI-MB also
facilitates the feedback process to further improve the fusion
performance.

The process diagram of GCI-MB fusion is shown in right
part of Fig. 3 and the proposed method is employed to
complete the distributed fusion for a sensor network as shown
in left part of Fig. 3. The complete GCI-MB fusion scheme
for a sensor network includes the following steps:

1) Local filtering: each local sensor node runs MB filtering;
2) Information exchange: each node exchanges its posteriors

with their neighbors;
3) Posterior fusing: each node performs GCI-MB fusion by

sequentially applying the fused posterior.
4) Feedback: to further improve the performance of the GCI-

MB fusion, the fused MB density is fed back to each local
node.

Take node 4 as an example. In the first step, the local
measurements are used to update a local MB posterior. The
node then exchanges its posterior with nodes 3, 4, 5 and 8
and collects their posteriors. In the next step, it sequentially
performs GCI-MB fusion three times, and finally at feedback
stage, the fused posterior is fed back to local sensor nodes 3,
4, 5 and 8 to further improve the fusion performance.

IV. I MPLEMENTATION OF GCI-MB FUSION ALGORITHM

The conventional SMC implementation of MB filter is
used to compute the fusion of local information. To fuse
information from different sensor nodes, we must be able to
compute (41) and (42). However, this cannot be carried out

directly because each node has its own particle filter with its
own support. Therefore, we use a a kernel density estimation
(KDE) [8] method to create continuous approximations of the
local posteriors. These posteriors are then sampled from to
compute the G-CI fusion using different particle supports.

For the detail of SMC implementation of MB filter, the
reader is referred to [16], [17]. We present the SMC imple-
mentation of GCI-MB fusion directly.

A. SMC Implementation of GCI-MB

Let us denote the particle representation of each node’s local
MB distribution by

{
r
(ℓ)
s , {ζ(ℓ)s,ms ,x

(ℓ)
s,ms}ms=1:L

(ℓ)
s

}
ℓ∈Ls

with

p(ℓ)s (x) =

L(ℓ)
s∑

ms=1

ζ(ℓ)s,ms
δ
x
(ℓ)
s,ms

(x), s = 1, 2 (44)

whereζ(ℓ)s,ms is the weight associated with thems-th particle
x
(ℓ)
s,ms which is a point generated from theℓ-th density, and

theL
(ℓ)
s denotes the number of particles representing theℓ-th

density.
In Section III, we derived the closed-form expression of

the fused posterior as an MB distribution with its MB param-
eters shown in Proposition 4. The implementation of GCI-
MB is equivalent to calculate the MB parameters of the
fused posterior, including the existing probabilityr(ℓ) and its
densityp(ℓ)(x) conditional on existence,ℓ ∈ L1. During the
computing process, the parametersp

(ℓ,θ)
ω (x) andZ(ℓ,θ)

ω in (32),
(41) and (42) are the key factors.

As it was mentioned earlier, two posteriors presented by
particles from two nodes cannot directly be fused via GCI-MB,
for each node has its own set of particles. Neither the support
nor the number of particles are guaranteed to be the same.
Thus, we employ KDE, in which the estimated density is a
sum of kernel function shifted to particle points. We associate
each p

(ℓ)
s (x), ℓ ∈ Ls with the parameterΣ(ℓ)

s and use the
density given by

p̂(ℓ)s (x) =
1

L
(ℓ)
s

L(ℓ)
s∑

ms=1

N
(
x;x(ℓ)

s,ms
,Σ(ℓ)

s

)
, ℓ ∈ Ls (45)

where N
(
x;x

(ℓ)
s,ms ,Σ

(ℓ)
s

)
is a Gaussian distribution with

meanx(ℓ)
s,ms and covarianceΣ(ℓ)

s .
Next, we describe the computation ofΣ

(ℓ)
s for p(ℓ)s (x), ℓ ∈

Ls:
In order to find the kernel parametersΣ(ℓ)

s for the members
of the Bernoulli componentℓ, we first find a transform that
diagonalizes the empirical covariance of these points in the
transformed domain. Then, the problem of finding the kernel
parameters in multiple-dimensions reduces to independent
single dimensional problems.

