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Abstract

We consider channel estimation for high-speed railway communication systems, where both the

transmitter and the receiver are equipped with large-scaleantenna arrays. It is known that the throughput

of conventional training schemes monotonically decreaseswith the mobility. Assuming that the moving

terminal employs a large linear antenna array, this paper proposes a position-aided channel estimation

scheme whereby only a portion of the transmit antennas send pilot symbols and the full channel matrix

can be well estimated by using these pilots together with theantenna position information based on the

joint spatial-temporal correlation. The relationship between mobility and throughput/DoF is established.

Furthermore, the optimal selections of transmit power and time interval partition between the training

and data phases as well as the antenna size are presented accordingly. Both analytical and simulation

results show that the system throughput with the position-aided channel estimator does not deteriorate

appreciably as the mobility increases, which is sharply in contrast with the conventional one.
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I. INTRODUCTION

The large-scale multiple-input multiple-output (MIMO) technology holds the key to signifi-

cantly improving the throughput of future wireless communication systems [1]. For high-speed

railway communication systems, both the base station (BS) and the mobile terminal (i.e., the

train) can employ large-scale antenna arrays to provide high-throughput services to users on the

train [2–4]. In this paper, we focus on such a high-speed railway MIMO scenario, where both

the transmitter and the receiver are equipped with large-scale antenna arrays.

As we know, in MIMO communications, to obtain the instantaneous channel state information

(CSI), the training-based channel estimator is widely used. Although the training overhead may be

insignificant in single-antenna systems, it becomes the major impediment to high-speed railway

MIMO communications, where the speed of the mobile terminalcan reach up to hundreds of

kilometers per hour [5]. In particular, the throughput of the large-scale MIMO system even can

deteriorate to zero if the training phase occupies all the channel uses [6]. It seems very pessimistic

to employ large-scale MIMO in highly mobile environments, because the high time-selectivity

of the channel removes the benefits brought by multi-antennawireless links [7, 8].

A rich body of the research in the literature focused on the training-based channel estimation

for large-scale MIMO systems under fast fading, see e.g., [9–13]. Specifically, the estimation

accuracy in a temporally correlated channel can be improvedby employing the Kalman filter

[9, 10]. Compressed sensing can be utilized to optimize the delay-Doppler basis of a doubly

selective fading channel to improve the estimation accuracy [11]. However, these methods do

not aim to reduce the estimation overhead, i.e., the amount of pilots used for channel estimation

[9–11]. On the other hand, for a spatially correlated channel, it has been indicated in [12, 13]

that the pilot size can be reduced if the number of statistical dominant subspaces is smaller than

the number of transmit antennas, at the cost of losing some multiplexing gain. Summarily, it

remains a challenging problem to reduce the pilot overhead for large-scale MIMO systems in a

high-speed environment.

On the other hand, due to the advances in indoor and outdoor positioning techniques, the



real-time position information of the mobile terminal can be made available. In several prior

applications, position information has been already used for routing [14], clustering [15], resource

allocation [16, 17], etc. For high-speed railway communications, [18] proposed a position-

based channel model and [19] extended the concept to multi-antenna wireless links. Further,

position information was utilized to improve the channel estimation accuracy of high-speed

railway communications in [20]. An interesting phenomenoncaused by the mobility, called

the joint spatial-temporal correlation, was discussed in [21–24]. It characterizes the relationship

between the channel realizations of distinct antenna pairsat different time due to the mobility

of antenna array. In particular, some measurement results between the BS and vehicles with

multiple antennas were provided in [21]. [22] discussed theeffect of the mutual electromagnetic

coupling between different antenna elements. [23] proposed a novel differential modulation for

the moving antenna array based on it. [24] discussed the application of spatio-temporal correlation

in reducing handover frequency in high-speed railway scenario.

In this paper, we focus on the training-based channel estimation in a large-scale MIMO system

under high-speed railway scenarios. It is assumed that the BS is static and the train moves linearly

with constant velocity, both employing linear antenna arrays. We mainly consider the uplink

channel estimation, while the results can also be used for the downlink due to the channel

reciprocity. We find that the joint spatial-temporal correlation can be utilized to significantly

reduce the estimation overhead with the help of position information and then propose a position-

aided channel estimator. It will be shown that its performance deteriorates a little as the mobility

increases. More specifically, during the training phase of each data block, it is better to select

a subset of the transmit antennas to send pilot symbols and aninitial estimate of the channel

submatrix corresponding to this part of transmit antennas can be utilized repeatedly. Later, the

estimate of the entire channel matrix could be constructed based on the initial submatrix and the

location information of the transmit antenna array, by exploiting the spatial-temporal correlation

of the channel. We then analyze its performance in term of theachievable throughput. Finally, we

present the optimal selections of system parameters including power allocation, training interval



TABLE I: Some important variables for problem description in this paper.

Variable Description

M,N The numbers of transmit antennas and receive antennas

Hk The channel state matrix during thek-th signal block

hn,m(k) The channel state betweenm-th transmit antenna andn-th receive antenna

h
m
k The channel state vector betweenm-th transmit antenna and all receive antennas

zmk The position ofm-th transmit antenna during thek-th signal block

η The correlation coefficient between different channel state vector

θ The moving direction of the terminal with respect to the line-of-sight direction

ψ The direction of linear antenna array with respect to the line-of-sight direction

J0(·) The zero-th order Bessel function of the first kind

T0 The length of each signal block

t0 The coherence time of the environment

and antenna size, by maximizing the obtained achievable throughput bound in this paper.

It is worth noting that the joint spatial-temporal correlation is significantly different from the

conventional spatial correlation or temporal correlation[23]. In this paper, we assume that the

antennas are sufficiently separated, so there is no spatial correlation between antenna elements.

Besides, under the highly mobile condition, the coherent interval of the channel is so small that

the temporal correlation is very weak. The spatial-temporal correlation here refers to the fact

that due to the high mobility, the channel responses of different antenna pairs along the moving

path at different time are correlated. Hence, the methods and the results based on conventional

spatially correlated channel (such as [12]) can not be applied directly here.

The remainder of this paper is organized as follows. The channel model is introduced in

Section II, where the joint spatial-temporal correlation is presented. Then, the position-aided

channel estimator is developed in Section III. In Section IV, the performance of the system with

the new proposed training scheme is analyzed and the optimalsystem parameter selections are

presented. Simulation results are given in Section V. Finally, conclusions are drawn in Section

VI.
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Fig. 1: The large-scale MIMO communication system for high-speed railways.

