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Abstract—This paper deals with change detection of utility
maximization behaviour in online social media. Such changes
occur due to the effect of marketing, advertising, or changes in
ground truth. First, we use the revealed preference framework to
detect the unknown time point (change point) at which the utility
function changed. We derive necessary and sufficient conditions
for detecting the change point. Second, in the presence of noisy
measurements, we propose a method to detect the change point
and construct a decision test. Also, an optimization criteria is
provided to recover the linear perturbation coefficients. Finally,
to reduce the computational cost, a dimensionality reduction
algorithm using Johnson-Lindenstrauss transform is presented.
The results developed are illustrated on two real datasets: Yahoo!
Tech Buzz dataset and Youstatanalyzer dataset. By using the
results developed in the paper, several useful insights can be
gleaned from these data sets. First, the changes in ground truth
affecting the utility of the agent can be detected by utility
maximization behaviour in online search. Second, the recovered
utility functions satisfy the single crossing property indicating
strategic substitute behaviour in online search. Third, due to the
large number of videos in YouTube, the utility maximization
behaviour was verified through the dimensionality reduction
algorithm. Finally, using the utility function recovered in the
lower dimension, we devise an algorithm to predict total traffic
in YouTube.
Index Terms— Social media, YouTube, utility maximization,
revealed preference, dimensionality reduction, change point de-
tection

I. INTRODUCTION

The interaction of humans on social media platforms mimic
their interactions in the real world [1]. Hence, as in the real
world, “utility maximization” underpins human interaction
on social media platforms. Utility maximization is the fun-
damental problem humans face, wherein humans maximize
utility given their limited resources of money or attention.
Detection of utility maximization behaviour is therefore useful
in online social media. However, a key difference for agents
in online social media is the absence of economic incentives.
For example, the majority of content in Facebook, YouTube
and Twitter are user-generated with limited or no economic
incentives. Hence, as explained in [2], incentives such as “fun”
and “fame” are some of the major attributes of the utility
function of online social behaviour. It is therefore difficult
to analytically characterize the utility function and hence
any detection of utility maximization behaviour in online
social media needs to be necessarily nonparametric in nature.

The authors are with the Dept. of ECE, The University of British Columbia,
Vancouver, B.C. Canada. Emails: {aaprem, vikramk}@ece.ubc.ca.
A significantly shortened version of some of the ideas in this paper have been
accepted to ICASSP 2017.

Another key difference is that the utility function in online
social media is “content-aware”, i.e. the quality of content
affects the utility function. Due to the content-aware nature
of the utility function and the availability of large amount of
user generated content, data from online social media is high-
dimensional. For example, utility maximization in YouTube
depends on all the user generated video content available at
any point of time.

The problem of nonparametric detection of utility maxi-
mizing behaviour is the central theme in the area of revealed
preferences in microeconomics. This is fundamentally differ-
ent to the theme used widely in the signal processing literature,
where one postulates an objective function (typically convex)
and then develops optimization algorithms. In contrast, the
revealed preference framework, considered in this paper, is
data centric: Given a dataset, D, consisting of probe, pt ∈ Rm+ ,
and response, xt ∈ IRm

+ , of an agent for T time instants:

D = {(pt, xt), t = 1, 2, . . . , T} . (1)

Revealed preference aims to answer the following question:
Is the dataset D in (1) consistent with utility-maximization
behaviour of an agent? A utility-maximization behaviour (or
utility maximizer) is defined as follows:

Definition I.1. An agent is a utility maximizer if, at each time
t, for input probe pt, the output response, xt, satisfies

xt = x(pt) ∈ argmaxu(x)
{p′tx≤It}

. (2)

Here, u(x) denotes a locally non-satiated1 utility function2.
Also, It ∈ R+, is the budget of the agent. The linear constraint,
p′tx ≤ It imposes a budget constraint on the agent, where p′tx
denotes the inner product between pt and x.

Major contributions to the area of revealed preferences
are due to Samuelson [3], Afriat [4], Varian [5], and Diew-
ert [6] in the microeconomics literature. Afriat [4] devised a
nonparametric test (called Afriat’s theorem), which provides
necessary and sufficient conditions to detect utility maximizing
behaviour for a dataset. For an agent satisfying utility maxi-
mization, Afriat’s theorem [4] (stated below in Theorem II.1)
provides a method to reconstruct a utility function consistent
with the data. The utility function, so obtained, can be used

1Local non-satiation means that for any point, x, there exists another point,
y, within an ε distance (i.e. ‖x − y‖ ≤ ε), such that the point y provides
a higher utility than x (i.e. u(x) < u(y)). Local non-satiation models the
human preference: more is preferred to less

2The utility function is a function that captures the preference of the agent.
For example, if x is preferred to y, u(x) ≥ u(y).
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to predict future response of the agent. Varian [7] provides a
comprehensive survey of revealed preference literature.

Despite being originally developed in economics, there has
been some recent work on application of revealed preference to
social networks and signal processing. In the signal processing
literature, revealed preference framework was used for detec-
tion of malicious nodes in a social network in [8], [9] and in
demand estimation in smart grids in [10]. [11] analyzes social
behaviour and friendship formation using revealed preference
among high school friends. In online social networks, [12]
uses revealed preference to obtain information about products
from bidding behaviour in eBay or similar bidding networks.

A. The Problem: Utility Change Point Detection in Online
Social Media.

In this paper, we consider an extension of the classical
revealed preference framework of [4] to agents with “dynamic
utility function”. The utility function jump changes at an
unknown time instant by a linear perturbation. Given the
dataset of probe and responses of an agent, the objective is
to develop a nonparametric test to detect the change point
and the utility functions before and after the change, which is
henceforth referred to as the change point detection problem.

Such change point detection problems arise in online search
in social media. The online search is currently the most pop-
ular method for information retrieval [13]. The online search
process can be seen as an example of an agent maximizing the
information utility, i.e. the amount of information consumed
by an online agent given the limited resource on time and
attention. There has been a gamut of research which links
internet search behaviour to ground truths such as symptoms
of illness, political election, or major sporting events [14],
[15], [16], [17], [18], [19]. Detection of utility change in online
search, therefore, is helpful to identify changes in ground truth
and useful, for example, for early containment of diseases [15]
or predicting changes in political opinion [20], [21]. Also, the
intrinsic nature of the online search utility function motivates
such a study under a revealed preference setting.

