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Abstract

We consider channel estimation for high-speed railway camioation systems, where both the
transmitter and the receiver are equipped with large-satienna arrays. It is known that the throughput
of conventional training schemes monotonically decreastssthe mobility. Assuming that the moving
terminal employs a large linear antenna array, this papgpgses a position-aided channel estimation
scheme whereby only a portion of the transmit antennas sémtdspmbols and the full channel matrix
can be well estimated by using these pilots together withatiienna position information based on the
joint spatial-temporal correlation. The relationshipvibe¢n mobility and throughput/DoF is established.
Furthermore, the optimal selections of transmit power ame tinterval partition between the training
and data phases as well as the antenna size are presentediraglgoBoth analytical and simulation
results show that the system throughput with the positideéhchannel estimator does not deteriorate

appreciably as the mobility increases, which is sharplyantast with the conventional one.
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I. INTRODUCTION

The large-scale multiple-input multiple-output (MIMO)ctenology holds the key to signifi-
cantly improving the throughput of future wireless comnuaion systems [1]. For high-speed
railway communication systems, both the base station (B8)the mobile terminal (i.e., the
train) can employ large-scale antenna arrays to provide-tiigpughput services to users on the
train ]. In this paper, we focus on such a high-speedvegilMIMO scenario, where both
the transmitter and the receiver are equipped with largéesantenna arrays.

As we know, in MIMO communications, to obtain the instantaume channel state information
(CSI), the training-based channel estimator is widely uséttiough the training overhead may be
insignificant in single-antenna systems, it becomes th@miagpediment to high-speed railway
MIMO communications, where the speed of the mobile termazad reach up to hundreds of
kilometers per houvu5]. In particular, the throughput o tlarge-scale MIMO system even can
deteriorate to zero if the training phase occupies all tlaok| uses [6]. It seems very pessimistic
to employ large-scale MIMO in highly mobile environmentgchuse the high time-selectivity
of the channel removes the benefits brought by multi-anteviregless links ]

A rich body of the research in the literature focused on thaing-based channel estimation
for large-scale MIMO systems under fast fading, see MQ Specifically, the estimation
accuracy in a temporally correlated channel can be impriyedmploying the Kalman filter

, 110]. Compressed sensing can be utilized to optimize #laydDoppler basis of a doubly
selective fading channel to improve the estimation acqufat]. However, these methods do
not aim to reduce the estimation overhead, i.e., the amdypitats used for channel estimation
[B—IH]. On the other hand, for a spatially correlated chgnhéas been indicated irmlﬂls]
that the pilot size can be reduced if the number of statistioeninant subspaces is smaller than
the number of transmit antennas, at the cost of losing sonlgphexing gain. Summarily, it
remains a challenging problem to reduce the pilot overheadhfge-scale MIMO systems in a
high-speed environment.

On the other hand, due to the advances in indoor and outdatiggong techniques, the



real-time position information of the mobile terminal caa made available. In several prior
applications, position information has been already usedduting , clusterin(JHS], resource
allocation ,], etc. For high-speed railway commutarss, ] proposed a position-
based channel model anm[lg] extended the concept to nmiéiiraa wireless links. Further,
position information was utilized to improve the channetireation accuracy of high-speed
railway communications inEiO]. An interesting phenomergaused by the mobility, called
the joint spatial-temporal correlation, was discusse ]. It characterizes the relationship
between the channel realizations of distinct antenna aidifferent time due to the mobility
of antenna array. In particular, some measurement resattselen the BS and vehicles with
multiple antennas were provided EZ]D[ZZ discussededtfiect of the mutual electromagnetic
coupling between different antenna eleme. [23] progp@saovel differential modulation for
the moving antenna array based o [24] discussed thécagiph of spatio-temporal correlation
in reducing handover frequency in high-speed railway scena

In this paper, we focus on the training-based channel estman a large-scale MIMO system
under high-speed railway scenarios. It is assumed that$his Btatic and the train moves linearly
with constant velocity, both employing linear antenna ysraNe mainly consider the uplink
channel estimation, while the results can also be used ®rdttwnlink due to the channel
reciprocity. We find that the joint spatial-temporal coatedn can be utilized to significantly
reduce the estimation overhead with the help of positioormftion and then propose a position-
aided channel estimator. It will be shown that its perforoeadeteriorates a little as the mobility
increases. More specifically, during the training phaseawhedata block, it is better to select
a subset of the transmit antennas to send pilot symbols andital estimate of the channel
submatrix corresponding to this part of transmit antenrastwe utilized repeatedly. Later, the
estimate of the entire channel matrix could be construcésd on the initial submatrix and the
location information of the transmit antenna array, by ekpig the spatial-temporal correlation

of the channel. We then analyze its performance in term oatigevable throughput. Finally, we

present the optimal selections of system parameters imgyzbwer allocation, training interval



TABLE |: Some important variables for problem descriptionthis paper.

Variable Description
M, N The numbers of transmit antennas and receive antennas
Hy, The channel state matrix during theth signal block
hnm (k) The channel state between-th transmit antenna ana-th receive antenna
hi The channel state vector betweenth transmit antenna and all receive antennas
zr The position ofm-th transmit antenna during theth signal block
n The correlation coefficient between different channelestactor
0 The moving direction of the terminal with respect to the {ofesight direction
0 The direction of linear antenna array with respect to the-biftsight direction
Jo(+) The zero-th order Bessel function of the first kind
To The length of each signal block
to The coherence time of the environment

and antenna size, by maximizing the obtained achievabtaitfinput bound in this paper.