II. CHANNEL MODEL

As shown in Fig. 1, we consider a point-to-point highly mobile large-scale MIMO system

in a high-speed railway, where the BS is static and the terminal is in linear uniform motion

with constant velocityv0. Suppose that the channel is reciprocal, we concentrate on the uplink

channel estimation problem and the results can be directly used in the downlink. According to

the training-based system architecture, each signal blockis divided into two parts: training phase

and data phase. Some known training symbols are sent by the transmitter to estimate the CSI

during the training phase and then the estimated channel is used in the following data phase. It

is assumed that the channel state keeps constant during the same block, and changes to other

values between different blocks. Besides, let the carrier wavelength beλ0 and symbol rate be

B0, then the maximum Doppler shift isfD = v0
λ0

, the coherence time of the channel isλ0B0

2v0
, and

the length of each signal block is set asT0 = ⌊ λ0B0

2ξ0v0
⌋ symbols (where the constantξ0 should

satisfyξ0 ≫ 1).

We assume that a linear antenna array is employed at the mobile terminal (i.e., the train).

The number of transmit antennas and receive antennas are denoted asM andN , respectively.

We focus on the effects of small-scale fast fading, which is modeled as Rayleigh distribution in

this paper. LetHk ∈ CN×M be the channel matrix for thek-th signal block with its elements

hn,m(k) denoting the channel state between then-th receive antenna and them-th transmit



antenna (wherehn,m(k) ∼ CN (0, 1)). It is assumed that the distance between adjacent antennas

is λ0

2
, so there is no spatial correlation between the antenna elements and the elements inHk are

i.i.d. Further, lethm
k ∈ CN×1 denote the channel vector between them-th transmit antenna and

all N receive antennas in thek-th block, namelyHk = [h1
k,h

2
k, ...,h

M
k ]. Consequently, theseM

channel vectors are independent of each other.

Next we introduce the concept of joint spatio-temporal correlation. As shown in Fig. 2, the

moving direction of the terminal isθ with respect to the line-of-sight direction, and the direction

of the linear antenna array isψ. Fig. 2 depicts the specific locations of the entire moving antenna

array of transmitter at thek1-th andk2-th signal blocks. It can be seen that the first antenna

of the transmitter to the right at thek1-th block is located at nearly the same place as the

second transmit antenna at thek2-th block due to the mobility of terminal. The corresponding

channel vectors areh1
k1

andh2
k2

. Intuitively, there exists some correlation betweenh1
k1

andh2
k2

according to many channel models, such as the Clark’s model [27, Sec 2.4]. Such correlation

is termed as joint spatio-temporal correlation, which captures the correlation between distinct

antenna pairs at different time due to mobility. In general,the specific correlation betweenh1
k1

and

h2
k2

can be estimated from measurement. Here, we introduce an analytical model. Specifically,

when the moving scattering objects are modeled by poisson point process, the final correlation

coefficient betweenh1
k1

andh2
k2

can be expressed as follows (see more details in [23, 25] and

the measurements can be found in [21, 22])

η =
J0(

√
a2 + b2 − κ2 − 2ab cos(ψ − θ) + j2κ[a cos(µ− θ) + b cos(µ− ψ)])

J0(κ)
, (1)

whereJ0(·) is the zero-th order Bessel function of the first kind;κ indicates the width of angle

of the arrival (AOA) andµ accounts the mean direction of AOA;a = 2πfDτ andb = 2πD/λ0,

with τ being the time interval between thek1-th and k2-th blocks, andD being the antenna

spacing.

Assuming that the mobile terminal can adapt the direction ofantenna array so thatψ = θ

to achieve the largest correlation. And the scattering is isotropic so we haveκ = 0. Hence, the
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train antenna array at k2-th block

Fig. 2: The joint spatio-temporal correlation of moving antenna array [23].

correlation can be simplified as

η = J0(
√
a2 + b2 − 2ab cos(ψ − θ)) = J0

(
2π|v0τ −D|

λ0

)
. (2)

Denote the location of the first transmit antenna at thek1-th block asz1k1 and the location of

second antenna at thek2-th block asz2k2. Then, we have|v0τ −D| = |z2k2 − z1k1|. Consequently,

we can extend (2) as the correlation expression between the response of first antenna at thek1-th

block h1
k1

and the response ofm-th antenna at thekm-th blockhm
km

as

η(z1k1, z
m
km

) = J0

(2π|zmkm − z1k1 |
λ0

)
. (3)

We assume that the relative position of the transmit antennaarray is precisely known at any

time, so is the correlation in (3). Besides, we make the following assumption.

Assumption 1: The channel state at a fixed position within the fading field stays constant

during a period t0 and after that may change to some other value, wheret0 is called the

coherence time of the environment and determined by the timevariation of the scatterers.

Remark 1: It is worth noting that the channel coherence timeλ0

2v0
and the environment

coherence timet0 are fundamentally different. The former is determined by the moving speed of

the transmitter while the latter is by the time variation of the scatterers in the radio propagation

paths. In general,λ0

2v0
≪ t0 since the environment can not change much within a short period.



III. POSITION-AIDED CHANNEL ESTIMATION

In the conventional approach, the entire channel matrix is re-estimated in each block, to cope

with the channel variation caused by high mobility. Thereby, in order to estimate the channel

vectors ofM transmit antennas, at leastM pilot symbols need to be transmitted during training

phase, which leads to huge training overhead in a large-scale MIMO system [6]. To reduce the

training overhead, we propose a new channel estimation concept, called position-aided channel

estimation, by exploiting the property of joint spatio-temporal correlation. It is assumed that all

transmit antennas form a linear array with uniform intervalλ0

2
and that they move along the

same path. Then during the training phase of each block, we have to only estimate the channel

vectors of a subset of the transmit antennas by transmittingpilot symbols, while the rest of the

channel vectors can be obtained through linear interpolation based on the joint spatial-temporal

correlation. As a result, the overhead of the training stageof each block can be significantly

reduced, resulting in high data throughput.

A. Initial Estimation of the First Column in Each Group Basedon Pilots

Lethm
k ∈ CN×1 denote the channel vector between them-th transmit antenna and allN receive

antennas in thek-th block, thusHk = [h1
k,h

2
k, ...,h

M
k ]. TheseM channel vectors are further

divided intoMg groups, each containingMe adjacent columns inHk. Thus,M = Me · Mg.