The problem of studying agents with dynamic utility func-
tions, with a linear perturbation change in the utility function
is motivated by several reasons. First, it provides sufficient
selectivity such that the non-parametric test is not trivially
satisfied by all datasets but still provides enough degrees of
freedom. Second, the linear perturbation can be interpreted as
the change in the marginal rate of utility relative to a “base”
utility function. In online social media, the linear perturbation
coefficients measure the impact of marketing or the measure
of severity of the change in ground truth on the utility of the
agent. This is similar to the linear perturbation models used to
model taste changes [22], [23], [24], [25] in microeconomics.
Finally, in social networks, linear change in the utility is
usually used to model the change in utility of an agent based
on the interaction with the agent’s neighbours [26]. Compared
to the taste change model, our model is unique in that we
allow the linear perturbation to be introduced at an unknown
time. To the best of our knowledge, this is the first time in the
literature that change point detection problem has been studied
in the revealed preference setting.

A related important practical issue that we also consider
in this paper is the high dimensionality of data arising in
online social media. As an example of high dimensional data
arising in online social media, we investigate the detection
of the utility maximization process inherent in one of the
most common social media interactions: video sharing via
YouTube3. Detecting utility maximization behaviour with such
high dimensional (big) data is computationally demanding.

The organization of the paper is as follows: In Sec. II, we
derive necessary and sufficient conditions for change point
detection, for dynamic utility maximizing agents under the
revealed preference framework. In Sec. III, we study the
change point detection problem in the presence of noise.
Section IV address the problem of high dimensional data
arising in the context of revealed preference. Section V
presents numerical results. First, we compare the proposed
approach with the popular CUSUM test and corresponding
ROC curves are presented. Second, we illustrate the result
developed on two real world datasets: Yahoo! Tech Buzz
dataset and Youstatanalyzer dataset.

II. UTILITY CHANGE POINT DETECTION (DETERMINISTIC
CASE)

In this section, we consider agents with a dynamic utility
function. For completeness, we start with Afriat’s theorem, in
the classical static setting. Afriat’s Theorem4is one of the big
results in revealed preferences in micro-economics theory.

Theorem II.1 (Afriat’s Theorem [4]). Given the dataset D
in (1), the following statements are equivalent:

1) The agent is a utility maximizer and there exists a
monotonically increasing5 and concave6utility function
that satisfies (2).

2) For ut and λt > 0 the following set of inequalities has a
feasible solution:

us − ut − λtp′t(xs − xt) ≤ 0 ∀t, s ∈ {1, 2, . . . , T}. (3)

3) A monotonic and concave utility function that satisfies (2)
is given by:

u(x) = min
t∈{1,2,...,T}

{ut + λtp
′
t(x− xt)} (4)

4) The dataset D satisfies the Generalized Axiom of Re-
vealed Preference (GARP), namely for any t ≤ T ,
p′txt ≥ p′txt+1 ∀t ≤ k − 1 =⇒ p′kxk ≤ p′kx1.

3YouTube has millions of videos.https://www.youtube.com/yt/press/
statistics.html

4To the signal processing reader unfamiliar with this theorem, it can be
viewed as a set-valued system identification method for an argmax nonlinear
system with a constraint on the inner product of the probe and response
of a system. Afriat’s theorem has several interesting consequences including
the fact that if a dataset is consistent with utility maximization, then it is
rationalizable by a concave, monotone and continuous utility function. Hence,
the preference of the agent represented by a concave utility function can never
be refuted based on a finite dataset, see [7]. Further, we can always impose
monotone and concave restrictions on the utility function with no loss of
generality.

5In this paper, we use monotone and local non-satiation interchangeably.
Afriat’s theorem was originally stated for a non-satiated utility function.

6Concavity of utility function models the human preference: averages are
better than the extremes. It is also related to the law of diminishing marginal
utility, i.e. the rate of utility decreases with x.

https://www.youtube.com/yt/press/statistics.html
https://www.youtube.com/yt/press/statistics.html
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The remarkable property of Afriat’s Theorem is that it
gives necessary and sufficient conditions for the dataset to
satisfy utility maximization (2). The feasibility of the set
of inequalities can be checked using a linear programming
solver or by using Warshall’s algorithm with O(T 3) compu-
tations [7] [5]. A utility function consistent with the data can
be constructed using (4). The recovered utility is not unique
since any monotonic transformation of (4) also satisfy Afriat’s
Theorem.

A. System Model

In this paper, we consider an agent that maximizes a utility
function that jump changes by a linear perturbation at a time
that is unknown to the observer. The aim is to estimate the
utility before and after the change, and the change point.
Consider an agent that selects a response x at time t to
maximize the utility function given by:

u(x, α; t) = v(x) + α′x1{t ≥ τ}, (5)

subject to the following budget constraint p′tx ≤ It. Here, 1{·}
denotes the indicator function. The utility function, u(x, α; t)
consists of two components: a base utility function, v(x), and
a linear perturbation, α′x, which occurs at an unknown time
τ . The base utility function, v(x) is assumed to be monotonic
and concave. We will restrict the components of the vector
α to be (strictly) greater than 0, so that the utility function,
u, conditioned on α is monotonic and concave. The objective
is to derive necessary and sufficient conditions to detect the
time, τ at which linear perturbation is introduced to the base
utility function. Theorem II.2 summarizes the necessary and
sufficient conditions to detect the change in utility function
according to the model in (5) and the proof is in Appendix A.

Theorem II.2. The dataset D in (1) is consistent with the
model in (5) if we can find set of scalars {vt}t=1,...,T ,
{λt > 0}t=1,...,T , {αk}k=1,...,m, such that there exists a
feasible solution to the following inequalities:

vt + λtp
′
t(xs − xt) ≥ vs (t < τ) (6)

vt + λtp
′
t(xs − xt)− α′(xs − xt) ≥ vs (t ≥ τ) (7)

αi ≤ λtpit (∀i, t ≥ τ), (8)

where pit is the ith component of the probe pt.

The inequalities in (6) to (8) closely resemble the Afriat
inequalities (3). The time instant τ at which the inequalities
are satisfied is the time at which the linear perturbation is
introduced.

B. Recovery of minimum perturbation of α and the base utility
function

Computing the linear perturbation coefficients in (5) gives
an indication of the severity of the ground truth or the effect of
marketing and advertising in social media. The solution to the
following convex optimization provides the minimum value of

the perturbation coefficients:

min ‖α‖22 (9)
s.t. vt + λtp

′
t(xs − xt) ≥ vs (t < τ) (10)

vt + λtp
′
t(xs − xt)− α′(xs − xt)≥ vs (t ≥ τ) (11)

αi ≤ λtp
i
t(∀i, t ≥ τ) (12)

λt > 0

v1 = β, λ1 = δ, (13)

where, β and δ are arbitrary constants.
The equations (10) to (12) correspond to the revealed prefer-

ence inequalities (6) to (8). The normalization conditions (13)
are required because of the ordinality7of the utility function.
This is because for any set of feasible values of {vt}t=1,...,T ,
{λt}t=1,...,T , {αk}k=1,...,m satisfying the constraints in The-
orem II.2 the following relation also holds

β(vs + δ)− β(vt + δ)− βλtp′t(xs − xt) + βα′(xs − xt) ≤ 0.

