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Abstract

We investigate the employment of power spectral density (PSD) matrix, which is

constructed by the received signals in a multi-sensor system and contains additional

cross-correlation information, as a feature in signal processing. Since the PSD matri-

ces are structurally constrained, they form a manifold in signal space. The commonly

used Euclidean distance (ED) to measure the distance between two such matrices are

not informative or accurate. Riemannian distances (RD), which measure distances

along the surface of the manifold, should be employed to give more meaningful mea-

surements. Furthermore, the principle that the geodesics on the manifold can be

lifted to an isometric Euclidean space is emphasized since any processing involving

the optimization of the geodesics can be lifted to the isometric Euclidean space and

be carried out in terms of the equivalent Euclidean metric. Application of this prin-

ciple is illustrated by having efficient algorithms locating the mean and median of

the PSD matrices on the manifold developed. These concepts are then applied to

the detection of narrow-band sonar signals from which the decision rule is set up by

translating the measure reference. In order to further enhance the detecton perfor-

mance, an algorithm is developed for obtaining the optimum weighting matrix which

can better classify the signal from noise. The experimental results show that the

performance by the PSD matrices being the detection feature is very encouraging.
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Notations and abbreviations

Notations

S Matrices

s Column vectors

(·)T Matrix transpose

(·)H Matrix hermitian

(·)−1 Matrix inverse

〈·, ·〉 Inner product

| · | Magnitude of a complex quantity

‖ · ‖ Euclidean norm of a vector or a matrix

<(·) Real part of a matrix

E[·] Expectation

tr(·) Trace of matrices

vec{·} Vectorization of a matrix

diag{·} Diagonal matrix

0 Zero matrix

IM M ×M identity matrix

C Set
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M Manifold

H Euclidean space

TM(·) Tangent space at a point of M

UH(·) Euclidean subspace at a point of H

Abbreviations

PSD Power Spectral Density

DFT Discrete Fourier Transform

ED Euclidean Distance

RD Riemannian Distance

EMn Euclidean Mean

EMd Euclidean Median

RMn Riemannian Mean

RMd Riemannian Median

WRMn Weighted Riemannian Mean

WRMd Weighted Riemannian Median

SVD Singular Value Decomposition

SWMA Split Window Moving Average

ROC Receiver Operating Characteristics

SNR Signal to Noise Ratio
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Chapter 1

Introduction

1.1 The PSD Matrix

Multi-sensor signal processing is essential not only to civilian applications but also

to military defence. In a multi-sensor observation system, the power spectral density

(PSD) matrix is the discrete Fourier transform (DFT) of the covariance matrix of

stochastic signals received from different sensors. It is of vital importance in real

applications because compared to the conventional power spectrum, the PSD matrix

contains more correlation information of received signals between different sensors.

From the covariance or PSD matrices, various signal parameters can be extracted.

Algorithms applying on these matrices have been widely developed and employed in

multi-sensor signal processing for many years, such as beamforming, adaptive sig-

nal filtering, the detection of slowly moving targets, localization/separation of signal

sources, extraction of signals, classification of targets, etc [1, 2, 3, 4, 5, 6]. Since both

covariance and PSD matrices can be used to evaluate various parameters needed for

extraction of similar information in a wide-sense stationary process, we will focus on

1
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the use of PSD matrices for signal processing in this thesis.

One problem is that it may not be very straightforward to directly use the PSD

matrix as a feature in signal processing for which we often have to measure the distance

between two PSD matrices. After taking the DFT of the covariance matrices, we

obtain the positive semi-definite Hermitian PSD matrices of the signal [7], which form

a manifold in the real linear vector space of all Hermitian matrices [8]. Therefore, the

commonly used Euclidean distance (ED) [9] may not be appropriate to measure the

distance between two PSD matrices. A similar concept is the distance between two

cities on earth, which is not accurate if measured by the ED. Hence, we realize that it

will be more appropriate to measure the distance between two of these matrices along

the surface of the manifold, i.e., Riemannian distance (RD). Three different closed-

form expressions of RD for the PSD matrix (known as dR1 , dR2 and dR3) have been

introduced in [8]. Furthermore, in practice, sometimes we may have the chance to

obtain the prior knowledge of matrices in signal processing. In order to emphasize and

de-emphasize the matrices based on prior information, the Riemannian distance can

be optimally weighted. However, Li and Wong has proved that dR3 is weight-invariant

[8], thus we pay more attention to dR1 and dR2 in this thesis.

In addition, we may want to evaluate some statistic features of random PSD matri-

ces, such as mean and median, corresponding to different measurement of distances.

It is well known [10] that the mean minimizes the sum of squared distances from

the points, whereas the median is defined as the value which minimizes the sum of

absolute distances from the points. In the case of power spectrum, which is a finite

set of real scalars, the mean is the average value of these scalars and the median is

the middle value of the sorted set. However, for PSD matrices, since we have different

2
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measurement of distances, according to the definition, we would have different deriva-

tions of mean and median. The objective of this thesis is to address the measurement

of distances on the manifold and find the mean and median of random PSD matri-

ces using these distances. After that, we can apply these concepts to some common

applications of signal processing.

1.2 Contents of Our Thesis

As we mentioned before, the Riemannian distance provides the accurate measure-

ment of distance for PSD matrices. To find the mean of PSD matrices for dR1 , the

algorithm given in [11] may not be able to obtain the optimum weighting matrix,

based on which we develop a new algorithm. For finding the mean for dR2 , the algo-

rithm given in [11] is applied. In many situations, it is desirable to weight the PSD

matrices in order to enhance their similarities/dissimilarities. Following this reason,

we put forward an algorithm to obtain the optimum weighting matrix for weighted

Riemannian distance in terms of mean. A good application of these concepts is the

narrow-band sonar detection. It is verified that using the mean for RD as a detection

feature shows a better detection performance than that for ED, which is consistent

with our expectation. Furthurmore, consider that the mean may have a bias on es-

timating the noise when the number of signals increases in the multi-sensor system.

However, the median, which is a prominent ordered statistic estimator, might be a

more proper choice as a detection feature due to its robustness. Therefore, an algo-

rithm is developed to find the median of PSD matrices for both ED and RD based

on the algorithm in [12] and the optimum weighting matrix in terms of median can

be achieved by a similar algorithm to that in terms of mean. The simulations are

3



M.A.Sc. Thesis - Huiying Jiang McMaster - Electrical Engineering

carried out afterwards to show that the median is superior to mean as a detection

feature when the number of signals becomes large.

1.3 Structure of the Thesis

There are five chapters in this thesis, which is organized as follows. In Chapter 1, the

background knowledge of PSD matrices and our contributions are briefly introduced.

In Chapter 2, accurate and informative measurements of distance for PSD matrices,

known as Riemannian distance and weighted Riemannian distance, are discussed. In

order to investigate the statistic features of random PSD matrices in signal processing,

the algorithms of finding mean and median for both ED and RD are demonstrated

in Chapter 3. Chapter 4 is devoted to the experimental simulations. In this chapter,

the PSD matrix is applied to the detection of narrow-band sonar signals in noise and

the performance of different detection features is examined. Further insights of the

choice of decision reference is revealed. In order to better distinguish signal from

noise, an algorithm for optimum weighting matrix is also established in this chapter.

Finally, the conclusions of our thesis and the prospective topics for future research

are presented in Chapter 5.

4



Chapter 2

Distance Between Two PSD

Matrices

Assume that we have M channels in the multi-sensor system, the establishment of co-

variance or PSD matrices is quite easy. The M -channel signal is usually first “cleaned

up” by filtering and having artifacts removed. Then the signal is divided into epochs,

each of T seconds and normalized. The nth epoch can now be represented by an

M × T matrix Sn, with the measurements from M channels at the instant t as the

elements of its column vector sn(t) = [sn1(t), · · · , snM(t)]T . If T is short enough,

{sn(t)} , t = 1, · · · , T can be considered as wide-sense stationary vectors. Therefore,

its arithmetic mean and the covariance matrix can be approximated by taking the

corresponding averages over time, i.e., µn = E[sn] ≈ 1
T

∑T
t=1 sn(t) = µ̂n and Rn(τ) =

E
[
{sn(t+ τ)− µn} {sn(t)− µn}H

]
≈ 1

T

∑T
t=1 {sn(t+ τ)− µ̂n} {sn(t)− µ̂n}H . The

resulting M ×M covariance matrix Rn(τ) is positive semi-definite [7]. Accordingly,

we can obtain the Hermitian, positive semi-definite PSD matrix after taking the DFT

5
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of Rn(τ) such that, at frequency ω,

Pn(ω) =
1

2π

∑
τ

Rn(τ)e−jωτ (2.1)

The PSD matrices of a signal epoch Sn constitute a group of points at different

frequencies, forming a curve on M. Hence, the PSD matrices of the mth and nth

epochs describe two different curves onM, respectively denoted by Pm(ω) and Pn(ω),

ω ∈ [ωmin, ωmax]. In order to find the distance between the two curves, a measurement

of distance should be established between the two points at the same frequency ωi

on the two curves, represented by Pm(ωi) and Pn(ωi), or simply Pm and Pn.

2.1 Euclidean Distance dE

In signal processing, the Euclidean distance (ED) is the most commonly used dis-

tance measure because it describes the straight-line distance (inner product) between

two points in a 3-dimensional Euclidean space and also represents many important

physical quantities. For two N -dimensional vectors a and b in the complex signal

space, the ED is defined as [9]

dE(a, b) = ‖a− b‖ =

√√√√ N∑
i=1

|ai − bi|2 (2.2)

where ai and bi are the ith entries of vector a and b, respectively. Expanding to

matrices, an M × M complex matrix can also be regarded as a point in the M2

complex signal space so that the same idea of distance between two such matrices Pm

and Pn can be applied. If we write the two matrices in the vector form, i.e., vecPm

6
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and vecPn, using the vec-functions [13], the ED between Pm and Pn can be given by

dE(Pm,Pn) = dE(vecPm, vecPn)

= ‖vecPm − vecPn‖

=

(
M∑
i=1

M∑
j=1

|mij − nij|2
)1/2

=
√

tr [(Pm − Pn)(Pm − Pn)H ] (2.3)

where mij and nij are the entries in the ith row and jth column of Pm and Pn,

respectively. Eq. (2.3) is also called the Frobenius distance [14] which is in fact

induced by the inner product norm.

2.2 Riemannian Distance

As we mentioned in Chapter 1, ED is not accurate for measuring the distance on

the manifold M. When we consider the distance between two PSD matrices, which

are structurally constrained, we should measure along the surface of the manifold.

It has been given in [8] that the curve on the manifold, parameterized by θ, linking

two PSD matrices Pm and Pn with the minimum length is called a geodesic, and the

Riemannian distance (RD) between two PSD matrices is defined as the length of the

geodesic, which is given by

dR(Pm,Pn) , min
P (θ):[θm,θn]→M

{` (P (θ))} (2.4)

7
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where ` (P ) =
∫ θn
θm
g

1/2
P

(
Ṗ , Ṗ

)
dθ is called a Riemannian metric at P on M. Here,

Ṗ = dP
dθ

and gP (Ṗ , Ṗ ) is an inner product metric. Different definitions of Riemannian

metrics lead to different RD. It is difficult to directly evaluate the RD in Eq. (2.4).

To avoid such difficulties, we can employ a mapping π :M→H, which associates

each point P ∈ M with π(P ) , P̃ ∈ H and thus constitutes the fibre [15] above

P ∈ M. Now, P̃ is still an M ×M complex matrix but may no longer be positive

semi-definite or Hermitian. In other words, each point P ∈ M is linked by the fibre

above it with the point in H through the mapping π. Any point along the fibre

satisfies the mapping π since π(π−1(P )) = P . Therefore, the PSD manifold can be

linked to the Euclidean space. For every PSD matrix P ∈ M, there exists another

matrix P̃ ∈ H which, though not unique, can be regarded as a representation of P

in the Euclidean space H. We can view P as an “image” onM of the point P̃ in H.

The manifold M and the Euclidean space H are often called the base space and the

total space respectively. The mapping makes it possible to bring P ∈ M to P̃ ∈ H

by a lifting process, and return P̃ ∈ H back to P ∈M by a projecting process along

the fibre.

Furthermore, by choosing a particular mapping π, together with an appropriate

Riemannian metric, we can find a Euclidean subspace UH at P̃ ofH, which is isometric

with TM(P ), the tangent space at P on M. That is to say, the geodesic between

Pm,Pn ∈ M can be lifted along the fibres to the Euclidean subspace with P̃m, P̃n ∈

UH. The isometry between UH and TM means that the RD between Pm and Pn on

the manifold M is equal in length to the ED between P̃m and P̃n ∈ UH. Thus, the

problem of measuring RD on the manifold can be transformed to measuring the ED

in the Euclidean subspace UH. Following this method, three closed-form expressions

8
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of RD for the PSD matrices on the manifold have been obtained in [8].

2.2.1 Riemannian Distance dR1

Consider the mapping π:

P = P̃ P̃H , i.e., P̃ = P 1/2U (2.5)

where P̃ ∈ H, P ∈ M, U is a unitary matrix and choosing the Riemannian metric

on M as gP (A,B) = 1
2
trAK with A,B ∈ TM(P ) and KP + PK = B. Then Pm

and Pn can be lifted to P̃m, P̃n ∈ UH by letting P̃m = P
1/2
m Um and P̃n = P

1/2
n Un.

Then the geodesic (path of minimum length) between Pm and Pn can be measured

by the equivalent length of the shortest straight line joining P̃m and P̃n in Euclidean

subspace UH, i.e.,

d2
R1

(Pm,Pn) = min
Um,Un

∥∥∥P̃m − P̃n∥∥∥2

= min
Um,Un

trPm + trPn − 2<
[
tr
(
UmU

H
n P

1/2
n P 1/2

m

)]
(2.6)

The minimization of Eq. (2.6) is equivalent to the maximization of its last term with

respect to Un and Um. It is well known [13] that the following solution holds if Un

and Um are the left and right singular vector matrices of P
1/2
n P

1/2
m , respectively.

max
Um,Un

<
[
tr
(
UmU

H
n P

1/2
n P 1/2

m

)]
= tr

[(
P 1/2
m PnP

1/2
m

)1/2
]

(2.7)

Proof. SinceUn andUm are the left and right singular vector matrices of P
1/2
n P

1/2
m , we

have UmU
H
n P

1/2
n P

1/2
m = UmU

H
n UnΣoU

H
m = UmΣoU

H
m and

(
UmU

H
n P

1/2
n P

1/2
m

)H
=

9
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P
1/2
m P

1/2
n UnU

H
m = UmΣoU

H
n UnU

H
m = UmΣoU

H
m . That means UmU

H
n P

1/2
n P

1/2
m is a

Hermitian matrix. Therefore, the last term of Eq. (2.6) can be written as:

<
[
tr
(
UmU

H
n P

1/2
n P 1/2

m

)]
= tr

{[(
UmU

H
n P

1/2
n P 1/2

m

) (
UmU

H
n P

1/2
n P 1/2

m

)H]1/2
}

= tr
[(
UmU

H
n P

1/2
n PmP

1/2
n UnU

H
m

)1/2
]

(2.8)

Let P
1/2
n PmP

1/2
n = V ΣrV

H with Σr and V being the eigenvalue and eigenvector

matrices of P
1/2
n PmP

1/2
n , and thus U = UmU

H
n V is also a unitary matrix. Then, Eq.