The transform is given by the inverse square root of the
empirical covariance matrixΥℓ of Bernoulli componentℓ. We
transform allx(ℓ)

s,m′ ∈ {x(ℓ)
s,m′ |m′ = 1, . . . , L

(ℓ)
s } using

y
(ℓ)
s,m′ = Wℓx

(ℓ)
s,m′

(46)
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Wℓ = Υ
−1/2
ℓ

(47)

Given that the covariance ofy(ℓ)
s,m′ is diagonal, the dstate-

dimensional Gaussian kernel in the transformed domain sim-
plifies to

K
(
y,y

(ℓ)
s,m′

)
=

dstate∏

d′=1

1√
2πhd′

exp


−1

2

(yd′ − y
(ℓ),d′

s,m′ )2

h2
d′


 .

(48)

where dstate is the dimensionality of the state space andhd′s are
the bandwidth (BW) parameters of the 1-D Gaussian kernels.

The BW hd′ for each dimension can be found using one
of the well established methods in the literature [35]. In
particular, we use the following rule-of-thumb (RUT) [45]:

hd′ = σd′

(
4

3N

)1/5

(49)

whereσd′ is the empirical standard deviation ofydj s andN
is the number of these points. The reason for this choice is
its simplicity and low computational complexity compared to
other methods such asleast squares cross-validation[46].

The covariance matrix that specifies the kernels in (39) for
the members of the Bernoulli componentℓ is given by

Σ(ℓ)
s = TℓΛℓT

T
ℓ

Tℓ = W−1
ℓ

Λℓ = diag(h2
1, h

2
2, . . . , h

2
dstate

).

(50)

1) Estimation of the Parameterp(ℓ,θ)w (x) : The union of the
input particle sets, i.e.,

PU , {x(ℓ)
1,m1

}
m1=1:L

(ℓ)
1

⋃
{x(θ(ℓ))

2,m2
}
m2=1:L

(θ(ℓ))
2

(51)

can be seen asLU = L
(ℓ)
1 + L

(θ(ℓ))
2 samples drawn from the

mixture important samping (IS) density

pIS(x) =
L
(ℓ)
1 p

(ℓ)
1 (x)ω1 + L

(θ(ℓ))
2 p

(θ(ℓ))
2 (x)ω2

L
(ℓ)
1 + L

(θ(ℓ))
2

(52)

Therefore,PU given by (51) is a convenient particle set to
representp(ℓ,θ)ω (x) and the IS weights forxm′ ∈ PU are given
by

ζm′ ∝ p
(ℓ)
1 (xm′)ω1p

(θ(ℓ))
2 (xm′)ω2

L
(ℓ)
1 p

(ℓ)
1 (xm′)ω1 + L

(θ(ℓ))
2 p

(θ(ℓ))
2 (xm′)ω2

. (53)

In order to compute the IS weights in (53), evaluations
of both p

(ℓ)
1 (xm′) and p

(θ(ℓ))
2 (xm′) at all points of PU

are necessary. After obtaining the KDEs ofp
(ℓ)
1 (xm′) and

p
(θ(ℓ))
2 (xm′) using (45) respectively, feasible estimates ofζ̂m′s

are computed by substituting these evaluations into (53):

ζ̂m′ ∝ p̂
(ℓ)
1 (xm′)ω1 p̂

(θ(ℓ))
2 (xm′)ω2

L
(ℓ)
1 p̂

(ℓ)
1 (xm′)ω1 + L

(θ(ℓ))
2 p̂

(θ(ℓ))
2 (xm′)ω2

. (54)

After resampling {ζ̂m′ ,xm′}m′=1:LU
, we obtain equally

weighted samples to representp
(ℓ,θ)
ω (x).

2) Estimation ofZ(ℓ,θ)
ω : Using the proposal densitypIS(x)

given in (52), the IS estimate ofZ(ℓ,θ)
ω is given by

Z(ℓ,θ)
ω ,

∑

xm′∈PU

p
(ℓ)
1 (xm′)ω1p

(θ(ℓ))
2 (xm′)ω2

L
(ℓ)
1 p

(ℓ)
1 (xm′)ω1 + L

(θ(ℓ))
2 p

(θ(ℓ))
2 (xm′)ω2

(55)

wherePU is the union of the input particle sets (51).
We substitute the KDEs of̂p(ℓ)1 (xm′) and p̂(θ(ℓ))2 (xm′ ) into

