
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 1, JANUARY 2005 39

Optimum and Heuristic Synthesis of Multiple
Word-Length Architectures

George A. Constantinides, Member, IEEE, Peter Y. K. Cheung, Senior Member, IEEE, and Wayne Luk, Member, IEEE

Abstract—This paper explores the problem of architectural
synthesis (scheduling, allocation, and binding) for multiple
word-length systems. It is demonstrated that the resource alloca-
tion and binding problem, and the interaction between scheduling,
allocation, and binding, are complicated by the existence of
multiple word-length operators. Both optimum and heuristic ap-
proaches to the combined problem are formulated. The optimum
solution involves modeling as an integer linear program, while
the heuristic solution considers intertwined scheduling, binding,
and resource word-length selection. Techniques are introduced
to perform scheduling with incomplete word-length information,
to combine binding and word-length selection, and to refine
word-length information based on critical path analysis. Results
are presented for several benchmark and artificial examples,
demonstrating significant resource savings of up to 46% are pos-
sible by considering these problems within the proposed unified
framework.

Index Terms—Binding, bitwidth, digital signal processing,
field-programmable gate array, high-level synthesis, scheduling,
word-length.

I. INTRODUCTION

THE accuracy observable at the outputs of a digital signal
processing (DSP) system is a function of the word-lengths

used to represent all intermediate variables in the algorithm.
However, accuracy is less sensitive to some variables than to
others, as is implementation area. It has been demonstrated that
by considering error and area information in a structured way,
it is possible to achieve highly efficient DSP implementations
utilizing different word-lengths for different internal variables
[1]–[4].

This paper considers the problem of architectural synthesis
for multiple word-length systems. The work described in this
paper may be considered as a “post-processing” step to word-
length and scaling determination procedures, as illustrated in
Fig. 1. Breaking the problem in this way means that the proce-
dures described in this paper, unlike some word-length determi-
nation techniques, do not depend on the type of DSP system to
be synthesised (restricted to linear time invariant systems in [5],
differentiable systems in [6] and [7], and nonrecursive dataflow
in [8] and [9]). In addition, the complexity of the synthesis al-
gorithms is reduced by breaking the problem into manageable
pieces. In this paper, we concern ourselves only with the archi-
tectural synthesis block in Fig. 1.

Manuscript received October 22, 2002; revised March 9, 2003, July 28, 2004.
G. A. Constantinides and P. Y. K. Cheung are with the Department of Elec-

trical and Electronic Engineering, Imperial College, London SW7 2BT, U.K.
(e-mail: g.constantinides@ic.ac.uk; p.cheung@ic.ac.uk).

W. Luk is with the Department of Computing, Imperial College, London SW7
2BZ, U.K. (e-mail: wl@doc.ic.ac.uk).

Digital Object Identifier 10.1109/TVLSI.2004.840398

Fig. 1. Overall design flow for general resource binding architectures.

The problems of resource allocation (deciding how many re-
sources of a particular type should be used), resource binding
(deciding which operation is to be executed on which resource),
and scheduling (deciding at which clock cycle, or “time step,”
each operation should execute) have all been well studied [10].
However, such work has invariably considered all operations
of a particular type, such as “multiply” or “add,” to have iden-
tical implementations or at least an identical library of possible
implementations [11]–[14].

There has been little previous work [2], [15], [16] on ar-
chitectural synthesis for multiple word-length systems. The
multiple word-length paradigm has a significant impact on the
traditional problems of high-level synthesis, arising from two
factors. First, each computational unit of a specific type, for
example “multiply,” cannot be assumed to have equal cost
in a multiple word-length implementation, since area scales
with operator word-length. This issue has been considered by
[2] and [15]–[17]. Second, the choice of word-length for an
operation can impact on the latency of that operation. For
instance, larger bit-parallel multipliers may have longer la-
tency than smaller bit-parallel multipliers. The consideration
of multiple word-lengths, therefore, complicates the resource
binding problem, and also increases the interaction between
binding and scheduling of operations. This issue has not been
previously considered in the context of multiple word-length
synthesis.

The main original contributions of this paper are therefore:

• the formulation of the multiple word–length architectural
synthesis problem;

• the transformation of this problem into an integer linear
program;

1063-8210/$20.00 © 2005 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 17, 2009 at 11:26 from IEEE Xplore. Restrictions apply.

40 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 1, JANUARY 2005

• the construction of a polynomial time heuristic involving
scheduling with incomplete word-length information,
combined resource binding and word-length selection,
and techniques to iteratively refine word-length informa-
tion;

• the evaluation of these approaches, showing that area sav-
ings of up to 46% are possible even for modest problem
sizes, when compared to previous approaches.

Section III provides a more concrete formulation of the
problem to be addressed, after which Section IV introduces
an integer linear programming (ILP) approach to the problem.
The ILP approach is not practical for large problems, due to
the computational complexity associated with solving the ILP
model. This drawback is the motivation for a polynomial-time
heuristic algorithm presented in Section V. Synthesis results
are reported and discussed in Section VI and the paper is
summarized in Section VII.

II. BACKGROUND

Choi et al. published a short early paper on architectural
synthesis for algorithms consisting of operations with different
word-lengths [18]. The authors propose a resource binding
technique for algorithms that have already been scheduled. The
proposed technique partitions the operations into a number of
sets. A resource binding is then performed on each of these
sets separately, so that operations in different sets cannot share
the same resource. The authors compare their approach to a
standard “word-length blind” resource binding, and demonstrate
that area reductions between 2.8% and 6.8% are obtained over
a benchmark set consisting of a fourth-order infinite impulse
response filter, a fourth-order least-mean-square adaptive filter,
and a 12th-order least-mean-square adaptive filter.

Constantinides et al. have described an approach to the ar-
chitectural synthesis problem [16]. As with [18], the techniques
proposed in [16] perform resource binding as a post-processing
step, when the schedule is already known. Three distinct tech-
niques are proposed: 1) a branch and bound optimal solution;
2) a simulated annealing heuristic; and 3) a novel applica-
tion-specific heuristic, each based on the coloring of conflict
graphs.1

Kum and Sung have developed some approaches to the ar-
chitectural synthesis problem for algorithms consisting of op-
erations with possibly different word-lengths [2], [15]. These
approaches include word-length conscious list scheduling [2],
[15], and recently, also word-length conscious integer linear
programming scheduling [2]. There is, however, a key simpli-
fying assumption implicitly present in the work of Kum and
Sung: no dependence is considered between the word-length of
an operation and the latency of that operation. Indeed, all oper-
ation latencies are assumed to be one control-step, independent
of the word-length of the resource to which they are bound. The
authors present results for a fourth-order IIR filter (implemented
as two second-order sections) and a fifth-order elliptic filter [2].
These results indicate that the described heuristic results in an
area of between 0% and 46% (average 6%) greater than the op-
timum obtained through an integer linear program.

1A conflict graph is a graph where each node corresponds to an operation,
and edges exist between two nodes iff their execution intervals overlap [19].

Molina, Mendias, and Hermida have also explored resource
binding for prescheduled multiple word-length implementa-
tions [17] targeting ASICs, however, this work currently only
supports multiple word-length addition; multipliers are im-
plemented by breaking them into adders accumulating partial
products. Resource sharing is encouraged by allowing the carry
chains of adders to be broken and combined with other adders
on a cycle-by-cycle basis.

To summarize, the previous work in this field includes
techniques for resource binding only [16]–[18] and combined
scheduling and binding [2], with both heuristic [2], [16]–[18]
and optimal [2], [16] approaches. None of the techniques
presented thus far have considered combined scheduling and
resource binding in a context where operational latency can
vary with resource word-length.

III. MOTIVATION AND PROBLEM FORMULATION

An algorithm is considered to be made up of additions and
multiplications as the core arithmetic components, although,
it is straightforward to extend the proposed method to other
operation types. Each arithmetic operation is associated with
a word-length. For an adder, a word-length is a positive integer

, representing the bit width of the core (integer) adder
required in order to implement the multiple word-length addition
(see [20] for a detailed discussion of multiple word-length addi-
tion). For amultiplier, a word-length is a pair , representing
the two input bit widths of the core (integer) multiplier required.
The elements of the pair are arranged such that the first element is
always greater than or equal to the second element. Thus, for the
remainder of this paper, it is sufficient to refer to a “10-b addition”
or a “23 12-bit multiplication.” Since this paper only considers
these two operation types, for ease of notation, the remainder of
this paper distinguishes between additions and multiplications
by whether their word-length is an integer or a pair of integers.

These concepts are formalized in the definition of a dataflow
graph given in Definition 1. The restriction on the ordering of
the word-length tuple for multiplier nodes allows the algorithms
that follow to implicitly take advantage of the commutativity of
multiplication.

Definition 1: A dataflow graph is a directed acyclic
graph (DAG), representing the dataflow during a single itera-
tion of an algorithm. The set is in one-to-one correspondence
with the set of operations. The directed edge set
is in correspondence with the flow of data from one operation
to another. A TYPE function exists for elements of (1). Each
node with has a word-length
tuple with representing the
word-lengths of the two multiplier inputs, and each node
with has a single word-length
representing the word-length of the core adder

(1)

Example 1: A simple dataflow graph is illustrated in Fig. 2.
The node set consists of five multiplications and four additions.
Note that dependencies on external inputs are not shown, hence
some two-input operations have fewer than two in-edges.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 17, 2009 at 11:26 from IEEE Xplore. Restrictions apply.