(2.8) can be continuously derived as

<
[
tr
(
UmU

H
n P

1/2
n P 1/2

m

)]
= tr

[(
UmU

H
n V ΣrV

HUnU
H
m

)1/2
]

= tr
[(
UΣrU

H
)1/2
]

= tr
(
UΣ1/2

r UH
)

= tr
[(
P 1/2
m PnP

1/2
m

)1/2
]

(2.9)

Substituting Eq. (2.9) into Eq. (2.6), the RD dR1 between Pm and Pn can be

obtained by

dR1(Pm,Pn) =
∥∥P 1/2

m Um − P 1/2
n Un

∥∥
=

√
trPm + trPn − 2tr

[(
P

1/2
m PnP

1/2
m

)1/2
]

(2.10)

Here, note that the mapping P̃m = P
1/2
m Um and P̃n = P

1/2
n Un may not be the only

mapping formula. This lifting process can also be carried out by first lifting Pm to a

10
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fixed point P̃m = P
1/2
m and then lifting Pn to P̃n = P

1/2
n UnU

H
m . In this new mapping,

by letting Un and Um still be the left and right singular vector matrices of P
1/2
n P

1/2
m ,

the dR1(Pm,Pn) between Pm and Pn can be written as

d2
R1

(Pm,Pn) =

√∥∥∥P 1/2
m − P 1/2

n UnUH
m

∥∥∥2

=

√
trPm + trPn − 2<

[
tr
(
UmUH

n P
1/2
n P

1/2
m

)]
=

√
trPm + trPn − 2tr

[(
P

1/2
m PnP

1/2
m

)1/2
]

(2.11)

which is exactly the same as Eq. (2.10). That means the geodesics between Pm

and Pn are equivalent based on these two mapping formulas. However, in the first

mapping, Pm and Pn are lifted to the isometric Euclidean space using Um and Un as

the unitary matrices; whereas in the second mapping, we use IM and UnU
H
m as the

unitary matrices to lift Pm and Pn to another isometric Euclidean space. These two

spaces are different, which reveals that the isometric Euclidean space is not unique.

2.2.2 Riemannian Distance dR2

Now let us consider another mapping π:

P = P̃ 2, i.e., P̃ = P 1/2 (2.12)

instead of choosing Um and Un to be the left and right singular vector matrices

of P
1/2
n P

1/2
m , we choose Um and Un to be identity matrices. Then together with a

suitable Riemannian metric gP (A,B) = 〈A,K〉 with A,B ∈ TM(P ) and PK +

11
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KP + 2P̃KP̃ = B, the RD dR2 between Pm and Pn on M can be found to be

dR2(Pm,Pn) =
∥∥P 1/2

m − P 1/2
n

∥∥
=

√
trPm + trPn − 2tr

(
P

1/2
m P

1/2
n

)
(2.13)

2.2.3 Riemannian Distance dR3

RD dR3 is given based on the logarithm mapping π such that

P = exp P̃ , i.e., P̃ = log(P ) (2.14)

By choosing the Riemannian metric gP (A,B) = tr(P−1AP−1B) with A,B ∈

TM(P ), the RD dR3 between Pm and Pn is shown to be

dR3(Pm,Pn) =

√
tr

[(
logP

−1/2
m PnP

−1/2
m

)2
]

=

√√√√ M∑
i=1

log2 λi (2.15)

where λi are the eigenvalues of P−1
m Pn and Pm is invertible.

All three RD satisfy the distance axiom, i.e., (i) positivity, (ii) symmetry, (iii)

triangle inequality. For dR3 , which can be established in several different ways, has

been in use for a long time in physics and mathematics, especially in General Rel-

ativity Theory [16], [17], [18]. In signal processing, dR3 has been studied by vari-

ous researchers for statistical operations and applied to interpolation, filtering and

restoration of PSD matrices [19], [20]. In addition, different classification algorithms

have been put forward according to dR3 , and have been employed in the detection of

pedestrians, MRI and EEG classifications [21], [22]. On the other hand, dR1 and dR2

12
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are newly developed [8] and have not been widely used yet. However, since it is much

easier to manipulate in mathmatics, dR2 has been employed in robust beamforming

and signal detection recently with very encouraging results [23], [24], [25].

The concepts and relation between the PSD manifold and Euclidean space are

quite essential because in order to carry out the processing which requires the opti-

mization of the geodesics, the matrices on the manifold can be lifted to the corre-

sponding isometric Euclidean subspace where the optimization can be performed in

equivalent measurement of ED. The optimized result can then be projected back to

the manifold. The process of lifting, optimization and projection can be operated

iteratively until the true optimum solution is reached. For dR2 , since the mapping π

does not involve any free unitary matrix, thus there is only one iteration of lifting,

optimization and projection; whereas for dR1 , because the unitary matrix is not fixed

when the optimization process is carried out, it may need several iterations to obtain

the optimum result. The application of these concepts to the optimum processing of

PSD matrices on the manifold will be demonstrated in the next chapter.

2.3 Weighting of Riemannian Distances

Generally speaking, applying weighting to features is a simple and effective way to

enhance their similarities and dissimilarities in signal processing. Thus, the feature

PSD matrices onM can be emphasized or de-emphasized by the weighting of RD. In

order to do that, a positive definite Hermitian weighting matrix W can be applied to

the PSD feature matrices such that we write W = ΩΩH , where Ω is M×K, K ≤M .

Then the weighted versions of Pm and Pn can be defined as PmW = ΩHPmΩ and

PnW = ΩHPnΩ, respectively. It is easy to see that PmW and PnW are also positive

13
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semi-definite Hermitian matrices on the manifold. The distance between two weighted

PSD matrices then results in a weighted RD. The three weigthed RD between Pm

and Pn ∈M corresponding to dR1 , dR2 and dR3 are respectively given by

dWR1(Pm,Pn) =
√
F1(W ,Pm,Pn) (2.16)

dWR2(Pm,Pn) =
√
F2(W ,Pm,Pn) (2.17)

dWR3(Pm,Pn) = dR3(PmW,PnW) (2.18)

For F1, PmW = P̃mWP̃
H
mW with P̃mW1 = ΩHPmUm, Um being a unitary matrix, so

as PnW. Then P̃mW1 and P̃nW1 are in the Euclidean subspace which is isometric with

the tangent space of M. Therefore, we can use the idea similar to Eq. (2.6) to find

the minimum distance in Euclidean subspace. Then we have

F1 = min
Um,Un

∥∥∥P̃mW1 − P̃nW1

∥∥∥2

= min
Um,Un

trPmW + trPnW − 2<
[
tr
(
UmU

H
n P

1/2
n ΩΩHP 1/2

m

)]
(2.19)

Again, the last term in Eq. (2.19) is maximized when Un and Um are chosen to be

the left and right singular vector matrices of P
1/2
n ΩΩHP

1/2
m . Hence, the expression

of F1 is given by

F1 = tr(WPm) + tr(WPn)− 2tr
[(
P 1/2
m WPnWP 1/2

m

)1/2
]

(2.20)

14
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In the case of F2, we have P̃iW2 = P
1/2
iW =

(
ΩHPiΩ

)1/2
for i = m,n. Following the

same concept development with Eq. (2.13), we have

F2 =
∥∥∥P̃mW2 − P̃nW2

∥∥∥2

= trPmW + trPnW − 2tr
(
P

1/2
mWP

1/2
nW

)
= tr(WPm) + tr(WPn)− 2tr

[(
ΩHPmΩ

)1/2 (
ΩHPnΩ

)1/2
]

(2.21)

Unlike dR1 and dR2 , Eq. (2.18) revealed that dR3 is weight-invariant [8]. As we

mentioned before, the weighting matrix is usually chosen or designed according to

prior information and depending on the application, which will be demonstrated in

details in chapter 4. Due to the ineffectivity of the optimum weighting for dR3 , the

use of dR3 in signal processing may not be able to take full advantage when prior

information is available. For this reason, the focus of our attention in this thesis is

on the study and applications of dR1 and dR2 .
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Chapter 3

Mean and Median of PSD

Matrices on Manifold

Signal processing often involves the evaluation of signal features for extraction of

information. The mean and the median are two fundamental statistics used in signal

processing to represent centrality of data points. The arithmetic mean or simply

the mean of a group of random entities is defined as the centre from which the sum

of squared distances to all members is minimum. For a finite set of real scalars,

{x1, x2, · · · , xN}, the mean can be obtained by taking the derivative of the sum of

squared distances from all members and set the result to zero, i.e., d
dx

(x−xn)2 = 0 and

x̄ = 1
N

∑
n xn. The median is defined as: the value of the variate which divides the

total frequency into two equal halves. An important geometric property of the median

is that it minimizes the sum of the absolute distances to all the points [10]. Compared

to the mean, the median is a more robust estimate of the “central point” of a group

of numbers, being less affected by outliers. This property is of vital significance in

signal processing to reduce the interference, which allows median to be applied in
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many applications, especially the detection system.

For a group of M × M PSD matrices, {Pn, n = 1, · · · , N}, according to the

definition above, the concept of mean and median can be generalized by using their

geometric properties. Thus, we have

Cx = arg min
C

N∑
n=1

d2(Pn,C) (3.1)

Γx = arg min
Γ

N∑
n=1

d(Pn,Γ) (3.2)

where d, the distance measured between two matrices, is a general metric. For the

particular case in which d is considered to be ED dE, we will call the corresponding

central points Euclidean mean (EMn) and Euclidean median (EMd), denoted by

CE and ΓE respectively. Likewise, if d is taken to be the various RD dR, then the

results are respectively called the Riemannian mean (RMn), denoted by CR, and the

Riemannian median (RMd), denoted by ΓR in this paper. Notice that different RD

yields different RMn and RMd.

Since the EMn and EMd are obtained based on ED, they are relatively straight-

forward to understand and facilitate the evaluation of signal features. Recently, the

RMn and RMd of PSD matrices have been studied and important contributions for

their evaluations have been made. For example, In [12], based on steepest descent,

an algorithm was proposed and applied to the exponential mapping, thus iteratively

locating RMd according to dR3 . In [18], it has been proved that the RMn based on

the measure dR3 was the solution of
∑

n log
(
X1/2P−1

n X1/2
)

= 0. In [26], each data

vector formed its outer product which was assumed to be strictly positive definite and

Toeplitz. After that, deterministic and stochastic algorithms for computing the RMn
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and RMd based on the exponential mapping (dR3) of these matrices were developed.

Other research such as [27] linearized the log function to find the RMn by applying

a descent algorithm. However, it can be seen that invariably, all the studies and al-

gorithms to evaluate RMn and RMd so far are based on the distance measure of dR3 .

In this chapter, we will develop algorithms to find the RMn and RMd according to

the distance measures of dR1 and dR2 for a group of PSD matrices. Throughout the

entire thesis, we assume that all PSD matrices Pn lie in a convex set C ⊂ M. That

is to say, there is a unique geodesic completely lying in C between any two matrices

in C.

3.1 Euclidean Mean

The conventional mean that is commonly used is the arithmetic mean or Euclidean

mean which is defined related to the ED or Frobenius norm. Based on the definition

of mean in Eq. (3.1), we can formulate the EMn as follows,

CE = arg min
C

gE = arg min
C

N∑
n=1

d2
E(Pn,C) (3.3)

where

d2
E(Pn,C) = ‖Pn −C‖2

2

= tr
[
(Pn −C)(Pn −C)H

]
= tr

[
PnP

H
n +CCH − PnCH −CPH

n

]
= tr(PnP

H
n ) + tr(CCH)− 2tr(PnC

H) (3.4)
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Noting that gE is quadratic, the solution to Eq. (3.3) can be obtained by differenti-

ating gE with respect to C and equating the result to zero. That is,

d

dC

[
N∑
n=1

d2
E(Pn,C)

]
= 0 (3.5)

Equivalently,

N∑
n=1

2 (trC − 2Pn) = 2NC − 2
N∑
n=1

Pn = 0 (3.6)

Hence, the minimum value of gE is achieved by Eq. (3.6) for which

CE =
1

N

N∑
n=1

Pn (3.7)

The expression of EMn is quite transparent to understand because it is in accordance

with the scalar case x̄ = 1
N

∑N
n=1 xn. However, as we previously indicated, since the

ED is not the accurate distance measure for PSD matrices on M, the EMn, though

simple to achieve, may not be the proper centre to evaluate the feature matrices.

Therefore, it is necessary to develop algorithms for finding the Riemannian means

with respect to dR1 and dR2 .

3.2 Riemannian Mean

The problem of locating RMn on M, according to the definition in Eq. (3.1), is

to search for a matrix C ∈ M which has the minimum sum squared Riemannian

distances to all the PSD matrices. In this section, we will analyze in turn, each of

the initial formulation of Riemannian means according to dR1 , dR2 and their weighted
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versions, and then develop the corresponding algorithms to locate these central points.

3.2.1 Riemannian Mean According to dR1

The problem can be stated as: Given the Riemannian distance dR1 between two pos-

itive semi-definite matrices Pm and Pn as in Eq. (2.10), find RMn1, the Riemannian

mean of {Pn, n = 1, · · · , N} according to dR1 , denoted by CR1 , such that

CR1 = arg min
C

gR1 = arg min
C

N∑
n=1

d2
R1

(Pn,C) (3.8)

In order to solve this problem, the following facts are the preparations for us to

develop an algorithm to locate RMn1.

F1: As we described in chapter 2, to lift the geodesic between Pm and Pn from M

to UH, we first lift Pm to P̃m = P
1/2
m and then lift P̃n = P

1/2
n UnU

H
m with Un

and Um being the left and right singular vector matrices of P
1/2
n P

1/2
m .