Then, the channel sub-matrix for thei-th group can be expressed as

Qi
k = [q1

k,i, q
2
k,i, ..., q

Me

k,i ] = [h
Me(i−1)+1)
k ,h

Me(i−1)+2)
k , ...,h

Me(i−1)+Me)
k ], i = 1, 2, ...,Mg. (4)

And the channel matrixHk can be rewritten as

Hk = [Q1
k,Q

2
k, ...,Q

Mg

k ]. (5)

Under the position-aided channel estimation scheme, only the first transmit antenna in each

group sends pilot symbols to estimate the channel state during each block, which corresponds

to the followingN ×Mg sub-matrix ofHk:

Gk = [g1
k, g

2
k, ..., g

Mg

k ] = [h1
k,h

Me+1
k , ...,h

Me(Mg−1)+1
k ]. (6)



DenoteTτ as the training duration in terms of the number of pilot symbols, and letSτ,k ∈

CMg×Tτ and Yτ,k ∈ CN×Tτ be the pilot symbol matrix and the corresponding received signal

during the training phase, respectively. Then, the training phase can be modeled as

Yτ,k =

√
Pτ

Mg

GkSτ,k + Vτ,k, (7)

wherePτ is the transmit power during the training phase andVτ,k ∈ CN×Tτ represents additive

white Gaussian noise with i.i.d.CN (0, 1) elements.

The minimum mean-square error (MMSE) estimate ofGk is given by

Ĝk =
√

Mg

Pτ
Yτ,kS

H
τ,k

(
Mg

Pτ
IMg

+ Sτ,kS
H
τ,k

)−1

. (8)

With orthogonal pilot symbol sequences, i.e.,Sτ,kS
H
τ,k = IMg

Tτ , substituting (7) into (8), we get

Ĝk =

PτTτ

Mg

1 + PτTτ

Mg

Gk +

√
PτTτ

Mg

1 + PτTτ

Mg

V ′

τ,k, (9)

whereV ′

τ,k =
1√
Tτ
Vτ,kS

H
τ,k, the elements of which are still i.i.d.CN (0, 1).

Let Ĝk = [ĝ1
k, ĝ

2
k, ..., ĝ

Mg

k ] andV ′

τ,k = [v1
k, v

2
k, ..., v

Mg

k ]. Then

ĝi
k =

PτTτ

Mg

1 + PτTτ

Mg

gi
k +

√
PτTτ

Mg

1 + PτTτ

Mg

vi
k, i = 1, 2, ...,Mg. (10)

Hence, we have these initial estimates of the first channel column vectors that are independent

and identical distributed as

ĝi
k ∼ CN

(
0,

Pτ

Mg
Tτ

1 + Pτ

Mg
Tτ

IN

)
, i = 1, 2, ...,Mg. (11)

Let z(Me(i−1)+1)
k be the position of the first transmit antenna in thei-th group of thek-th signal

block over the moving path. Then,ĝi
k can be regarded as the CSI sample at the pointz

(Me(i−1)+1)
k

on the moving path. As shown in Fig. 3, a group of CSI samples along the moving path can be

obtained over timek. We then establish the following CSI tableΦi
k for the i-th group

Φ
i
k =

{
(ĝi

l , z
(Me(i−1)+1)
l ), l = 1, 2, ..., k

}
, i = 1, 2, ...,Mg, (12)

which can be used to obtain the estimates of all channel vectors in thei-th group, i.e.,Q̂i
k. The

details of this will be given in the sequel.



v0The observed point by training signal

over the moving path.

The transmit antenna at the k-th block.

L02L0

Fig. 3: The diagram of the estimation process for thei-th group under the proposed position-aided

channel estimation scheme.

B. Refined Estimation of the First Column in Each Group

As shown in Fig. 3, we will useL0 samples{ĝi
k−L0+1, ..., ĝ

i
k−1, ĝ

i
k} over the moving path to

refine the estimate ofh(Me(i−1)+1)
k = gi

k with the help of position information (whereL0 ≤ ξ0

due to the constraint of channel coherence distance). For notational simplicity, we denotei0 =

Me(i− 1) + 1 in this subsection.

As stated in the previous section,gi
k−L0+1, ..., g

i
k−1 and gi

k are jointly Gaussian distributed

with zero mean and the following covariance matrix:

Rgi
k
,gi

k−1
,...,gi

k−L0+1
=




Rgi
k

Rgi
k
gi
k−1

· · · Rgi
k
gi
k−L0+1

Rgi
k−1

gi
k

Rgi
k−1

· · · Rgi
k−1

gi
k−L0+1

...
. . .

Rgi
k−L0+1

gi
k

Rgi
k−L0+1

gi
k−1

· · · Rgi
k−L0+1




=




η1,1 η1,2 · · · η1,L0

η2,1 η2,2 · · · η2,L0

...
. . .

ηL0,1 ηL0,2 · · · ηL0,L0




⊗ IN ,

(13)

where⊗ denotes the Kronecker product andRxy = E{(x − E[x])(y − E[y])H}. By plugging



the location expressions into (3), we have

ηm,n = J0

(
2π|m− n| v0T0

λ0B0

)
. (14)

However, the receiver does not know the exact values of{gi
k−L0+1, ..., g

i
k−1, g

i
k}, but only

has their initial estimates based on pilot symbols, namely{ĝi
k−L0+1, ..., ĝ

i
k−1, ĝ

i
k}. Based on

(10), {ĝi
k−L0+1, ĝ

i
k−L0+2, ..., ĝ

i
k, g

i
k} are also jointly Gaussian distributed with covariance matrix

(recall thathi0
k = gi

k)

R
h
i0
k
,ĝi

k
,...,ĝi

k−L0+1

=




Rgi
k

Rgi
k
ĝi
k

Rgi
k
ĝi
k−1

· · · Rgi
k
ĝi
k−L0+1

Rĝi
k
gi
k

Rĝi
k

Rĝi
k
ĝi
k−1

· · · Rĝi
k
ĝi
k−L0+1

Rĝi
k−1

gi
k

Rĝi
k−1

ĝi
k

Rĝi
k−1

· · · Rĝi
k−1

ĝi
k−L0+1

...
. . .

Rĝi
k−L0+1

gi
k

Rĝi
k−L0+1

ĝi
k

Rĝi
k−L0+1

ĝi
k−1

· · · Rĝi
k−L0+1




=




1 η1,1σ
2
0 η1,2σ

2
0 · · · η1,L0

σ2
0

η1,1σ
2
0 η1,1σ

2
0 η1,2σ

4
0 · · · η1,L0

σ4
0

η2,1σ
2
0 η2,1σ

4
0 η2,2σ

2
0 · · · η2,L0

σ4
0

...
. . .