Recall that the base utility function v(x), is the utility function
before the linear change.

Corollary II.1. The recovered base utility function is

v̂(x) = min
t
{vt + λtp̃

′
t(x− xt)}, (14)

where

p̃it =

{
pit t < τ,

pit − αi/λt t ≥ τ.
(15)

In (14) and (15) {vt}, {λt}, {αk} are the solution of (9)
to (13).

C. Comparison with classical change detection algorithms

Table I compares the revealed preference framework of our
paper with classical change detection algorithms. The key dif-
ference is that the revealed preference framework considers a
system with maximization of a utility function subject to linear
constraints (the budget constraint). In comparison, a classical
CUSUM type change detection algorithm requires knowledge
of a parametrized utility function (see Sec. V-A for a numerical
example when v(x) is a Cobb-Douglas8utility function). The
revealed preference framework for change detection makes no
such assumptions. The revealed preference problem is related
to the supervised learning literature when the parametric
class of functions for empirical risk minimization (ERM) is
limited to concave and monotone functions [28], [29], [30].
The change detection problem can be thought of as a multi-
class learning problem with the first class being the utility
function before the change and the second class being the
utility function after the change. However, this paper provides
an algorithmic approach to detect change points by deriving
necessary and sufficient conditions.

7Clearly any positive monotonic transformation of u(x) in (2) gives the
same response.

8The Cobb-Douglas is a widely used utility function in economics. When
m = 2, i.e. the dimension of the probe and response is 2, the utility function
can be expressed as u(x) = xa1x

b
2. The utility function is parameterized by

a and b.
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Method Data model Change model Reference

CUSUM xt
i.i.d∼ pθ θ =

{
θ0 t < τ

θ1 t ≥ τ
[27]

Semi-supervised/Supervised D = {((p1, I1), U(p1, I1)) , . . . , ((pT , IT ), U(pT , IT ))} Not Applicable [28], [29], [30]
Learning (pi, Ii) ∼ P , U(pi, xi): Optimal response for utility U [31]

Revealed Preference xt = argmax
p′txt≤It

u(xt) u(x) =

{
v(x) t < τ

v(x) + α′x t ≥ τ
This paper

TABLE I: Comparison of Revealed Preference with classical change detection algorithm.
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Upper bound on the CDF of M

M.C. Sim. of Noise Dist.

Analytical Exp.

Fig. 1: Comparison of analytical expression with M.C. simulation:
Upper bound on the CDF of M , as defined in (21). (Lower bound
on the false alarm probability.)

III. UTILITY CHANGE POINT DETECTION IN NOISE

Sec. II dealt with utility change point detection in the
deterministic case. In this section, we consider the change
point detection problem when the response of the agent is
measured in noise.

A. Classical revealed preference in a noisy setting

Afriat’s theorem (Theorem II.1) assumes perfect observation
of the probe and response. However, when the response of
the agents are measured in noise, the failure of Afriat test
could be either due to measurement noise or absence of utility
maximization. Below, we assume the additive noise model for
measurement errors given by:

yt = xt + wt, (16)

where yt is the noisy measurement of response xt and
wt ∈ Rm is the independent and identically distributed (i.i.d)
standard Gaussian noise9.

Given the noisy dataset

Dobs = {(pt, yt) : t ∈ {1, . . . , T}} , (17)

[8] proposes the following statistical test for testing utility
maximization (2) in a dataset due to measurement errors. Let
H0 denote the null hypothesis that the dataset Dobs in (17)

9Although we consider the zero mean, unit variance Gaussian the extension
to arbitrary mean µ and variance σ2 is immediate.

satisfies utility maximization. Similarly, let H1 denote the
alternative hypothesis that the dataset does not satisfy utility
maximization. There are two possible sources of error:

Type-I errors: Reject H0 when H0 is valid.
Type-II errors: Accept H0 when H0 is invalid. (18)

The following statistical test can be used to detect if an agent
is seeking to maximize a utility function.

+∞∫
Φ∗(y)

fM (ψ)dψ
H0

≷
H1

γ . (19)

In the statistical test, (19):
(i) γ is the “significance level” of the statistical test.
(ii) The “test statistic” Φ∗(y), with y = [y1, y2, . . . , yT ] is the
solution of the following constrained optimization problem :

min Φ
s.t. us − ut − λtp′t(ys − yt)− λtΦ ≤ 0

λt > 0 Φ ≥ 0 for t, s ∈ {1, 2, . . . , T}.
(20)

(iii) fM is the pdf of the random variable M where

M , max
t,s
t 6=s

[p′t(wt − ws)] . (21)

The probability of false alarm or Type-I error, the probability
of rejecting H0, when true, is given by P {M ≥ Φ∗(y)}.

Below, we derive an analytical expression for the lower
bound for the false alarm probability of the statistical test
in (19). The motivation comes from the following fact: Given
the significance level of the statistical test in (19), a Monte
Carlo (M.C.) simulation is required to compute the threshold.
However, from an analytical expression for the lower bound
on false alarm probability, we can obtain an upper bound of
the test statistic, denoted by Φ∗(y). Hence, for any dataset
Dobs in (17), if the solution to the optimization problem (20)
is such that Φ > Φ∗(y), then the dataset does not satisfy utility
maximization, for the desired false alarm probability.

Theorem III.1 provides the lower bound on the false alarm
probability and the proof is provided in Appendix C.

Theorem III.1. If the noise components have a standard
Gaussian distribution, then the probability of false alarm is
lower bounded by

1−
∏
t

1−
√

2

π

√
2‖pt‖2 exp (−Φ∗(y)

2
/4‖pt‖2)

Φ∗(y) +

√
Φ∗(y)

2
+ 8‖pt‖2

 . (22)



5

The key idea is to bound M in (21) by the highest
order statistic of a carefully chosen set of random variables
which are negatively dependent. Refer to Appendix B for the
definition of negative dependence.