CONSTANTINIDES et al.: OPTIMUM AND HEURISTIC SYNTHESIS OF MULTIPLE WORD-LENGTH ARCHITECTURES 41

Fig. 2. Simple dataflow graph: nodes are labeled with their word-length(s) and
type.

The multiple word-length architectural systhesis problem
may now be defined in Problem 1. Note that the implementation
in a structural hardware description language from the resulting
information is not considered in this paper, as such techniques
are well known [21].

Problem 1 (Multiple Word-Length Architectural Syn-
thesis): Given a dataflow graph , and a specified
maximum latency , determine:

• a set of resources and their associated word-lengths
• a mapping from operation to resource
• a mapping from operation to time-step

such that the area consumed by the set of resources is minimal,
all data-dependencies are preserved, no resource executes more
than one operation in each clock cycle, and the entire dataflow
graph completes within cycles.

It is assumed that for any given target architecture, a core gen-
erator exists, capable of generating adder and multiplier cores of
arbitrary precision. For each target architecture, it is necessary to
constructanempiricallyderivedfunctionwhichdeterminesthere-
quired number of clock cycles for each multicycle resource type.
ThisconstructionhasbeenperformedfortheSonicreconfigurable
computing architecture [22] for word-lengths up to 64-b, the re-
sults of which are given in (2). This relationship indicates how the
number of fixed-period clock cycles on the Sonic computing plat-
formvarieswithword-length(orword-lengthpair) inpractice. It
is a simple matter to rederive such a formulation for any hardware
implementation, and the proposed techniques do not require this
relationship to have a fixed functional form

(2)

The cost function used for each resource is given in terms of
its word-length in (3), where is a technology-dependent
constant representing the relative cost of adder and multiplier
implementations. For the target technology used to collect the
results of Section VI,

(3)

Fig. 3. An optimum scheduling, resource binding, and word-length selection
for the dataflow graph illustrated in Fig. 2.

Example 2: As a motivational example, consider again the
dataflow graph shown in Fig. 2. An area-optimal schedule,
binding, and word-length selection for this dataflow graph
is illustrated in Fig. 3 for the case and no operation
pipelining. This resource allocation consists of two adders:
one of 25-b and one of 19-b, and three multipliers: one is a
19 17-b multiplier, one a 33 21-b multiplier, and one a
40 12-b multiplier. The graphical matrix illustrates which
resource is being used by which operation at which time step.

Note that in Fig. 3, resources can perform operations up to
the word-length of the resource, even if implementation in a
larger resource leads to a longer latency than a “tight-fitting”
resource would require. For example, from (2) operation
is implemented in a resource of latency 7 cycles, although, its
word-length only requires a 22 16-bit multiplier which would
take 5 cycles to complete. This “stretching” of operations that
are not on the critical path can conceivably lead to significantly
reduced area, by exposing possibilities for resource sharing.

In this paper, the notation for a function
is used to denote the range

. The notation is used
for the projection operator, and set subtraction is denoted by ,
i.e., . A table summarizing the more
specific notation used in the remainder of this paper is provided
in Table I for reference.

IV. AN ILP SOLUTION

Integer linear programming (ILP) [23] has been used in
high-level synthesis for some time [10], [24]–[27]. This section
presents an extension to these ILP formulations in order to

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 17, 2009 at 11:26 from IEEE Xplore. Restrictions apply.

42 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 1, JANUARY 2005

TABLE I
NOTATION SUMMARY

solve Problem 1 [28]. Formulation as an ILP is useful from an
analytical perspective, because it formalizes the problem and
its constraints. In addition, for small problem instances, ILP
solvers such as lp solve [29] may be used to obtain globally
optimum solutions to the synthesis problem. These optimum
solutions are valuable references for comparison with heuristic
approaches.

A. Resources, Instances, and Control Steps

Before presenting the ILP formulation of Problem 1, it is nec-
essary to define certain quantities and notations, to be used in the
following sections.

The starting point for the ILP approach is the dataflow graph
and target overall latency constraint .

Let be the subset of operations of type MULT and
be the subset of operations of type ADD.

Any resource of the correct type, and large enough in word-
length, can perform an operation. For example, a resource type

can perform any -bit multiplication, so long as
and . However, the search-space for area-efficient im-

plementations may be trimmed significantly by observing that
area-optimal resource bindings will only ever use the resource
word-length that is just large enough to cover all operations as-
signed to that resource. For an adder to which operations

have been assigned, this corresponds to a word-length of
. For a multiplier to which operations

have been assigned, this corresponds to a word-length of
, where

and are the projection operators.
There are, therefore, only certain resource types which can

arise from the optimal sharing of resources between operations.
Let denote the set of resource types which could imple-
ment the operation . Then, for addition and multiplication

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 17, 2009 at 11:26 from IEEE Xplore. Restrictions apply.

CONSTANTINIDES et al.: OPTIMUM AND HEURISTIC SYNTHESIS OF MULTIPLE WORD-LENGTH ARCHITECTURES 43

operations, is given by (4) and (5), respectively. denotes
the set of all such resource types (6)

(4)

(5)

(6)

Note that the formulation of for multipliers allows re-
source-sharing between multiplications where the larger word-
length multiplicand derives from one multiplication operation,
whereas the smaller word-length multiplicand derives from an-
other multiplication operation. For example, a 20 10-b multi-
plication can be shared with a 15 15-b multiplication through
the use of a 20 15-b multiplier.

An upper bound may be placed on the number of in-
stances of each resource type that could arise. For an adder re-
source, there can be as many instances of an -bit adder as there
are -bit addition operations (7). For a multiplier resource, each

-bit resource can only arise due to resource sharing of a
-bit and a -bit multiplication with and .

The number of these pairings is bounded by (8)

for (7)

where

where

for (8)

From (2) it is possible to define the maximum latency
and minimum latency of each operation ac-
cording to (9) and (10)

(9)

(10)

In order to bound the possible execution control steps of each
operation, it is necessary to utilize as-soon-as-possible (ASAP)
and as-late-as-possible (ALAP) scheduling [30]. Consider per-
forming ASAP and ALAP scheduling of the operations, using a
latency for all operations. Let denote the re-
sulting ASAP control step for each operation . Similarly,
let denote the ALAP control step for each opera-
tion given a user-specified latency bound of and under
the same operation latencies.

Each operation , executing on resource type ,
can only start its execution during one of the time steps in the
set (11)

(11)

It will be useful to enumerate all possible start times
for each operation , according to (12), and indeed the
complete set of time-steps (13)

(12)

(13)

B. ILP Formulation

Extending the notation used by Landwehr, et al. [27], we for-
mulate the ILP as follows. Let define a Boolean variable
with iff instance number of resource type has at
least one operation bound to it. This allows the objective func-
tion to be formulated in linear form (14)

(14)

In order to introduce the constraints, let be defined as
in (15)

if operation is scheduled at time-step
on the th instance of resource type

otherwise.
(15)

The minimization is performed subject to three types of con-
straint. The first are the binding constraints, to ensure that each
operation is executed on exactly one instance (16). The second
are the resource constraints, to ensure that no resource instance
is executing more than one operation at a time (17). The final
set are the precedence constraints, to ensure that all operations
obey the dependencies in the dataflow graph (18)

(16)

(17)

(18)

Example 3: Recall the simple dataflow graph of
Fig. 2. The ILP formulation for this dataflow graph
contains 164 variables and 166 constraints for ,
the lowest achievable latency. Fig. 3 illustrates an

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 17, 2009 at 11:26 from IEEE Xplore. Restrictions apply.

44 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 1, JANUARY 2005

optimal solution corresponding to this latency con-
straint, which has the following optimization variables
taking the value 1:

. All other variables
are equal to zero.

After solution, the values of the ILP optimization variables
and encode a solution to Problem 1 given in

(19)–(21)

(19)

for

(20)

for (21)

Optimum solutions can only be found for relatively small
examples using ILP, due to the large number of variables and
constraints. Moreover, the number of variables and constraints
increases linearly with the relaxation of . These drawbacks
have motivated the search for efficient heuristic solutions to this
problem, as presented in the following section.

V. PROPOSED HEURISTIC

This section presents an heuristic approach to Problem 1 [31].
The proposed algorithm iteratively refines word-length infor-
mation while using resource-constrained scheduling and a com-
bined resource binding and word-length selection procedure, in
order to steer the solution toward feasibility with respect to the
user-specified latency constraint.

The following description starts with an overview of the
heuristic in Section V-A and a description of the word-length
compatibility graph in Section V-B. Each of the algorithm steps
is then described: calculation of resource bounds (Section V-C)
and latency bounds (Section V-D), scheduling using incomplete
word-length information (Section V-E), combined binding and
word-length selection (Section V-F) and word-length refine-
ment (Section V-G).

A. Overview

A high-level overview of the proposed heuristic is shown in
Algorithm 1, and illustrated diagramatically in Fig. 4. The al-
gorithm arrives at a solution through an iterative refinement
of word-length information in order to reach the user-speci-
fied latency target . An initial solution is constructed by al-
lowing each operation to be scheduled using the longest latency
of all resources which could perform that operation. Sched-
uling in this manner guarantees that any resource binding will
not violate the schedule, and it is expected that a great deal of
resource sharing can be achieved. However, using the upper
bound latency of each operation may result in a violation of
the overall latency target . At each iteration of Algorithm 1,

Fig. 4. Flowchart of the proposed heuristic.

these upper bounds are refined by selecting an operation and re-
ducing its upper-bound latency, and hence, the range of different
word-length resources which could implement that operation.