ηL0,1σ
2
0 ηL0,1σ

4
0 ηL0,2σ

4
0 · · · ηL0,L0

σ2
0




⊗ IN ,

(15)

where

σ2
0 =

PτTτ

Mg

1 + PτTτ

Mg

. (16)

Given the initial estimates in the CSI tableΦi
k, the MMSE estimate ofhi0

k is [30]

ĥi0
k =E

{
hi0

k

∣∣∣ĝi
k−L0+1, ĝ

i
k−L0+2, ..., ĝ

i
k

}

=




η1,1σ
2
0

η1,2σ
2
0

...

η1,L0
σ2
0




T 


η1,1σ
2
0 η1,2σ

4
0 · · · η1,L0

σ4
0

η2,1σ
4
0 η2,2σ

2
0 · · · η2,L0

σ4
0

...
. . .

ηL0,1σ
4
0 ηL0,2σ

4
0 · · · ηL0,L0

σ2
0




−1

⊗ IN




ĝi
k

ĝi
k−1

...

ĝi
k−L0+1



.

(17)



And the corresponding MMSE matrix is [30]

E

{(
hi0

k − ĥi0
k

)(
hi0

k − ĥi0
k

)H
}

=IN −




η1,1σ
2
0

η1,2σ
2
0

...

η1,L0
σ2
0




T 


η1,1σ
2
0 η1,2σ

4
0 · · · η1,L0

σ4
0

η2,1σ
4
0 η2,2σ

2
0 · · · η2,L0

σ4
0

...
. . .

ηL0,1σ
4
0 ηL0,2σ

4
0 · · · ηL0,L0

σ2
0




−1


η1,1σ
2
0

η2,1σ
2
0

...

ηL0,1σ
2
0




⊗ IN .

(18)

Specifically, whenL0 = 1, the MMSE estimate in (17) can be simplified to

ĥi0
k = ĝi

k, i = 1, 2, ...,Mg, (19)

with the MMSE matrix given in (18) simplified to

E

{(
hi0

k − ĥi0
k

)(
hi0

k − ĥi0
k

)H
}

=
(
1− σ2

0

)
IN , i = 1, 2, ...,Mg. (20)

C. Estimation of Other Columns in Each Group

For thej-th column (j = 2, 3, ...,Me) in the i-th group, the channel vectorh(Me(i−1)+j)
k can

also be estimated by using the CSI tableΦ
i
k and the antenna position informationz(Me(i−1)+j)

k .

For clarity, we denotei0 = Me(i − 1) + 1 and j0 = Me(i − 1) + j in this subsection. As

observed from Fig. 3,zj0k is located betweenzi0k0 and zi0k0+1 along the moving path, namely

|zi0k − zi0k0 | ≥ |zi0k − zj0k | ≥ |zi0k − zi0k0+1|. The value ofk0 can be obtained by comparingzj0k with

{zi0l , l = 1, 2, ..., k} that is contained inΦi
k. In particular, on the condition that the transmitter

is in uniform motion with speedv0 and the interval between two adjacent antennas isλ0

2
,

|zi0m − zi0n | = |m−n|v0T0

B0
. Then, by using|zj0k − zi0k | = (j−1)λ0

2
, the above condition becomes

(k − k0)v0T0
B0

≥ (j − 1)λ0
2

≥ (k − k0 − 1)v0T0
B0

(21)

⇒ k0 =

⌊
k − (j − 1)λ0B0

2v0T0

⌋
. (22)

It can be seen that the particular value ofk0 depends on the value ofξ0 in the expression of

T0 =
λ0B0

2ξ0v0
. For instance,k−k0 ≈ (j−1)ξ0, if the effect of the floor operator in (21) is ignored.



As shown in Fig. 3, the next task is to estimateh
j0
k based on{ĝi

k−L0+1, ..., ĝ
i
k0
, ĝi

k0+1, ..., ĝ
i
k0+L0

}

aided by the position information. Similarly as before,ĝi
k−L0+1, ..., ĝ

i
k0
, ĝi

k0+1, ..., ĝ
i
k0+L0

andhj0
k

are jointly Gaussian distributed, with the covariance matrix

R
ĝi
k0+L0

,...,ĝi
k0+1

,h
j0
k
,ĝi

k0
,...,ĝi

k−L0+1

=




Rĝi
k+L0

· · · R
ĝi
k+L0

h
j0
k

· · · Rĝi
k+L0

ĝi
k−L0+1

...
. . .

R
h
j0
k
ĝi
k+L0

· · · R
h
j0
k

· · · R
h
j0
k
ĝi
k−L0+1

...
. . .

Rĝi
k−L0+1

ĝi
k+L0

· · · R
ĝi
k−L0+1

h
j0
k

· · · Rĝi
k−L0+1




=




R1 rH
1 R2

r1 1 r2

RH
2 rH

2 R1


⊗ IN ,

(23)

with

R1 =




η1,1σ
2
0 η1,2σ

4
0 · · · η1,L0

σ4
0

η2,1σ
4
0 η2,2σ

2
0 · · · η2,L0

σ4
0

...
. . .

ηL0,1σ
4
0 ηL0,2σ

4
0 · · · ηL0,L0

σ2
0



, (24)

R2 =




η1,L0+1σ
4
0 η1,L0+2σ

4
0 · · · η1,2L0

σ4
0

η2,L0+1σ
4
0 η2,L0+2σ

4
0 · · · η2,2L0

σ4
0

...
. . .

ηL0,L0+1σ
4
0 ηL0,L0+2σ

4
0 · · · ηL0,2L0

σ4
0



, (25)

r1 = [η′L0
σ2
0 , η

′
L0−1σ

2
0 , ..., η

′
2σ

2
0 , η

′
1σ

2
0], (26)

r2 = [η′′1σ
2
0 , η

′′
2σ

2
0, ..., η

′′
L0−1σ

2
0, η

′′
L0
σ2
0], (27)

where

η′l = J0

(
2π

|zj0k − zi0k0+l|
λ0

)
, (28)

η′′l = J0

(
2π

|zj0k − zi0k0−l+1|
λ0

)
. (29)



The MMSE estimate ofhj0
k is given by

ĥ
j0
k =E

{
h

j0
k

∣∣∣ĝi
k−L0+1, ..., ĝ

i
k0
, ĝi

k0+1, ..., ĝ
i
k0+L0

}

=
(

r1 r2

)

 R1 R2

RT
2 R1




−1

⊗ IN




ĝi
k0+L0

...

ĝi
k0−L0+1


 .