It is worth noting that the joint spatial-temporal corr@at is significantly different from the
conventional spatial correlation or temporal correlati@d8]. In this paper, we assume that the
antennas are sufficiently separated, so there is no spati@lation between antenna elements.
Besides, under the highly mobile condition, the coheretgrual of the channel is so small that
the temporal correlation is very weak. The spatial-temipooarelation here refers to the fact
that due to the high mobility, the channel responses of ®iffeantenna pairs along the moving
path at different time are correlated. Hence, the methodstlaa results based on conventional
spatially correlated channel (such asl[12]) can not be egglirectly here.

The remainder of this paper is organized as follows. The mblamodel is introduced in
Section Il, where the joint spatial-temporal correlatienpresented. Then, the position-aided
channel estimator is developed in Section Ill. In Sectiontié performance of the system with
the new proposed training scheme is analyzed and the opsiység@m parameter selections are
presented. Simulation results are given in Section V. Kinabnclusions are drawn in Section

VI.
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Fig. 1: The large-scale MIMO communication system for hggleed railways.

1. CHANNEL MODEL

As shown in Fig[ll, we consider a point-to-point highly mebiarge-scale MIMO system
in a high-speed railway, where the BS is static and the talrigin linear uniform motion
with constant velocityy,. Suppose that the channel is reciprocal, we concentratbenglink
channel estimation problem and the results can be diresty un the downlink. According to
the training-based system architecture, each signal h$odkided into two parts: training phase
and data phase. Some known training symbols are sent byahentitter to estimate the CSI
during the training phase and then the estimated channealed im the following data phase. It
is assumed that the channel state keeps constant duringitine lslock, and changes to other
values between different blocks. Besides, let the carriavelength be\, and symbol rate be

By, then the maximum Doppler shift i, = 2, the coherence time of the channelég-%, and

the length of each signal block is set &s = ngﬁgj symbols (where the constagf should
satisfy {, > 1).

We assume that a linear antenna array is employed at the enigoihinal (i.e., the train).
The number of transmit antennas and receive antennas aotedems)M and N, respectively.
We focus on the effects of small-scale fast fading, which exleted as Rayleigh distribution in
this paper. LetH, € CV*™ be the channel matrix for the-th signal block with its elements

h..m(k) denoting the channel state between théh receive antenna and the-th transmit



antenna (wheré,, ,,,(k) ~ CN(0,1)). It is assumed that the distance between adjacent antennas

Ao
2

is 22, so there is no spatial correlation between the antennaeslsnand the elements i, are
i.i.d. Further, leth]® € CV*! denote the channel vector between theh transmit antenna and
all N receive antennas in thieth block, namelyH;, = [k, hZ, ..., h}']. Consequently, thesk/
channel vectors are independent of each other.

Next we introduce the concept of joint spatio-temporal elation. As shown in Fidg.12, the
moving direction of the terminal i8 with respect to the line-of-sight direction, and the direat
of the linear antenna array is Fig.[2 depicts the specific locations of the entire movingana
array of transmitter at thé,-th and k,-th signal blocks. It can be seen that the first antenna
of the transmitter to the right at thi -th block is located at nearly the same place as the
second transmit antenna at theth block due to the mobility of terminal. The corresponding
channel vectors ark; andh; . Intuitively, there exists some correlation between andh;,
according to many channel models, such as the Clark’s erlEEec 2.4]. Such correlation
is termed as joint spatio-temporal correlation, which oegd the correlation between distinct
antenna pairs at different time due to mobility. In genetra, specific correlation betweds} and
hiz can be estimated from measurement. Here, we introduce dytieaamodel. Specifically,
when the moving scattering objects are modeled by poissoit pmcess, the final correlation
coefficient betweerh; andh; can be expressed as follows (see more detailQnEB, 25] and

the measurements can be found , 22])

y— Jo(\/a2 + b2 — k2 — 2abcos(v — 0) + j2k[acos(pu — 0) + beos(u — )])
B Jo() )

(1)

where Jy(-) is the zero-th order Bessel function of the first kindindicates the width of angle
of the arrival (AOA) andu accounts the mean direction of AOA;= 2x fpT andb = 2xD/ )\,
with 7 being the time interval between thig-th and k,-th blocks, andD being the antenna
spacing.

Assuming that the mobile terminal can adapt the directiommtnna array so that = 6

to achieve the largest correlation. And the scatteringagrapic so we have: = 0. Hence, the
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Fig. 2: The joint spatio-temporal correlation of moving emta arrayE3].

correlation can be simplified as

(@)

Ao

n = Jo(v/a® +b* — 2abcos(v — 0)) = J (M)

Denote the location of the first transmit antenna at/th¢h block aSZ,i1 and the location of
second antenna at thg-th block asz; . Then, we havév,r — D| = |2}, — 2, |. Consequently,
we can extend (2) as the correlation expression betweereiponse of first antenna at theth
block h,lv1 and the response ofi-th antenna at thé,,-th block k]’ as

®3)

ety o5, = o (a1

We assume that the relative position of the transmit antemrey is precisely known at any
time, so is the correlation in}(3). Besides, we make the ¥alig assumption.

Assumption 1: The channel state at a fixed position within the fading field/stconstant
during a periodt, and after that may change to some other value, whgrés called the
coherence time of the environment and determined by theuamation of the scatterers.