(55) to achieve computational feasibility and obtain

Ẑ(ℓ,θ)
ω ,

∑

xm′∈PU

p̂
(ℓ)
1 (xm′ )ω1 p̂

(θ(ℓ1))
2 (xm′)ω2

L
(ℓ)
1 p̂

(ℓ)
1 (xm′)ω1 + L

(θ(ℓ))
2 p̂

(θ(ℓ))
2 (xm′)ω2

.
(56)

B. Pseudo-code

A brief summary of the SMC implementation of GCI-MB
is presented in the following algorithm. The first inputs of the
algorithm are the particle sets (44) of local MB posteriors from
both sensors.
Step 1. Under eachI1 ∈ F(L1), create the map spaceΘ(I1).
Step 2. Under each(I1, θ) ∈ F(L1) × Θ(I1), for eachℓ ∈

I1, θ(ℓ) ∈ θ(I1):

• Compute the KDE parameters of̂p(ℓ)1 (x) and
p̂
(θ(ℓ))
2 (x) in (45), respectively;

• According to (51), construct the sample setPU

drawn from the IS density (52);
• Evaluate KDEs of the input local densities at each

particles in this set according to (45).
• Evaluate the IS weights for this sample set accord-

ing to (53);
• Resample this sample set and obtain the normalized

weight of p(ℓ,θ)ω (x).
• Evaluate the quantityZ(ℓ,θ)

ω according to (56);

Step 3. Calculate the weightw(I1,θ)
ω for each (I1, θ) ∈

F(L1)×ΘI1 according to (33), (36) and (40).
Step 4. Calculate each fused MB parameterr(ℓ) and its den-

sity p(ℓ)(x), ℓ ∈ Lω according to (42) and (41).
The output of the algorithm is a set of particles representing
the fused posteriors with parametersr(ℓ) andp(ℓ)(x).

V. PERFORMANCEASSESSMENT

In this section, the performance of the proposed GCI-MB
fusion algorithm is examined in two tracking scenarios in
terms of the optimal sub-pattern assignment (OSPA) error [49].
GCI-MB is implemented using the SMC approach proposed
in Section IV. Since this paper does not focus on the problem
of weight selection, we choose the Metropolis weights [50] in
GCI-MB fusion for convenience (we note that this may have
an impact on the fusion performance).

The MB filter for image data, also referred to as MB
track-before-detect (MB-TBD) filter [17] is used to estimate
local sensors’ posteriors. Local filters adopt the “standard”
target motion model [11] without target births. Each single
target with a four-dimensional state vector containing thetwo-
dimensional positions and velocities is initialized within region
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around the correct target positions, and follows a constant
velocity model. The probability of survival ispke = 0.95.
An image observation model is used similarly as [17]. The
surveillance region is divided intoD resolution cells denoted
as V1, V2, · · · , VD ⊂ R

ν/2. At time k, we represent the
observations at timek aszk = (zk1 , z

k
2 , · · · , zkD)′ ∈ R

D, with
zkj the observation data obtained from thejth cell. A target
with state x illuminates a set of pixels denoted byU(x).
Targets are assumed to be rigid bodies, which means that
the regions affected by different targets do not overlap, i.e.,
x 6= x∗ ⇒ U(x) ∩ U(x∗) = ∅. Assuming that the values of
different pixels are independently distributed conditioned on
the multi-object stateXk, the multi-object likelihood function
g(Zk|Xk) of Zk = {zk} is given by:

g(Zk|Xk) = f(zk)
∏

x∈Xk

gz(x) (57)

where

gz(x) =
∏

j∈U(x)

PH1(z
k
j |x)

PH0 (z
k
j )

f(zk) =
D∏

j=1

PH0(z
k
j )

with PH1(z
k
j |x) the observation density function for thejth

cell occupied by the target statex and PH0(z
k
j ) the noise

density for thejth cell. For different applications,PH1(z
k
j |x)

and PH0(z
k
j |x) have different distributions, such as Gaus-

sian distribution [17], Rayleigh distribution and Compound-
Gaussian distribution [51], etc.