(30)

Again the estimate is a linear combination of the2L0 samples inΦi
k and the interpolation

coefficients can be precomputed offline. The corresponding MMSE matrix is given by

E

{
(hj0

k − ĥ
j0
k )(h

j0
k − ĥ

j0
k )

H
}
= IN −

(
r1 r2

)

 R1 R2

RH
2 R1




−1
 r1

r2


⊗ IN . (31)

Specifically, for the case ofL0 = 1, ĥj0
k can be simplified as

ĥ
j0
k =E

{
h
j0
k

∣∣∣ĝi
k0+1, ĝ

i
k0

}

=
(
η′1σ

2
0 η′′1σ

2
0

)

 σ2

0 η1σ
4
0

η1σ
4
0 σ2

0




−1
 ĝi

k0+1

ĝi
k0




=
η′′1 − η1η

′
1σ

2
0

1− η21σ
4
0

ĝi
k0+1 +

η′1 − η1η
′′
1σ

2
0

1− η21σ
4
0

ĝi
k0
,

(32)

whereη1 = J0

(
2π

|zi0
k0+1

−z
i0
k0

|
λ0

)
, η′1 = J0

(
2π

|zj0
k
−z

i0
k0+1

|
λ0

)
andη′′1 = J0

(
2π

|zj0
k
−z

i0
k0

|
λ0

)
based on (28).

Finally, the MMSE matrix in (31) can be simplified as

E

{
h̃

j0
k (h̃

j0
k )

H
}
=

(
1− σ2

0 · Γ(η1, η′1, η′′1)
)
IN , (33)

where

Γ(η1, η
′
1, η

′′
1) =

η′1
2 + η′′1

2 − 2η1η
′
1η

′′
1σ

2
0

1− η12σ4
0

. (34)

Remark 2: It is worth noting again that there is no spatial correlationbetween antenna elements

due to sufficiently separation. Namely,h1
k,h

2
k, ...,h

M
k are independent of each other, so the results

of [12] based on the correlation structure amongh1
k,h

2
k, ...,h

M
k can not be applied. However,

based onAssumption 1, we can establish the relationship betweenh
j0
k and ĝi

k0+1, ĝ
i
k0

(the past

estimates of the first transmit antenna in the same group) by utilizing the joint spatio-temporal

correlation in (3) with the help of position information of the transmit antenna array. Thus, we

can get the estimator in (32) and reduce the training overhead.



D. Summary and Comments

In summary, for thek-th signal block, the channel estimation process consists of the following

steps:

• Step 1: The first transmit antenna of each group transmits pilot symbols. The receiver

computes the initial estimatêGk based on (9) and (10) using the received signals and

updates theMg CSI tablesΦi
k =

[
Φ

i
k−1, (ĝ

i
k, z

(Me(i−1)+1)
k )

]
, i = 1, 2, ...,Mg.

• Step 2: The estimate of the first columnh(Me(i−1)+1)
k in the i-th sub-matrixQi

k is refined

by using (17),i = 1, 2, ...,Mg.

• Step 3: The estimate of thej-th column h
(Me(i−1)+j)
k in the i-th sub-matrixQi

k, j =

2, 3, ...,Me, is computed by using (30). This yields the estimate of the entire channel matrix

Ĥk = [ĥ1
k, ĥ

2
k, ..., ĥ

M
k ].

Remark 3: (Maximum value forMe) Since the channel state over the moving path is estimated

by the pilot symbols from the first transmit antenna in a groupand the estimation results are

finally reused by the last antenna in the same group, the time interval between which is∆T =

(Me−1)λ0

2v0
. In order to guarantee that the channel state at a fixed point does not change during

this period,∆T should be less than the coherence time of the transmission environmentt0, i.e.,

(Me−1)λ0

2v0
< t0. Thus, the maximum allowable value forMe can be expressed as

Me =
⌊2v0t0
λ0

+ 1
⌋
. (35)

Remark 4: It is seen that the value ofMe is bounded, especially when the speedv0 is low.

It means that the size of the antenna array is limited if we only employ one group, which will

lead to a low throughput. So, in order to support a larger sizeof antenna array, multiple groups

should be employed. The optimal value ofMg will be considered in Section IV.D.



IV. PERFORMANCE ANALYSIS AND THROUGHPUT OPTIMIZATION

A. Effective SNR Analysis

DenoteH̃k = Hk − Ĥk as the channel estimation error. The data phase in thek-th block is

Yd,k =

√
Pd

M
ĤkSd,k +

√
Pd

M
H̃kSd,k + Vd,k, (36)

wherePd denotes the transmit power in the data phase,Vd,k is an additive white Gaussian noise

term with i.i.d.CN (0, 1) elements, whileSd,k ∈ CM×Td andYd,k ∈ CN×Td are the transmitted

signal and received signal, respectively.

SinceĤk is an MMSE estimate, the error̃Hk is uncorrelated witĥHk due to the orthogo-

nality principle [30]. LetEd,k =
√

Pd

M
H̃kSd,k + Vd,k be an equivalent additive noise term that

combines the effects of channel noise and channel estimation error. It follows thatEd,k is also

zero mean and uncorrelated witĥHkSd,k. It is known that for uncorrelated additive noise, the

worst distribution in terms of capacity is Gaussian [6, 28, 29]. Thus, on the condition that the

transmitted signal satisfiesE{Sd,kS
H
d,k} = TdIM , a lower bound on the capacity during the data

phase can be expressed as

Cworst = E

{
log2 det

(
IN +

Pd

M
R−1

E ĤkĤ
H
k

)}
, (37)

whereRE = 1
Td
E{Ed,kE

H
d,k} = Pd

M
E{H̃kH̃

H
k }+ IN .

In what follows, for tractability of analysis, we focus on the special case ofL0 = 1 and

the performance of the case withL0 > 1 will be examined via simulations in the next section.

Specifically, whenL0 = 1, the estimation errors are given by (20) and (33). We have thefollowing

result.

Proposition 1: Γ(η1, η′1, η
′′
1) > 1 (Γ(·) defined in (34)), if the signal to noise ratio (SNR) during

the training phase is less than a certain threshold value, namely PτTτ

Mg
< Ω

1−Ω
, where

Ω = min
{zj0

k
,j0=1,2,...M}

2η1η
′
1η

′′
1 −

√
4η21η

′
1
2η′′2

2 − 4η21(η
′
1
2 + η′′1

2 − 1)

2η21
. (38)

Proof: See Appendix A.



In particular, for the typical system parameter withξ0 = 20, i.e., T0 = ⌊λ0B0

40v0
⌋, it can be

obtained thatΩ = 0.999997609 and the SNR threshold valueΩ
1−Ω

= 56.2dB. Hence, if the

SNR value is below56.2dB, a very mild condition that always holds in practice, we can obtain

Γ(η1, η
′
1, η

′′
1) > 1. Then, the MMSE error of the first column in each group given by(20) is

larger than that of other columns given by (33).