Remark 1: It is worth noting that the channel coherence ti@% and the environment
coherence time, are fundamentally different. The former is determined k@ rtioving speed of

the transmitter while the latter is by the time variation loé tscatterers in the radio propagation

paths. In generaI;TOO <ty since the environment can not change much within a shorogeri



[Il. POSITION-AIDED CHANNEL ESTIMATION

In the conventional approach, the entire channel matrie4isstimated in each block, to cope
with the channel variation caused by high mobility. Thereibyorder to estimate the channel
vectors of M transmit antennas, at leasf pilot symbols need to be transmitted during training
phase, which leads to huge training overhead in a large-3d# 10 system |[6]. To reduce the
training overhead, we propose a new channel estimationepdncalled position-aided channel
estimation, by exploiting the property of joint spatio-fgonal correlation. It is assumed that all
transmit antennas form a linear array with uniform inter@land that they move along the
same path. Then during the training phase of each block, we twaonly estimate the channel
vectors of a subset of the transmit antennas by transmipilioty symbols, while the rest of the
channel vectors can be obtained through linear intermoldiased on the joint spatial-temporal
correlation. As a result, the overhead of the training staigeach block can be significantly

reduced, resulting in high data throughput.

A. Initial Estimation of the First Column in Each Group Baseal Pilots

Let h]* € CV*! denote the channel vector betweentir¢h transmit antenna and &\l receive
antennas in thé-th block, thusH,. = [hi, hi, ..., h}]. TheseM channel vectors are further
divided into M, groups, each containing/, adjacent columns iH;. Thus,M = M. - M,.

Then, the channel sub-matrix for thi¢h group can be expressed as
i 1.1 2 Me1 1 Me(i—=1)+1) 3 Mc(i—1)+2) M (i—1)4+Me)y -
Q. = [qk,qu,w s qm] = [h, Jhy, U l,i=1,2,.., M, (4)
And the channel matridd,, can be rewritten as
M,
Hk = [QI%;szvv kg]' (5)

Under the position-aided channel estimation scheme, dr@yfitst transmit antenna in each
group sends pilot symbols to estimate the channel stategle@ch block, which corresponds

to the following N' x M, sub-matrix of Hj:

M Me(Mg—
Gr=[gl, g2, ....g\"] = [l AMA  p e Mom D (6)



DenoteT; as the training duration in terms of the number of pilot sylspband letS; ; €
CMoxTr and Y, € CV*T- be the pilot symbol matrix and the corresponding receivemai
during the training phase, respectively. Then, the trgirphase can be modeled as

2

Y., =
v M,

GiS:k + Vi, (7)

where P, is the transmit power during the training phase aigd € CV*7- represents additive
white Gaussian noise with i.i.dA/(0,1) elements.

The minimum mean-square error (MMSE) estimateGf is given by

-1
G Yot (e, + S.u80 ) ®

With orthogonal pilot symbol sequences, iﬁnksfk = I, T, substituting[(7) into[(8), we get

P.T, [P T:
~ M. M
G J\/[g g / (9)

k= P, T, G + P T, YTk
1 T My 1 T My
whereV/, = -V, S, the elements of which are still i.i.&A(0, 1).
Let Gy, = g}, 97, .. 9, "] and V/, = [v}, v, ...,v,""]. Then

P Ty | PrTr

~i My i My i .

gk == BT, gk P, T, /Uk, 1 = 1,2,...,Mg. (10)

1+ &L 1+ 5L

Hence, we have these initial estimates of the first chanrnahuo vectors that are independent

and identical distributed as
PT
“"~C/\/<0LTTI) i=1,2,... M, (11)
gy 71+%TTN ) g Ly eeey g
Let z{"<"I*Y) pe the position of the first transmit antenna in tka group of thek-th signal
block over the moving path. Thed can be regarded as the CSI sample at the pgift "+
on the moving path. As shown in Figl. 3, a group of CSI samplesgathe moving path can be

obtained over time:. We then establish the following CSI tab#, for the i-th group
Pi — {@i,z{Me“‘”“)), 1=1,2, k} i=1,2,... M, (12)

which can be used to obtain the estimates of all channel regtahei-th group, i.e.,@g. The

details of this will be given in the sequel.
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Fig. 3: The diagram of the estimation process forithie group under the proposed position-aided

channel estimation scheme.

B. Refined Estimation of the First Column in Each Group

As shown in Fig[B, we will use., samples{g,_; ..,....gi_1,g;} over the moving path to

refine the estimate of!""(~"*"

= g with the help of position information (wherg, < &,
due to the constraint of channel coherence distance). Ratiowal simplicity, we denoté, =
M.(i — 1) + 1 in this subsection.

As stated in the previous sectiog;_; .,,....g;_, andgj are jointly Gaussian distributed

with zero mean and the following covariance matrix:

Ry Rygi Ryg ) .
o . _ 9%e—19%k Ir—1 919 1y+1
9591 9k—Lot1
G rg+19k Georg19h-1 Gi—rg+1
o+ o+ o+ (13)
i T2 - "L
2y T2 - M2L
= . . ®IN7
NMLo,t Mig2 *°° TLo,Lo

where® denotes the Kronecker product aft},, = E{(x — E[z])(y — E[y])"}. By plugging



the location expressions intb] (3), we have

’U()TO )

14
B, (14)

N = Jo (27r|m —n|

However, the receiver does not know the exact value§gf ; ..,....g;_,. 9.}, but only
has their initial estimates based on pilot symbols, nar{gly ; .,,....g;_,.g;}. Based on
@9), {g}_,+1>9i—1,42: - i 91, } are also jointly Gaussian distributed with covariance iratr