F2: The isometry between TM and UH gives the equation d2
R1

(Pm,Pn) = d2
E(P̃m, P̃n),

therefore, we can equivalently perform the optimization process in UH in terms

of the Euclidean distance.

F3: For a set of M ×M matrices {P̃n ∈ H, n = 1, · · · , N}, the sample average C̃ =

1
N

∑N
n=1 P̃n minimizes the sum of squared ED: dE(P̃n, C̃) =

∑N
n=1 ‖P̃n − C̃‖2.

This has been proved in the previous section.

Based on the three facts above, we can come up with an algorithm to locate RMn1.

The main idea is, at first, roughly find a central point C(i), say EMn, on the manifold

as the initial point. Then, based on the mapping as described in F1, lift the geodesics
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from C(i) to all the PSD matrices Pn to the respective Euclidean subspaces with

C(i)1/2 as a common point. Now we can carry out the optimization process in the

Euclidean subspaces. Find the first optimum centre point in the Euclidean space using

the method in F3. Then project this first optimum point back to the manifold and

use this point as the next starting central point. Reiterate this lifting, optimization

and projection process until the distance between the optimum central point in the

final step and last final step is shorter than a preset precision. This process has been

summarized in the following algorithm.

Algorithm RMn1 :

1. For i = 0: Initialize C(i) = 1
N

∑N
n=1Pn, set a positive precision ε.

2. Set: C̃(i) =
(
C(i)

)1/2
.

3. Find V̂
(i)
n which minimizes

∥∥∥P 1/2
n V

(i)
n − C̃(i)

∥∥∥2

2
,∀n:

V̂
(i)
n = U

(i)
l U

(i)H
r , where U

(i)
l ΣU

(i)H
r = P

1/2
n C̃(i) is the SVD of P

1/2
n C̃(i).

4. Lift to UH: P̃
(i)
n = P

1/2
n V̂

(i)
n .

5. Get the new arithmetic mean in H: C̃ ′(i) = 1
N

∑N
n=1 P̃

(i)
n .

6. Update the Riemannian mean on M: C(i+1) = C̃ ′(i)C̃ ′(i)H .

7. Calculate the precision: h = dR1

(
C(i+1),C(i)

)
.

8. If h > ε, let i → i + 1 and go back to Step 2. Otherwise, obtain the RMn1

CR1 = C(i+1) and exit. �

The algorithm above is established on the basis of its convergence, which is presented

in the following theorem:
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Theorem 1. For the PSD matrices {Pn}, the Riemannian mean according to dR1

can be located by Algorithm RMn1 such that

CR1 = lim
i→∞

C(i) (3.9)

where CR1 = arg minC
∑N

n=1 d
2
R1

(Pn,C) is the RMn1. �

Proof. Proof of Theorem 1 is shown in Appendix A.1. �

Basically, the proof of Theorem 1 uses F1 and F2 to find the isometric Euclidean

subspace of M and then, a contraction g
(i+1)
E ≤ g

(i)
E is established according to

F3, which results in the convergence of the process. Isometry between UH and TM

promises that arriving at the optimum point in UH means achieving the RMn1 onM.

Likewise, the same idea is applied in the proofs of convergence for other algorithms.

3.2.2 Riemannian Mean According to dWR1

In this subsection, we investigate the algorithm for finding the RMn according to

the weighted RD dWR1 . Now let us consider the weighting of the PSD matrices by

a positive definite Hermitian matrix W = ΩΩH as described in chapter 2 such that

the weighted version of Pn can be written as PnW = ΩHPnΩ. Then CW = ΩHCΩ

can be regarded as the weighted version of the central point C. Since Pn,C ∈M, it

is easy to see that PnW,CW ∈ M. Again, in order to make it more manipulable, we

use the mapping P = P̃ P̃H to lift all PnW and CW to the isometric Euclidean space

such that P̃nW1 = ΩHP
1/2
nWUn and C̃W1 = ΩHC

1/2
W Uc with Un and Uc being unitary

matrices. Then applying the expression of dWR1 in Eq. (2.16), the problem of finding
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the RMn according to dWR1 can be formulated as

CWR1 = arg min
C

gWR1 = arg min
C

N∑
n=1

d2
WR1

(Pn,C) (3.10)

where

gWR1 =
N∑
n=1

tr(P̃nW1P̃
H
nW1

) + tr(C̃W1C̃
H
W1

)− 2tr
[(
C1/2WPnWC1/2

)1/2
]

(3.11)

However, Alogrithm RMn1 cannot be directly applied to the minimization problem

in Eq. (3.10) because the expression on the right hand side of Eq. (3.11) cannot be

formed into gWE =
∑

n ‖P̃nW1 − C̃W1‖2 and consequently, it cannot be optimized in

the Euclidean subspace in this case. On the other hand, we can find the upper bound

of gWE using the following lemma:

Lemma 1. The last term of Eq. (3.11) has a lower bound which is given by

tr
[(
C1/2WPnWC1/2

)1/2
]
≥ <

[
tr
(
P̃H
nW1

C̃W1

)]
(3.12)

�

Proof. Referring to the derivation of dWR1 in Eq. (2.19), <
[
tr
(
UH
n P

1/2
n ΩΩHC1/2Uc

)]
is maximized when Un and Uc are the left and right singular vector matrices of

P
1/2
n ΩΩHC1/2 respectively [13], which is similar to the maximization of the last term

in Eq. (2.19), therefore,

tr
[(
C1/2WPnWC1/2

)1/2
]
≥ <

[
tr
(
UH
n P

1/2
n ΩΩHC1/2Uc

)]
= <

[
tr
(
P̃H
nW1

C̃W1

)]
(3.13)
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�

Substituting this lower bound into Eq. (3.11), we have

gWR1 =
N∑
n=1

d2
WR1

(Pn,C)

≤
N∑
n=1

tr(P̃nW1P̃
H
nW1

) + tr(C̃W1C̃
H
W1

)− 2<
[
tr
(
P̃H
nW1

C̃W1

)]
=

N∑
n=1

∥∥∥P̃nW1 − C̃W1

∥∥∥2

= gWE (3.14)

It can be noticed that the upper bound in Eq. (3.14) is in the right form to be mini-

mized in the Euclidean subspace. Hence, the Algorithm RMn1 can be used to mini-

mize this upper bound and obtain the weighted RMn according to dWR1 (WRMn1):

Corollary 1. For the weighting W = ΩΩH , the weighted Riemannian mean accord-

ing to the weighted RD dWR1 can be obtained by Algorithm RMn1 such that

CWR1 = lim
i→∞

C
(i)
W (3.15)

where CWR1 is the WRMn1 and C
(∞)
W is the final solution of Algorithm RMn1 which

is applied on the weighted PSD matrices PnW. �
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3.2.3 Riemannian Mean According to dR2

The Riemannian mean of {Pn, n = 1, · · · , N} according to dR2 , abbreviated as RMn2,

is defined as

CR2 = arg min
C

gR2 = arg min
C

N∑
n=1

d2
R2

(Pn,C) (3.16)

In the case of dR2 , the lifting of Pm and Pn from the manifold to the Euclidean space

is by fixing the unitary matrices Um = Un = IM , i.e., P̃m = P
1/2
m and P̃n = P

1/2
n .

Thus, the algorithm for locating RMn2 is a one-step procedure, which is given below.

Algorithm RMn2 :

1. Lift to UH: P̃n = P
1/2
n .

2. Calculate the arithmetic mean in UH: C̃R2 = 1
N

∑N
n=1 P̃n.

3. Back to M: CR2 = C̃2
R2

. �

The procedure to locate RMn2 can be summarized in the following theorem:

Theorem 2. For the PSD matrices {Pn}, the Riemannian mean according to dR2 is

given by

CR2 = C̃2
R2

(3.17)

where C̃R2 = 1
N

∑N
n=1P

1/2
n . �

Proof. The objective function in Eq. (3.16) can be written as

N∑
n=1

d2
R2

(Pn,C) =
N∑
n=1

[
trPn + tr(C̃C̃)− 2tr(P̃nC̃)

]
(3.18)
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where P̃n = P
1/2
n and C̃ = C1/2. Differentiating Eq. (3.18) with respect to C̃,

d

dC̃

[
N∑
n=1

d2
R2

(Pn,C)

]
=

N∑
n=1

(2C̃ − 2P̃n) = 2NC̃ − 2
N∑
n=1

P̃n (3.19)

Equating Eq. (3.19) to zero, we have

C̃R2 =
1

N

N∑
n=1

P̃n (3.20)

Then the minimum value of the objective function can be achieved. Projecting C̃R2

back to the manifold, the Riemannian mean according to dR2 is obtained such that

CR2 = C̃2
R2

. �

Note that here, C̃R2 is still Hermitian, and Algorithm RMn2 yields a closed-form

solution for the Riemannian mean of a group of random PSD matrices according to

the dR2 . Since the objective function of Eq. (3.16) is proved to be convex in Appendix

A.2.1, the RMn2 located by our algorithm is the global optimum point.

3.2.4 Riemannian Mean According to dWR2

On the basis of locating RMn2, the method of finding the weighted Riemannian mean

according to dWR2 (WRMn2) can be established quite readily. Given the definition

of dWR2 in Eq. (2.17), for an M ×M positive definite Hermitian matrix W = ΩΩH ,

the WRMn2 of {Pn, n = 1, · · · , N}, denoted by CWR2 , can be found by

CWR2 = arg min
C

gWR2 = arg min
C

N∑
n=1

d2
WR2

(Pn,C) (3.21)
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Again, we can write CW = ΩHCΩ and PnW = ΩHPnΩ. Using the mapping in Eq.

(2.12) such that C̃W2 = C
1/2
W and P̃nW2 = P

1/2
nW , we have

d2
WR2

(Pn,C) = tr(PnW) + tr(C̃W2C̃W2)− 2tr(P̃nW2C̃W2) (3.22)

Putting Eq. (3.22) into Eq. (3.21) and then taking the derivative with respect to

C̃W2 , we have

d

dC̃W2

[
N∑
n=1

d2
WR2

(Pn,C)

]
=

N∑
n=1

(
2C̃W2 − 2P̃nW2

)
(3.23)

By setting Eq. (3.23) to zero, the optimum solution in Euclidean space is given by

C̃WR2 =
1

N

N∑
n=1

P̃nW2 =
1

N

N∑
n=1

(
ΩHPnΩ

)1/2
(3.24)

Then project the result back to the manifold such that

CWR2 = C̃WR2C̃WR2 =
1

N2

[
N∑
n=1

(
ΩHPnΩ

)1/2

]2

(3.25)

Corollary 2. For the weighting W = ΩΩH , the weighted Riemannian mean accord-

ing to dWR2 can be obtained by

CWR2 = C̃2
WR2

(3.26)

where C̃WR2 = 1
N

∑N
n=1

(
ΩHPnΩ

)1/2
. �

Here, note that CWR2 is also a positive definite Hermitian matrix on the manifold

and we do not need any iteration to obtain WRMn2.
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3.3 Euclidean Median

Now let us examine the median of a group of M × M PSD matrices {Pn, n =

1, 2, · · · , N}. As described in the beginning of this chapter, the median is a gen-

eralization of the geometric property of the scalar median, which has the minimum

sum of the distances to all the points. The median so defined is sometimes referred to

as the geometric median. In particular, if the distance is ED dE, the result is called

the Euclidean median, denoted by ΓE.

According to the definition of geometric median in Eq. (3.2), for ED, the Euclidean

median (EMd) is given by

ΓE = arg min
Γ
fE = arg min

Γ

N∑
n=1

dE(Pn,Γ)

= arg min
Γ

N∑
n=1

√
tr [(Γ− Pn)(Γ− Pn)H ] (3.27)

The objective function of Eq. (3.27) is convex [28], which has been proved in Appendix

A.2.2. Hence, a convergent algorithm based on the steepest descent has been proposed

to achieved the global optimum point for Eq. (3.27).

Algorithm EMd :

1. For i = 0: Initialize Γ(i) = 1
N

∑N
n=1Pn, set a positive precision ε.

2. Evaluate Γ iteratively:

Γ(i+1) = Γ(i) − αG(i) (3.28)
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where 0 ≤ α ≤ 2 is the step size and

G(i) =
∑
n∈N (i)

Pn
‖Γ(i) − Pn‖

 ∑
n∈N (i)

1

‖Γ(i) − Pn‖

−1

(3.29)

with N (i) = {n ∈ [1, N ] : Γ(i) 6= Pn}.

3. Calculate the precision: h =
∥∥Γ(i+1) − Γ(i)

∥∥.

4. If h > ε, let i → i + 1 and go back to Step 2. Otherwise, obtain the EMd

ΓE = Γ(i+1) and exit. �

The convergence of the algorithm above is given in [28]. Essentially speaking, Eq.

(3.28) is the same as the result of using the gradient descent method. The gradient

of fE exists and is given by

∇fE(Γ) =
N∑
n=1

Γ− Pn
‖Γ− Pn‖

(3.30)

Based on the gradient descent method, a natural choice for the search direction is the

negative gradient [29]. Thus, the iterative process can be written as

Γ(i+1) = Γ(i) − α∇fE(Γ(i))

= Γ(i) − α
N∑
n=1

Γ(i) − Pn
‖Γ(i) − Pn‖

(3.31)
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For Eq. (3.28), it can be derived as

Γ(i+1) = Γ(i) − α
∑N

n=1
Pn

‖Γ(i)−Pn‖∑N
n=1

1
‖Γ(i)−Pn‖

= Γ(i) − α
∑N

n=1
Pn

‖Γ(i)−Pn‖∑N
n=1

1
‖Γ(i)−Pn‖

+ α

∑N
n=1

Γ(i)

‖Γ(i)−Pn‖∑N
n=1

1
‖Γ(i)−Pn‖

− α
∑N

n=1
Γ(i)

‖Γ(i)−Pn‖∑N
n=1

1
‖Γ(i)−Pn‖

= Γ(i) + α

∑N
n=1

Γ(i)−Pn
‖Γ(i)−Pn‖∑N

n=1
1

‖Γ(i)−Pn‖

− αΓ(i) (3.32)

Taking the last term of Eq. (3.32) to the left hand side, we have

Γ(i+1) + αΓ(i) = Γ(i) + α

∑N
n=1

Γ(i)−Pn
‖Γ(i)−Pn‖∑N

n=1
1

‖Γ(i)−Pn‖

(3.33)

Let

−α∑N
n=1

1
‖Γ(i)−Pn‖

, αi and Γ(i+1) + αΓ(i) , Γ(i+1)′ (3.34)

where αi is the variable step size which depends on Γ(i) and Γ(i+1)′ is defined as the

new Γ(i+1). Then Eq. (3.33) becomes

Γ(i+1)′ = Γ(i) − αi∇fE(Γ(i)) (3.35)

which is exactly the form of Eq. (3.31).
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3.4 Riemannian Median

Following the idea of locating the Riemannian mean, in order to find the Riemannian

median, we can first lift all the PSD matrices to the isometric Euclidean space and

then perform the optimization process in Euclidean subspace. After obtaining the

optimum solution, project back to the manifold. We will investigate the Riemannian

median according to different distance measures in this section.