Remark 5: As shown in Fig. 3,2L0 samples are utilized to estimateh(Me(i−1)+j)
k based on (32)

while only L0 samples are utilized to estimateh(Me(i−1)+1)
k based on (19) due to the causality

constraint. Hence, unless the SNR during training phase is extremely large, the estimation error

of the first column is typically larger than that of others in the same group.

Thus, in practice, the estimation error for the first column in each group is the largest compared

with that of other columns. We can then obtain a further lowerbound on the capacity by assuming

that the covariance of the estimation error of any column is(1−σ2
0)IN . That is, we can use the

following system model to lower bound the capacity of the original system in (36):

Yd,k =

√
Pd

M
Ĥ ′

kSd,k +

√
Pd

M
H̃ ′

kSd,k + Vd,k, (39)

whereĤ ′
k contains i.i.d.CN (0, σ2

0) elements whilẽH ′
k contains i.i.d.CN (0, 1−σ2

0) elements,

and they are uncorrelated with each other.

For the model in (39), we haveE{H̃ ′
k(H̃ ′

k)
H} =M(1−σ2

0)IN andRE′ = 1
Td
E{E′

d,k(E
′

d,k)
H} =

Pd

M
E{H̃ ′

k(H̃ ′
k)

H}+IN = [Pd(1−σ2
0)+1]IN . Then, using (37), the lower bound on the capacity

of the system in (36) during data phase can be expressed as

CL = E

{
log2 det

(
IN +

Pdσ
2
0

1 + Pd(1− σ2
0)

· HkH
H

k

M

)}
, (40)

where the normalized channel estimate isHk =
Ĥ′

k√
σ2
0

, consisting ofCN (0, 1) elements.

B. End-to-End Throughput Optimization and System Parameter selections

Taking the training stage into account, we can maximize the system throughput by optimally

allocating the channel resources between the training and data phases. That is

RL = max
Pd,Td

E

{
T0 − Tτ
T0

· log2 det
(
IN +

Pdσ
2
0

1 + Pd(1− σ2
0)

· HkH
H

k

M

)}
, (41)



where the pre-log factorT0−Tτ

T0
accounts for the estimation cost of channel uses, whilePd and

Td satisfy the following constraints of total time slot and total transmission energy per block:

T0 = Tτ + Td, P0T0 = PτTτ + PdTd. (42)

Substituting the expression ofσ2
0 into (41), the effective signal-to-noise ratio (SNR) can be

expressed as

ρeff =
Pdσ

2
0

1 + Pd(1− σ2
0)

=
Pd

Pτ

Mg
Tτ

1 + Pd +
Pτ

Mg
Tτ
. (43)

In order to maximize the right-hand side of (41) with respectto power allocation and the time

interval partition, namely{Pτ , Pd} and{Tτ , Td}, we have the following two Lemmas.

Lemma 1: (Optimal Power Ratio) The optimal power ratio is given byPd

P0
= αT0

Td
, where

α =

√
Td(Mg + P0T0)√

Mg(Td + P0T0) +
√
Td(Mg + P0T0)

. (44)

Proof: See Appendix B.

Lemma 2: (Optimal Time Interval Partition) The optimal length of thetraining interval under

the optimal power allocation ratio isMg for all possibleP0 and T0.

Proof: See Appendix C.

Then, by substituting the results inLemma 1andLemma 2into (41), we obtain the following

conclusion.

Proposition 2: In a training-based system with position-aided channel estimation, the lower

bound on the throughput under the optimal channel resource allocation can be expressed as

RL = E

{
T0 −Mg

T0
· log2 det

(
IN + ρ∗eff

HkH
H

k

M

)}
, (45)

where

ρ∗eff =
P 2
0 T

2
0

[
√
Mg(T0 −Mg + P0T0) +

√
(T0 −Mg)(Mg + P0T0)]2

,

T0 =

⌊
λ0B0

2ξ0v0

⌋
.

(46)



C. Special Case:Me = 1—Conventional Training Scheme

If we set Me = 1 (and Mg = M), the position-aided channel estimator will reduce to

the conventional channel estimator. To serve as a baseline,let us analyze the performance of

conventional training. SubstitutingMe = 1 andMg = M into (45) and (46), we can obtain the

corresponding performance of the conventional training scheme, which is consistent with the

prior work [6].

Corollary 1: In a training-based system with conventional training, thelower bound on the

throughput under well-designed system parameters can be expressed as

RL = E

{
T0 −M

T0
· log2 det

(
IN + ρ∗eff

HkH
H

k

M

)}
, (47)

where

ρ∗eff =
P 2
0 T

2
0

[
√
M(T0 −M + P0T0) +

√
(T0 −M)(M + P0T0)]2

. (48)

D. Optimal Antenna Size

Lastly, we consider the optimal size of the antenna array forthe system with the proposed

position-aided estimation scheme. It is assumed that the number of receive antennas is always

equal to that of transmit antennas. Since the total number oftransmit antennas isM =Me ·Mg

and the value ofMe is given by (35), it remains to determine the value ofMg. We consider

this problem from the viewpoint of maximizing the multiplexing gain of the system, namely the

degrees-of-freedom (DoF) of the system, which is defined as follows [31]

DoF= lim
P0→∞

RL

log2 P0
(49)

Proposition 3: For a training-based system with position-aided channel estimation, the optimal

number of transmit antennasM∗ in terms of maximizing DoF is

M∗ =
T0
2

·Me, (50)

i.e.,M∗
g = T0

2
andMe is given by (35).

Proof: See the Appendix D.



Similar to Proposition 3, we can get the optimal number of transmit antennas for the conven-

tional training system by settingMe = 1 andMg =M , which is summarized as follows.

Corollary 2: For the training-based system with conventional training,the optimal number of

transmit antennas in terms of maximizing DoF is

M∗ =
T0
2
. (51)

V. SIMULATION RESULTS

A. Comparison Between Two Training Schemes

We first compare the throughput performance of the proposed position-aided channel estimator

to that of the conventional one, the explicit expressions ofwhich are given in (45) and (47),

respectively. For the fairness of comparison, we assume that the antenna sizes under the two

estimation schemes are the same in this subsection.

Specifically, it is assumed that the carrier wavelengthλ0 = 0.15m (i.e., the carrier frequency

is 2GHz), the bandwidthB0 = 10MHz, the coherence time of environmentt0 = 5ms, and the

length of each signal block is equal to the twentieth of the coherence time of channel (ξ0 = 20).