Figure 1 shows the comparison of the upper bound of the
cdf (and correspondingly the lower bound on the false alarm
probability) and the M.C. simulation of actual density of M .
As can be seen from Fig 1 that the upper bound of the cdf
(lower bound on false alarm probability) is tight at all regimes.
The upper bound of the test statistic, Φ∗(y), can be obtained
by setting the analytical expression in (22) to be equal to the
desired false alarm probability.

B. Dynamic Revealed Preference in a noisy setting

In this section, we consider the case of dynamic utility
maximizing agents, satisfying the model in (5), in the presence
of noise. In Sec. III-B1, we propose a procedure to detect
the unknown change point time in presence of noise. In
Sec. III-B2, similar to Sec. III-A, we formulate a hypothesis
test to check whether the dataset satisfy the model in (5).
As in Sec. III-A, we bound the false alarm probability and
obtain a criteria for recovering the linear perturbation coeffi-
cient, corresponding to minimum false alarm probability. Once
the unknown change point time and the linear perturbation
coefficients have been recovered, the base utility function can
be recovered similar to that in Sec. II-B.

1) Estimation of unknown change point: In the presence of
noise, the inequalities in (6) to (8) may not be satisfied for
any value of τ . Hence, we consider the following linear pro-
gramming problem, to find the minimum error or “adjustment”
such that the inequalities in (6) to (8) are satisfied.

Φτ = min Φ (23)
s.t. vs − vt − λtp′t(ys − yt)− Φ ≤ 0 (t < τ)

vs − vt − λtp′t(ys − yt) + α′(ys − yt)− Φ≤ 0 (t ≥ τ)

αi − λtpit ≤ 0 (∀i, t ≥ τ)

Φ ≥ 0, λt > 0

The solution of the linear program (23) depends on the choice
of the change point variable τ . When the data is measured
without noise, the equations are satisfied with zero error at
the correct change point. The estimated change point, τ̂ ,
corresponds to time point with minimum adjustment.

τ̂ = argmin
1≤τ≤T

Φτ (24)

The intuition for (24) is if τ is the true change point, then the
perturbation Φ needs to compensate only for the noise.

2) Recovering the linear perturbation coefficients for min-
imum false alarm probability: As in (18), define the null
hypothesis H0, that the dataset satisfies utility maximization
under the model in (5), and the alternative hypothesis H1

that the dataset does not satisfy utility maximization under
the model in (5). Type-I errors and Type-II errors are defined,
similarly, as in Sec. III-A.

Consider the following hypothesis test:

+∞∫
Φ∗(y)

fM (ψ)dψ
H0

≷
H1

γ . (25)

In (25):

1) γ is the significance level of the test.
2) The test statistic “Φ∗(y)”, is the solution of the fol-

lowing constrained optimization problem with τ =
τ̂ (from Sec. III-B1).

min Φ (26)
s.t. vs − vt − λtp′t(ys − yt)− λtΦ ≤ 0 (t < τ)

vs − vt − λtp′t(ys − yt) + α′(ys − yt)− λtΦ ≤ 0 (t ≥ τ)

αi − λtpit≤ 0 (∀i, t ≥ τ)

Φ ≥ 0, λt > 0

The optimization problem above (26) is similar to the
optimization problem (23) but is introduced for simplicity
of analysis of the error probability in the subsequent
sections.

3) fM is the pdf of the random variable, M , where

M ,M1 +M2, (27)

where M1 and M2 are defined as:

M1 , max
s,t
s 6=t

[p′t(wt − ws)] , (28)

M2 , max
s,t

s 6=t,t≥τ

[α′(wt − ws)/λt] , (29)

where α and λ are the solution of (26). The set of inequalities
in (26) can be re-written using (16) as:

(vs − vt)/λt − p′t(xs − xt) ≤ p′t(wt − ws) (t < τ),

(vs − vt)/λt − p′t(xs − xt) + α′(xs − xt)/λt
≤ p′t(wt − ws)− α′(wt − ws)/λt (t ≥ τ).

Therefore for the dataset satisfying the model in (5) it should
be the case that the test statistic “Φ∗(y) ≤M”.

The pdf of the random variable M can be computed using
Monte Carlo simulation. As in Sec. III-A, we bound the
probability of false alarm and obtain a criteria to recover
the linear perturbation coefficients corresponding to minimum
false alarm probability. Theorem III.2 provides the criteria and
the proof is provided in Appendix D.

Theorem III.2. Assume that the noise components are iid zero
mean unit variance Gaussian. Suppose τ = O(log 1/ε) and
T − τ = O(log 1/ε), where ε > 0. Then the optimization
criterion to recover α with minimum probability of Type-I
error is to minimize ‖α‖2 (i.e., the Euclidean norm).

The recovery of the linear perturbation coefficients and the
base utility function are similar to that in Sec. II-B.



6

IV. DIMENSIONALITY REDUCTION IN REVEALED
PREFERENCE

Classical revealed preference deals with the case m < T
(recall m is the dimension of the probe vector and T is the
number of observations). Below, we consider the “big data”
domain: m � T . Checking whether a dataset, D, satisfies
utility maximization (2) can be done by verifying whether
GARP (statement 4 of Theorem II.1) is satisfied. For m� T ,
the computational cost for checking GARP is dominated by
the number of computations required to evaluate the inner
product in GARP, given by mT 2. The computational cost
for computing the inner product can be reduced by embed-
ding the m-dimensional probe and observation vector into a
lower dimensional subspace, of dimension k, and checking
GARP on the lower dimensional subspace. We use Johnson-
Lindenstrauss Lemma (JL Lemma) to achieve this.

Lemma IV.1 (Johnson-Lindenstrauss (JL) [32]). Suppose
x1, x2, . . . , xn ∈ IRm are n arbitrary vectors. For any
ε ∈ (0, 1

2 ), there exists a mapping f : IRm → IRk,
k = O(log n/ε2), such that the following conditions are
satisfied:

(1− ε)‖xi‖2 ≤ ‖f(xi)‖2 ≤ (1 + ε)‖xi‖2 ∀i (30)

(1− ε)‖xi − xj‖2 ≤ ‖f(xi)− f(xj)‖2

≤ (1 + ε)‖xi − xj‖2 ∀i, j. (31)

To implement JL efficiently, one possible method of [33]
is summarized in Theorem IV.1. This method utilizes a linear
map for f and hence can be represented by a projection matrix
R. The key idea in [33] is to construct the projection matrix R
with elements +1 or −1 so that the computing the projection
involves no multiplications (only additions).