In most implementation cases, the area consumed by a mul-
tiplier is significantly larger than that consumed by an adder.
It is for this reason that Algorithm 1 calculates bounds on the
number of multipliers required and constructs the solution
accordingly, searching for solutions with between and

multipliers. The corresponding bound on the number
of adders is determined through a simple scaling with a factor

. By performing the optimization in this manner, the bounds
on the number of each resource type need not be optimized
individually, leading to an improvement in algorithm execu-
tion time at the possible penalty of a few extra adders in the
resulting architecture. For our current implementation, we use
the empirically derived . Of course, if the set of available
resource types were expanded beyond adders and multipliers in
a way that destroys this imbalance in implementation area, this
approach could no longer be used. In the most general case, it
would be necessary to extend Algorithm 1, introducing a new
loop similar to steps 1–2 for each resource type.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 17, 2009 at 11:26 from IEEE Xplore. Restrictions apply.

CONSTANTINIDES et al.: OPTIMUM AND HEURISTIC SYNTHESIS OF MULTIPLE WORD-LENGTH ARCHITECTURES 45

Algorithm 1 (ArchSynth)
Input: A dataflow graph and a latency

constraint
Output: Scheduling, binding, and word-length

for each operation
Objective: Minimize the area of the resulting

implementation
begin

1. calculate and , bounds on #multipliers
2. for do
2.1 do
2.1.1 calculate the resource set covering each operation
2.1.2 search for upper-bounds on latency of each

operation
2.1.3 search for a feasible schedule using latency upper

bounds and no more than mults and
adds

2.1.4 perform combined binding and word-length
selection

2.1.5 if binding violates the latency constraint do
try to refine operation word-length information

else do record this feasible solution
end if

while refinement (step 2.1.5) is possible
end for

end

The calculation of resource bounds (step 1) and each of the
steps 2.1.1–2.1.5 will be discussed in detail in the following
sections. In addition, failure conditions can arise in finding
upper-bounds (step 2.1.2), deadlocks in scheduling with incom-
plete word-length information (step 2.1.3), and refining upper
bounds (step 2.1.5). Each of these cases will also be considered
in the following sections.

B. Word-length Compatibility Graph

A fundamental model that underlies the majority of the pro-
posed heuristic is the word-length compatibility graph.

Definition 2: A word-length compatibility graph
is a representation of information about the type

of each operation, the word-length of each operation, and
schedule-derived information on time-compatibility between
operation pairs. The vertex set can be partitioned into two
subsets and , where denotes the set of operations, and
denotes the set of resource types (6). The set of edges can also
be partitioned into two subsets and . is a set of undi-
rected edges , where and , representing the
information that operation could be performed by resource
type . is a set of directed edges , where ,
representing the information that operation is scheduled to
complete execution before operation is scheduled to start
execution.

The scheduling algorithm to be described in Section V-E uti-
lizes the operation—resource-type compatibility encoded in the
edge set and implicitly creates the edge set in the process.
The combined binding and word-length selection algorithm to
be described in Section V-F utilizes both the time-compatibility
edge set and the operation resource-type compatibility set .

Fig. 5. Word-length compatibility graph. (a) Sequencing graph. (b) Schedule.
(c) Word-length compatibility graph.

It is important to note that the edge set has been chosen
to ensure that subgraph exhibits a transitive orienta-
tion [32], since if finishes before starts, and fin-
ishes before starts, it follows that finishes before starts.
This orientation will be used in Section V-F to aid fast resource
binding. Note also that the set of directed edges in the graph
need not be constructed explicitly in a software implementation,
but can be inferred from the scheduled times of the operations.

Example 4: A simple word-length compatibility graph is
shown in Fig. 5(c), corresponding to the dataflow graph and
schedule shown in Fig. 5(a) and (b), respectively.

The initial word-length compatibility graph is constructed in
the following manner: A resource set is constructed following
(4)–(6). Edge set is initialized to the set

. is initialized to the empty set. As Algorithm 1
executes, word-length refinement will result in the deletion of
edges from the set .

C. Resource Bounds

The first stage of the heuristic is to find the smallest and
largest sensible upper bounds to place on the number of mul-
tipliers required. These values are obtained from a study of how
the iteration latency achieved by list-scheduling decreases with
the number of multipliers allowed.

A standard resource-constrained list scheduling algorithm
[10], [33] can be used to heuristically obtain these bounds.
Standard ALAP urgency-based list scheduling with a bound

on the number of resources of each type is used.
is a 2-vector of integer elements, the first corresponding

to the bound on the number of multipliers, and the second
corresponding to the bound on the number of adders.

The bounds and used in Algorithm 1 can
now be defined, assuming that the given latency bound is

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 17, 2009 at 11:26 from IEEE Xplore. Restrictions apply.

46 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 1, JANUARY 2005

Fig. 6. Calculating bounds on the number of multipliersm andm .

realizable. Bound is the smallest value such that the
list-scheduled latency is within the constraint for all schedules
with and for all .
Similarly bound is the smallest value such that the
list-scheduled latency is within the constraint for all schedules
with and for all .
For tight latency constraints there may be no such value,
in which case is set to . In each of these cases, a
binary search is used to determine the bounds.

The rationale behind these bounds is the following. If an al-
gorithm cannot be scheduled to meet the imposed latency con-
straint under a resource constraint , even when all operations
have their minimum possible latency, then the algorithm cannot
meet this latency constraint for any . This provides a
lower bound on the number of each type of resource required.
Similarly, if the imposed timing constraint can be met under a
resource constraint , even when all operations have their max-
imum latency, then the algorithm can meet this latency con-
straint for all . This provides an upper bound on the
number of each type of resource required. Fig. 6 illustrates the
way in which the achieved latency varies with the bound on the
number of multipliers supplied to the list-scheduler.

Example 5: An example derivation of resource bounds is
illustrated in Fig. 7. Fig. 7(a) illustrates a simple dataflow
graph, with corresponding initial word-length compatibility
graph shown in Fig. 7(b). The latency curves resulting from list
scheduling for different resource bounds are plotted in Fig. 7(c).
The points corresponding to the minimum possible number and
maximum necessary number of multiplier resources have been
highlighted.

D. Latency Bounds

Before entering the main refinement loop in Algorithm 1,
it is possible to significantly reduce the number of iterations
by pruning the operation latency search space. If it is not pos-
sible to list-schedule a dataflow graph when all op-
erations have their minimum possible latency while
operation has latency , then it is assumed that a feasible
schedule will equally not be possible if operation has any la-
tency . This allows the edge set of an initially
constructed word-length compatibility graph to be refined. The
approach is illustrated in Algorithm 2. After first checking that a
feasible solution exists in steps 1–2 (by trying to schedule when
all operations have minimum latency), the algorithm proceeds
by deleting edges from the set . Each operation node is tested

Fig. 7. Example multiplier bounds.

in turn (step 3) to find the maximum latency the operation could
have (out of those corresponding to resource types which could
implement that operation) while not violating the overall latency
constraint. Once this value is found (step 3.1), any edges con-
necting node to a resource type with a greater latency are re-
moved from the word-length compatibility graph (step 3.2).

Algorithm 2 LatencyBounds
Input: A dataflow graph , initial

word-length compatibility graph ,
resource constraint vector and latency constraint

Output: A refined word-length compatibility graph
Objective: Minimize the set of resources to which

each operation could be bound
begin

1. for all
2. if returns a schedule violating

latency constraint do
return failure case

end if
3. foreach do
3.1 Search for maximum

such that ListSchedule returns a
schedule satisfying latency constraint

3.2
4. return to its original value

end foreach
end

Using Algorithm 2, an upper bound on the latency of each
operation can be established. Once this has been done, the set

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 17, 2009 at 11:26 from IEEE Xplore. Restrictions apply.

CONSTANTINIDES et al.: OPTIMUM AND HEURISTIC SYNTHESIS OF MULTIPLE WORD-LENGTH ARCHITECTURES 47

of edges of the word-length compatibility graph, representing
the possible design decisions, has been pruned.

E. Scheduling With Incomplete Word-length Information

At the time of scheduling in Algorithm 1, the word-length of
each operation may not be fixed. Indeed, each operation could
be implemented using any resource type to which the operation
is linked by an edge in the word-length compatibility graph. The
scheduling problem, therefore, has incompletely defined con-
straints [34], and a technique must be developed to incorporate
these constraints into directing the search for a solution. The
following paragraphs illustrate the need for such a technique,
before introducing the proposed solution.

Traditional resource-constrained scheduling techniques
such as force-directed list scheduling [35], require resource
constraints to be expressed in terms of a bound on the number
of resources of each type. During standard list scheduling,
these constraints are tested at each time step before deciding
whether to schedule a new operation. The constraints may be
formally expressed as follows. Let be defined as in (22).
Thus, iff operation is executing during time-step .
Given a set of control steps (13), a set of operations , and
the maximum number of resources of type , the traditional
resource constraints may be expressed as (23)

if
otherwise

(22)

(23)

In the case of multiple word-length systems, these constraints
tend to be too relaxed to guarantee that no more than re-
sources of type will be used by the given schedule.