In the following experiments, we consider a two-
dimensional scenario over50 × 50 resolution cells with cell
lengths δx = δy = 1 m. The interval between the sensor
observations isT = 1 s. The probability densities of the
intensityzkj of pixel j, at timek, adopt Gaussian distribution,
namely,

PH1 (z
k
j |x) = N


zkj ;

∑

x∈Xk

σT
j (x), σ

N




PH0(z
k
j ) = N

(
zkj ; 0, σ

N
)

where σT
j (x) is the power contribution from target statex

to the jth cell andσN is the noise power. Here,σT
j (x) is

described by a point spread function [17], for example,

σT
j (x) =

δxδyσ
T

2πσ2
b

exp

(
− (δxa− px)

2 + (δyb− py)
2

2σ2
b

)

where σT is the source intensity,σ2
b is the blurring factor,

(px, py) is the position of the statex, andj = (a, b) denotes
the position of thejth cell in two-dimensionality image of the
surveillance region. The SNR is defined by10 log(σT /σN ).
Here, the source intensityσT is assumed to be the same
deterministic value for all the sensors. In practical scenarios,
the σT is always the random value and follows different
distributions among different sensors [52], however, it isnot
the scope of this paper.

A. Scenario 1

Scenario 1 involves two parallel targets with the same
velocity as shown in Fig. 5, thus thedE between target
states consisting of target position and velocity is completely
determined by the physical distance. For this scenario we apply
a point spread function with the blurring factorδ2b = 1. U(x)
is the 3 × 3 pixels square region whose center is closest to
(px, py). The SMC trials use200 particles per hypothesized
track.
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Fig. 5. The scenario of distributed sensor network with two sensors
tracking two parallel targets.

1) Experiment 1:Proposition 3 applies the approximation
in (23) to obtain the GMB formed fused posterior. In Section
III, a Gaussian example had been provided to prove the
reasonable of the approximation in (23). In order to back up
that the approximation in (23) is generalized enough to support
the non-Gaussian case, the MB filter for image data is used to
provide the multi-object estimations. Hence, we first examine
effectiveness of (23) in terms of the absolute error between
π(X̂)ω andP (X̂) at a given multi-target state estimation̂X,
which is defined by

E{πω ,P}(X̂) =
∣∣π(X̂)

ω − P (X̂)
∣∣ (58)

whereπ(X̂)ω is in the form of (20) and

P (X̂) =
∑

Ih∈H(n)

(
QIh

)ω
(

n∏

i=1

p(Ih(i))(x̂i)

)ω

(59)

The KDE method in (45) is adopted to estimate the values of
π(X̂)ω andP (X̂).

As mentioned in section III-A, the approximation in (23) is
mainly influenced by the target SNR and Euclidean distance
between target states denoted bydE (this paper mainly fo-
cusses on the influence ofdE and SNR). Hence, the approx-
imation error of (23) is evaluated byE{πω ,P} for different
dE and different SNR values in this experiment. The physical
distancedE varies within 2–6 m and SNR varies from6
dB to 18 dB. It is important to note that when targets are
closely spaced, e.g. whendE = 2 m, 3 m, sometimes their
state estimates may interfere with each other, making the
distance between their estimations approach to0, as shown
in Fig. 6. The detail analysis of this phenomenon is given in
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Fig. 6. Target state estimation for two parallel targets with thedE

between target states equals to 2m.

[17]. Moreover, when this phenomenon arises, the relationship
between the approximation error and the distance between
target states cannot be reflected correctly. Hence, we compute
a measure of efficiency of estimation to evaluate the validity
of the average approximation error. When the OSPA of a
multi-object state estimation is lower than a fixed value, we
refer to this multi-object state as an efficient estimation.The
proportion of efficient estimations is defined by

ρ =
Nefficient

Ntotal
(60)

where Nefficient is the number of efficient estimations, and
Ntotal is the total number of multi-object state estimations,
which equals to the frame number times the number of Monte
Carlo (MC) runs. The approximate error is averaged over
Nefficient estimations among 30 frames times 100 MC runs.

The approximation error under SMC implementation of MB
filter is shown in Fig. 7 (a). The approximation error is ob-
served to be smaller with the bigger distancesdE between the
target states. More specifically, the approximation is generally
acceptable whendE > 3 m, especially whendE > 4 m, the
approximation error is very close to0 for all investigated SNRs
ranging from6 dB to18 dB. Thus the HPD regions are proved
to be separated whendE > 3 m. The results also suggest that
for a larger SNR, the approximation error is small even when
the targets are in proximity , e.g.dE = 3 m. The larger SNR
will lead to the smaller width of the HPD regions, and thus
the smallerdE between target states could be tolerated.