Theorem IV.1 ([33]). Let A = [x1, x2, . . . , xn]′ denote the
n×m data matrix. Given ε, β > 0, let R be a m× k random
binary matrix, with independent and equiprobable elements
+1 and −1, where

k >
4 + 2β

ε2/2− ε3/3
log n. (32)

The projected data matrix, B of dimension n× k, is given by
B = 1√

k
AR. Then with probability at least 1− δ, where δ =

1
nβ

, the inequalities (30) and (31) holds, where f : IRm → IRk

maps the ith row of A to the ith row of B.

The inequalities in (30) and (31) hold in a probabilistic sense
(with probability 1− δ), with the parameter β controlling the
corresponding probability.

Checking the GARP conditions (statement 4 of Theo-
rem II.1) depends only on the relative value of the inner
product between the probe and response vectors. Hence, we
can scale both the probe and response vector such that their
norms are less that one. In this case, as a consequence
of preservation of the norms of the vector, the Johnson-
Lindenstrauss embedding also preserves the inner product.

Corollary IV.1. Let xi, xj ∈ IRm and ‖xi‖ ≤ 1, ‖xj‖ ≤ 1 be
such that (31) is satisfied with probability at least 1−δ. Then,

P ((x′ixj − f(xi)
′f(xj)) ≥ ε) ≤ δ.

The proof is available, for example, in [34]. The JL embed-
ding of the vectors preserves the inner product to within a ε
fraction of the original value.

Therefore, to check for utility maximization behaviour,
we first project the high dimensional probe and response
vector to a lower dimension using JL (using Theorem IV.1).
The inner products in the lower dimensional space is then
used for checking the GARP condition for detecting utility
maximization giving m

k savings in computation.

V. NUMERICAL RESULTS

The aim of this section is three fold. First, we illustrate the
change point detection algorithm in Sec. III and show how
the revealed preference framework considered in this paper
is fundamentally different from classical change detection
algorithms. Second, we show that the theory developed in
Sec. II and Sec. III, for utility change point detection, can
successfully predict the change in ground truths through online
search behaviour. Also, the recovered utility functions satisfy
the single crossing condition indicating strategic substitution
behaviour10 in online search. Third, we show user behaviour
in YouTube satisfies utility maximization. To reduce the com-
putational cost associated with checking the utility maximiza-
tion behaviour, we use dimensionality reduction techniques
discussed in Sec. IV. In addition, in Sec. V-C, we provide an
algorithm to predict total traffic in YouTube.

A. Detection of unknown change point in the presence of noise

In this section, we present simulation results on change
point detection in the presence of noise. For the simulation
study, assume that the probe and response vector is of di-
mension 2, i.e. m = 2. Assume that the system follows the
model given by (33). The base utility function v(x) is a Cobb-
Douglas utility function with parameter a1 and a2.

v(x) = xa11 xa22

u(x) =

{
v(x) t < τ

v(x) + α′x t ≥ τ
(33)

Let the response be measured in noise as defined in (16).
Fig. 2a shows the simulation results for Φτ in (23) as a

function of τ . The estimated change point (τ̂ ) is the point at
which Φτ attains minimum. Fig. 2b compares the ROC plot for
the revealed preference framework and the CUSUM algorithm
for change detection. The details of the CUSUM algorithm for
change detection are provided in Appendix G. The CUSUM
algorithm is used as a reference for comparing the performance
of the revealed preference framework presented in this paper.
The CUSUM algorithm in Appendix G makes two critical as-
sumptions: (i) Knowledge of the utility function before change

10The substitution behaviour in economics is the idea that consumers,
constrained by a budget will substitute more expensive items with less costly
alternatives.
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(ii) Knowledge of the linear perturbation coefficients, and
hence the utility function after the change. The only unknown
is the change point at which the utility changed. However,
if the linear perturbation coefficients are also unknown, then
the CUSUM algorithm in Appendix G can be modified to
search over IRm

+ and select the parameter with the highest
likelihood. The critical assumption is the knowledge of the
utility function before the change point. One heuristic solution
is to estimate the utility function using some initial data,
assuming no change point, utilizing the Afriat’s Theorem and
then applying the CUSUM algorithm. Such a procedure is
clearly suboptimal. In comparison, the revealed preference
procedure in Sec. III-B makes no assumption about the base
utility function or the linear perturbation coefficients. As can
be gleaned from Fig. 2b, the performance of the revealed
preference algorithm is comparable to the CUSUM algorithm,
given the non-parametric assumptions.

B. Yahoo! Buzz Game

In this section, we present an example of a real dataset of
online search process. The objective is to investigate the utility
maximization of the online search process and to detect change
points at which the utility has changed. The change points give
useful information on when the ground truths have changed.

The dataset that we use in our study is the Yahoo! Buzz
Game Transactions from the Webscope datasets11 available
from Yahoo! Labs. In 2005, Yahoo! along with O’Reilly Media
started a fantasy market where the trending technologies at
that point where pitted against each other. For example, in
the browser market there were “Internet Explorer”, “Firefox”,
“Opera”, “Mozilla”, “Camino”, “Konqueror”, and “Safari”.
The players in the game have access to the “buzz”, which is
the online search index, measured by the number of people
searching on the Yahoo! search engine for the technology.
The objective of the game is to use the buzz and trade
stocks accordingly. The interested reader is referred to [35]
for an overview of the Buzz game. An empirical study of the
dataset [36] reveal that most of the traders in the Buzz game
follow utility maximization behaviour. Hence, the dataset falls
within the revealed preference framework, if we consider the
buzz as the probe and the “trading price12” as the response to
the utility maximizing behaviour.

We consider a subset of the dataset containing only the
“WIRELESS” market which contained two main competing
technologies: “WIFI” and “WIMAX”. Figure 3 shows the buzz
and the “trading price” of the technologies starting from April
1 to April 29. The buzz is published by Yahoo! at the start of
each day and the “trading price” was computed as the average
of the trading price of the stock for each day.

Chose the probe and response vector for this dataset as
follows

pt = [Buzz(WIFI) Buzz(WIMAX)]
xt = [Trading price(WIFI) Trading price(WIMAX)] .

11Yahoo! Webscope dataset: A2 - Yahoo! Buzz Game Transactions with
Buzz Scores, version 1.0 http://research.yahoo.com/Academic Relations

12The trading price is indicative of the value of the stock.
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Fig. 2: Estimation of the utility change point using the revealed
preference framework (Fig. 2a). Fig. 2b compares the ROC plots of
the revealed preference framework with the CUSUM algorithm. The
CUSUM algorithm in Appendix G assumes knowledge of the utility
function before and after the change point. However, the revealed
preference framework considered in this paper assumes no parametric
knowledge of the utility function. The plots were generated with 1000
independent simulations. The parameters of Cobb-Douglas utility
v(x) equal to (a1, a2) = (0.6, 0.4) and α = (1, 1) with the change
point set as 26. The budget is set to 5. The noise variance is 0.50.