Example 6: Consider the schedules and corresponding word-
length compatibility graphs shown in Fig. 8. Such graphs could
arise during the execution of Algorithm 1. Fig. 8(a) has fully
defined word-length information for each operation. It is clear
that even though , and are all multiplications and do
not overlap in execution, three distinct multiplier resources will
still be required for their implementation. However, the standard
scheduling constraint (23) would be satisfiable for .

Fig. 8(b) has an incomplete specification (there is at least one
operation that could be implemented in more than one possible
resource type). However, a 32 32-bit multiplier could con-
ceivably implement every operation. Thus, it is possible to im-
plement the entire system using a single multiplier resource.

Fig. 8(c) illustrates a general case, corresponding to the
deletion of a single edge from the word-length compatibility
graph of Fig. 8(b). Using traditional methods, it is unclear in
this case how to incorporate such constraints into the search for
an appropriate schedule.

These examples demonstrate that a more sophisticated ap-
proach to scheduling is required to take word-length information
into account. In general, it is necessary to consider the incom-
plete word-length specification provided by an edge set .

Fig. 8. Some schedules and word-length compatibility graphs. (a) Fully
specified word-length information. (b) Incomplete specification (full sharing
possible). (c) Incomplete specification (general case).

The scheduling algorithm proposed is a modification of
a standard list scheduling [10]. The modification lies in the
resource constraint calculation. Before any scheduling takes
place, a small cardinality subset is found such that

. Conceivably, a resource binding
could consist only of resource of types represented in . Define

to be the set of operations performable by resource type
, i.e., . Similarly, let

denote the subset of resource types in which could implement
operation , i.e., . Then
the proposed constraint function to be used in the algorithm can
be expressed as in (24)

(24)

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 17, 2009 at 11:26 from IEEE Xplore. Restrictions apply.

48 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 1, JANUARY 2005

Fig. 9. Example of scheduling a dataflow graph with incomplete word-length specifications. (a) Sequencing graph. (b) Word-length compatibility graph. (c) Sets
S(v). (d) Resource usage matrix. (e) Schedule.

This is an heuristic measure with the following justification.
First, (24) is at least as strict as (23), which is a special case of
the former under the condition , the smallest
sized possible. This represents the case where each multipli-
cation could be performed by a single large multiplier, and each
addition could be performed by a single large adder. As the pos-
sibilities for the implementation of each operation are reduced
during execution of Algorithm 1, the balance on the left-hand
side of (24) shifts from the to the to reflect the
stricter constraints. The small cardinality is used in order to
relax the constraint as much as possible, since any two opera-
tions in could possibly be eventually bound to the same re-
source. Operations belonging to more than one , i.e., those

with , are accounted for by “sharing” equally
their usage between each of the elements .

Algorithm 3 illustrates this scheduling based on incomplete
information. Two auxilliary data structures are used in the algo-
rithm to keep track of the scheduling constraint (24),
and . Respectively, these keep track of the instan-
taneous and peak usage of resource type . The algorithm
starts by setting the latency of each operation to its max-
imum (step 1). After doing so, a standard ALAP-based urgency
measure [10] is calculated for each node (step 2), and the time
step index is initialized (step 3). The set described above (step
4), and its related function (step 5), to be used in the sched-
uling constraint (24) are then calculated. Step 6 ensures that the

peak usage for each element of that set is initial-
ized. The algorithm then enters its main scheduling loop, with
one iteration per time step (step 7).

At the start of each iteration, the instantaneous usage of
resources is initialized (step 7.1), the ready-list is calculated
(step 7.2), and the prime candidate for scheduling is selected
(step 7.3). The algorithm then enters a secondary loop (step
7.4), which tries to schedule this and any other operation of the
same type. The current left-hand side of (24) is first calculated
(step 7.4.1), and then updated (step 7.4.2) for any for
which scheduling in the current control step would use more
than the current peak usage for that . If the updated (24) is still
satisfied, then the scheduling of the operation is accepted (step
7.4.3), and the peak usage is updated (step 7.4.4). Deadlocks,
to be discussed below, may occur in the scheduling process.
These are detected by step 7.5.

Example 7: An example execution of Algorithm 3 is shown
in Fig. 9. The dataflow graph and word-length compatibility
graph are shown in Fig. 9(a) and (b), respectively. Fig. 9(c) enu-
merates the sets for this example, and Fig. 9(d) shows how
the usage and maxusage variables evolve as the algorithm exe-
cutes for . The resulting schedule is
shown in Fig. 9(e), and could be resource-bound as a single 16-b
adder together with both a 16 16-b multiplier and a 32 32-b
multiplier. Details on how such a resource binding can be found
for general graphs are discussed in the following section.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 17, 2009 at 11:26 from IEEE Xplore. Restrictions apply.

CONSTANTINIDES et al.: OPTIMUM AND HEURISTIC SYNTHESIS OF MULTIPLE WORD-LENGTH ARCHITECTURES 49

Algorithm 3 (IncompSched)
Input: A dataflow graph , word-length

compatibility graph
and maximum number of each resource type

Output: A schedule for each
Objective: Minimize the schedule length
begin

1.
2. Determine the ‘urgency’ of each operation

through ALAP scheduling
3.
4. Find of smallest size such that

5. Let
6. for all
7. do
7.1 for all
7.2 the list-schedule ‘ready list’ [10],

sorted by urgency
7.3
7.4 do
7.4.1

7.4.2 foreach :
do

end foreach
7.4.3 if do

7.4.4 foreach
do

end foreach
end if

7.4.5 ,
if one exists

while

7.5 if deadlock detected do
return failure case

end if
while there remains at least one unscheduled operation

end

There are a number of significant differences between stan-
dard list scheduling and Algorithm 3. Information on resource
usage is accumulated over control steps in Algorithm 3, rather
than each step being constraint, function, and independent of
each other step. There are two related drawbacks from this:
First, it is possible for the proposed list-scheduler to deadlock,
by scheduling operations belonging to for the some

early in the schedule and then having no remaining
resources to schedule operations belonging to for some

later in the schedule. Such deadlocks can be

easily detected: if all operations have finished by the current
time-step and yet no operation has been scheduled by the end
of that time-step, deadlock has occurred. Second, although
the scheduler may not deadlock, greedy allocation of parallel

operations early-on in the schedule may cause schedules
of longer than optimal latency. Thus, Algorithm 3 has a greedy
bias toward earlier time steps.

The subset used by Algorithm 3 can be found easily
through Algorithm 4. Starting from an empty set , this al-
gorithm simply iteratively adds those resource types from the
set which could implement the most (thus far, uncovered)
operations.

Algorithm 4
Input: Word-length compatibility graph
Output: Set required by Algorithm 3
Objective: Minimize the cardinality of set
begin

while do
Find such that is maximum

end while
end

F. Combined Binding and Word-length Selection

Once a dataflow graph has been scheduled, resource binding
and word-length selection can be performed. No resource
binding can violate the scheduling latency constraint, since
latency upper bounds have been used when performing
the scheduling (Algorithm 1). The combined binding and
word-length selection problem (Problem 2) is, therefore, a
subproblem of Problem 1.

Problem 2 (Combined Binding and Word-length Selec-
tion): Given a scheduled word-length compatibility graph

, the combined binding and word-length
selection problem is to select a set of resources and their
associated word-lengths and a mapping from operation to
resource such that the area consumed by the set of
resources is minimal and no resource executes more than one
operation in each clock cycle.

Definition 3: Clique is a maximal clique of graph iff
is not a subgraph of any other clique of graph .

Definition 4: Clique is a maximum clique of graph
iff there is no clique of with .
Definition 5: Clique of the subgraph of

word-length compatibility graph is a feasible
clique iff .

The combined binding and word-length selection problem is
approached by partitioning the subgraph into a set

of feasible cliques. The feasibility constraint captures the re-
quirement that there must be a single resource capable of per-

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 17, 2009 at 11:26 from IEEE Xplore. Restrictions apply.

50 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 1, JANUARY 2005

forming all operations in the clique. The cost of this resource
binding is then given by (25)

(25)

This problem is a special case of the set-covering or weighted
unate covering problem.

Problem 3 (SET COVERING, [36]): Consider a set of
sets and associated positive costs

. Let . A subset is a
cover iff . The cost of this cover is .
The problem is to find a cover of minimum cost.

The combined binding and word-length selection problem
can be cast as a set covering problem in the following manner.
Let denote the set of node sets of all feasible cliques in the
graph (26). The cost associated with clique
is given by the corresponding term in the summation of (25)

(26)

The proposed approach is to extend a known heuristic for
solving the unate covering problem [36] to the combined re-
source binding and word-length selection application. In order
to present the proposed extensions to this simple heuristic, it is
first reviewed below.

Intuitively, for a greedy algorithm it becomes more desirable
to include a set in the cover as the number of elements
covered by and not already covered by any previously chosen
set increases. This is tempered by the cost of set and, thus,
the ratio of these two quantities forms an appropriate measure
of desirability. This observation leads to the following heuristic
proposed in [36]

Algorithm 5 (ChvatalHeur)
Input: An instance of the set covering problem (Problem 3)
Output: A cover
Objective: Minimize the cost of the cover
begin

while do
find such that is maximum

foreach do

end foreach
end while

end

The first and simplest extension to [36], is to include some
compensation for the greedy nature of the original algorithm.
If a clique is chosen during one iteration of the algorithm, it
is checked whether this clique could be extended to cover all
operations covered by any of the cliques chosen at previous it-
erations. If such an extension is possible, the selected clique is
grown accordingly and the previously chosen clique is deleted
from the cover set.