3.4.1 Riemannian Median According to dR1

The problem of locating the Riemannian median according to dR1 (RMd1) can be

stated as: Given the RD dR1(Pm,Pn) between two PSD matrices Pm and Pn, find

ΓR1 , the RMd1 of {Pn, n = 1, · · · , N}, such that

ΓR1 = arg min
Γ
fR1 = arg min

Γ

N∑
n=1

dR1(Pn,Γ) (3.36)

where dR1 is presented by Eq. (2.10). The algorithm for locating the RMd1 for {Pn}

is developed based on the similar facts as we find RMn1 such that

F1: A chosen centre point can be lifted together with all Pn to an isometric Eu-

clidean subspace.

F2: The isometry between TM and UH enables us to solve the optimization problem

in terms of equivalent ED.

F3: The optimization in the Euclidean subspace is convex and a convergent algo-

rithm which is given as follows can be employed to find the optimum point.

Algorithm RMd1 :
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1. For i = 0: Initialize Γ(i) = 1
N

∑N
n=1Pn, set a positive precision ε.

2. Set: Γ̃(i) =
(
Γ(i)
)1/2

.

3. Find V̂
(i)
n which minimizes

∥∥∥P 1/2
n V

(i)
n − Γ̃(i)

∥∥∥2

2
,∀n:

V̂
(i)
n = UlU

H
r , where UlΣU

H
r = P

1/2
n Γ̃(i) is the SVD of P

1/2
n Γ̃(i).

4. Lift to UH: P̃
(i)
n = P

1/2
n V̂

(i)
n .

5. Get the new median in H: Set the initial value Γ̃′(i,0), then apply Algorithm

EMd to locate the Euclidean median in H, i.e. Γ̃
′(i)
E = Γ̃′(i,J) with J being the

last iteration of Algorithm EMd.

6. Update the Riemannian median on M: Γ(i+1) = Γ̃
′(i)
E Γ̃

′(i)H
E .

7. Calculate the precision: h = dR1

(
Γ(i+1),Γ(i)

)
.

8. If h > ε, let i → i + 1 and go back to Step 2. Otherwise, obtain the RMd1

ΓR1 = Γ(i+1) and exit. �

Theorem 3. For the PSD matrices {Pn}, the Riemannian median according to dR1

can be obtained by Algorithm RMd1 and is given by

ΓR1 = lim
i→∞

Γ(i) (3.37)

where ΓR1 = arg minΓ

∑N
n=1 dR1(Pn,Γ) is the RMd1. �

The convergence of Algorithm RMd1 can be shown with reference to the same pro-

cedure as in proof of Theorem 1. The alternating mapping from M to UH and back

with the optimization result obtained by the equivalent sum of dE from all the points

in UH provide a contraction.
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3.4.2 Riemannian Median According to dWR1

For the weighted Riemannian median according to dWR1 , the problem can be formu-

lated as the following equation.

ΓWR1 = arg min
Γ
fWR1 = arg min

Γ

N∑
n=1

dWR1(Pn,Γ)

= arg min
Γ

N∑
n=1

√
trΓW + trPnW − 2tr

[(
Γ

1/2
W WPnΓ

1/2
W

)1/2
]

(3.38)

where ΓW = ΩHΓΩ is the weighted version of the central point and PnW = ΩHPnΩ

is the weighted version of the PSD matrix.

Again, as we discussed in the case of finding the RMn according to dWR1 , the

terms under the square root sign cannot be written as
∥∥∥P̃nW1 − Γ̃W1

∥∥∥ directly, where

P̃nW1 = ΩHP
1/2
nWUn and Γ̃W1 = ΩHΓ

1/2
W UΓ with Un and UΓ being unitary matrices.

Nevertheless, its upper bound can be written as the form of sum dWE such that

N∑
n=1

√
tr(P̃nW1P̃

H
nW1

) + tr(Γ̃W1Γ̃
H
W1

)− 2<
[
tr(P̃H

nW1
Γ̃W1)

]
=

N∑
n=1

∥∥∥P̃nW1 − Γ̃W1

∥∥∥ (3.39)

Therefore, this upper bound in Eq. (3.39), i.e., the sum of ED between the lifted

points, can be minimized by Algorithm EMd in Euclidean space. Hence, we can also

apply Algorithm RMd1 to locate the weighted Riemannian median according to dWR1

(WRMd1). Then, we have
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Corollary 3. For the weighting W = ΩΩH , the weighted Riemannian median ac-

cording to the weighted RD dWR1 is achieved by

ΓWR1 = lim
i→∞

Γ
(i)
W (3.40)

where ΓWR1 is the WRMd1 and Γ
(∞)
W is obtained by iteratively applying Algorithm

RMd1 on the weighted PSD matrices PnW. �

3.4.3 Riemannian Median According to dR2

The Riemannian median according to dR2 (RMd2) can be defined as

ΓR2 = arg min
Γ
fR2 = arg min

Γ

N∑
n=1

dR2(Pn,Γ) (3.41)

Using the idea when we find the RMn2, first, we lift all the PSD matrices to the

Euclidean space following the mapping formula P̃n = P
1/2
n . Then we can find the

median of P̃n in the Euclidean space by the Algorithm EMd. After finding the median

in Euclidean space, we can project it back to manifold to obtain the RMd2 in manifold.

The algorithm is given in details as follows.

Algorithm RMd2 :

1. Lift to UH: P̃n = P
1/2
n .

2. Get the new median in H: Set the initial value Γ̃(0), then apply Algorithm

EMd to locate the Euclidean median in H, i.e. Γ̃E = Γ̃(J) with J being the last

iteration of Algorithm EMd.

3. Back to M: ΓR2 = Γ̃EΓ̃E. �
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We note that the mapping fromM onto UH uses the fixed unitary matrix IM so that

we need no re-iteration of the lifting after the first projection. Thus, we have

Theorem 4. For the PSD matrices {Pn}, the Riemannian median according to dR2

can be obtained by Algorithm RMd2 such that

ΓR2 = lim
j→∞

(
Γ̃(j)

)2

(3.42)

where ΓR2 = arg minΓ

∑N
n=1 dR2(Pn,Γ) is the RMd2 and Γ̃(∞) is the Euclidean median

obtained by employing Algorithm EMd on the sum ED. �

Since the objective function in Eq. (3.41) is not convex (shown in Appendix A.2.3),

we need to carry out the optimization process in the isometric Euclidean subspace

and then project it back to manifold. Due to the isometry between TM and UH, ΓR2

is the global optimum point on the manifold.

3.4.4 Riemannian Median According to dWR2

Given the knowledge in previous sections, it is fairly straightforward to determine the

weighted Riemannian median according to dWR2 (WRMd2). For an M ×M positive

definite Hermitian matrix W = ΩΩH , the WRMd2 of {Pn, n = 1, · · · , N}, denoted

by ΓWR2 , can be obtained by

ΓWR2 = arg min
Γ
fWR2 = arg min

Γ

N∑
n=1

dWR2(Pn,Γ) (3.43)
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Based on Eq. (2.21), the objective function of Eq. (3.43) can be expressed as

fWR2 =
N∑
n=1

√
tr(P̃nW2P̃nW2) + tr(Γ̃W2Γ̃W2)− 2tr(P̃nW2Γ̃W2)

=
N∑
n=1

∥∥∥P̃nW2 − Γ̃W2

∥∥∥ (3.44)

to which we can apply Algorithm EMd directly. Here, P̃nW2 =
(
ΩHPnΩ

)1/2
and

Γ̃W2 =
(
ΩHΓΩ

)1/2
. The optimum median achieved in Euclidean space can then be

projected directly via the mapping formula P = P̃ 2 to provide us with the WRMd2.

Therefore, we have the following corollary:

Corollary 4. For the weighting W = ΩΩH , the weighted Riemannian median ac-

cording to the weighted RD dWR2 is achieved by

ΓWR2 = lim
j→∞

(
Γ̃

(j)
W

)2

(3.45)

where ΓWR2 is the WRMd2 and Γ̃
(∞)
W is the weighted Euclidean median obtained by

applying Algorithm EMd on the weighted PSD matrices PnW. �

3.5 Verification of Our Algorithms

We have developed various algorithms to locate means and medians with different

distance measures. According to the definition, the mean of N PSD matrices should

have the minimum sum of squared distances from all the members. To verify the va-

lidity of our algorithms, instead of testing all the matrices which may not be possible,

we choose various means and medians to make the comparison.
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Example 1:

We first generate N = 500 noise PSD matrices, then we evaluate accordingly their

various central points. These central points are given below.