Checking the GARP condition or the Afriat inequalities (3),
we find that the dataset does not satisfy utility maximization
for the entire duration from April 1 to April 29. However, we
find that the dataset satisfies utility maximization from April 1
to April 17. Using the inequalities (6) to (8), that we derived
in Sec II, for the model in (5), we see that utility has changed
with change point, τ , set to April 18. This correspond to a
change in the ground truth which affected the utility of the
agents. Indeed, we find that the change point corresponds to
Intel’s announcement of WIMAX chip13.

Also, by minimizing the 2-norm of the linear perturbation,
which we derived in Sec. III, and using the optimization
problem, postulated in Sec. II-B, we find that the recovered
linear coefficients which correspond to minimum perturbation

13http://www.dailywireless.org/2005/04/17/intel-shipping-wimax-silicon/

http://research.yahoo.com/Academic_Relations
http://www.dailywireless.org/2005/04/17/intel-shipping-wimax-silicon/
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Fig. 4: Fig. 4a shows the recovered utility function v(x) using (14). Indifference curve of the recovered utility function, is shown in Fig. 4b.
The indifference curve suggests the substitution behaviour in online search.
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Fig. 3: Buzz scores and trading price for WIFI and WIMAX in
the WIRELESS market from April 1 to April 29. The change point
was estimated as April 18. This corresponds to a new WIFI product
announcement. The change can also be observed due to the sudden
peak of interest in WIFI around April 18.

is α = [0 5.9]. This is inline with what we expect, a
positive change in the WIMAX utility, due to the change
in ground truth. Furthermore, the recovered utility function,
v(x), is shown in Fig. 4a and the indifference curve (contour
plot) of the base utility is shown in Fig. 4b. The recovered
base utility function in Fig. 4a satisfy the single crossing
condition14indicating strategic substitute behaviour in online

search. The substitute behaviour in online search can also be
noticed from the indifference curve in Fig. 4b. This is due to
the fact that WIFI and WIMAX were competing technologies
for the problem of providing wireless local area network.

C. Youstatanalyzer Database

We now analyze the utility maximizing behaviour of users
engaged in the popular online platform for videos, YouTube.
YouTube is an example of a content-aware utility maximiza-
tion, where the utility depends on the quality of the video
present at any point. We measure the quality of the video using
two measurable metrics: the number of subscribers and the
number of views. The YouTube database that we use for our
study is the Youstatanalyzer database15. The Youstatanalyzer
database is built using the Youstatanalyzer tool [37], which
collects statistics of YouTube videos using web scrapping
technology. The database is particularly suited for our study
of dimensionality reduction in revealed preference, since the
entire database contains statistics of 1000K videos.

From the database, we aggregated the statistics of all
popular videos existing from start of 08 July, 2012 to end
of 07 Sept, 2013, having at least 2 subscribers. The entire
duration was divided into 15 time periods, corresponding to
each month of the duration, giving us a total of 15 observations
(T = 15). The entire duration need to be split into sub-time
periods since the statistics of all the videos are not sampled
each day. For the revealed preference analysis, each of the
dimension of the probe and the response is associated with
a unique video ID. The probe for the revealed preference
analysis is the number of subscribers and the response is the
number of views during the time period. The objective is to
investigate utility maximizing behaviour between the number

14Utility function, U(x1, x2), satisfy the single crossing condition if
∀ x′1 > x1, x′2 > x2, we have U(x′1, x2) − U(x1, x2) ≥ 0 =⇒
U(x′1, x

′
2) − U(x1, x′2) ≥ 0. The single crossing condition is an ordinal

condition and therefore compatible with Afriat’s test.
15http://www.congas-project.eu/sites/www.congas-

project.eu/files/Dataset/youstatanalyzer1000k.json.gz
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of people subscribed to a particular video and the number of
views that the video received. Formally, the probe and the
response is chosen as follows:

pt = [1/#Subscriber(Video1), . . . , 1/#Subscriber(VideoN)] ,

xt = [#Views(Video1), . . . , #Views(VideoN)] .

The motivation for this definition is that as the number of
subscribers to a video increases, the number of views also
increase [38]. The inner product of the probe and the response
vector gives the sum of the “view focus” of all videos [39].
Also, a recent study shows that 90% of the YouTube views are
due to 20% of the videos uploaded [40]. Hence, if we restrict
attention to popular videos, the view focus tend to remain
constant during a time period which correspond to the linear
constraint in the revealed preference setting.

The number of videos satisfying the above requirements is
7605, and therefore, the dimension of the probe and response,
m = 7605. The number of inner product computations
required for checking the GARP conditions is given by mT 2.
Hence, we apply Johnson-Lindenstrauss lemma to the data
using the “database friendly” transform that we presented in
Sec IV. We choose ε = 0.1, so that the inner product are within
90% of the accuracy. Also, we choose β = 0.65, such that the
above condition on the inner products hold with probability
at least 0.9. Substituting the values of T , ε and β in (32) we
find that the dimension of the embedded subspace is k = 3800.
From the simulations, we see that the GARP is satisfied with
probability 0.9, which is inline with what we expect. For this
example, the number of inner product computations required to
compute GARP condition in the lower dimensional subspace is
given by kT 2, which is less than the number of computations
required to compute the GARP in the original space by a
factor of 2. Note from Lemma IV.1 and Theorem IV.1 that the
dimension of the embedding is independent of the dimension
of the probe and the response and hence higher computational
savings can be obtained when the dimension of the probe and
the response are higher.

The utility function obtained in the lower dimension is
useful for visualization, and gives a sparse representation of
the original utility function. Below, we use the utility function
obtained in the lower dimension to predict total traffic to
YouTube when the number of subscribers to a particular
video changes or when popular YouTube users (people with
large number of subscribers) upload new videos. The above
approach of predicting total number of views complements
the findings in [38], where the authors claim that individual
views to YouTube video or channel cannot be predicted.
This predicted total traffic serves as an useful benchmark
for allocating server resources without compromising the user
experience.

Predicting total traffic in YouTube: Based on the utility
function recovered in the lower dimension, one can predict
the total traffic in YouTube. As before, let pt ∈ IRm and xt ∈
IRm be the number of subscribers and the number of views
at time t, respectively. Let p̃t ∈ IRk and x̃t ∈ IRk be the
lower dimensional embedding of pt and xt, respectively. The
total traffic, or the number of views, at time t, is given by
Tt =

∑m
i=1 x

i
t.