The average SNR value is30dB. We consider the case that the number of receive antennas is the

same as that of transmit antennas. Fig. 4 plots the throughput of a training-based system under

the proposed position-aided channel estimator and the conventional estimator as a function of

the velocityv0 when the number of antennasM is 100 and200, respectively. In the system with

position-aided channel estimation, the value ofMe is given by (35), and the correspondingMg

is equal to⌈ M
Me

⌉; if the value ofM is not a multiple ofMe, some extra zero columns can be

added to the end of the last groupQMg

k to match with the formulation in (45).

It is seen from Fig. 4 that the throughput of the conventionaltraining scheme deteriorates

significantly as the relative velocity increases, especially when the antenna size is large. This

is because the training phase occupies too many channel uses. In particular, the throughput can

even become zero when the velocity is large enough, which highlights the main motivation of

this work to propose the concept of position-aided training: to reduce the estimation overhead
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Fig. 4: Throughput comparison between the proposed position-aided channel estimator and the

conventional estimator as a function of velocityv0 when the average SNR is30dB.

in highly mobile environments. In contrast, the performance of the position-aided estimation

scheme deteriorates a little and is nearly independent of the velocity due to the exploitation of

the spatio-temporal correlation in a mobile environment. Ahigher mobility leads to smaller value

of T0, which reduces the duration of data phase. However, it also makes it possible to group

more columns together to share the common training signal based on (35), which can reduce

the portion of training phase in a block. As a result, the system with position-aided channel

estimation can achieve a robust performance with respect tomobility, even whenM is just on

the order of tens (such asM = 40). Significant improvement can be achieved if we employ

position-aided channel estimation for the large-scale MIMO system in the high-speed railway

scenarios.

B. Performance Comparison under the Optimal Antenna Array Size

In this subsection, we compare the performance of the two channel estimation schemes under

their respective optimal antenna sizes which are given by (50) and (51). Fig. 5 depicts the

DoF performance of the training-based system as a function of velocity v0 with the position-

aided training scheme and the conventional training scheme. It can be observed that the DoF
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Fig. 5: The DoF of the training-based system with position-aided training and conventional

training as a function of velocityv0, when the optimal antenna sizes in (50) and (51) are adopted.

with conventional training decreases with the velocityv0. The DoF with position-aided channel

estimation is significantly higher than that of the conventional one, especially when the speed is

high, which is consistent with the results in Fig. 4 for the case of fixed antenna size. It should be

noted that the discontinuity phenomenon in the performancecurves is caused by the round-off

operation in calculatingMe andMg.

The optimal antenna sizeM∗ in (50) is obtained based on DoF maximization in the high

SNR regime. Let us examine the optimality based on numericalsimulation when the SNR is

not so high. Assuming that the velocityv0 = 100m/s and the other parameters are just the same

as those in the previous subsection, Fig. 6a depicts the system throughput with position-aided

channel estimation as a function of group numberMg under different average SNR values. The

ideal optimum group number calculated by (50) isM∗
g = 375 as displayed in Fig. 6a. It can

be observed that the practical optimal value forMg is very close to375 even when the SNR

is only 20dB. Likewise, Fig. 6b depicts the throughput under conventional training scheme as a

function of antenna sizeM whenv0 = 100m/s. Similar results can be observed from it.
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Fig. 6: The system throughput as a function of antenna sizeM when v0 = 100m/s: (a) with

position-aided channel estimation scheme, (b) with conventional training scheme.

C. Performance withL0 > 1

The analysis in Section IV and the above numerical results concentrate on the case ofL0 = 1

in (17) and (30). We now consider the general case withL0 > 1 via simulations. It is assumed that

the system parameters are the same as those in Section V.A. The antenna size at the transmitter

and receiver areM = N = 200. The value ofMe is given by (35) and the correspondingMg is

set as⌈ M
Me

⌉. Fig. 7 plots the system throughput with the position-aidedchannel estimation as a

function of the velocity withL0 = 1, 2, 3, 4 andSNR = 20dB. The training interval in both cases

is set asTτ = Mg. Besides, for a fair comparison, the uniform power distribution is adopted,

i.e., Pτ = Pd = P0. Fig. 8 plots the system throughput under position-aided channel estimation

scheme as a function of SNR when the velocity is100m/s,M = N = 200 andL0 = 1, 2, 3, 4.

From Figs. 7 and 8, it is seen that there is only a slight gain with L0 > 1 compared withL0 = 1.

Thus, we strongly recommend to employ the case withL0 = 1 in a highly mobile large-scale

MIMO system, to achieve a considerable improvement with lowcomplexity.
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for L0 = 1, 2, 3, 4 andSNR = 20dB.

VI. CONCLUSIONS

We have proposed a position-aided channel estimation scheme for training-based large-scale

MIMO systems to reduce the pilot overhead in high-speed railway communications. In this

concept, only a subset of the transmit antennas need to send pilot symbols during the training

phase of each block. The entire channel matrix can be estimated from the initial estimate of

the submatrix with the help of position information by exploiting the spatio-temporal correlation

structure of the channel. We have also developed a frameworkof optimizing the training interval,

power allocation and antenna size for the proposed position-aided training system. A salient

feature of the proposed scheme is that the system throughputremains invariant as the transmitter’s

moving speed varies, whereas for the system that employs conventional training, the throughput

deteriorates rapidly as the speed increases and even becomes zero with very high mobility.

APPENDIX A: PROOF OFPROPOSITION1

The conditionΓ(η1, η′1, η
′′
1) > 1 is equivalent to

η′1
2 + η′′1

2 − 2η1η
′
1η

′′
1σ

2
0

1− η21σ
4
0

> 1. (52)
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Fig. 8: The system throughput with position-aided channel estimation as a function of SNR for

L0 = 1, 2, 3, 4 andv0 = 100m/s.