The more important distinction is that the set is never cal-
culated, since its size can be very large (exponential in). In-
stead, an implicit approach is used, which is polynomial in .

Consider the set of clique node-sets that may be im-
plemented using a resource , i.e.,

. It is clear that it only makes sense to select those
cliques induced by maximal subsets

for implementation in resource type . Nonmaximal cliques
correspond to so-called “column domination” in unate covering
[23]. However, a stronger statement can be made, that only max-
imum feasible cliques need to be considered as candidates, i.e.,

. This is because Chvatal’s
heuristic [36] will always return a higher score for a maximum
feasible clique than for a nonmaximum clique of the same re-
source type, and so a maximum clique will always be chosen in
preference to a nonmaximum clique. Incorporating this knowl-
edge leads to the proposed resource binding and word-length
selection algorithm presented below as Algorithm 6.

The algorithm starts by initializing certain values (steps 1–4).
In step 1, is set to correctly reflect its definition (Table I). is
initialized to the full set of operations (step 2), and will be iter-
atively reduced as operations are bound to resources (step 5.7).

is a counter of how many resources of type have thus
far been allocated by the binding, and is initialized to 0 (step 3).

, the final set of resources, is initialized to be empty (step 4).
After initialization, the algorithm enters its main loop (step 5),

where one resource type is selected, and operations bound to
an instance of that resource type, on each iteration. In order to
choose which resource type to select, Chvatal’s heuristic is ap-
plied (steps 5.1–5.2). Compensation for the greedy nature of this
heuristic is provided by step 5.3, which can backtrack on pre-
vious decisions, as described above. Finally, steps 5.4–5.7 per-
form the binding: step 5.4 adds a new resource to the existing
set, step 5.5 binds each operation in the clique selected by steps
5.1–5.2 to this new resource. Finally, the number of resources
of that type is incremented (step 5.6) and the set of unbound op-
erations is reduced (step 5.7).

Algorithm 6 (ResBindWLSelect)
Input: A Word-length Compatibility Graph

and schedule
Output: A resource set and a binding
Objective: Minimize the area of the resulting

implementation
begin

1.

2.
3. for all
4.
5. while do
5.1 foreach do

Let be the subgraph of
induced by vertex set

Search for a maximum clique with
node set

end foreach

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 17, 2009 at 11:26 from IEEE Xplore. Restrictions apply.

CONSTANTINIDES et al.: OPTIMUM AND HEURISTIC SYNTHESIS OF MULTIPLE WORD-LENGTH ARCHITECTURES 51

Fig. 10. Example execution of Algorithm 6. (a) Sequencing graph. (b) Schedule. (c) Word-length compatibility graph. (d) First iteration. (e) Second iteration.
(f) Third iteration.

5.2 Choose such that is maximum
5.3 foreach

if
do

for all
end if

end foreach
5.4
5.5 for all
5.6
5.7

end while
end

Because the graph (and any subgraph induced by a
vertex subset) is a transitively oriented graph, finding the max-
imum clique is a simple linear-time operation [32].

Example 8: Consider the dataflow graph illustrated in
Fig. 10(a). An example execution of Algorithm 6 is illustrated
in Fig. 10(d)–(f) for the schedule and word-length compati-
bility graph shown in Fig. 10(b) and (c). Three iterations are
required. During the first iteration, a 30-b adder is selected to
perform operations and . The second iteration selects
a 20 10-b multiplier to perform operation and the final
iteration selects a 16 16-b multiplier to perform operation .
The two possibilities faced by the first iteration: a 30-b adder
for operations and or a 15-b adder to perform operation

only, have equal heuristic scores. However, if the latter

possibility were selected, the clique covering (selected on
the following iteration) would be grown to cover , resulting
in the same binding.

G. Refining Word-length Information

On each iteration of Algorithm 1, if the latency constraint is
violated, the word-length information in the word-length com-
patibility graph is refined in order to guide the algorithm toward
a feasible solution. The bound critical path, defined below, is
calculated in order to provide an insight into which operations
may be blocking the creation of a feasible solution. Then a single
operation on this bound critical path is selected, and its latency
is refined, leading to the deletion of one or more edges from the
word-length compatibility graph.

1) The Bound Critical Path: As a first step for refining la-
tency upper bounds, the concept of the bound critical path is
introduced by extension of the critical path.

Definition 6: Consider a dataflow graph . The crit-
ical path of a dataflow graph , given a latency

for each node is defined to be the subset of nodes
with equal ASAP and ALAP scheduling times with respect to
the minimum possible latency constraint (27)

(27)

Given a dataflow graph , a word-length compatibility
graph , a schedule , a
resource set , and a resource binding , it is possible

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 17, 2009 at 11:26 from IEEE Xplore. Restrictions apply.

52 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 1, JANUARY 2005

to construct a set of edges representing operations abutting
in time on the same resource (28). Nodes and are, thus,
connected by an edge in iff node finishes execution on a
resource the cycle before node starts execution on the same
resource

(28)

Definition 7: The bound critical path of a scheduled
and resource-bound algorithm of dataflow graph is
defined to be the critical path of the augmented dataflow graph

.
It is possible in this way to capture information about which

operations may be responsible for failure to meet the user-spec-
ified iteration latency. Once this critical subset of operations has
been determined, methods can be applied to refine compatibility
information present in the edge set .

2) Refining Latency Upper Bounds: The reduction of the la-
tency of an operation in the bound critical path could
possibly lead to the reduction of the overall latency. Indeed, in
order for Algorithm 3 to meet the latency constraint , at least
one of the operations in the subset (29) must have its latency
reduced (is the subset of the bound critical path consisting of
operations whose latency could be reduced and then complete
within the latency constraint)

(29)

Reducing the latency of operations that are not members of
this set but are nevertheless members of may be necessary,
but will clearly not be sufficient to schedule the entire dataflow
graph within the required latency bound.

On each iteration of Algorithm 1, one of the operations
is chosen, and the edge set is adjusted to reduce the upper

bound on the latency of . In the case that , the fol-
lowing empirically derived heuristic tie-break rules are applied.

By reducing the upper bound on the latency of operation ,
edges will be deleted from

. Considering word-length and type information alone, the
potential set of operations which could share a resource
with operation is given by

. A simple heuristic measure would
be to select the operation for which this set is least “af-
fected” by the resultant loss of the edges in . Thus, the node

minimizing measure (30) is selected. The set , cor-
responding to after removal of the edges in , is defined
as

(30)

Once again, in case of tie break on the above measure, a fur-
ther heuristic can be applied: those operations currently bound
to resources utilizing less than the upper-bound latency of that
operation are preferred candidates. Thus, an arbitrary node

maximizing (30) and satisfying is

selected, if one exists. Otherwise simply an arbitrary node max-
imizing (30) is selected.

This procedure is illustrated in Algorithm 7. After con-
structing the abuttal edges (28) in step 1, the bound critical path
is extracted (step 2), and the subset of the bound critical
path (29) is found (step 3). If this set is empty, no refinement
of word-length information can help the search for a feasible
solution, and the failure case is returned (step 4). Otherwise,
a search for an appropriate operation to refine is conducted
(steps 5–6), according to the heuristics discussed above. Once
a node has been found, the edge set H, representing which
resource types can perform which operations, it is refined by re-
moving all edges connecting the chosen operation to resources
of latency equal to the maximum of all resource types for that
operation.

Algorithm 7 (WLRefinement)
Input: A dataflow graph , word-length

compatibility graph ,
latency constraint , resource set and
resource binding

Output: A refined word-length compatibility graph
Objective: Minimize the number of resource types

to which each operation could be bound
begin

1. Construct the abuttal edges (28)
2. Perform ASAP and ALAP scheduling on
3. Extract the subset of nodes on the bound

critical path which could complete within the
latency constraint (29)

4. if do
return failure case

5. Find of nodes maximizing the measure (30)
6. if do

Select one such node
else do

Select an arbitrary node
end if

7.
end

Example 9: Fig. 11 illustrates an example refinement
phase corresponding to the dataflow graph introduced in
Fig. 2 and reproduced in Fig. 11(a) for convenience. Nodes
that are on the computation critical path with respect to
the dataflow graph are highlighted in Fig. 11(a),

. This dataflow graph has been
scheduled and resource-bound in Fig. 11(b). The portions of
node execution time between and have been
shaded in the figure.

The augmented dataflow graph obtained from
time-abutment edges is illustrated in Fig. 11(c) and consists
of a single extra edge from operation to operation . The
resulting change in critical path is significant. The bound critical
path is given by .

For , the lowest achievable latency constraint, the
subset is given by . The heuristic measures
described above may then be applied to decide which of these
two nodes is to have its upper bound latency reduced.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 17, 2009 at 11:26 from IEEE Xplore. Restrictions apply.

CONSTANTINIDES et al.: OPTIMUM AND HEURISTIC SYNTHESIS OF MULTIPLE WORD-LENGTH ARCHITECTURES 53

Fig. 11. Example use of the bound critical path for word-length refinement
(Example 9). (a) Sequencing graph. (b) Initial schedule. (c) Augmented
sequencing graph.