We can estimate the total traffic using the lower dimension
utility function. Given p, the number of subscribers at time
t + 1, let p̃ denote the lower dimensional embedding of p.
The corresponding value of x̃ that rationalizes the data can be
obtained by solving the following optimization problem:

x̃ = argmax
{p̃′x≤I}

min
i∈{1,2,...,t}

{ui + λip̃i
′(x− x̃i)}, (34)

The values of {ui, λi} are such that the GARP condition (3)
is satisfied for the dataset {(p̃i, x̃i)i=1,2,...,t}. The budget I , is
assumed to be known or estimated independently of the above
optimization problem. The estimated traffic due to the probe
p̃ is given by T̃ =

∑k
i=1 x̃

i.

VI. CONCLUSION

This paper derived a revealed preference based approach for
change point detection in the utility function. The main result
(Theorem II.2) provided necessary and sufficient conditions
for the existence of the change point at which the utility
function jump changes by a linear perturbation. In addition, in
the presence of noise, we provided a procedure for detecting
the unknown change point and a hypothesis test for testing
the dataset for dynamic utility maximization. The results were
applied on the Yahoo! Tech Buzz dataset and the estimated
change point corresponds to the change in ground truth.

The application of results developed in this paper provided
novel insights into the utility maximizing behaviour of agents
in online social media. Extension of the current work could
involve analytically characterizing the GARP failure rate due
to dimensionality reduction, or considering multiple change
points, or considering higher order perturbation functions.
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APPENDIX

A. Proof of Theorem II.2

Necessary Condition: Assume that the data has been gen-
erated by the model in (5). An optimal interior point solution
to the problem must satisfy:

5xitv(xt) = λtp
i
t (t < τ) (35)

5xitv(xt) + αi = λtp
i
t (t ≥ τ) (36)

At time t, the concavity of the utility function implies:

u(xt, α, t)+5xtu(xt, α, t)
′(xs−xt) ≥ u(xs, α, t) ∀s. (37)

Substituting the first order conditions (35), (36) into (37),
yields

v(xt) + λtp
′
t(xs − xt) ≥ v(xs) (t < τ) (38)

v(xt) + λtp
′
t(xs − xt)− α′(xs − xt) ≥ v(xs) (t ≥ τ) (39)

Denoting v(xt) = vt yields the set of inequalities (6), (7). (8)
holds since the utility function v(x) is monotonic increasing.

16ECE Department, University of British Columbia
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Sufficient Condition: We first construct a piecewise linear
utility function V(x) from the lower envelope of the T
overestimates, to approximate the function v(x) defined in (5),

V(x) = min
t
{vt + λtp̃

′
t(x− xt)}, (40)

where each coordinate of p̃t is defined as,

p̃it =

{
pit t < τ

pit − αi/λt t ≥ τ
(41)

To verify that the construction in (40) is indeed correct,
consider an arbitrary response, x̂, such that: p′tx̂ ≤ p′txt

17.
We need to show V(x̂) + α′x̂ ≤ V(xt) + α′xt.

First, we show that V(xt) = vt∀t as follows.

V(xt) = vm + λmp̃
′
m(xt − xm),

for some m. If, m ≥ τ ,

V(xt) = vm + λmp̃
′
m(xt − xm)

= vm + λmp
′
m(xt − xm)− α′(xt − xm)

≤ vt + λtp
′
t(xt − xt)

= vt

If the inequality is true, then it would violate (39). Using
similar technique, we obtain, if m < τ , V(xt) = vt. Hence,
V(xt) = vt.

Next, we show V(x̂) + α′x̂ ≤ V(xt) + α′xt. If, t ≥ τ ,

V(x̂) + α′x̂ ≤ vt + λtp̃
′
t(x̂− xt) + α′x̂

= vt + λtp
′
t(x̂− xt)− α′(x̂− xt) + α′x̂

= vt + λtp
′
t(x̂− xt) + α′xt

≤ vt + α′xt

= V(xt) + α′xt

The inequality holds, similarly, for the case t < τ . Therefore,
we can construct a utility function that rationalizes the data
based on the model in (5).

B. Negative Dependence of Random Variables

Definition A.1 ([41]). Random variables X1, . . . , Xn, n ≥
2, are said to be negatively dependent, if for any numbers
x1, . . . , xn, we have

P {∩nk=1 {Xk ≤ xk}} ≤
n∏
k=1

P {Xk ≤ xk} ,

and

P {∩nk=1 {Xk > xk}} ≤
n∏
k=1

P {Xk > xk} .

The interesting characteristic of negative dependence is that
it allows us to bound the joint distribution of the random
variables with their marginals.

17In microeconomic theory, xt is said to be “revealed preferred” to x̂. Since
xt was chosen as response for the probe pt, the utility at xt should be higher
than the utility at x̂.

The variable M in (21) is the highest order statistic of the
set of random variables M defined as:

M , {(p′t(wt − ws)) : s, t = {1, 2, . . . , T} , s 6= t} . (42)

Define, ξ ⊂M as

ξ = {p′1(w1 − w2), p′2(w2 − w3) . . . , p′T (wT − w1)} . (43)

Lemma A.1. If the noise components are i.i.d zero mean
unit variance Gaussian distribution, then the set of random
variables in ξ are negatively dependent.

Proof: Each of the random variables in the set ξ, (defined
in (43)), is Gaussian and hence, to show negative dependence
of random variables in ξ, it is sufficient to show that these
variables are negatively correlated [41], [42]. Any element in
ξ, p′i(wi − wi+1), is correlated with either:

1) Element of the form p′i+1(wi+1 − wi+2):

E
{

(p′i(wi − wi+1))
(
p′i+1(wi+1 − wi+2)

)}
= −p′ipi+1 < 0.

2) Element of the form p′k(wk − wk+1), k /∈ {i, i+ 1}:

E {(p′i(wi − wi+1)) (p′k(wk − wk+1))} = 0.

Hence the random variables in ξ (43) are negatively correlated
and hence, negatively dependent, as defined in Def. A.1.