To further supplement the reasonableness of approximation
(23) for non-Gaussian cases, we provide the proportion of
efficient estimations in Fig. 7 (b). It can be seen that the
proportion of efficient estimations is close to1 (which means
that the target state estimates are reliable) for large SNRs.
Indeed, this occurs whendE > 4 m with SNR > 6 dB or
when dE = 3 m with SNR > 14 dB. Overall, the results
shown in Fig. 7 (a) show that the approximation (23) is
acceptable when the estimations of target states are efficient
and the approximation (23) can be applied to perform fusion
for practical scenarios with the above conditions. These results
conform that the approximation in (23) is generalized enough
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Fig. 7. (a) The approximation error between (20) and (23) variesdE between
true target states and SNRs for efficient estimations, (b) the proportion of
efficient estimations among 30 frames times 100 MC runs varies dE between
true target states and SNRs.

to support the non-Gaussian case.
As expected, the above discussions are in accordance with

the analyses in Section III-A. Thus we come to conclusion that
when thedE between target states meets the targets separated
condition (dE > 3 m for this simulation scenario), or the SNRs
are large although they are nearly in proximity, the approxi-
mation (23) is acceptable. In addition, the approximation is
more sensitive to the distancedE between target states than
to the SNR.

2) Experiment 2:To prove the effectiveness of the GMB
approximation in (32) described in Section III-A, we examine
the sensor fusion performance for two sensors under different
dE between target states consisting of target position and
velocity. SNR is fixed at 15 dB in order to reduce its influ-
ence on approximation (23). The distancedE varies within
{1, 2, 3, 4, 8, 12} m. The SMC trials use200 particles per
hypothesized track. The OSPA errors are averaged over 30
frames and 100 MC runs. Fig. 8 shows the average OSPA
errors for both the local filter and GCI-MB fusion algorithm
versus the distancedE . It can be seen that the performance
of GCI-MB fusion is better than local MB-TBD filter at each
value ofdE . More specifically, the performance gains of fusion
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Fig. 8. The average OSPA error with different distance of tracks
(averaged over 100 MC runs).

algorithm are stable whendE ≥ 3 m. When dE ≤ 2 m,
both algorithms perform poorly almost at the same level. The
reason is that when targets are in proximity thereby violating
the rigid targets assumption, the performance of MB-TBD
degrades heavily leading to the performance degradation of
the fusion algorithm. This is also the reason why we use the
efficient estimations to evaluate the error of approximation
(23) in Experiment 1. Also note that the fusion and tracking
performances atdE = 1 m seem better than those atdE = 2
m because the state estimates are prone to be the middle of the
two tracks when the regions illuminated by different objects
exhibit the superposition, and thus the estimates atdE = 1 m
are nearer to the true target states than those atdE = 2 m. In
summary, the above results verify that the GMB approximation
is reasonable and effective whendE ≥ 3 m.

Remark 6. The required minimumdE is equal to 3 times the
cell resolution of the sensor network in the above experimental
scenario, which is comparable to the regions affected by
targets. Indeed, our experience with empirical data suggests
that the distance between targets is mostly larger than 3 times
the cell resolution in most practical scenarios.

B. Scenario 2

To assess the efficacy of the proposed GCI-MB fusion, a
sensor network scenario involving three targets is considered
as shown in Fig. 9. In this scenario, we apply a point spread
function with the blurring factorδ2b = 1. U(x) is the 5 × 5
pixels square region whose center is closest to(px, py). In
this sensor network, each sensor has the same quality and can
only exchange posteriors with its neighbours. In particular,
both sensors 1 and 3 perform GCI fusion with two posteriors
from sensor 2 and the local filter, while sensor 2 performs
GCI fusion with three posteriors from sensor 1, sensor 3 and
the local filter by applying the pairwise fusion (41) twice.
There are two work modes in this sensor network given as
follow:

M1: At timek each sensor performs filtering locally, resulting
in a local posterior denoted byf l

M1. After receiving
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Fig. 9. The scenario of distributed sensor network with three sensors
tracking three targets.

posteriors from its neighbours, it operates GCI fusion
leading to fused posterior denoted byfw

M1.
M2: At time k − 1, the fused posteriors are fed back to

corresponding local filters. Then at timek, each sensor
operates the local filter on the local distribution denoted
by f l

M2 and operate the GCI fusion on the fused one
denoted byfw

M2.