VI. RESULTS AND DISCUSSION

Before considering in detail the performance of the methods
introduced in this paper, it is instructive to follow through the
dataflow graph of Fig. 2 which has been used as an example
throughout the paper. Both optimal and heuristic schedules, re-
source allocations, bindings and word-length selections have
been performed for this example in order to explore the area/la-
tency tradeoff achievable. Fig. 12 plots these results. Not all ILP
results are shown, due to excessive ILP solver execution time.

Fig. 12. Design-space exploration for the simple dataflow graph of Fig. 2.

The ILP and heuristic solutions are identical for all cases except
, where there is a slight difference caused by the pres-

ence of an extra adder in the heuristic solution.
Fig. 13 illustrates further the results for several benchmark

circuits. The FIR filter is a 126-tap linear-phase low-pass Direct
Form II transposed [37] structure, suggested by [38] as a repre-
sentative DSP design. The DCT is an 8-point, one-dimensional
(1-D) decimation in time structure from [30] which has also
been suggested as a benchmark by [38]. As an illustration of
the flexibility of multiple word-length implementations, two
versions of this benchmark have been synthesized, one
with equal error tolerance on all outputs, and the other
with required signal-to-noise ratio (SNR) reducing by 3-dB/p
DCT coefficient, so that low-frequency coefficients are less
noisy than high-frequency ones. The IIR filter is of fouth-order,
as used by [39]. The polyphase filter bank (PFB) is the design
given in [40] for evaluation of the streams-C compiler. The
RGB to YCrCb converter is of the form suggested by the ITU
[41], and is also of particular interest for multiple word-length
implementation, as it allows some quantization error in the
Cr and Cb outputs whereas the Y output is guaranteed to be
error-free.

For comparison, not only are the optimal (ILP) results and
the heuristic results provided, but also the solutions corre-
sponding to “word-length-blind” scheduling followed by an
optimal resource binding [16]. All three sets of results are only
provided for the IIR filter, the polyphase filter bank and the
RGB to YCrYb converter, due to the excessive execution time
of both the ILP solver and the optimal binding.

These results illustrate that for the benchmark circuits, the
heuristic presented in this paper provides a significant improve-
ment in area over a two-stage approach of scheduling and then
binding (between % and %, average 15%), even when the
binding is optimal. The heuristic results have between 0% and
62% (average 14%) worse area than the optimum combined so-
lution, for cases where the optimum is known.

Table II provides details on the minimum, maximum, and
final number of multipliers used by Algorithm 1 for the heuristic
results of Fig. 13.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 17, 2009 at 11:26 from IEEE Xplore. Restrictions apply.

54 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 1, JANUARY 2005

Fig. 13. Design-space exploration for some benchmark circuits. (a) IIR. (b) FIR. (c) DCT . (d) DCT . (e) PFB.(f) RGB-YCrCb.

In order to fully characterize the heuristic performance, fur-
ther results have been obtained using artificially generated ex-

amples. For statistically significant data on solution quality, 200
random dataflow graphs have been generated for each (problem

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 17, 2009 at 11:26 from IEEE Xplore. Restrictions apply.

CONSTANTINIDES et al.: OPTIMUM AND HEURISTIC SYNTHESIS OF MULTIPLE WORD-LENGTH ARCHITECTURES 55

TABLE II
MULTIPLIER STATISTICS FOR HEURISTIC ALLOCATION ON

BENCHMARK CIRCUITS

size , latency constraint) pair, using a variant of the TGFF
algorithm [42]. The first set of detailed quality results that has
been collected measures the variation of the heuristic solution
quality with both the problem size and the tightness of the sup-
plied latency constraint. For each dataflow graph, the minimum
possible latency constraint has been found using ASAP
scheduling, from which latency constraints have been generated
corresponding to a 0% to 30% relaxation of . Algorithm 1
has then been executed on the graph/latency constraint combina-
tion. The resulting area has been normalized with respect to the
optimal solution resulting from [16] where operations may only
share resources when the implemented resource has latency no
longer than the minimum required to implement the given op-
erations. These results are plotted in Fig. 14, as a percentage
area penalty for using the approach of [16] over the heuristic
presented in this paper. Each point represents the mean of two
hundred representative designs.

The results illustrate that for designs with even a small “slack”
in terms of latency constraints, significant area improvements of
up to 30% can be made by performing the scheduling, binding,
and word-length selection in the intertwined manner proposed.
The area improvements come from increased resource sharing
due to implementing small word-length operations in larger
word-length resources with longer latency. Even for relatively
small graphs, area improvements of tens of percent are possible.

Fig. 15 illustrates the increase in implementation area from
using the heuristic presented in Section V over the optimum
combined problem presented in Section IV. These results can
only be provided for modest problem size and a minimum la-
tency constraint , as the ILP solution execution time
scales rapidly with problem size and as the latency constraint is
relaxed.

The variation of synthesis algorithm execution time (for
designs with minimum latency) against problem size for 700
graphs using the ILP model (solved with lp solve [29]

Fig. 14. Variation with number of operations and latency constraint of area
penalty for [16] over the proposed heuristic.

Fig. 15. Variation of area premium for Algorithm 1 over the optimum solution.

on an AMD Athlon 1.4 GHz) and the heuristic algorithm
(implemented in C on the same machine) is shown in Fig. 16,
illustrating the polynomial complexity of the heuristic against
the exponential complexity of the ILP solution search. Over
the range of 1 to 10 operations, the relative increase in area
ranges from 0% to 17% whereas the ILP solution takes between
one and three orders of magnitude greater time to execute. An
important point not brought out by these results is the scaling
of execution time with overall latency constraint. The number
of variables in the ILP model scales with the latency constraint,
making the execution time highly dependent on this parameter.
This is illustrated in Table III for 700 9-operation dataflow
graphs. By contrast, the execution time of Algorithm 1 does
not scale with the latency constraint. Thus, the 1–3 orders of
magnitude illustrated in Fig. 16 are under conditions most
favorable to the ILP-based solution; a more relaxed constraint
would lead to a much larger speedup. Note, however, that it may
well be possible to take advantage of symmetries in the ILP
formulation [43] to speed up the ILP execution time. Since the
main use of ILP in this paper is as a comparative approach for

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 17, 2009 at 11:26 from IEEE Xplore. Restrictions apply.

56 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 1, JANUARY 2005

Fig. 16. Variation with number of operations of execution time for 700 graphs
(heuristic and ILP solutions).

TABLE III
VARIATION OF EXECUTION TIME FOR 700 GRAPHS WITH �=� FOR

HEURISTIC AND ILP SOLUTION

evaluating the quality of the results of the proposed heuristic,
this has not been explored in detail.

The results presented clearly indicate the practical nature of
the heuristic presented in this paper, whose execution results in
a speedup of up to three orders of magnitude over ILP solution,
even for modest graph sizes, at an area-penalty of between 0%
and 16%.

VII. CONCLUSION

This paper has presented work addressing the problem of ar-
chitectural synthesis for multiple word-length systems. It has
been demonstrated that the traditional architectural synthesis
problems of operation scheduling, resource allocation, and re-
source binding, can be significantly complicated by the presence
of multiple word-length arithmetic.

An ILP construction for the multiple word-length architec-
tural synthesis problem has been formulated. The ILP formu-
lation provides solutions which are optimal with respect to the
area-based cost function, but suffers from long run-times which
scale up rapidly with relaxation of the latency constraint.

An heuristic solution has been developed based on inter-
twined scheduling, resource binding/word-length selection,
and word-length refinement. This involves techniques for
scheduling with incompletely defined word-length infor-
mation, combining binding and word-length selection, and
latency-based word-length refinement based on critical path
analysis.

The results from an implementation of both the ILP and
the heuristic approach show that significant improvements to
system area can be made by allowing noncritical operations to

share large word-length resources. The heuristic solution has
been shown to be within 17% of the optimal area, over a range
of minimum-latency problem sizes for which between one and
three orders of magnitude speedup over an ILP solver has been
achieved. For nonminimum-latency problems, the execution
speedup is even greater, and the heuristic lies within 25% of the
optimum solution quality for all but one benchmark.

Excessive sharing of resources could cause timing viola-
tions due to the timing overhead of the multiplexers and extra
routing introduced. These timing considerations are currently
not modeled either in the ILP or the heuristic solution. Exper-
imentation shows, however, that for the target platform used
to collect results, such timing violations have not occurred
for any of the benchmark circuits in this paper. Similarly,
resource sharing causes an area overhead, which has not been
modeled by the proposed techniques. Experimentation shows
that, while this overhead is likely to reduce the gains pre-
sented in this paper somewhat, the savings due to the proposed
technique outweigh the overheads of further resource sharing
for the target technology and the benchmarks studied. Should
the overhead issues be of concern in a different implementa-
tion technology, it would be straight-forward to incorporate
a simple upper-bound on the sharing of a single resource as
an extra set of linear constraints in the ILP formulation, or
as a modification of Algorithm 6 in the heuristic solution.

As deep submicron effects become more dominant in dig-
ital system design, resource sharing becomes more dependent
on physical placement. As well as overcoming the restrictions
mentioned above, in the future we aim to incorporate floor-
plan-based routing measures into the formulation. In addition,
we are actively investigating the interaction between the syn-
thesis problem described in this paper and the word-length op-
timization problem in digital signal processing. The aim in this
work is to target power consumption in addition to area opti-
mization [7].