Since bothη1 andσ2
0 belong to(0, 1), we have1 − η21σ

4
0 > 0. By some manipulations, (52)

is equivalent to

η21σ
4
0 − 2η1η

′
1η

′′
1σ

2
0 + (η′1

2
+ η′′1

2 − 1) > 0 (53)

⇒ σ2
0 ∈

(
0,

2η1η
′
1η

′′
1 −

√
4η21η

′
1
2η′′2

2 − 4η21(η
′
1
2 + η′′1

2 − 1)

2η21

)
. (54)

From (28), it can be seen thatη′1 and η′′1 are functions ofzi0k0, z
j0
k and zi0k0+1, the values of

which are different for different columns. In order to guarantee thatΓ(η1, η′1, η
′′
1) > 1, we then

needσ2
0 ∈ (0,Ω), where

Ω = min
{zj0

k
,j0=1,2,...M}

2η1η
′
1η

′′
1 −

√
4η21η

′
1
2η′′2

2 − 4η21(η
′
1
2 + η′′1

2 − 1)

2η21
. (55)

Thus, Γ(η1, η′1, η
′′
1) > 1, if the SNR value during the training phase meets the following

constraint on the condition
PτTτ
Mg

<
Ω

1− Ω
. (56)

APPENDIX B: PROOF OFLEMMA 1

As observed from (41)–(43), the power allocation strategy{Pτ , Pd} only affects the throughput

via ρeff. Thus, maximizingρeff with respect to(Pτ , Pd) is equivalent to maximizingRL. We use



a similar formulation as that in [6]. That is, lettingα be the fraction of total transmit energy

that is dedicated to data phase, we have

PdTd = αP0T0, PτTτ = (1− α)P0T0, 0 < α < 1. (57)

Then, we can rewrite the effective SNR in (43) as

ρeff =
Pd

Pτ

Mg
Tτ

1 + Pd +
Pτ

Mg
Tτ

=
α P0T0

MgTd
(1− α)P0T0

1 + αP0T0

Td
+ (1− α)P0T0

Mg

=
P 2
0 T

2
0

Mg(Td+P0T0)
1−α

+ Td(Mg+P0T0)
α

. (58)

DenoteL(α) = Mg(Td+P0T0)

1−α
+ Td(Mg+P0T0)

α
. As a result, minimizingL(α) is equivalent to

maximizingρeff. We have

∂L

∂α
=
Mg(Td + P0T0)

(1− α)2
− Td(Mg + P0T0)

α2
, (59)

∂2L

∂α2
= 2 · Mg(Td + P0T0)

(1− α)3
+ 2 · Td(Mg + P0T0)

α3
. (60)

Since ∂2L

∂α2 > 0, L(α) is convex and has an unique minimum, which is

Lmin =
[√

Mg(Td + P0T0) +
√
Td(Mg + P0T0)

]2
. (61)

By solving ∂L
∂α

= 0, we obtain

α∗ =

√
Td(Mg + P0T0)√

Mg(Td + P0T0) +
√
Td(Mg + P0T0)

. (62)

APPENDIX C: PROOF OFLEMMA 2

Let us consider the monotonicity of the throughput functionRL in (41) with respect to the

variableTd under the optimal power allocation presented inLemma 1. Plugging (44) into (43),

the effective SNR with optimal power allocation can be rewritten as

ρeff =
P 2
0 T

2
0

[
√
M2(Td + P0T0) +

√
Td(M2 + P0T0)]2

. (63)

Assumingλi is thei-th nonnegative singular value of the matrixHkH
∗

k

M
, the throughput function

can be expressed as

R =
∑

i

E

{
Td
T0

· ln
(
1 + ρeffλi

)}
, (64)



where we use the natural logarithm to instead oflog2 for convenience, and the expectation

operation is overλi.

Let Ri(Td) beE
{

Td

T0
· ln(1+ρeffλi)

}
. The first order derivative ofRi(Td) with respect toTd is

∂Ri(Td)

∂Td
= E

{
1

T0
log2(1 + ρeffλi) +

Td
T0

λi
1 + ρeffλi

∂ρeff

∂Td

}
, (65)

where
∂ρeff

∂Td
= − P 2

0 T
2
0 ·[2

√
Mg(Td+P0T0)+2

√
Td(Mg+P0T0)]

{[
√

Mg(Td+P0T0)+
√

Td(Mg+P0T0)]2}2
·
[ √

Mg

2
√
Td+P0T0

+ 1
2

√
Mg+P0T0√

Td

]

=
1

Td
· P 2

0 T
2
0

[
√

Mg(Td+P0T0)+
√

Td(Mg+P0T0)]2

·

[√
Mg(Td+P0T0)+

√
Td(Mg+P0T0)

]
·
[

Td

√
Mg√

Td+P0T0
+
√

Td(Mg+P0T0)

]

[
√

Mg(Td+P0T0)+
√

Td(Mg+P0T0)]2
.

(66)

Because
Td

√
Mg√

Td+P0T0
<

√
Mg(Td + P0T0), (67)

we have
[√

Mg(Td + P0T0) +
√
Td(Mg + P0T0)

]
·
[ Td

√
Mg√

Td + P0T0
+
√
Td(Mg + P0T0)

]

<
[√

Mg(Td + P0T0) +
√
Td(Mg + P0T0)

]2
.

(68)

Substituting (68) into (66), we can get

− Td∂ρeff

∂Td
< ρeff. (69)

Besides, the functionln(1 + x)− x/(1 + x) ≥ 0 for all x ≥ 0, since it is zero atx = 0 and

an increasing function forx ≥ 0. Thus, combining the results in (65) and (69), we can get

1

T0

[
ln(1 + ρeffλi)−

ρeffλi
1 + ρeffλi

]
≥ 0. (70)

Thus,
∂Ri(Td)

∂Td
= E

{
1

T0
log2(1 + ρeffλi) +

Td
T0

λi
1 + ρeffλi

∂ρeff

∂Td

}
≥ 0. (71)

In summary, based on (71),Ri(Td) is a monotonically increasing function with respect toTd

for arbitraryλi. Thus, the throughput functionRL in (64) is a monotonically increasing function



with respect toTd. To get better performance,Td should be as large as possible. Thus, the

optimal training interval is equal to the number of groupMg in the proposed position-aided

group training scheme, which is the minimum value that is required for learning the matrixGk.

APPENDIX D: PROOF OFPROPOSITION3

Using (45) and (46), and assuming thatM = N , we can get

RL =
T0 −Mg

T0
· E

{
log2 det

(
IN + ρ∗eff

HkH
H

k

M

)}

=
T0 −Mg

T0
·
Me·Mg∑

i=1

E

{
log2

(
1 + P0 · P0T

2
0

[
√

Mg(T0−Mg+P0T0)+
√

(T0−Mg)(Mg+P0T0)]2
· λ2i

)}
,

(72)

whereλ2i denotes thei-th singular value ofHkH
H

k

M
.

Hence, we have

lim
P0→∞

RL =
T0 −Mg

T0
·Me ·Mg

[
log2 P0 + o(log2 P0)

]

=

{
−

(
Mg −

T0
2

)2

+
T 2
0

4

}
· Me · [log2 P0 + o(log2 P0)]

T0
.

(73)

whereo(x) is defined aslim
x→0

o(x)
x

= 0.

Then, the degrees-of-freedom metric becomes

DoF= lim
P0→∞

RL

log2 P0
=

{
−
(
Mg −

T0
2

)2

+
T 2
0

4

}
· Me

T0
. (74)

which is maximized byM∗
g = T0

2
.
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