(recall thath)® = gi)

Ry, Ryg. Ry, - Bog,.
Rgg; Ry, Rgg ,  Rgg , .,
R _ — o SO L, SO
hé),ﬁ}c,---,ﬁ}c,LOH Rg}c—lgk R9k71§12 R9k71 R9k71§77c7L0+1
-~ 7 -~ P~ .R'\'L P~ e -~
Ii—ro+19k Ii—ro+19k Ii—rg+19k—1 Ii—Lo+1 (15)
2 2 2
1 Mmaoy  Mhp20g o MLLe0g
2 2 4 4
Ma10g a0y "Th200 - "L
_ 2 4 2 4
= M2,100 712,100 12205 - 72,0400 ® Iy,
2 4 4 2
Neo10g  MLe,100 MLo,20g Ty, Lo00
where
P, T,
2 Mg
oy = sy (16)
MQ
Given the initial estimates in the CSI table,, the MMSE estimate oh)° is B]
Tio _ io |~ ~; ~j
hy, _E{hk gk—L()+1vgk—Lo+2v'-'>gk}
2\ ¢ 2 4 2\
%
10y Mmaoy  T20g - 11,L,00 9
2 4 2 4 ~; 17
M, 200 1M2,100 12204 - 12,040 91 (17)

- : ) . ® Iy

2 4 4 2 ~;
M,Lo00 NLo,100 Mre200 *°° 1Lo,Lo00 9k Lo+1



And the corresponding MMSE matrix igso]

E{ (no = B (i - ﬁ;‘g)”}

T -1

771,108 771,103 771,203 771,L0<761 771,103 (18)

ol o7 gt .. oa or

Iy — 771,? 0 772% o T"12209 | 712,000 772,% 0 ® I,
771,Lo<7§ 77Lo,1‘7§ nLo,2U§ nL07L00-8 77Lo,1‘7§
Specifically, whenL, = 1, the MMSE estimate i (17) can be simplified to
hio=gi i=1,2,.. M, (19)
with the MMSE matrix given in[{18) simplified to
L L \H

E{ (rio = Bt ) (mie = Bi) } = (1=at) Iy, i =12, 0, (20)

C. Estimation of Other Columns in Each Group

For thej-th column ( = 2.3, .., M,) in the i-th group, the channel vectdr!"*“~"*/) can
also be estimated by using the CSI talii¢ and the antenna position informatiaff’ =",
For clarity, we denotey = M.(i — 1)+ 1 and jo = M.(i — 1) + j in this subsection. As
observed from FigI:IG},ziO is located between:f;; and Zli%—i—l along the moving path, namely
1250 — 22| > |20 — 2] > |#° — 22 |. The value ofk, can be obtained by comparing’ with
{zfo,l =1,2,...,k} that is contained inP. In particular, on the condition that the transmitter
is in uniform motion with speed), and the interval between two adjacent antenna%is

|2l — 20| = lm=wTo Then, by usingz® — z°| = Y=, the above condition becomes

(]{7 - ko)’Ung Z (j - 1))\0 Z (l{i - ]{?0 - 1)1)0T0 (21)
By 2 By
B (7 —1)XoBy
A @)

It can be seen that the particular value igfdepends on the value @f in the expression of

Ty = %. For instancek — ky ~ (j — 1)&o, if the effect of the floor operator i (21) is ignored.



As shown in Fig[B, the next task is to estimaf@ based O{gL_; 1, - Ghys Toys1s -+ o1}

aided by the position information. Similarly as befo@. ; 1, ... Gh, Gbys1s - Gogrr, ANART

are jointly Gaussian distributed, with the covariance matr

A'L. DY R/\ ]
Ik+Lg 92+L0h;
R/\' ~ JO —~i ~ == R 30 =i R 7o
920+L07"vgio+1’h£%gio7"%927L0+1 b, 92+L0 hy,
. ~, o R :
Gk Lo+19k+ Ly 927L0+1h£)
R1 ’l"{{ R2
= r 1 r |®Iy,
H H
with
2 4 4
M,10g  Tz209 - 11,0000
4 2 4
2,100 72200 " 12,0009
R, = . . ’
4 4 2
NLo,10g  MLe200 *°° T1Lo,LoO0
4 4 4
,Lo+10g M,Lo+20g " 7T1,2L,0
4 4 4
T2,L0+100  "2,Lo+200 " T12,2L000
R, =
4 4 .. 4
NLo,Lo+100 "Lo,Lo+200 NLo,2L0 %0
o / 2 / 2 /2 /2
= [nLOOb? nL0—1007 <5 1200 77100]7
2 2 " 2 2
Ty = [1100, 1500, s N1y —1005 M1, 00)
where

|Z£O - lico +1
| =Jo| 2n———0 ),
77l 0 < )\O

Jo )
|27 — 2
k ko—Il+1
nl//:JO 27‘(—0+ .
Ao

5i gl
Ikt LgIk—Lo+1

R

JO i
Ry 9Ly

o
9e—Ly+1

(23)

(24)

(25)

(26)

(27)

(28)

(29)



The MMSE estimate oh?° is given by

Tjo Jo |t ~i i ~j
hk _E{hk Gk—Lo+11 s ko Dho+1> ""gk’o-i-Lo}
~

-1

g 0 0
R R, ko+L (30)

Z(rl r2> . ® Iy

gzo—Lo—‘rl
Again the estimate is a linear combination of the, samples in®: and the interpolation
coefficients can be precomputed offline. The correspondiSE matrix is given by
—1
L . R R T
E{(hg; — R (R — h;;)H} — Iy — ( o ) b " eIy (31)
Rg R1 T2