ACKNOWLEDGMENT

The authors wish to acknowledge the support of Hewlett-
Packard Laboratories and the Engineering and Physical Sci-
ences Research Council, U.K. They also thank the anonymous
reviewers for their extensive and helpful suggestions.

REFERENCES

[1] R. Cmar, L. Rijnders, P. Schaumont, S. Vernalde, and I. Bolsens, “A
methodology and design environment for DSP ASIC fixed point refine-
ment,” in Design Automation and Test Europe, Germany, 1999.

[2] K.-I. Kum and W. Sung, “Combined word-length optimization and high-
level synthesis of digital signal processing systems,” IEEE Trans. Com-
puter-Aided Design, vol. 20, pp. 921–930, Aug. 2001.

[3] G. A. Constantinides, “High Level Synthesis and Word Length Opti-
mization of Digital Signal Processing Systems,” Ph.D. dissertation, Uni-
versity of London, England, U.K., 2001.

[4] Y. Cao and H. Yasuura, “Quality-driven design by bitwidth optimization
for video applications,” in Proc. IEEE/ACM Asia and South Pacific De-
sign Automation Conf., 2003, pp. 532–537.

[5] G. A. Constantinides, P. Y. K. Cheung, and W. Luk, “The multiple word-
length paradigm,” in IEEE Symp. Field-Programmable Custom Com-
puting Machines, Rohnert Park, CA, Apr.–May 2001.

[6] S. A. Wadekar and A. C. Parker, “Accuracy sensitive word-length selec-
tion for algorithm optimization,” in Proc. Int. Conf. Computer Design,
Austin, TX, Oct. 1998, pp. 54–61.

[7] G. A. Constantinides, “Perturbation analysis for word-length optimiza-
tion,” in Proc. IEEE Symp. Field-Programmable Custom Computing
Machines, Napa, CA, Apr. 2003.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 17, 2009 at 11:26 from IEEE Xplore. Restrictions apply.

CONSTANTINIDES et al.: OPTIMUM AND HEURISTIC SYNTHESIS OF MULTIPLE WORD-LENGTH ARCHITECTURES 57

[8] A. Nayak, M. Haldar, A. Choudhary, and P. Banerjee, “Precision and
error analysis of MATLAB applications during automated hardware syn-
thesis for FPGAs,” in Proc. Design Automation and Test Europe, Mu-
nich, Germany, 2001, pp. 722–728.

[9] M. W. Stephenson, “Bitwise: Optimizing Bitwidths Using Data-Range
Propagation,” Master’s thesis, Dept. Elect. Eng. Comput. Sci., Massa-
chusetts Inst. Technol., Cambridge, May 2000.

[10] G. DeMicheli, Synthesis and Optimization of Digital Circuits. New
York: McGraw-Hill, 1994.

[11] R. Jain, A. Parker, and N. Park, “Module selection for pipelined syn-
thesis,” in Proc. 25th ACM/IEEE Design Automation Conf., 1988, pp.
542–547.

[12] R. Jain, “MOSP: Module selection for pipelined designs with multicycle
operations,” in Proc. IEEE Int. Conf. Computer-Aided Design, 1990, pp.
212–215.

[13] M. Ishikawa and G. D. Micheli, “A module selection algorithm for high-
level synthesis,” in Proc. IEEE Int. Symp. Circuits and Systems, 1991,
pp. 1777–1780.

[14] I. G. Harris and A. Orailoğlu, “Intertwined scheduling, module selection,
and allocation in time-and-area constrained synthesis,” in Proc. IEEE
Int. Conf. Circuits and Systems, 1993, pp. 1682–1685.

[15] K. Kum and W. Sung, “Word-length optimization for high-level syn-
thesis of digital signal processing systems,” in Proc. IEEE Int. Workshop
on Signal Processing Systems, 1998, pp. 569–678.

[16] G. A. Constantinides, P. Y. K. Cheung, and W. Luk, “Multiple-word-
length resource binding,” in Field-Programmable Logic: The Roadmap
to Reconfigurable Systems. ser. Lecture Notes in Computer Science,
H. Gruenbacher and R. Hartenstein, Eds. New York: Springer-Verlag,
2000.

[17] M. C. Molina, J. M. Mendias, and R. Hermida, “Multiple-precision cir-
cuits allocation independent of data-objects length,” in Proc. Design Au-
tomation and Test Europe, Paris, Mar. 2002, pp. 909–913.

[18] J. Choi, H. Jun, and S. Hwang, “Efficient hardware optimization algo-
rithm for fixed-point digital signal processing ASIC design,” IEE Elec-
tron. Lett., vol. 32, no. 11, pp. 992–994, May 1996.

[19] T. R. Jensen and B. Toft, Graph Coloring Problems. New York: Wiley,
1995.

[20] G. A. Constantinides, P. Y. K. Cheung, and W. Luk, “Optimum word-
length allocation,” in Proc. IEEE Symp. Field-Programmable Custom
Computing Machines, Napa, CA, Apr. 2002.

[21] K. K. Parhi, C.-Y. Wang, and A. P. Brown, “Synthesis of control circuits
in folded pipelined DSP architectures,” IEEE J. Solid-State Circuits, vol.
27, pp. 29–43, Jan. 1992.

[22] S. D. Haynes, J. Stone, P. Y. K. Cheung, and W. Luk, “Video image pro-
cessing with the Sonic architecture,” IEEE Comput., vol. 33, pp. 50–57,
Apr. 2000.

[23] R. S. Garfinkel and G. L. Nemhauser, Integer Programming. New
York, NY: Wiley, 1972.

[24] C.-T. Hwang, J.-H. Lee, and Y.-C. Hsu, “A formal approach to the sched-
uling problem in high level synthesis,” IEEE Trans. Computer-Aided De-
sign, vol. 10, pp. 464–475, Apr. 1991.

[25] H. Achatz, “Extended 0/1 LP formulation for the scheduling problem in
high-level synthesis,” Proc. EURODAC with EURO-VHDL, 1993.

[26] L. E. Lucke and K. K. Parhi, “Generalized ILP scheduling and allocation
for high-level DSP synthesis,” in Proc. IEEE Custom Integrated Circuits
Conf., 1993, pp. 5.4.1.–5.4.4..

[27] B. Landwehr, P. Marwedel, and R. Dömer, “OSCAR: Optimum simulta-
neous scheduling, allocation, and resource binding,” in Proc. European
Design Automation Conf., 1994, pp. 90–95.

[28] G. A. Constantinides, P. Y. K. Cheung, and W. Luk, “Optimal datapath
allocation for multiple-word-length systems,” IEE Electron. Lett., vol.
36, pp. 1508–1509, Aug. 2000.

[29] H. Schwab. (1997) lp solve. [Online]. Available: ftp://ftp.es.ele.tue.nl/
pub/lp_solve

[30] K. Parhi, VLSI Digital Signal Processing Systems. New York: Wiley,
1999.

[31] G. A. Constantinides, P. Y. K. Cheung, and W. Luk, “Heuristic datapath
allocation for multiple-word-length systems,” in Design Automation and
Test Europe, Mar. 2001.

[32] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs. New
York: Academic, 1980.

[33] J. Nestor and D. Thomas, “Behavioral synthesis with interfaces,” in
Proc. IEEE Int. Conf. Computer-Aided Design, 1986, pp. 112–115.

[34] C. Chantrapornchai, E. H.-M. Sha, and X. S. Hu, “Efficient design explo-
ration based on module utility selection,” IEEE Trans. Computer-Aided
Design, vol. 19, pp. 19–29, Jan. 2000.

[35] P. G. Paulin and J. P. Knight, “Force-directed scheduling for the behav-
ioral synthesis of ASICs,” IEEE Trans. Computer-Aided Design, vol. 8,
pp. 661–679, Jun. 1989.

[36] V. Chvatal, “A greedy heuristic for the set-covering problem,” Math.
Operations Res., vol. 4, no. 3, pp. 233–235, Aug. 1979.

[37] S. K. Mitra, Digital Signal Processing. New York: McGraw-Hill,
1998.

[38] C. Lee, D. Kirovski, I. Hong, and M. Potkonjak, “DSP QUANT: Design,
validation, and applications of DSP hard real-time benchmark,” in Proc.
IEEE Int. Conf. Acoustics Speech and Signal Processing, vol. 1, 1997,
pp. 671–682.

[39] K.-I. Kum, J. Kang, and W. Sung, “AUTOSCALER for C: An opti-
mizing floating-point to integer C program convertor for fixed-point
digital signal processors,” IEEE Trans. Circuits Syst. II, vol. 47, pp.
840–848, Sep. 2000.

[40] J. Frigo, M. Gokhale, and D. Lavenier, “Evaluation of the Streams-C
C-to-FPGA compiler: An applications perspective,” in Proc.
ACM/SIGDA Int. Symp. on FPGAs, Napa, CA, 2001.

[41] B. L. Evans, Raster Image Processing on the TMS320C7X VLIW DSP.
[42] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: Task graphs for free,”

in Proc. CODES/CASHE, 1998, pp. 97–101.
[43] B. Landwehr, P. Marwedel, I. Markhof, and R. Dömer, “Exploiting iso-

morphism for speeding-up instance-binding in an integrated scheduling,
allocation and assignment approach to architectural synthesis,” in Proc.
Conf. Computer Hardware Description Languages and their Applica-
tions, Toledo, Spain, Apr. 1997.