CE =


0.9821 + 0.0000i −0.0403− 0.0392i −0.0031 + 0.0351i −0.0216− 0.0042i

−0.0403 + 0.0392i 0.8574− 0.0000i −0.0360 + 0.0295i 0.0308 + 0.0404i

−0.0031− 0.0351i −0.0360− 0.0295i 1.0315− 0.0000i 0.0102− 0.1079i

−0.0216 + 0.0042i 0.0308− 0.0404i 0.0102 + 0.1079i 0.9181− 0.0000i



CWE =


0.8192− 0.0000i 0.0000 + 0.0000i 0.0000− 0.0000i 0.0000 + 0.0000i

0.0000− 0.0000i 0.8627 + 0.0000i 0.0000− 0.0000i −0.0000− 0.0000i

0.0000 + 0.0000i 0.0000 + 0.0000i 1.0272 + 0.0000i −0.0000 + 0.0000i

0.0000− 0.0000i −0.0000 + 0.0000i −0.0000− 0.0000i 1.0647 + 0.0000i



CR1 =


0.2834 + 0.0000i −0.0663− 0.0508i −0.0128 + 0.0368i −0.0332 + 0.0071i

−0.0663 + 0.0508i 0.0893 + 0.0000i −0.0761 + 0.0525i 0.0266 + 0.0790i

−0.0128− 0.0368i −0.0761− 0.0525i 0.3784 + 0.0000i 0.0327− 0.2367i

−0.0332− 0.0071i 0.0266− 0.0790i 0.0327 + 0.2367i 0.1977 + 0.0000i



CWR1 =


0.0038 + 0.0000i 0.0043 + 0.0050i 0.0040− 0.0222i 0.0290− 0.0090i

0.0043− 0.0050i 0.0788 + 0.0000i 0.0248− 0.0104i −0.0043− 0.0392i

0.0040 + 0.0222i 0.0248 + 0.0104i 0.3943− 0.0000i −0.0138− 0.0196i

0.0290 + 0.0090i −0.0043 + 0.0392i −0.0138 + 0.0196i 0.4547− 0.0000i


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CR2 =


0.2368 + 0.0000i −0.0145− 0.0144i −0.0060 + 0.0126i −0.0077 + 0.0024i

−0.0145 + 0.0144i 0.1859 + 0.0000i −0.0143 + 0.0101i 0.0101 + 0.0213i

−0.0060− 0.0126i −0.0143− 0.0101i 0.2635 + 0.0000i 0.0047− 0.0523i

−0.0077− 0.0024i 0.0101− 0.0213i 0.0047 + 0.0523i 0.2169 + 0.0000i



CWR2 =


0.1685− 0.0000i −0.0003− 0.0020i 0.0008− 0.0028i 0.0013 + 0.0009i

−0.0003 + 0.0020i 0.1930 + 0.0000i 0.0017− 0.0033i −0.0020− 0.0049i

0.0008 + 0.0028i 0.0017 + 0.0033i 0.2548 + 0.0000i −0.0031− 0.0055i

0.0013− 0.0009i −0.0020 + 0.0049i −0.0031 + 0.0055i 0.2797− 0.0000i



ΓE =


0.7690 + 0.0000i −0.0211− 0.0217i −0.0179 + 0.0165i −0.0137 + 0.0122i

−0.0211 + 0.0217i 0.6860− 0.0000i −0.0176 + 0.0122i 0.0121 + 0.0426i

−0.0179− 0.0165i −0.0176− 0.0122i 0.8117 + 0.0000i 0.0059− 0.0893i

−0.0137− 0.0122i 0.0121− 0.0426i 0.0059 + 0.0893i 0.7436− 0.0000i



ΓWE =


0.6520− 0.0000i 0.0006− 0.0049i 0.0012− 0.0078i 0.0042− 0.0003i

0.0006 + 0.0049i 0.7102 + 0.0000i 0.0073− 0.0114i −0.0005− 0.0160i

0.0012 + 0.0078i 0.0073 + 0.0114i 0.7941 + 0.0000i −0.0143− 0.0138i

0.0042 + 0.0003i −0.0005 + 0.0160i −0.0143 + 0.0138i 0.8426 + 0.0000i



ΓR1 =


0.1931 + 0.0000i −0.0353− 0.0297i −0.0513 + 0.0159i −0.0207 + 0.0297i

−0.0353 + 0.0297i 0.0565 + 0.0000i −0.0890 + 0.0451i 0.0235 + 0.0755i

−0.0513− 0.0159i −0.0890− 0.0451i 0.4016 + 0.0000i 0.0368− 0.2762i

−0.0207− 0.0297i 0.0235− 0.0755i 0.0368 + 0.2762i 0.2140 + 0.0000i


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ΓWR1 =


0.0027− 0.0000i 0.0010 + 0.0017i 0.0034− 0.0211i 0.0186 + 0.0051i

0.0010− 0.0017i 0.0444− 0.0000i 0.0426− 0.0235i −0.0120− 0.0711i

0.0034 + 0.0211i 0.0426 + 0.0235i 0.3245 + 0.0000i −0.0401− 0.0750i

0.0186− 0.0051i −0.0120 + 0.0711i −0.0401 + 0.0750i 0.4678 + 0.0000i



ΓR2 =


0.2046 + 0.0000i −0.0106− 0.0111i −0.0096 + 0.0068i −0.0068 + 0.0057i

−0.0106 + 0.0111i 0.1630 + 0.0000i −0.0109 + 0.0063i 0.0068 + 0.0213i

−0.0096− 0.0068i −0.0109− 0.0063i 0.2314 + 0.0000i 0.0030− 0.0478i

−0.0068− 0.0057i 0.0068− 0.0213i 0.0030 + 0.0478i 0.1937 + 0.0000i



ΓWR2 =


0.1473 + 0.0000i −0.0010− 0.0035i 0.0007− 0.0040i 0.0004 + 0.0015i

−0.0010 + 0.0035i 0.1738 + 0.0000i 0.0030− 0.0051i −0.0026− 0.0088i

0.0007 + 0.0040i 0.0030 + 0.0051i 0.2199 + 0.0000i −0.0053− 0.0103i

0.0004− 0.0015i −0.0026 + 0.0088i −0.0053 + 0.0103i 0.2454 + 0.0000i


The corresponding sum of squared distances from the various central points are

shown in Table 3.1.
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N∑
n=1

d2
E

N∑
n=1

d2
WE

N∑
n=1

d2
R1

N∑
n=1

d2
WR1

N∑
n=1

d2
R2

N∑
n=1

d2
WR2

CE 484.2901 482.3316 507.8601 507.1634 508.1945 507.3834

CWE 484.2901 482.3316 507.8601 507.1634 508.1945 507.3834

CR1 555.7308 555.1512 374.6509 376.0498 390.8902 391.6534

CWR1 555.9241 553.5835 375.6121 375.0809 384.3298 383.7161

CR2 555.8356 553.5569 376.9549 376.5047 377.5626 376.9539

CWR2 555.9963 553.5435 377.1434 376.5106 377.6096 376.9076

ΓE 489.1917 487.2034 460.3570 557.0871 460.6884 507.3834

ΓWE 489.1917 487.2034 460.3570 557.0871 460.6884 507.3834

ΓR1 561.1248 560.7709 375.5103 377.5273 412.0111 414.0201

ΓWR1 561.5835 559.3636 376.3586 376.0465 395.4412 395.0649

ΓR2 561.0785 558.7656 377.3453 376.9052 378.0116 377.4115

ΓWR2 561.2166 558.7609 377.5129 376.9073 378.0489 377.3589

Table 3.1: Sum of squared distances from N = 500 PSD matrices

where d2
x is short for d2

x (∼,Pn) with “∼” denoting the corresponding central point

of N = 500 PSD matrices.

Example 2:

We now generate only N = 6 noise PSD matrices and evaluate their corresponding
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central points. These are given below:

CE =


0.7646− 0.0000i −0.1105 + 0.4338i −0.0721 + 0.0569i −0.0528 + 0.2884i

−0.1105− 0.4338i 0.9486− 0.0000i 0.0111− 0.3087i 0.0961− 0.0445i

−0.0721− 0.0569i 0.0111 + 0.3087i 0.7616− 0.0000i 0.0020− 0.1285i

−0.0528− 0.2884i 0.0961 + 0.0445i 0.0020 + 0.1285i 0.1843− 0.0000i



CWE =


0.8058− 0.0000i 0.3018− 0.1907i −0.3230− 0.3818i 0.1505− 0.1864i

0.3018 + 0.1907i 0.3710 + 0.0000i 0.0688− 0.0990i 0.1359− 0.1335i

−0.3230 + 0.3818i 0.0688 + 0.0990i 0.5697 + 0.0000i −0.1840 + 0.1235i

0.1505 + 0.1864i 0.1359 + 0.1335i −0.1840− 0.1235i 0.9543− 0.0000i



CR1 =


0.4358 + 0.0000i −0.1846 + 0.4976i 0.1747 + 0.2348i −0.0031 + 0.1374i

−0.1846− 0.4976i 0.6462 + 0.0000i 0.1941− 0.2990i 0.1582− 0.0547i

0.1747− 0.2348i 0.1941 + 0.2990i 0.1966 + 0.0000i 0.0728 + 0.0568i

−0.0031− 0.1374i 0.1582 + 0.0547i 0.0728− 0.0568i 0.0434 + 0.0000i



CWR1 =


0.6084 + 0.0000i 0.1651− 0.2604i −0.2191− 0.3594i −0.0780− 0.2727i

0.1651 + 0.2604i 0.1563 + 0.0000i 0.0944− 0.1913i 0.0956− 0.1074i

−0.2191 + 0.3594i 0.0944 + 0.1913i 0.2912− 0.0000i 0.1892 + 0.0521i

−0.0780 + 0.2727i 0.0956 + 0.1074i 0.1892− 0.0521i 0.1322 + 0.0000i



CR2 =


0.2745 + 0.0000i −0.1143 + 0.2721i 0.0573 + 0.0474i −0.0081 + 0.1033i

−0.1143− 0.2721i 0.4639 + 0.0000i 0.0202− 0.2234i 0.0796− 0.0377i

0.0573− 0.0474i 0.0202 + 0.2234i 0.2881 + 0.0000i 0.0090− 0.0154i

−0.0081− 0.1033i 0.0796 + 0.0377i 0.0090 + 0.0154i 0.0468 + 0.0000i


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CWR2 =


0.3596 + 0.0000i 0.1059− 0.0953i −0.1737− 0.1861i 0.0767− 0.1419i

0.1059 + 0.0953i 0.0991− 0.0000i 0.0171− 0.0678i 0.1034− 0.0711i

−0.1737 + 0.1861i 0.0171 + 0.0678i 0.2227− 0.0000i −0.0144 + 0.0580i

0.0767 + 0.1419i 0.1034 + 0.0711i −0.0144− 0.0580i 0.3362 + 0.0000i



ΓE =


0.4898− 0.0000i −0.2091 + 0.3791i 0.1445 + 0.0328i −0.0281 + 0.1909i

−0.2091− 0.3791i 0.8265− 0.0000i −0.0090− 0.3423i 0.1129− 0.0924i

0.1445− 0.0328i −0.0090 + 0.3423i 0.6521− 0.0000i −0.0180− 0.0269i

−0.0281− 0.1909i 0.1129 + 0.0924i −0.0180 + 0.0269i 0.1413− 0.0000i



ΓWE =


0.7112− 0.0000i 0.2025− 0.1347i −0.3647− 0.2935i 0.1520− 0.3325i

0.2025 + 0.1347i 0.2548− 0.0000i 0.0187− 0.0736i 0.2049− 0.1161i

−0.3647 + 0.2935i 0.0187 + 0.0736i 0.4746 + 0.0000i 0.0012 + 0.1573i

0.1520 + 0.3325i 0.2049 + 0.1161i 0.0012− 0.1573i 0.7209 + 0.0000i



ΓR1 =


0.3634 + 0.0000i −0.1849 + 0.4220i 0.3112 + 0.0645i −0.0093 + 0.1260i

−0.1849− 0.4220i 0.5840 + 0.0000i −0.0834− 0.3941i 0.1510− 0.0533i

0.3112− 0.0645i −0.0834 + 0.3941i 0.2779 + 0.0000i 0.0144 + 0.1095i

−0.0093− 0.1260i 0.1510 + 0.0533i 0.0144− 0.1095i 0.0439 + 0.0000i



ΓWR1 =


0.5389 + 0.0000i 0.0235− 0.1598i −0.3024− 0.3033i 0.0663− 0.3361i

0.0235 + 0.1598i 0.0484− 0.0000i 0.0767− 0.1029i 0.1025 + 0.0050i

−0.3024 + 0.3033i 0.0767 + 0.1029i 0.3404 + 0.0000i 0.1520 + 0.2259i

0.0663 + 0.3361i 0.1025− 0.0050i 0.1520− 0.2259i 0.2177− 0.0000i


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ΓR2 =


0.2564 + 0.0000i −0.1568 + 0.2950i 0.1832 + 0.0452i −0.0040 + 0.0912i

−0.1568− 0.2950i 0.4891 + 0.0000i −0.0447− 0.2948i 0.0946− 0.0547i

0.1832− 0.0452i −0.0447 + 0.2948i 0.2782 + 0.0000i 0.0082 + 0.0420i

−0.0040− 0.0912i 0.0946 + 0.0547i 0.0082− 0.0420i 0.0381 + 0.0000i



ΓWR2 =


0.3944− 0.0000i 0.0881− 0.1013i −0.2036− 0.1995i 0.0711− 0.2368i

0.0881 + 0.1013i 0.0763 + 0.0000i 0.0196− 0.0754i 0.1134− 0.0616i

−0.2036 + 0.1995i 0.0196 + 0.0754i 0.2313− 0.0000i 0.0689 + 0.1183i

0.0711 + 0.2368i 0.1134 + 0.0616i 0.0689− 0.1183i 0.2943 + 0.0000i


The sum of squared distances from various central points are shown in Table 3.2:
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N∑
n=1

d2
E

N∑
n=1

d2
WE

N∑
n=1

d2
R1

N∑
n=1

d2
WR1

N∑
n=1

d2
R2

N∑
n=1

d2
WR2

CE 4.7006 4.6207 5.1430 5.1085 5.3209 5.2823

CWE 4.7006 4.6207 5.1430 5.1085 5.3209 5.2823

CR1 5.4567 5.3972 3.3767 3.3942 4.9472 4.9328

CWR1 5.4571 5.3955 3.3774 3.3936 4.9464 4.9305

CR2 5.5551 5.4605 3.7569 3.7362 4.0563 4.0256

CWR2 5.5562 5.4587 3.7591 3.7361 4.0570 4.0249

ΓE 4.7997 4.7165 4.8696 5.3834 5.0566 5.2823

ΓWE 4.7997 4.7165 4.8696 5.3834 5.0566 5.2823

ΓR1 5.4316 5.3564 3.4771 3.4936 4.9967 4.9708

ΓWR1 5.4296 5.3519 3.4834 3.4987 4.9957 4.9682

ΓR2 5.5280 5.4303 3.7438 3.7248 4.1088 4.0770

ΓWR2 5.5235 5.4235 3.7447 3.7238 4.1119 4.0788

Table 3.2: Sum of squared distances from N = 6 PSD matrices

where d2
x is short for d2

x (∼,Pn) with “∼” denoting the corresponding central point

of N = 6 PSD matrices, From Tables 3.1 and 3.2, it can be seen that in each column,

the corresponding mean has the minimum sum of squared distances from all the PSD

matrices, which is highlighted in bold. Therefore, it can be convinced that the mean

located by our algorithm is the true mean.

For median, it is defined as the matrix that has the minimum sum of distances

from all the PSD matrices in the group. Similarly, by making the comparison between
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the sum of distances corresponding to various means and medians, the validity of our

algorithms for locating the median can be shown in the following examples.

Example 3:

Using the same N = 500 noise PSD matrices as well as the corresponding central

points as in Example 1, the sum of distances from various central points are shown

in Table 3.3.

N∑
n=1

dE

N∑
n=1

dWE

N∑
n=1

dR1

N∑
n=1

dWR1

N∑
n=1

dR2

N∑
n=1

dWR2

CE 446.3844 446.3844 500.4792 500.1360 500.6434 500.2446

CWE 446.3844 446.3844 500.4792 500.1360 500.6434 500.2446

CR1 469.5990 469.3148 420.2200 420.8369 429.6289 429.8723

CWR1 469.5123 468.4683 420.9276 420.5898 426.0617 425.6860

CR2 469.0966 468.0816 422.0814 421.8038 422.4375 422.0678

CWR2 469.1722 468.0833 422.1890 421.8199 422.4627 422.0542

ΓE 443.4276 442.4832 474.9875 524.1424 475.1587 500.2446

ΓWE 443.4276 442.4832 474.9875 524.1424 475.1587 500.2446

ΓR1 472.2872 472.1236 419.7372 420.6542 440.4412 441.3058

ΓWR1 472.4080 471.4313 420.3166 420.0774 431.4471 431.1869

ΓR2 471.6238 470.5996 421.7746 421.5026 422.1653 421.7998

ΓWR2 471.6898 470.6040 421.8706 421.5146 422.1850 421.7803

Table 3.3: Sum of distances from N = 500 PSD matrices

where dx is short for dx (∼,Pn) with “∼” denoting the corresponding central points
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given in Example 1.

Example 4:

Using the same N = 6 noise PSD matrices and the same central points as in Example

2, the sum of distances from various central points are shown in Table 3.4.

N∑
n=1

dE

N∑
n=1

dWE

N∑
n=1

dR1

N∑
n=1

dWR1

N∑
n=1

dR2

N∑
n=1

dWR2

CE 5.1502 5.1010 5.5278 5.5078 5.6242 5.6027

CWE 5.1502 5.1010 5.5278 5.5078 5.6242 5.6027

CR1 5.4780 5.4396 4.3773 4.3769 5.3245 5.3072

CWR1 5.4779 5.4386 4.3777 4.3764 5.3251 5.3068

CR2 5.4945 5.4491 4.6599 4.6436 4.8532 4.8325

CWR2 5.4943 5.4476 4.6602 4.6427 4.8533 4.8319

ΓE 5.1025 5.0530 5.3433 5.6287 5.4469 5.6027

ΓWE 5.1025 5.0530 5.3433 5.6287 5.4469 5.6027

ΓR1 5.3935 5.3475 4.3257 4.3220 5.2356 5.2127

ΓWR1 5.3909 5.3435 4.3263 4.3214 5.2352 5.2110

ΓR2 5.4459 5.3991 4.5923 4.5759 4.8277 4.8059

ΓWR2 5.4430 5.3950 4.5902 4.5727 4.8280 4.8055

Table 3.4: Sum of distances from N = 6 PSD matrices

where dx is short for dx (∼,Pn) with “∼” denoting the corresponding central

points given in Example 2. From Tables 3.3 and 3.4, it can be observed that in each

column, the corresponding median has the minimum sum of distances from all the
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PSD matrices, which is highlighted in bold. That is to say, our algorithms are effective

to find medians corresponding to different distance measures.

After verifying the validity of our algorithms for finding means and medians of

random PSD matrices, we can employ them in the practical applications.
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Chapter 4

Application to the Detection of

Sonar Signals

Having established the concepts of different distance measures in chapter 2 and the

algorithms of mean and median on the PSD manifold corresponding to those distances

in chapter 3, in this chapter, we will explore how we can apply these results to signal

processing. Here, we investigate the particular application about the detection of

narrow-band passive sonar signals.