Specifically, for the case af, = 1, fL{? can be simplified as

flio :E{hio

~ ~
gko-l-l’gk’o}
-1

2 4 i~
0y "oy Gko+1
=(mot moz )| °, 7, . 32
oy o) gko
U RO s T G
e 7

o

z ZZO ZJ JO z
wheren; = JO( I’ﬁ%o‘) n = Jo <27T|k)\70k0+1‘> andn/ = Jy (2 7‘“0> based on[(28).
Finally, the MMSE matrix in[(3l1) can be simplified as

E{?Lio(ﬁio)H} (1 - Uo F(Ulﬂha 771)) Iy, (33)
where
o4 +#ﬂ—2n##%
F(Wlﬂhﬂh) : 11_ 7)12 — 0 (34)

Remark 2: It is worth noting again that there is no spatial correlati@tween antenna elements
due to sufficiently separation. Namehy,, hZ, ..., ! are independent of each other, so the results
] based on the correlation structure amdngh?, ..., ki’ can not be applied. However,
based omMssumption lwe can establish the relationship betweegh and 9,41 95, (the past
estimates of the first transmit antenna in the same groupltibging the joint spatio-temporal
correlation in [(B) with the help of position information dfe transmit antenna array. Thus, we

can get the estimator il (B2) and reduce the training overhea



D. Summary and Comments

In summary, for thé:-th signal block, the channel estimation process consfdtsedollowing

steps:

o Step 1: The first transmit antenna of each group transmitd gymbols. The receiver
computes the initial estimat&’, based on[(9) and_(10) using the received signals and
updates thel/, CSI tables®: = [@;;_1,(§,g,z,§”fe(i‘1)+”) Vi=1,2,..., M,

. Step 2: The estimate of the first colun*“~"*" in the i-th sub-matrixQ:, is refined
by using [17),: =1, 2, ..., M,.

. Step 3: The estimate of thgth column A %) in the i-th sub-matrixQ:, j =
2,3, ..., M,, is computed by usindg (B0). This yields the estimate of th#enhannel matrix
H,=[hl,h2, .. kM.

Remark 3: (Maximum value for)M,) Since the channel state over the moving path is estimated

by the pilot symbols from the first transmit antenna in a gramp the estimation results are

finally reused by the last antenna in the same group, the tteeval between which IAT =

(Me—1)Xo
2v0

. In order to guarantee that the channel state at a fixed poes dot change during

this period,AT should be less than the coherence time of the transmissioroementt,, i.e.,

7(1”@2;(})“ < to. Thus, the maximum allowable value far, can be expressed as
2upt
MBZVOOHJ. (35)
Ao

Remark 4: It is seen that the value af/, is bounded, especially when the spegds low.
It means that the size of the antenna array is limited if wey @mhploy one group, which will
lead to a low throughput. So, in order to support a larger sfzentenna array, multiple groups

should be employed. The optimal value [off, will be considered in Section IV.D.



IV. PERFORMANCEANALYSIS AND THROUGHPUTOPTIMIZATION

A. Effective SNR Analysis

Denoteﬁk = H, — f{\k as the channel estimation error. The data phase irkeblock is

Py~ [Py~
Yo = MdeSd,k + MdeSd,k + Var, (36)

where P,; denotes the transmit power in the data phasg, is an additive white Gaussian noise
term with i.i.d.CA/(0,1) elements, whileS,; € CM*7¢ andY,, € CV*7« are the transmitted
signal and received signal, respectively.

Sinceﬁk is an MMSE estimate, the err(ﬁk is uncorrelated withﬁk due to the orthogo-
nality principle |. LetE, ) = \/%IA{J,@SM + V4 be an equivalent additive noise term that
combines the effects of channel noise and channel estimatior. It follows thatE, is also
zero mean and uncorrelated Wlﬂidek It is known that for uncorrelated additive noise, the
worst distribution in terms of capacity is GaUSSIgLE l] Zhus, on the condition that the
transmitted signal satisfiés{.S,, kS «+ = Tuly, alower bound on the capacity during the data

phase can be expressed as
B Py = =g

whereRg = - 7 E{ By E] A= E{Hk Y 4 Iy.

In what follows, for tractability of analysis, we focus onetlspecial case of,, = 1 and
the performance of the case withy > 1 will be examined via simulations in the next section.
Specifically, when, = 1, the estimation errors are given by (20) aind (33). We havéollmving
result.

Proposition 1: T'(ny, 1, 7)) > 1 (I'(:) defined in[(34)), if the signal to noise ratio (SNR) during

the training phase is less than a certain threshold valuemely PTTT < where

IQ’

S Qi — \JAn P — A o H 8)
{200 .jo=1,2,...M} 2771

Proof: See Appendix A. [ ]



In particular, for the typical system parameter wih = 20, i.e., T, = Lz%fooj, it can be

obtained that? = 0.999997609 and the SNR threshold valulefl—Q = 56.2dB. Hence, if the

SNR value is belows6.2dB, a very mild condition that always holds in practice, wa cétain
L'(ni,n;,ny) > 1. Then, the MMSE error of the first column in each group given(®§) is
larger than that of other columns given lhy(33).

Remark 5: As shown in Fig[B2L, samples are utilized to estimag"’*“~"*7) based on[{32)
while only L, samples are utilized to estimate™“~"* based on[{19) due to the causality
constraint. Hence, unless the SNR during training phasgtisraely large, the estimation error
of the first column is typically larger than that of others retsame group.