George A. Constantinides (S’96–M’01) received
the M.Eng. degree in information systems en-
gineering and the Ph.D. degree in electrical and
electronic engineering from Imperial College,
London, U.K., in 1998 and 2001, respectively.

Since 2002, he has been a Lecturer in digital
systems, Electrical and Electronic Engineering
Department, Imperial College. He is the author of
31 refereed conference and journal papers. He is
also author of Synthesis and Optimization of DSP
Algorithms (Dordrecht, Germany: Kluwer, 2004).

His research interests include reconfigurable computing and electronic design
automation, with a particular focus on digital signal processing algorithms.

Dr. Constantinides was program Co-Chair of the International Conference on
Field-Programmable Logic and Applications in 2003, and serves on the Program
Committees of FPL, FPT, ISCAS, ERSA, and ARC. He was the Founding Chair
of the U.K. SIGDA Chapter, serving as General Chair in 2001, and Technical
Chair from 2002 to 2003 of the annual workshop. He is a member of ACM.

Peter Y. K. Cheung (M’85–SM’04) received the
B.Sc. degree in electrical engineering from Imperial
College, London, U.K., in 1973.

After working at Hewlett-Packard for a number
of years, he returned to Imperial College as a Re-
search Assistant and was appointed as a Lecturer in
1980. Currently, he is a Professor of digital systems
and Deputy Head of the Electrical and Electronic
Engineering Department at Imperial College. His
research interests include VLSI architectures for
DSP and video processing, reconfigurable com-

puting, embedded systems, and high-level synthesis and optimization of
digital systems, particularly those containing field programmable logic. He has
coauthored over 100 publications and two research monographs in these areas.

Prof. Cheung has served on the Technical Program Committee of many in-
ternational conferences including ISCAS, FPL, FPT, and DATE.

Wayne Luk (S’85–M’85) is Professor of Computer
Engineering, Department of Computing, Imperial
College London, U.K., where he leads the Custom
Computing Research Group. Much of his current
work involves high-level compilation techniques and
tools for parallel computers and embedded systems,
particularly those containing reconfigurable devices
such as field-programmable gate arrays. His research
interests include theory and practice of customizing
hardware and software for specific application
domains, such as graphics and image processing,

multimedia, and communications.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 17, 2009 at 11:26 from IEEE Xplore. Restrictions apply.

	toc
	Optimum and Heuristic Synthesis of Multiple Word-Length Architec
	George A. Constantinides, Member, IEEE, Peter Y. K. Cheung, Seni
	I. I NTRODUCTION

	Fig.€1. Overall design flow for general resource binding archite
	II. B ACKGROUND
	III. M OTIVATION AND P ROBLEM F ORMULATION
	Definition 1: A dataflow graph $P(V,D)$ is a directed acyclic gr
	Example 1: A simple dataflow graph is illustrated in Fig.€2 . Th

	Fig.€2. Simple dataflow graph: nodes are labeled with their word
	Problem 1 (Multiple Word-Length Architectural Synthesis): Given

	Fig.€3. An optimum scheduling, resource binding, and word-length
	Example 2: As a motivational example, consider again the dataflo
	IV. A N ILP S OLUTION

	TABLE I N OTATION S UMMARY
	A. Resources, Instances, and Control Steps
	B. ILP Formulation
	Example 3: Recall the simple dataflow graph of Fig.€2 . The ILP

	V. P ROPOSED H EURISTIC
	A. Overview

	Fig.€4. Flowchart of the proposed heuristic.
	B. Word-length Compatibility Graph
	Definition 2: A word-length compatibility graph $G(V \cup R,C \c

	Fig.€5. Word-length compatibility graph. (a) Sequencing graph. (
	Example 4: A simple word-length compatibility graph is shown in
	C. Resource Bounds

	Fig. 6. Calculating bounds on the number of multipliers $m_{\min
	Example 5: An example derivation of resource bounds is illustrat
	D. Latency Bounds

	Fig.€7. Example multiplier bounds.
	E. Scheduling With Incomplete Word-length Information
	Example 6: Consider the schedules and corresponding word-length

	Fig.€8. Some schedules and word-length compatibility graphs. (a)
	Fig.€9. Example of scheduling a dataflow graph with incomplete w
	Example 7: An example execution of Algorithm 3 is shown in Fig.€
	F. Combined Binding and Word-length Selection
	Problem 2 (Combined Binding and Word-length Selection): Given a
	Definition 3: Clique k is a maximal clique of graph G iff $k
	Definition 4: Clique $k(V_k,E_k)$ is a maximum clique of graph $
	Definition 5: Clique $k(v^{\prime},c^{\prime})$ of the subgraph
	Problem 3 (SET COVERING, [36]): Consider a set of sets $U = \

	Fig.€10. Example execution of Algorithm 6. (a) Sequencing graph.
	Example 8: Consider the dataflow graph illustrated in Fig.€10(a)
	G. Refining Word-length Information
	1) The Bound Critical Path: As a first step for refining latency
	Definition 6: Consider a dataflow graph $P(V,D)$. The critical
	Definition 7: The bound critical path V_b of a scheduled and r
	2) Refining Latency Upper Bounds: The reduction of the latency o
	Example 9: Fig.€11 illustrates an example refinement phase corre

	Fig.€11. Example use of the bound critical path for word-length
	VI. R ESULTS AND D ISCUSSION

	Fig.€12. Design-space exploration for the simple dataflow graph
	Fig.€13. Design-space exploration for some benchmark circuits. (

	TABLE II M ULTIPLIER S TATISTICS FOR H EURISTIC A LLOCATION ON B
	Fig.€14. Variation with number of operations and latency constra
	Fig.€15. Variation of area premium for Algorithm 1 over the opti
	Fig.€16. Variation with number of operations of execution time f
	TABLE III V ARIATION OF E XECUTION T IME FOR 700 G RAPHS W ITH $
	VII. C ONCLUSION
	R. Cmar, L. Rijnders, P. Schaumont, S. Vernalde, and I. Bolsens,
	K.-I. Kum and W. Sung, Combined word-length optimization and hig
	G. A. Constantinides, High Level Synthesis and Word Length Optim
	Y. Cao and H. Yasuura, Quality-driven design by bitwidth optimiz
	G. A. Constantinides, P. Y. K. Cheung, and W. Luk, The multiple
	S. A. Wadekar and A. C. Parker, Accuracy sensitive word-length s
	G. A. Constantinides, Perturbation analysis for word-length opti
	A. Nayak, M. Haldar, A. Choudhary, and P. Banerjee, Precision an
	M. W. Stephenson, Bitwise: Optimizing Bitwidths Using Data-Range
	G. DeMicheli, Synthesis and Optimization of Digital Circuits . N
	R. Jain, A. Parker, and N. Park, Module selection for pipelined
	R. Jain, MOSP: Module selection for pipelined designs with multi
	M. Ishikawa and G. D. Micheli, A module selection algorithm for
	I. G. Harris and A. Orailo lu, Intertwined scheduling, module se
	K. Kum and W. Sung, Word-length optimization for high-level synt
	G. A. Constantinides, P. Y. K. Cheung, and W. Luk, Multiple-word
	M. C. Molina, J. M. Mendias, and R. Hermida, Multiple-precision
	J. Choi, H. Jun, and S. Hwang, Efficient hardware optimization a
	T. R. Jensen and B. Toft, Graph Coloring Problems . New York: Wi
	G. A. Constantinides, P. Y. K. Cheung, and W. Luk, Optimum word-
	K. K. Parhi, C.-Y. Wang, and A. P. Brown, Synthesis of control c
	S. D. Haynes, J. Stone, P. Y. K. Cheung, and W. Luk, Video image
	R. S. Garfinkel and G. L. Nemhauser, Integer Programming . New Y
	C.-T. Hwang, J.-H. Lee, and Y.-C. Hsu, A formal approach to the
	H. Achatz, Extended 0/1 LP formulation for the scheduling proble
	L. E. Lucke and K. K. Parhi, Generalized ILP scheduling and allo
	B. Landwehr, P. Marwedel, and R. Dömer, OSCAR: Optimum simultane
	G. A. Constantinides, P. Y. K. Cheung, and W. Luk, Optimal datap
	H. Schwab . (1997) lp $_$ solve . [Online] . Available: ftp://f
	K. Parhi, VLSI Digital Signal Processing Systems . New York: Wil
	G. A. Constantinides, P. Y. K. Cheung, and W. Luk, Heuristic dat
	M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs . Ne
	J. Nestor and D. Thomas, Behavioral synthesis with interfaces, i
	C. Chantrapornchai, E. H.-M. Sha, and X. S. Hu, Efficient design
	P. G. Paulin and J. P. Knight, Force-directed scheduling for the
	V. Chvatal, A greedy heuristic for the set-covering problem, Mat
	S. K. Mitra, Digital Signal Processing . New York: McGraw-Hill,
	C. Lee, D. Kirovski, I. Hong, and M. Potkonjak, DSP QUANT: Desig
	K.-I. Kum, J. Kang, and W. Sung, AUTOSCALER for C: An optimizing
	J. Frigo, M. Gokhale, and D. Lavenier, Evaluation of the Streams
	B. L. Evans, Raster Image Processing on the TMS320C7X VLIW DSP .
	R. P. Dick, D. L. Rhodes, and W. Wolf, TGFF: Task graphs for fre
	B. Landwehr, P. Marwedel, I. Markhof, and R. Dömer, Exploiting i