C. Proof of Theorem III.1

For any subset of the random variables, ξ,

ξ ⊂M = {(p′t(wt − ws)) : s, t = {1, 2, . . . , T} , s 6= t}

P {M ≤ x} ≤ P
{

max
i
ξi ≤ x

}
= P {ξ1 ≤ x, . . . , ξT ≤ x}

Choosing the set ξ to be set defined in (43). Also, from
Lemma A.1 the random variables in ξ are negatively depen-
dent, as defined in Def. A.1. Hence,

≤
∏
i

P {ξi ≤ x}

Each of the term in ξ, (p′t(wt − wt+1)) is distributed as
N (0, 2‖pt‖2). Using standard lower bound for the tail of the
Gaussian distribution, we have

≤
∏
t

1−
√

2

π

√
2‖pt‖2

x+

√
x2 + 8‖pt‖2

exp(−x2/4‖pt‖2)


The false alarm probability is given by 1− P {M ≤ Φ∗(y)}.
Substituting the upper bound for P {M ≤ Φ∗(y)}, we get a
lower bound for the false alarm probability.

D. Proof of Theorem III.2

The proof of Theorem III.2 relies on two lemmas:
Lemma A.2 and Lemma A.3 which are stated below.
Lemma A.2 states that for “sufficient” number of observations
the random variables are “almost” positive.
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Lemma A.2. Assume that the noise components are i.i.d zero
mean unit variance Gaussian random variables. For ε > 0,
T = O(log 1/ε) and T − τ = O(log 1/ε), we have:

P {M1 ≤ 0} < ε,

P {M2 ≤ 0} < ε

Define, auxiliary random variables, M̂1 and M̂2, which
corresponds to the truncated distributions of M1 and M2 as
shown below:

fM̂i
(x) = fMi(x)1 {x ≥ 0}+ P (Mi < 0) δ(x) for i = 1, 2,

(44)
where, δ(x) is the delta function. Then, Lemma A.3 states that
the expectation of the auxiliary random variables M̂i; i = 1, 2,
are close to the expectation of the original random variables,
Mi; i = 1, 2.

Lemma A.3. Assume that the noise components are i.i.d zero
mean unit variance Gaussian random variables. For ε > 0,
T = O(log 1/ε) and T − τ = O(log 1/ε), we have:

|EM̂1 −EM1| < 2ε,

|EM̂2 −EM2| < 2ε.

The proof of Lemma A.2 and Lemma A.3 are provided in
Appendix E and Appendix F, respectively.

Proof (Theorem III.2): For Φ∗(y) > 0, the probability
of Type-I error is given by P {M ≥ Φ∗(y)}.

P {M ≥ Φ∗(y)} = P {M1 +M2 ≥ Φ∗(y)}

If τ = O(1/ε), by Lemma A.2 and Lemma A.3, the truncated
distribution have a small probability of being less than 0 and
the expectation of the truncated distribution is close to the
original distribution. Hence,

= P
{
M̂1 + M̂2 ≥ Φ∗(y)

}
By Markov inequality,

≤
E
{
M̂1 + M̂2

}
Φ∗(y)

=
E
{
M̂1

}
Φ∗(y)

+
E
{
M̂2

}
Φ∗(y)

Since, M̂2 is a positive random variable,

=
E
{
M̂1

}
Φ∗(y)

+

∞∫
0

P(M̂2 > z)dz

Φ∗(y)

≤
E
{
M̂1

}
Φ∗(y)

+

∞∫
0

∑
s,t

t≥τ,s6=t

P (α (wt − ws) /λt > z) dz

Φ∗(y)

=
E
{
M̂1

}
Φ∗(y)

+

∞∫
0

∑
s,t

t≥τ,s6=t

exp
(
−z2λ2

t/4‖α‖
2
)
dz

Φ∗(y)

Hence, the probability of Type-I error, is minimized by mini-
mizing ‖α‖2.

E. Proof of Lemma A.2

P {M1 ≤ 0} = P

max
s,t
s 6=t

(pt(wt − ws)) ≤ 0


Choosing the set ξ ⊂M as defined in (43) and since the set
ξ are negative dependent from Lemma A.1,

≤ P
{

max
i
ξi ≤ 0

}
≤
∏
i

P {ξi ≤ 0}

Each of the term if ξi = (pt(wt − wt+1)) is distributed
as N (0, 2‖pt‖2). Let FN (µ,σ2) is the cdf of Gaussian ran-
dom variable with mean µ and variance σ2. Noting that
FN (0,σ2)(0) = 1/2, we have the following

=
∏
t

FN (0,2‖pt‖2)(0) =
∏
t

1

2
=

1

2T
< ε.

The proof for the second part is similar by an appropriate
choice of a negative dependent set, ξ and is hence omitted.

F. Proof of Lemma A.3

From the definition of the random variable M̂1 in (44),

E
{
M̂1

}
=

+∞∫
0

xfM1
(x)dx+ P (M1 < 0)

<

+∞∫
0

xfM1
(x)dx+ ε, (45)

where the inequality in (45) follows from Lemma A.2. The
expectation of M1 is given by

E {M1} = E {M11 {x ≥ 0}}+ E {M11 {x ≤ 0}} (46)

To continue with the proof, we derive a lower bound on
E {M11 {x ≤ 0}}, the second term in (46).

The following upper bound follows trivially,

E {M11 {x ≤ 0}} ≤ 0. (47)

For computing the lower bound, we proceed by integration by
parts

E {M11 {x ≤ 0}} =

0∫
−∞

xfM1
(x)dx = −

0∫
−∞

P {M1 ≤ x} dx.

Choosing the negative dependent subset ξ ⊂ M defined
in (43), and noting that each ξi is distributed as N (0, 2‖pi‖2)
and using analytical expression for bounds of the cdf of the
Gaussian density, we obtain

≥ −
0∫

−∞

∏
i

P {ξi ≤ x} dx. ≥ −ε (48)

From (45) and (48) we get the first part of the Lemma A.3.The
proof for the second part is similar and hence omitted.



12

G. CUSUM algorithm for Utility change point detection

Algorithm 1 CUSUM algorithm for Utility change point
detection

1: Initialize:
Set threshold ρ > 0.
Set cumulative sum S(0) = 0.
Set decision function D(0) = 0.

2: for t = 1 to T do
3: For probe pt and observed response yt,
4: xt(0) = argmax

{p′tx≤It}
v(x), with v(x) as in (33).

5: xt(1) = argmax
{p′tx≤It}

v(x) + α′x.

6: Likelihood `(yt, i) =
∏m
n=1 P(ynt |xnt (i))a ; i = 0, 1.

7: Instantaneous log likelihood s(t) = log( `(yt,1)
`(yt,0) ).

8: S(t) = S(t− 1) + s(t).
9: G(t) = {G(t− 1) + s(t)}+, where {x}+ = max {x, 0}.

10: if G(t) > ρ then
11: Change Point Estimate τ̂ = argmin

1≤τ≤t
S(τ − 1)

12: break
13: end if
14: end for

aIn our example, the probability is given by the Gaussian distribution.
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