Thus, in practice, the estimation error for the first columeach group is the largest compared
with that of other columns. We can then obtain a further lola@ind on the capacity by assuming
that the covariance of the estimation error of any columfiis ¢2)I. That is, we can use the

following system model to lower bound the capacity of thegimal system in[(36):

Yo = %ﬁésd,k + \/%ﬁésd,k + Vi, (39)
where H’, contains i.i.dCA (0, 02) elements whileH’,, contains i.i.dCA(0,1—02) elements,
and they are uncorrelated with each other.

For the model in(39), we have{ H'y,(H';)"'} = M(1—03)Iy andRp = LE{E/ (E},)"} =
B {H" (H",)"} + Iy = [Ps(1—02)+1]Iy. Then, using[(37), the lower bound on the capacity

of the system in[(36) during data phase can be expressed as

— —=—=H
PdO'g Hka
=E<1 t | 1 : 4
where the normalized channel estimateis = % consisting ofC (0, 1) elements.
90

B. End-to-End Throughput Optimization and System Paransstiections

Taking the training stage into account, we can maximize jts¢esn throughput by optimally
allocating the channel resources between the training atel ghases. That is
PdO'g ﬁkﬁf)

1+ Pd(l - O’S) M '

Ty — T
R, = max E{ 0 T log, det (IN + (41)
0

Py, Ty



where the pre-log factof:='= accounts for the estimation cost of channel uses, whiland

T, satisfy the following constraints of total time slot andatiotransmission energy per block:
To=1T,+T,;, P/Ty=PT,+ P,Ty. (42)

Substituting the expression of into (41), the effective signal-to-noise ratio (SNR) can be

expressed as
Py
Po? Pag, Tx

B 1+Pd(1—0'8) - 1—|—Pd—|—]\l_}—;T¢‘

Peft (43)

In order to maximize the right-hand side bf141) with resgegbower allocation and the time
interval partition, namely{ P,, P;} and {7, 7,}, we have the following two Lemmas.

Lemma 1. (Optimal Power Ratio) The optimal power ratio is given ﬁy: a%, where

o VTa(M, + PyTy) (44)
VM,(Ty + PoTo) + /Ta(M, + PyTp)

Proof: See Appendix B. [ ]

Lemma 2: (Optimal Time Interval Partition) The optimal length of ttraining interval under
the optimal power allocation ratio i3/, for all possible, and Tj.
Proof: See Appendix C. [ |
Then, by substituting the results iemma landLemma 2into (41), we obtain the following
conclusion.
Proposition 2: In a training-based system with position-aided channeiesion, the lower

bound on the throughput under the optimal channel resouliteaion can be expressed as

— —H
To— M, H.H
RL:E{ OT g-logzdet(IN—FpZﬁ k k)}, (45)

0 M
where
. PTY
Peff = )
N/ My(Ty — My + PoT) + /(To — My)(M, + RoTy))?

Mo Bo
Ty = .
’ {%OUOJ

(46)




C. Special CaseM, = 1—Conventional Training Scheme

If we set M., = 1 (and M, = M), the position-aided channel estimator will reduce to
the conventional channel estimator. To serve as a basééines analyze the performance of
conventional training. Substituting/. = 1 and M, = M into (43) and [(46), we can obtain the
corresponding performance of the conventional trainingeste, which is consistent with the
prior work [6].

Corollary 1: In a training-based system with conventional training, tbeer bound on the

throughput under well-designed system parameters can ppessed as

— —H
Ty — M . H.H
R = E{ OTO -log, det <IN+peff i b )}, 47

where
PiTy

VM, — M 1 ByTy) + /(Ty - M)(M + BTy (48)

* JR—
Peft =

D. Optimal Antenna Size

Lastly, we consider the optimal size of the antenna arraythersystem with the proposed
position-aided estimation scheme. It is assumed that tihebeu of receive antennas is always
equal to that of transmit antennas. Since the total numb&aogmit antennas 8/ = M, - M,
and the value of/, is given by [3b), it remains to determine the valuedf. We consider
this problem from the viewpoint of maximizing the multipleg gain of the system, namely the

degrees-of-freedom (DoF) of the system, which is definecbbaws [31]

DOF— lim 1t
Py—o0 10g2 By

(49)

Proposition 3: For a training-based system with position-aided channghestion, the optimal
number of transmit antenna®* in terms of maximizing DoF is

T;
M =2

' M87 50
d (50)

i.e., M; =2 and M. is given by [35).
Proof: See the Appendix D. [ |



Similar to Proposition 3 we can get the optimal number of transmit antennas for tneeto
tional training system by setting/. = 1 and M, = M, which is summarized as follows.

Corollary 2: For the training-based system with conventional trainitigg optimal number of
transmit antennas in terms of maximizing DoF is

T
M* = 70 (51)

V. SIMULATION RESULTS

A. Comparison Between Two Training Schemes

We first compare the throughput performance of the proposesifipn-aided channel estimator
to that of the conventional one, the explicit expressionsvbich are given in[(45) and _(47),
respectively. For the fairness of comparison, we assumettieaantenna sizes under the two
estimation schemes are the same in this subsection.