A sonar system is a system that uses sound propagation in underwater environ-

ments, usually the ocean, for detection, communication and navigation. The main

purpose of sonar systems is to analyse the acoustic signals received by a sensor system

and classify the nature of target that has been detected [30]. There are two types of

sonar systems: active and passive. The difference between these two systems is that

an active sonar system transmits acoustic signals into the water for the purpose of

producing echoes, whereas a passive sonar system, instead of emitting any signals,

listens to the signals emanated from the underwater targets, using an array of sensors
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[31]. In this chapter, we perform the signal detection in a passive sonar system. The

sensors in a passive sonar system are commonly arranged in the form of a uniformly

spaced linear array, each of which receives acoustic signals from different directions.

The received signals are then passed through a Fourier analyzer to determine the fre-

quency components. The FFT of the received signals at different sensors constitute

the output of a beamformer [32]. To perform signal detection, the beam data may

need further processing.

In a sonar environment, the received signals consist of two parts: the desired

signals from the target vessels and the ambient noise generated by the wind, waves,

ocean creatures and even sea traffic. In our consideration, the noise is assumed to be

stationary, zero mean Gaussian, and with a flat spectrum over the frequency band of

analysis. On the other hand, the signals are usually originated from the mechanical

vibrations of the propagation system, fast rotation of the propeller and auxiliary ma-

chinery in the moving submarine. These rotations and vibrations generate different

sets of harmonics, propagated under multi-path environment. Therefore, the received

signals are usually regarded as random narrow-band Gaussian. In the following sec-

tions, we will examine the process of determining if a signal is present in a particular

frequency bin of the output of a beamformer.

4.1 Signal Model and Classical Detection Method

Consider a uniform linear array with P sensors in total such as Fig. 4.1, where the

signal propagates with a known angle of arrival θ at a velocity c and the separation

between sensors is ∆.
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Figure 4.1: Geometry of the linear array

At the instant nT , with T being the sampling period, the discrete-time signal

received at pth sensor, p = 1, 2, · · · , P , can be represented as xp(t − p∆ sin θ/c).

Then, the summed output of the sensors, i.e., the beam, can be written as

b(nT, θ) =
P∑
p=1

xp(t− p∆ sin θ/c) (4.1)

In order to achieve more stable power spectrum, the output signal collected by the

pth sensor is divided into M segments: xpm(nT ),m = 1, · · · ,M . The DFT of the

beam of the received signal at the frequency bin kω in the mth segment is given by

Bm(kω, θ) =
P∑
p=1

Xpm(kω)e−jp(kω/c)∆ sin θ, m = 1, · · · ,M (4.2)

where Xpm(kω) is the DFT of the received signal xpm(nT ) at frequency kω. An M×1

vector can then be formed as

βk , β(kω, θ) = [B1(kω, θ) B2(kω, θ) · · · BM(kω, θ)]T (4.3)
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The power spectrum can be constituted as

Zx(kω, θ) =
1

M
βHk βk (4.4)

In classical binary hypothesis testing, we examine the signal power at kω and compare

it with the mean noise power. If the true mean noise power Z̄ν is known, then we can

apply the Neyman-Pearson strategy [33] and the decision rule using the likelihood

ratio can be written as [34]

Zx(kω)

Z̄ν

H1

≷
H0

rc (4.5)

where rc is a positive number decided by a constant false alarm rate using a priori

probability density function of noise. However, in practice, Z̄ν is not available and

thus the mean noise power has to be estimated as Ẑν to replace Z̄ν in Eq. (4.5) for the

detection rule. There are several methods [34] to obtain the estimated noise power

Ẑν , of which the most common one is the split window moving average (SWMA)

method. It shows that the estimated noise power in a particular frequency bin kω

can be obtained by averaging the samples in the 2L neighbouring frequency bins of

the same beam, L samples on either side of kω. This method is unbiased by assuming

that the neighbouring bins contain noise samples only. If there are signals dropped

in the neighbouring frequency bins, the estimation may be biased. The coefficients

of the SWMA filter with window size 2L+ 1 are given by

a−L = · · · = a−1 = a1 = · · · = aL =
1

2L
, a0 = 0 (4.6)
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Now, by varying the threshold rc from 0 → ∞, we can plot the complete receiver

operation characteristic (ROC) [33] which shows the probability of detection PD,

with the corresponding probability of false alarm PF .

4.2 Signal Detection on the PSD Matrix Manifold

In this section, we will set up the detection procedure for the narrow-band sonar

signals using the PSD matrix as the detection feature [25]. As we mentioned ear-

lier, since PSD matrices possess additional correlation information between different

segments of measured signals, we expect more accurate detection results.

4.2.1 Binary Hypothesis Testing

For each frequency kω, the M ×M PSD matrix can be formed by the outer product

of the beamformer output given in Eq. (4.3) such that

Pk = βkβ
H
k (4.7)

To decide if there is noise only or (signal+noise) in the frequency bin kω can be

formulated as a binary decision problem. Let us separate these matrices into two

groups: N for the noise group and S for the (signal+noise) group. Here, let us

use the term “central point” to refer to either mean or median among the signal or

noise PSD matrices, and we denote the central point of signal by Ms and the central

point of noise by Mν . If Pk ∈ N , our hypothesis claims that there is a certain

similarity between Pk and Mν ; otherwise, Pk is dissimilar to Mν . The similarity can

be evaluated by the distance between the two matrices such that any PSD matrix
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within the distance of rα from Mν will be decided as a noise matrix, thus our decision

rule can be given by

dx(Pk,Mν)
H1

≷
H0

rα (4.8)

Eq. (4.8) uses Mν as a reference to decide whether Pk is a noise or contains signal.

On the other hand, the PSD matrix Pk is expected to satisfy the following model.

Pk =


Ms +Mν signal present

0 +Mν no signal

(4.9)

This binary hypothesis implies, on average, the PSD matrix in a certain frequency

bin is either Ms or 0, which means we can translate the reference to the origin and

the hypothesis decision rule will be

dx(Pk −Mν ,0)
H1

≷
H0

rα (4.10)

where we compare the distance between the PSD matrix under test less the central

noise point and the null matrix, to an assigned radius rα. Parallel to the Neyman-

Pearson strategy, given a prescribed maximum allowable false alarm rate of α%, the

radius rα makes a circle centred at Mν such that beyond this boundary, there will be

no more than α% of the noise PSD matrices on the manifold. This can be interpreted

as shown in the following Fig. 4.2.
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Figure 4.2: Detection regions on manifold

The noise PSD matrices and signal PSD matrices are respectively denoted by the

hollow dots and solid dots. The boundary is marked out by a certain radius from the

central point denoted by the solid star. The radius rα can be established from the prior

knowledge of the histogram distribution of normalized noise PSD matrices. By choos-

ing different distance measures of dx (i.e., dE, dR1 , dR2 , dWR1 , dWR2), together with the

corresponding centre pointsMν (i.e., EMn,EMd,WEMn,WEMd,RMn1,WRMn1,RMd1,WRMd1,

RMn2,WRMn2,RMd2,WRMd2), we have different detectors.

Again, as we mentioned in conventional detection, in practice we do not know the
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true central point of the noise PSD matrices. Therefore, an estimate M̂ν has to be

made to replace Mν in Eq. (4.10). Employing the SWMA method, we can obtain

the estimated central point M̂ν by evaluating 2L PSD matrices in the neighbourhood

of Pk with the assumption that all of those 2L matrices are from noise only samples.

The estimation of noise centre can follow various algorithms that we developed in

chapter 3. Then, the decision rule in practice becomes

dx(Pk − M̂ν ,0)
H1

≷
H0

rα (4.11)

By changing the value of rα, the ROC of different detectors can be obtained and a

comparison of the performance can be made.

4.2.2 Choice of Decision Reference

When ED is chosen to be the distance measure, the two decision rules in Eqs. (4.8)

and (4.10) are indentical because

dE(Pk,Mν) =
√

tr[(Pk −Mν)(Pk −Mν)H ] = dE(Pk −Mν ,0) (4.12)

However, if we use RD (either dR1 or dR2) in the two decision rules, then the results

will be different since dR(Pk,Mν) 6= dR(Pk −Mν ,0). In the following, we will use

dR2 to demonstrate this point and explain the reason of choosing Eq. (4.10) as the

decision rule. The cases of dR1 , dWR1 and dWR2 can follow the similar illustrations.
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Applying the expression of dR2 to Eqs. (4.8) and (4.10), we have

dR2(Pk,Mν) =

√
trPk + trMν − 2tr(P

1/2
k M

1/2
ν ) (4.13)

dR2(Pk −Mν ,0) =
√
|trPk − trMν | (4.14)

Since we need to maintain the positivity of RD, the absolute value is taken in Eq.

(4.14). Taking the Riemannian mean C of a group of noise PSD matrices as the

central point, the comparison between dR2(P ,C) and dR2(P − C,0) is shown in

Fig. 4.3 from which a distortion with the solid curve can be seen by shifting the

reference point from C to 0. Similar observations and interpretations persist for the

Riemannian median as the detection reference.
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Figure 4.3: Distortion of RD measured from mean by reference shifting

The horizontal axis of Fig. 4.3 represents the increasing RD between different

points and C, where the distance in the first quadrant is measured from C to the

points beyond given by P = C + iαC with 0 < α ≤ 1 being the step size and

i = 0, 1, · · ·. The increasingly “negative” distance in the third quadrant is measured

from the points extended in the opposite direction with i = 0,−1, · · ·. Since the

RD is always positive, the negative signs merely represent the direction in which the

distance is measured. On the other hand, the vertical axis is the corresponding RD

measured from the shifted reference 0.
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Examination of Fig. 4.3 reveals that the distance measured by shifting the refer-

ence to 0 has a high expansion rate in the neighbourhood of C. As the point goes

away from C, in both positive and negative directions, the expansion rate decreases

and ends up with a contraction. This tells us, by shifting the reference from C to 0,

the distributions of the noise and signal PSD matrices are distorted with respect to

the uneven distance contraction. Consequently, the probability of false alarm and the

probability of missing will be affected, which is presented in Fig. 4.4 and Fig. 4.5.
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Figure 4.4: False alarm rates at corresponding distances
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Figure 4.5: Missing rates at corresponding distances, SNR = 0dB

Fig. 4.4 shows the corresponding distance at the same false alarm rate with

reference to C and 0. It can be seen that for a certain probability of false alarm,

the distance measured by shifting reference to 0 is shorter. In other words, the same

distance yields lower false alarm rate than when referenced to C. On the other hand,

Fig. 4.5 shows the corresponding distance at the same missing rate with reference

to C and 0. Although shifting reference to 0 increases the missing rate before the

crossing point, the decrease in false alarm rate is much larger. Therefore, a conclusion

can be obtained that the detection performance with shifted reference to 0 will be

more desirable. Similar observations and interpretations persist if other RD measures

are used in Eqs. (4.8) and (4.10). Hence, we will choose Eq. (4.10) (Eq. (4.11) in

practice) as the detection rule in the following experiments.
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4.2.3 Optimum Weighting Matrix for Signal Detection

As we mentioned earlier, the purpose of weighting a distance is to increase the ef-

ficiency of signal processing by utilizing the prior information to emphasize certain

parts of feature matrices as well as deemphasize others. In chapter 2, we have seen

how the different distance measures can be weighted. For signal detection, we aim

to distinguish (signal+noise) from noise. The similarity between two feature PSD

matrices Pm and Pn can be defined as the amount of correlation such that

σ(Pm,Pn) = tr(PH
mPn) (4.15)

Suppose that in our prior knowledge, we have a collection of (signal+noise) PSD

matrices and noise only PSD matrices. If we divide the collected matrices into two

classes: (signal+noise) denoted by S and noise only denoted by N , the optimum

weighting matrix should maximize the correlation between similar classes and mini-

mize the correlation between dissimilar classes. For the case of our detection, we need

to determine whether a PSD matrix is (signal+noise) or noise only and the decision

rule in Eq. (4.11) is made by judging the distance between the estimated noise matrix

and the PSD matrix under test. Therefore, we need to seek for an optimum weighting

matrix W = ΩΩH which minimizes the following objective function

Fo(Ω) = tr(M−1
sWMνW) (4.16)

where MsW and MνW are the weighted central points of (signal+noise) and noise

only PSD matrices, respectively. Since tr(A−1B) ≥ (trA)−1(trB) [35], the upper
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bound of Eq. (4.16) can be given by

Fo(Ω) = tr
[
(MsWMsW)−1(MsWMνW)

]
≥ tr(MsWMsW)−1tr(MsWMνW) (4.17)

Hence, minimizing Fo(Ω) is in fact minimizing the upper bound of the ratio of the

correlation between central point of dissimilar classes to that of similar class.

When the central point refers to WRMn1, WRMd1 or WRMd2, the optimum

weighting matrix is difficult to be directly obtained from Eq. (4.16) since these

central points can only be evaluated numerically based on the methods that assume

the weighting matrix to be fixed. As a result, it requires an iteration process to find

the optimum weighting in terms of these central points. On the other hand, when

the central point refers to WRMn2 which can be located without iterative procedure,

the awkward expression of WRMn2 involves the sum of square roots of matrices and

thus makes the manipulation of the right side of Eq. (4.16) difficult as well. In any

case, we need the solution of the optimum weighting for fixed central points for which

the following theorem is given.

Theorem 5. Suppose we have the objective function such that

Fo = tr
[
(ΩHΠsΩ)−1(ΩHΠνΩ)

]
(4.18)

where Πs and Πν are certain central points chosen from (signal+noise) and noise

PSD matrices, respectively. If {λ1, · · · , λM} and {u1, · · · ,uM} are respectively the

eigenvalues and eigenvectors of Π−1
s Πν, then the maximum and minimum value of

Fo are achieved when Ωop is resptectively composed of the first K and the last K
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eigenvectors of {u1, · · · ,uM}, where K ≤M . �

Proof. The proof of Theorem 5 is shown in Appendix A.3. �

In general, the matrix Π−1
s Πν are not Hermitian, thus the eigenvectors may not

be orthonormal, i.e., W 6= IM . However, in our test, Π−1
s Πν is extremely close

to Hermitian, i.e., the eigenvalues are real and the eigenvectors are orthonormal,

if we choose K = M , then both equalities hold in Eq. (A.19), and the objective

function becomes a constant. Therefore, the resulting weighting matrix becomes

W = IM , which has no effect. To maximize the possible effect of weighting, we

choose K = M − 1. In this case, Fo reaches the maximum and minimum value

depending on whether we construct Ωop using the eigenvectors corresponding to the

K largest, or the K smallest eigenvalues. In Theorem 5, it presents the way to

find the optimum weighting matrix given the (signal+noise) and noise central points.