1) Experiment 1: In this experiment, the performance of
the GCI-MB fusion is evaluated by comparison with that of
the local MB-TBD filters in two work modes, and how the
performance advantage gained from sensor fusion increases
with more sensors is also provided. In the sensor network,
each sensor choose the MB-TBD filter as the local filters. The
SMC trials use200 particles per hypothesized track.

Figs. 10 and 11 show the OSPA errors of both the local filter
and the GCI-MB fusion for sensor 1 and sensor 2 working in
modes M1 andM2. For sensor 3, results similar to sensor 1
are expected.
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Fig. 11. The average OSPA error of sensor 2 (averaged over 400
MC runs).

It can be seen from figures 10 and 11 that when the local fil-
ters receive feedback from GCI-MB fusion (M2), they perform
significantly better thanM1. The theoretical analysis of the
performance gain of the feedback on the fusion can reference
[47], [48]. The significant enhancement in performance (in
terms of OSPA errors) also verifies the effectiveness of MB
approximation and the GCI-fusion devised and presented in
this work. To demonstrate how the performance advantage
gained from sensor fusion increases with more sensors, we
computed the OSPA errors averaged over 400 MC runs and 30
frames, and compared the results for the case when there is one
sensor only, with the case of two sensors and the case of three
sensors. In each case, both modesM1 andM2 were examined.
The results are presented in Table I and demonstrate the
efficacy of the proposed sensor fusion algorithm in the form
of the enhanced average errors achieved with more sensors.

TABLE I
AVERAGE OSPA ERRORVSNUMBER OF SENSORS

Number of sensor One Two Three

OSPA of M1 (m) 0.1715 0.1282 0.1163

OSPA of M2 (m) 0.1715 0.1166 0.1093

2) Experiment 2:In order to further demonstrate the utility
of the proposed GCI-MB fusion, its performance is compared
with the GCI fusion with PHD filter (GCI-PHD) proposed in
[8]. For local sensors, the PHD-TBD filter proposed in [14]
and the MB-TBD filter are adopted in the GCI-PHD fusion
and GCI-MB fusion respectively. The number of particles for
PHD-TBD filter is 600, while the number of particles is 200
per hypothesized track in the MB-TBD filter. Other parameters
are set to be the same for PHD-TBD and MB-TBD filters.

Fig. 12 shows the OSPA errors of the local PHD-TBD filter,
the GCI-PHD fusion, the local MB-TBD filter and the GCI-
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Fig. 12. The performance comparison between GCI-PHD and GCI-
MB fusion at sensor 2 (averaged over 400 MC runs).

PHD for sensor 2 working inM1. The curves shown in Fig. 12
illustrate the performance difference between GCI-MB fusion
and GCI-PHD fusion, and their corresponding local filters,
respectively. It can be seen that when the performances of
tracking or fusion algorithms reach a stable level, the OSPA
error of the GCI-MB fusion is significantly lower than the
GCI-PHD fusion, and the similar performance difference can
be observed from their local filters. The reason is that the MB-
TBD filter is a closed-form solution for the TBD observation
model while the PHD-TBD filter is an approximate solution.
These results highlight the utility of the proposed GCI-MB
fusion algorithm.

VI. CONCLUSION

This paper investigates the problem of distributed multi-
object tracking (DMMT) with multi-object multi-Bernoulli
(MB) filter based on generalized Covariance Intersection. By
employing two reasonable approximations, a tractable closed-
form formulation of GCI fusion with MB posteriors (GCI-
MB) is derived. A particle implementation of the proposed
GCI-MB fusion is also given, and its efficacy and robustness
are demonstrated in numerical results. Future work will tack
two major issues. Firstly, the number of hypotheses to be ac-
counted for in the proposed distributed tracking solution grows
exponentially with the number of targets. Further researchis
needed to investigate efficient implementations of GCI-MB
in which irrelevant hypotheses are detected and pruned early,
so the computational cost is limited in presence of numerous
targets. Secondly, if targets move to close proximity of each
other, Bernoulli components of the posteriors may not be
well-separated. This will have an impact on the accuracy
of the approximation made in derivation of the GCI-MB
fusion. Further work will address the GCI-MB fusion problem
considering targets in proximity.
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