Specifically, it is assumed that the carrier wavelength= 0.15m (i.e., the carrier frequency
is 2GHz), the bandwidthB, = 10MHz, the coherence time of environmet= 5ms, and the
length of each signal block is equal to the twentieth of thieetence time of channef( = 20).
The average SNR value 3dB. We consider the case that the number of receive antesitias i
same as that of transmit antennas. FEig. 4 plots the througifpa training-based system under
the proposed position-aided channel estimator and theeowional estimator as a function of
the velocityvy, when the number of antennas is 100 and200, respectively. In the system with
position-aided channel estimation, the valueldf is given by [35), and the correspondind,
is equal to(%}; if the value of M is not a multiple of)M,, some extra zero columns can be
added to the end of the last gro@,f[g to match with the formulation in_(45).

It is seen from Fig[4 that the throughput of the conventianaining scheme deteriorates
significantly as the relative velocity increases, espBcahen the antenna size is large. This
is because the training phase occupies too many channellogasrticular, the throughput can
even become zero when the velocity is large enough, whichligiggs the main motivation of

this work to propose the concept of position-aided traintogreduce the estimation overhead
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Fig. 4: Throughput comparison between the proposed paositided channel estimator and the

conventional estimator as a function of velocigywhen the average SNR )dB.

in highly mobile environments. In contrast, the performarmd the position-aided estimation
scheme deteriorates a little and is nearly independenteot/éocity due to the exploitation of
the spatio-temporal correlation in a mobile environmenhigher mobility leads to smaller value
of Ty, which reduces the duration of data phase. However, it alakesit possible to group
more columns together to share the common training sigregdan [(3b), which can reduce
the portion of training phase in a block. As a result, the eystith position-aided channel
estimation can achieve a robust performance with respegctotaility, even when)/ is just on
the order of tens (such a&/ = 40). Significant improvement can be achieved if we employ
position-aided channel estimation for the large-scale Klglystem in the high-speed railway

scenarios.

B. Performance Comparison under the Optimal Antenna Arriag S

In this subsection, we compare the performance of the twaraiaestimation schemes under
their respective optimal antenna sizes which are given[1®)) émd [51). Fig[b depicts the
DoF performance of the training-based system as a functiorelocity v, with the position-

aided training scheme and the conventional training schéinwan be observed that the DoF
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Fig. 5. The DoF of the training-based system with positiaded training and conventional

training as a function of velocity,, when the optimal antenna sizes[in](50) &dnd (51) are adopted.

with conventional training decreases with the velocity The DoF with position-aided channel

estimation is significantly higher than that of the convendil one, especially when the speed is
high, which is consistent with the results in Higl. 4 for theeaf fixed antenna size. It should be
noted that the discontinuity phenomenon in the performancees is caused by the round-off

operation in calculating/, and M,.

The optimal antenna siz&/* in (G0) is obtained based on DoF maximization in the high
SNR regime. Let us examine the optimality based on numesitatlation when the SNR is
not so high. Assuming that the velocity = 100m/s and the other parameters are just the same
as those in the previous subsection, [Fig. 6a depicts themystroughput with position-aided
channel estimation as a function of group numbgr under different average SNR values. The
ideal optimum group number calculated hy1(50)0i§ = 375 as displayed in Fig._6a. It can
be observed that the practical optimal value fdy, is very close to375 even when the SNR
is only 20dB. Likewise, Fig[6b depicts the throughput under conwerai training scheme as a

function of antenna sizé/ whenwv, = 100m/s. Similar results can be observed from it.
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Fig. 6: The system throughput as a function of antenna &ize&vhen v, = 100m/s: (a) with

position-aided channel estimation scheme, (b) with cotiweal training scheme.

C. Performance with, > 1

The analysis in Section IV and the above numerical resulte@atrate on the case af = 1
in (I7) and[[3D). We now consider the general case Wijth- 1 via simulations. It is assumed that
the system parameters are the same as those in Section \éAantenna size at the transmitter
and receiver ard/ = N = 200. The value of)M. is given by [35) and the corresponding, is
set as(Mﬁj. Fig.[4 plots the system throughput with the position-aidednnel estimation as a
function of the velocity withL, = 1,2, 3,4 andS N R = 20dB. The training interval in both cases
is set asI; = M,. Besides, for a fair comparison, the uniform power distitnu is adopted,
i.e., P. = P; = P,. Fig.[8 plots the system throughput under position-aidezhokl estimation
scheme as a function of SNR when the velocity@®m/s, M = N =200 and Ly, = 1,2, 3, 4.
From Figs[¥ andl8, it is seen that there is only a slight gath Wwj > 1 compared withl,, = 1.
Thus, we strongly recommend to employ the case with= 1 in a highly mobile large-scale

MIMO system, to achieve a considerable improvement with émmplexity.



340
sof 100 150 200

0 100 200 300 400 500
Velocity (m/s)

Fig. 7: The system throughput with position-aided chanséh®ation as a function of velocity
for Lo=1,2,3,4 and SNR = 20dB.

VI. CONCLUSIONS

We have proposed a position-aided channel estimation slientraining-based large-scale
MIMO systems to reduce the pilot overhead in high-speedvegil communications. In this
concept, only a subset of the transmit antennas need to skeidymbols during the training
phase of each block. The entire channel matrix can be estthfabm the initial estimate of
the submatrix with the help of position information by exfittg the spatio-temporal correlation
structure of the channel. We have also developed a framegfagtimizing the training interval,
power allocation and antenna size for the proposed positided training system. A salient
feature of the proposed scheme is that the system througiimains invariant as the transmitter’s
moving speed varies, whereas for the system that employg&ntianal training, the throughput

deteriorates rapidly as the speed increases and even beeemewith very high mobility.