However, this process should be carried out together with that of locating the different

central points according to dWR1 and dWR2 . Thus, combining Theorem 5 with the

algorithms attained in chapter 3, we give the following algorithm to get the optimum

weighting matrix.

General algorithm for finding optimum weighting matrix :

1. Set accuracy indicators εν and εs.

2. For i = 0, initialize the central points:

Π
(i)
s = 1

Ns

∑
Pm∈S Pm, Π

(i)
ν = 1

Nν

∑
Pn∈N Pn.

3. For K = M , use Theorem 5 together with Π
(i)
s and Π

(i)
ν to obtain Ω(i).

4. Form the weighted signal group and the weighted noise group such that
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S(i)
W =

{
Ω(i)HPmΩ(i)

}
Pm∈S

, N (i)
W =

{
Ω(i)HPnΩ

(i)
}
Pn∈N

.

5. Lift these weighted PSD matrices to the Euclidean subspace using the respective

mapping and apply the respective algorithm to locate the central points M̃
(i)
sW

and M̃
(i)
νW, where M can stand for the mean C or the median Γ. Then project

them back to the manifold to obtain M
(i)
sW and M

(i)
νW.

6. Calculate the unweighted central points:

M
(i)
sRw =

(
Ω(i)

)−H
M

(i)
sW

(
Ω(i)

)−1
, M

(i)
νRw =

(
Ω(i)

)−H
M

(i)
νW

(
Ω(i)

)−1
.

7. If dR(M
(i)
sRw,M

(i−1)
sRw ) < εs and dR(M

(i)
νRw,M

(i−1)
νRw ) < εν , save Πs = M

(i)
sRw and

Πν = M
(i)
νRw, then go to Step 8. Otherwise, let Π

(i+1)
s = M

(i)
sRw and Π

(i+1)
ν =

M
(i)
νRw. Let i→ i+ 1 and go back to Step 3.

8. Set K = M − 1 and employ Theorem 5 together with the saved Πs and Πν to

obtain the optimum weighting matrix Ωop. �

The above algorithm can be employed to find the optimum weighting matrix for

WRMn1, WRMn2, WRMd1 and WRMd2 by choosing the mapping for lifting and

projecting according to the specific RD, together with applying the corresponding

algorithm for the mean or median as the central point.

4.3 Simulation Results

In this section, we will examine and evaluate the performance of the hypothesis deci-

sion rule in Eq. (4.11) for different distance measures by computer experiments.
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First, we transmit signals comprising of a set of sinusoids of which the ith signal

is generated by the following model:

si = ai cos(2πfinT + φi) + bi sin(2πfinT + φi) (4.19)

where i = 1, · · · , Ns with Ns being the number of signals, ai and bi are independent

Gaussian random variables with zero mean and variance σ2
s , fi is the frequency of

the ith signal, n = 1, · · · , NT with NT being the number of sampling points, T is

the sampling period and φi is the random phase evenly distributed between −π and

π. The noise is generated as a sequence of white Gaussian with zero mean and σ2
ν

variance. The signal-to-noise ratio (SNR) ρ in the following paragraphs refers to the

SNR here measured by 10 log(σ2
s/σ

2
ν). Then the transmitted signal, together with

the additive noise, is received by a uniform linear array of sensors with angle of

arrival θ = 60◦. Then the received signal is passed through the DFT analyser and

the frequency-domain beamformer. Consequently, we obtain, for each frequency bin,

the output of the beamformer which is the vector βk given in Eq. (4.3). The outer

product of βk yields the PSD matrix Pk at the kth frequency bin which is positive

semi-definite Hermitian. These PSD matrices are going to be processed for detection

on the manifold. Furthermore, we need to collect a library of (signal+noise) and

noise only PSD matrices in order to calculate a nominally optimum weighting matrix

and prepare it for the weighting of the RD. Just as we mentioned in the previous

section, we employ SWMA method to estimate the average of the noise matrices.

Here, the term “average” is used to indicate either the mean or median. Based on

the SWMA filter, we use the different algorithms in chapter 3 to estimate, for various

distance measures, the average of the 2L neighbouring sample matrices. Notice that
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for the first L matrices and the last L matrices of the beam, we also need to apply

the SWMA method to make the detection, hence we add L noise matrices each to

the beginning and end of the beam. For the PSD matrix in each frequency bin, from

the originally first matrix to the originally last matrix, we use the decision rule in

Eq. (4.11) to judge whether it is with signal or noise only. Then the probability of

detection is calculated as

PD =
Nd

Ns

(4.20)

where Nd is the counted number of successfully detected narrow-band signal matrices

which has a larger distance from the estimated noise matrix than rα, and Ns is the

total number of the known signal matrices in the beam. On the other hand, the

probability of false alarm is calculated as

PFA =
Nfa

Nn

(4.21)

where Nfa is the counted number of noise matrices that have a larger distance from

the estimated noise matrix than rα, and Nn is the total number of noise matrices in

the beam, i.e. Nn = Nb −Ns with Nb being the number of frequency bins.

Now our experiments are going to substitute one by one, the various distance

measures dE, dR1 , dR2 , their weighted versions dWE, dWR1 and dWR2 , together with

their corresponding estimated means and medians into Eq. (4.11) so that we can

examine the number of successful detections and the number of false alarms for a

particular threshold radius rα. Varying rα from 0→∞ will yield the whole range of

probabilities of false alarm and detection, giving us the ROC of the different detectors.
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We will present our simulation results in the following parts.

4.3.1 ROC results for Reference Translation

We first verify the conclusion predicted in the previous section about the effect of

reference translation by making a comparison of the performance between the two

binary hypothesis testing rules in Eqs. (4.8) and (4.10). Again, we only show the use

of RD dR2 here because the uses of other RD measures achieve similar improvement of

performance when shifting the reference from C to 0. The zoomed ROC performance

of two decision rules in Eqs. (4.8) and (4.10) using dx = dR2 and Mν = CR2 with

SNR at 0dB and 3dB is shown in Fig. 4.6, respectively denoted by dash-dot, asterisk

dash, solid and asterisk solid lines. The abscissas are probabilities of false alarm and

the ordinates are the probabilities of detection.

As we discussed before, the nonlinear contraction resulted from the translation

of reference from CR2 to 0 will lead to the loss in probability of false alarm. It can

be observed from the figure that, for the same probability of false alarm, moving

reference to 0 achieves a gain of over 2% in probability of detection for SNR at 0dB.

And the improvement of performance for SNR at 3dB can approximately reach 2.5%.

Other experiments including the use of dR1 as the distance measure are also carried

out and the similar observations are obtained.
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Figure 4.6: ROC of detectors with translated distance references
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4.3.2 ROC results for Mean as the Detection Reference

Now, we show the cases in which the respective means are chosen to be the central

points as the detection reference for all the different distance measures. Fig. 4.7 and

Fig. 4.8 respectively show the ROC of different detectors at SNR of 0dB and 3dB

having 5 narrow-band signals in the spectrum of Nb = 500 frequency bins. For a

more clear view of the comparison, we enlarge the mid-part of the plots to show the

different ROC performance according to different distance measures. The abscissas

are probabilities of false alarm and the ordinates are the probabilities of detection.

The ROC obtained by employing the decision rule in Eq. (4.11) using dE, dR1 , dR2 ,

dWE, dWR1 , dWR2 and the classical power spectrum are represented by solid, asterisk

solid, dash-dot, plus sign solid, circle solid, upward-pointing triangle solid and dotted

lines, respectively.

It can be seen in Fig. 4.7 and Fig. 4.8 that, as expected, using PSD matrices as

the feature for detection yields obviously better results than using the power spec-

trum Zx(kω). In the case when ρ = 0dB, the improvement in probability of detection

at the same probability of false alarm can be over 3%. Moreover, the use of optimum

weighting further improves the performance of detection using unweighted PSD ma-

trices by another 3%. The result of ρ = 3dB is more significant with the improvement

in probability of detection being over 4% and the optimum weighting contributing

another 4%. From the figures, it can be noticed that the performance using dR1 and

dR2 are very close, so are the weighted RD dWR1 and dWR2 . Among all the detectors,

dWR1 and dWR2 have the best performance. In the comparison between using ED

and RD, the ED and weighted ED is marginally below the RD and weighted RD

respectively.
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Figure 4.7: ROC of detectors using mean at 0dB with 5 signals
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Figure 4.8: ROC of detectors using mean at 3dB with 5 signals
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4.3.3 ROC results for Median as the Detection Reference

Then, we consider using the respective medians as the central points for all the

different distance measures. Fig. 4.9 and Fig. 4.10 respectively show the ROC of

different detectors at SNR of 0dB and 3dB under the same condition with using the

mean as the detection feature. It can be seen that the ROC performance ranking is

quite akin to that using mean. In order to facilitate the comparison of performance

between mean and median, we plot Fig. 4.11 which presents the ROC of two detection

features in the same figure at SNR of 3dB. Since the performance of using dR1 and dR2

are very close in all the cases, we only show the performance of dR2 and dWR2 to make

the comparison clear. The ROC obtained by employing mean as the central point

using dE, dWE, dR2 , dWR2 and power spectrum are represented by solid, dashed, plus

sign solid, circle dashed, and dotted lines, respectively, and the ROC obtained using

the corresponding distances but employing median as the central point are plotted

with asterisk solid, diamond solid, square solid and upward-pointing triangle solid

lines, respectively.

It is observed that in these cases when the number of signals Ns is small in

comparison to the number of frequency bins Nb, the difference in performance between

using the mean and the median is negligible for RD and weighted RD, whereas in the

case of ED and weighted ED, the performance of median is lightly superior to that

of mean as the detection feature. Detection of signals at other SNR are also carried

out and similar performance ranking is observed.
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Figure 4.9: ROC of detectors using median at 0dB with 5 signals

72



M.A.Sc. Thesis - Huiying Jiang McMaster - Electrical Engineering

0.1 0.15 0.2 0.25 0.3

0.65

0.7

0.75

0.8

0.85

P
FA

P
D

ROC using median at 3dB with N
s
 = 5 signals

 

 

ED
weighted ED
dR

2
weighted dR

2
dR

1
weighted dR

1

power spectrum

Figure 4.10: ROC of detectors using median at 3dB with 5 signals
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4.3.4 Variation of Number of Signals Ns

In this section, we investigate the performance of the various methods under the

condition of having large number of signals in the frequency bin. In other words,

when the number of signals Ns present in the spectrum increases, some of them

may fall into the split window, which introduces bias to the estimation of the noise

centres. In these cases when interference of other signals are present, the use of the

median instead of mean as the central point provides robustness to the estimation

and detection. At ρ = 3dB, the performance of the unweighted and weighted distance

with Ns = 50 are shown in Fig. 4.12 and Fig. 4.13 respectively. Again, due to the

closeness in performance with dR2 and dWR2 , we choose not to show the performance

of dR1 and dWR1 here. In Fig 4.12, presenting the ROC of Ns = 5 as the reference,

we can see that increasing Ns = 50 makes the performance of every unweighted

detector worse. Besides, for the detectors using the mean as the central point, the

performance deteriorates more than those using the median. Similar robustness of

using the median for the optimally weighted RD and ED detectors is shown in Fig.

4.13. In order to enlarge the effect of the signal interference, another comparison is

shown with Ns = 100. In Fig.4.14, it can be observed that at a certain PFA, compared

to the case of Ns = 5, the PD of RD detectors using median and mean approximately

drop by 2% and 2.5% respectively; whereas the PD of ED detectors using median and

mean drop by 3% and 9% respectively. For the optimally weighted distance measures

in Fig. 4.15, the performance of weighted RD detectors using median and mean

approximately decline by 1% and 2% respectively, while the performance of weighted

ED detectors using median and mean decline 2% and 10% respectively.
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From our simulations of detection performance, we can summarize our observa-

tions such that:

1. Due to the existence of nonlinear contraction with the change of reference,

translating the reference to origin in the decision rule, comparing to the case

when referenced at the central point, exhibits better detection performance.

2. In the narrowband signal detection, the use of PSD matrix, with various distance

measures and its corresponding mean or median as the detection feature, yields

superior performance over the use of power spectrum.

3. For both mean and median, the optimally weighted distance (dWR1 , dWR2 and

dWE) outperforms the unweighted distance (dR1 , dR2 and dE). Particularly, the

performance using dR1 and dR2 are very close and when the number of signals

is small, they are both marginally better than that using dE. Likewise, the

performance using dWR1 and dWR2 are also quite close and both more desirable

than that using dWE.

4. In the case of small number of signals present in the spectrum range, the per-

formance using mean and median as the central points are fairly comparable.

Increasing the number of signals has negative effect on both the performance of

mean and median due to the bias on the estimation of noise. However, the de-

tectors using mean disimprove more significantly than those using the median.

And the deterioration of ED is even more obvious especially for the Euclidean

mean, the performance of which has been worse than the power spectrum.
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Chapter 5

Conclusion

5.1 Summary of the Thesis

In this paper, we examined the use of the PSD matrix as the feature for signal pro-

cessing and demonstrated the advantage of applying PSD matrix in the detection of

narrowband sonar signals. We began by introducing the concept of the PSD matrix

manifold. Since PSD matrices are structurally constrained, we considered how the

distance between these matrices could be measured in terms of RD. Li and Wong

have developed the closed-form expressions of RD and weighted RD for the PSD

manifold in [8]. The idea of lifting the geodesic from manifold to the isometric Eu-

clidean subspace was proposed, and then the optimization problem involving RD on

the manifold can be performed in the isometric Euclidean subspace in terms of ED,

which reduces the difficulty in manipulation. According to this concept, various al-

gorithms were developed to locate the mean and the median for different RD. The

EMn can be obtained quite straightforward since it is defined as the arithmetic mean;

nevertheless, an iterative solution based on the steepest decent method was needed
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to find the EMd. For the Riemannian mean, we developed an iterative algorithm to

locate RMn1, while RMn2 has the closed-form expression. The RMd1 and RMd2 can

be achieved by the similar algorithms to those of RMn1 and RMn2 but replacing the

process in the Euclidian subspace with the algorithm of locating EMd. We then put

the mean and median of the PSD matrices into the application of narrowband sonar

signals detection. In order to maximize the correlation between noise PSD matri-

ces while minimizing the correlation between noise and (signal+noise) PSD matrices,

the concept of the optimum weighting matrix for RD was introduced and derived

in terms of a collection of sample PSD matrices. Employing a strategy similar to

Neyman-Pearson criterion, we set up the hypothesis decision rule such that if the dis-

tance between the observed PSD matrix and the estimated noise centre is larger than

the threshold radius, we consider there is a signal at that frequency bin; otherwise,

that frequency bin only contains noise. The decision rule was chosen by shifting the

reference to origin with the consideration of the nonlinear distance distortion. The

simulation results show that using the PSD matrices for detection provides superior

performance compared to using the classical power spectrum. Furthermore, the use

of median as a reference centre exhibits more robustness than that of mean when a

large number of signals present in the spectrum. In summary, although the applica-

tion of PSD matrices for signal processing requires special considerations in distance

measures and also necessitates the development of various algorithms to facilitate the

processing, the performance of detection has been extremely improved. That means

the signal procesing on the PSD manifold appears to be an attractive alternative.
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5.2 Future Work

In the application of sonar signals detection, we apply Eq. (4.11) as the decision

rule. Pk is a rank-1 matrix formed by the outer product of an M -dimensional sample

beam vector βk for the kth frequency bin. On the other hand, the central matrix

Mν (mean or median) is a full-rank M ×M Hermitain and positive definite matrix

representing the “sample average” of the noise PSD matrices. Since Pk is rank-1

and Mν is full-rank, we cannot find a Pk which is exactly equal to Mν , and thus,

dx(Pk − M̂ν ,0) cannot be zero. In the future, we can constitute Pk as a full-rank

matrix such that the detection of whether Pk being a noise or (signal+noise) matrix

may have a better effect. To construct the full-rank PSD matrices, we need to take

more samples in time domain and divide them into I (I ≥ M) sections. Then, each

section is divided into M segments as what we did before. Hence, for each frequency

bin, we have I PSD matrices denoted by Pki, i = 1, · · · , I. Taking the average over

these I matrices, the full-rank PSD matrix for each frequency bin can be obtained

such that Pk = 1
I

∑
iPki.

Furthermore, for the decision reference translation, we shifted the reference point

to the origin such that we compared the distance dx(Pk −Mν ,0) with a threshold.

But is the null matrix the best reference point? In the thesis, we chose the null

matrix as the reference point because Pk is either noise or containing signal. Then,

we proved that shifting to origin has a better performance than referenced at central

point. However, we did not theoretically prove the origin is the best reference point.

What if we choose other matrices as the reference points? Further investigation is

needed to find the best reference point.

Last but not the least, if we look at Eq. (4.14) which is the power difference
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between Pk and Mν and then compare to the threshold, it is very similar to the

classical detection method. But actually, they are different. For Eq. (4.14), the first

term trPk is the signal power under test. However, for the second term trMν , it is not

the simple estimated noise power by taking the average of power over the neighbour

windows. Mν is obtained by the various algorithms for locating the central points of

PSD matrices on the manifold and thus trMν is the power of the noise central matrix

Mν . However, for the classical estimated noise power Zν , it is obtained by first taking

the trace of the PSD matrices in the neighbourhood and then taking the average of

these powers. Therefore, Eq. (4.14) is different from the classical method. I think

in the future, if we are able to theoretically prove that trMν is a better estimation

than Zν , it will be more convincing to support the advantage of PSD matrix being

the detection feature.
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Appendix A

A.1 Proof of Theorem 1

Proof. At the ith iteration, we have C̃(i) =
(
C(i)

)1/2
, and P̃

(i)
n = P

1/2
n U

(i)
l U

(i)H
r where

U
(i)
l and U

(i)
r are the left and right singular vector matrices of P

1/2
n C̃(i) respectively

(by F1). From F2, the ED between P̃
(i)
n and C̃(i) is equal to the RD between Pn and

C(i) on the manifold, which is given by

d2
E(P̃ (i)

n , C̃(i)) = d2
R1

(Pn,C
(i)) (A.1)

Based on F3, by letting the new sample average C̃ ′(i) = 1
N

∑N
n=1 P̃

(i)
n in Euclidean

space, it can be ensured that the sum of the squared ED from all P̃
(i)
n to C̃ ′(i) is

minimized such that

N∑
n=1

d2
E(P̃ (i)

n , C̃ ′(i)) ≤
N∑
n=1

d2
E(P̃ (i)

n , C̃(i)) (A.2)

Now, we can calculate the new Riemannian mean on the manifold by C(i+1) =

C̃ ′(i)C̃ ′(i)H and repeat the process such that C̃(i+1) =
(
C(i+1)

)1/2
and P̃

(i+1)
n =

85



M.A.Sc. Thesis - Huiying Jiang McMaster - Electrical Engineering

P
1/2
n U

(i+1)
l U

(i+1)H
r . Therefore,

d2
E(P̃ (i+1)

n , C̃(i+1)) = d2
R1

(Pn,C
(i+1)) (A.3)

Since the RD between Pn and C(i+1) is the shortest path length at the moment, the

ED between the corresponding lifted points P̃
(i+1)
n and C̃(i+1) is also the shortest

straight line, giving

N∑
n=1

d2
E(P̃ (i+1)

n , C̃(i+1)) ≤
N∑
n=1

d2
E(P̃ (i)

n , C̃ ′(i)) (A.4)

Again, the sample average of all {P̃ (i+1)
n } is presented by C̃ ′(i+1) = 1

N

∑N
n=1 P̃

(i+1)
n .

Together with Eqs. (A.2) and (A.4), we have the inequalities as follows.

N∑
n=1

d2
E(P̃ (i+1)

n , C̃ ′(i+1)) ≤
N∑
n=1

d2
E(P̃ (i+1)

n , C̃(i+1))

≤
N∑
n=1

d2
E(P̃ (i)

n , C̃ ′(i)) ≤
N∑
n=1

d2
E(P̃ (i)

n , C̃(i)) (A.5)

where the first inequality is from F3.

When i→∞, we have

lim
i→∞

N∑
n=1

d2
E(P̃ (i)

n , C̃ ′(i)) = lim
i→∞

N∑
n=1

d2
E(P̃ (i)

n , C̃(i)) (A.6)

That means at this time, C̃ ′(∞) = C̃(∞). In other words, further application of the

algorithm will repeatedly yield the same minimum value of
∑N

n=1 d
2
E(P̃

(∞)
n , C̃(∞)).

Thus, from Eq. (A.1), we can say that
∑N

n=1 d
2
R1

(P
(∞)
n ,C(∞)) is also minimized.

Thus, because of the isometry between M and UH, limi→∞C
(i) = CR1 . �
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A.2 Proof of Convexity

A.2.1 Convexity of the Sum of Squared RD dR2

In order to check the convexity of the objective function
∑N

n=1 d
2
R2

(Pn,C) in Eq.

(3.16), it is equivalent to check the convexity of the following function because sum-

mation does not change the convexity.

gr(C) = d2
R2

(Pn,C) = trPn + trC − 2tr(P 1/2
n C1/2) (A.7)

The first derivative of gr(C) is given by

d

dC
gr(C) = I − P 1/2

n C−1/2 (A.8)

Then, the second derivative of gr(C) is given by

d2

dC2
gr(C) = 1/2P 1/2

n C−3/2 � 0 (A.9)

where the fact [36] that ∂tr(H(X))
∂X

= h(X)H with H(X) being a differentiable function

and h(·) being the scalar derivative of H(·) has been used. Since Pn and C are both

positive semi-definite Hermitian matrices, the eigenvalues of P
1/2
n C−3/2 are also non-

negative such that the second derivative of gr(C) is positive semi-definite. Thus, the

objective function in Eq. (3.16) is convex. Similar proof of convexity for the objective

function in Eq. (3.8) persists and thus the RMn1 is also the global optimum.
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A.2.2 Convexity of the Sum of Euclidean Distance

The convexity of the objective function
∑N

n=1 dE (Pn,Γ) in Eq. (3.27) is in accordance

with the following function:

fe(Γ) = dE(Pn,Γ) =
√

tr [(Pn − Γ)(Pn − Γ)H ] = ‖Pn − Γ‖ = ‖Γ− Pn‖ (A.10)

where Pn and Γ are positive semi-definite Hermitian matrices. The first derivative of

fe(Γ) is given by

d

dΓ
fe(Γ) =

Γ− Pn
‖Γ− Pn‖

(A.11)

And the second derivative of fe(Γ) is given by

d2

dΓ2
fe(Γ) =

‖Γ− Pn‖I − (Γ− Pn) Γ−Pn
‖Γ−Pn‖

‖Γ− Pn‖2

=
‖Γ− Pn‖2I − (Γ− Pn)2

‖Γ− Pn‖3

=
tr
[
(Γ− Pn)(Γ− Pn)H

]
I − (Γ− Pn)(Γ− Pn)H

‖Γ− Pn‖3
(A.12)

Assume that A = (Γ− Pn)(Γ− Pn)H , then the numerator of Eq. (A.12) becomes

tr(A)I −A =

(
M∑
i=1

λi

)
I −UΛUH

=

(
M∑
i=1

λi

)
UUH −UΛUH

= UΛ̄UH � 0 (A.13)
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where Λ = diag(λ1, · · · , λM) and U are respectively the eigenvalue and eigenvector

matrices of A, Λ̄ = diag
(∑

i 6=1 λi, · · · ,
∑

i 6=M λi

)
is the eigenvalue matrix of the

numerator in Eq. (A.12). Since A = (Γ − Pn)(Γ − Pn)H is a positive semi-definite

Hermitian matrix with λi ≥ 0, i = 1, · · · ,M , all the eigenvalues in Λ̄ are non-

negative and thus the result of Eq. (A.12) can be proved to be positive semi-definite.

Therefore, it can be proved that the objective function in Eq. (3.27) is convex.

A.2.3 Convexity of the Sum of RD dR2

Again, let us check the convexity of the objective function in Eq. (3.41) without

summation as below.

fr(Γ) = dR2(Pn,Γ) =

√
trPn + trΓ− 2tr(P

1/2
n Γ1/2) (A.14)

The first derivative of fr(Γ) is given by

d

dΓ
fr(Γ) =

I − P 1/2
n Γ−1/2

2fr(Γ)
(A.15)

And the second derivative of fr(Γ) is given by

d2

dΓ2
fr(Γ) =

1

2

(
1
2
P

1/2
n Γ−3/2

)
fr(Γ)−

(
I − P 1/2

n Γ−1/2
) (

I−P 1/2
n Γ−1/2

)
2fr(Γ)

f 2
r (Γ)

=
P

1/2
n Γ−3/2

4fr(Γ)
−

(
I − P 1/2

n Γ−1/2
)2

4f 3
r (Γ)

(A.16)
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It is hard to tell whether the Hessian matrix in Eq. (A.16) is positive semi-definite

or not. Therefore, we first examine its scalar form such that

fr(x) = dR2(p, x) =
√
p+ x− 2p1/2x1/2 (A.17)

Assume p = 1, Eq. (A.17) becomes

fr(x) =
√

1 + x− 2x1/2 =
∣∣√x− 1

∣∣ (A.18)

Obviously, when 0 ≤ x < 1, Eq. (A.18) is convex; when x > 1, it is concave. Since

Eq. (A.14) is not convex in scalar form, it cannot be convex for matrices. Moreover,

for the objective function in Eq. (3.36), it can be proved to be non-convex by the

similar procedure.

A.3 Proof of Theorem 5

Proof. First, we need the following famous inequality [37]:

For Ξ being an M ×M positive definite matrix with eigenvalues µ1 ≥ · · · ≥ µM

and associated orthonormal eigenvectors v1, · · · ,vM , let X be an M × K,K ≤ M

matrix such that XHX = IK. Then

M∑
i=M−K+1

µi ≤ tr(XHΞX) ≤
K∑
i=1

µi (A.19)

The maximum and minimum values of tr(XHΞX) are reached when X is comprised

respectively of the first K and the last K eigenvectors of {v1, · · · ,vM}. �

Based on Eq. (A.19), we now let A be an M × K,K ≤ M , full column-rank
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matrix and Π′ν = AHΠνA and Π′s = AHΠsA. Let ∆ and Φ be the eigenvalue and

eigenvector matrices of Π′s, i.e., Π′sΦ = Φ∆. Then we let Σ and Ψ be the eigenvalue

and eigenvector matrices of ∆−1/2ΦHΠ′νΦ∆−1/2 and define B = Φ∆−1/2Ψ (B is

K ×K and nonsingular). Then, it is easy to verify that

BHΠ′νB = Σ and BHΠ′sB = IK (A.20)

Also, we have

arg min
A

[
tr(AHΠsA)−1(AHΠνA)

]
= arg min

A

[
tr(BHAHΠsAB)−1(BHAHΠνAB)

]
(A.21)

If we writing Ω = AB, then the problem of Eq. (4.18) can be transformed to

arg min
Ω

[
tr(ΩHΠνΩ)

]
s.t. ΩHΠsΩ = IK (A.22)

Further, let Πs = HHH and Υ = HHΩ and we have,

ΩHΠνΩ = ΩHHH−1ΠνH
−HHHΩ

= ΥHΠ̂νΥ (A.23)

where Π̂ν = H−1ΠνH
−H . Then the problem of Eq. (A.22) becomes

arg min
Υ

[
tr(ΥHΠ̂νΥ)

]
s.t. ΥHΥ = IK (A.24)

Now Eq. (A.24) is in the same form as Eq. (A.19). Hence, if Λ = diag[λ1, · · · , λM ]
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with λ1 ≥ · · · ≥ λM is the eigenvalue matrix of Π̂ν associated with the orthonormal

eigenvectors v1, · · · ,vM , then the optimizing matrix is Υop = [v1, · · · ,vM ]. In other

words, it can be described as

Π̂νΥop = (H−1ΠνH
−H)Υop = ΥopΛ (A.25)

Since Υ = HHΩ, we have Υop = HHΩop. Substituting into Eq. (A.25) and multi-

plying H−H at each side, we have

H−HH−1ΠνΩop = ΩopΛ (A.26)

Following the definition of Πs = HHH , Eq. (A.26) can be written as

Π−1
s ΠνΩop = ΩopΛ (A.27)

Eq. (A.27) can be regarded as the eigen-decomposition of the matrix Π−1
s Πν . There-

fore, if {λ1 ≥ · · · ≥ λM} and {u1, · · · ,uM} are respectively the eigenvalues and

eigenvectors of Π−1
s Πν , then the result follows. �
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