APPENDIX A: PROOF OFPROPOSITION1

The conditionl'(n,, n;,n{) > 1 is equivalent to

72 W/

7712 +n1 — 2mmn, Ug
1 —niog

> 1. (52)
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Fig. 8: The system throughput with position-aided chanséh®tion as a function of SNR for
Lo=1,2,3,4 andvy = 100m/s.

Since bothy, ando? belong to(0,1), we havel — nis; > 0. By some manipulations[(52)

is equivalent to

2
nion — 2mnnion + (" +n0i” —1) >0 (53)
s o (o, 2 — — A — Anf g - 1)
= oe e (0, : (54)
203
From (28), it can be seen that andn{ are functions ofz)°, 2)° and z2 1, the values of

which are different for different columns. In order to guaee thatl’ (1,77, 7) > 1, we then

needo? € (0,Q), where

S Dl — \J g g — AnF (o + o n (55)
{200 jo=1,2,... M} 2771

Thus, I'(n,n}, ) > 1, if the SNR value during the training phase meets the folhawi

constraint on the condition
P.T. _ Q
M, 1—-Q

(56)

APPENDIX B: PROOF OFLEMMA 1

As observed fromi (41)E(43), the power allocation strateBy, P, } only affects the throughput

via pe. Thus, maximizingoes With respect to( P,, P,) is equivalent to maximizindz, . We use



a similar formulation as that irl:|[6]. That is, letting be the fraction of total transmit energy

that is dedicated to data phase, we have
Pde:OéP()To, P.T, = (1—06)POT0, O<a<l. (57)

Then, we can rewrite the effective SNR [n43) as

B Pd]%TT B a@% (1 —a)PyTy B P2T2 (58)
P Pt T 1+l (1—q)h — MO | 0T

Denote £(a) = Meluthlo) | LMy tAT) - aAg g result, minimizingS(«) is equivalent to

l—« e

maximizing per. We have

0L  My(T;+ PyTp) B Ta(M, + PyTy)

oo (1—w)? a2 ’ (59)
g:g =2 Mg(gdja];g%) +2. Td(MQO; BT (60)
Sinceg%% > 0, £(a) is convex and has an unique minimum, which is
Coin = [\/My(Tu+ PoTo) + /T, + BT (61)
By solving 2£ = 0, we obtain
» VTu(My + PyTh) (62)

o = .
VM, (Ty + PTo) + /Tu(M, + PyTo)
APPENDIX C: PROOF OFLEMMA 2

Let us consider the monotonicity of the throughput functi®nin (41) with respect to the
variableT,; under the optimal power allocation presented_.emma 1 Plugging [(4%4) into[(413),
the effective SNR with optimal power allocation can be réten as
_ RT3
- WM(Ty+ BoTo) + /Tu(Ms + PyTo)|?

Peft (63)

Assuming),; is thei-th nonnegative singular value of the matﬁé}%z, the throughput function

can be expressed as

R:;E{%-ln <1+Peﬁ)\i>}, (64)



where we use the natural logarithm to insteadl@f, for convenience, and the expectation
operation is oven,.

Let R,(T},) be E{% In(1 +peﬁ)\i)}. The first order derivative oR;(7};) with respect tdl; is

OR;(Ty) 1 Ty N Oper
=E{ —log,(1 A) , 65
o7, T, 10821+ perhi) + == o (65)
where
Opeti PRI/ My (Ty PoTo)+24/Ta(My+ RoTo)] [ /M, n lw/Mg+PoT0:|
oTy {[/My(Tu+PoTo)++/Ta(Mg+PoTo)]?}? WITthT — 2 Vs
_1 P33
Ty W/ Mg(Ta+PoTo)++/Ta(Mg+PoTo)]2 (66)
Tyr/M,
\/Mg(Td+POTO)+\/Td(Mg+POTo)] . [Vﬁ—’_\/ Td(Mg+Poﬂ)):|
' [/Mg(Ta+PoTo)++/Ta(My+PoTo)]? ‘
Because
Tyr/M,
T < \/Mg(Td + RT), (67)
we have
T,/ M,
M, (Ty + PyTy) + +/Tu(M, +P0TO)] - [7 o/ Tu(M, + RTy)
VM, T, VTi+ BT VT (68)
2
< [\/Mg(Td + BTy) + \/Ta(M, + Ry
Substituting [(6B) into[(86), we can get
T30pest
— < ) 69

Besides, the functiot (1 + =) — z/(1 + ) > 0 for all = > 0, since it is zero at = 0 and

an increasing function for > 0. Thus, combining the results ih {(65) aid](69), we can get

1 peff)\z'
— | In(1 A) — ——1| > 0. 70
%%“””)1+md— (70)
Thus,
ORZ (Td) 1 Td )\z apeff
=E —1 1 hy _ > 0. 71
b {TO o8(1+ pa) + St (71)

In summary, based of_(71R;(7},) is a monotonically increasing function with respectZip

for arbitrary ;. Thus, the throughput functioR_ in (&€4) is a monotonically increasing function



with respect to7,. To get better performancd,; should be as large as possible. Thus, the
optimal training interval is equal to the number of grotf) in the proposed position-aided

group training scheme, which is the minimum value that isineql for learning the matrixz,.

APPENDIX D: PROOF OFPROPOSITION3

Using (4%) and[(46), and assuming thidt= N, we can get
— —H
Ty — M, . H.H
R, = OTOQ -E{ log, det (IN + peﬁT’f)}
Y Me-M, (72)

= 77_‘0 . Z; E{ log, <1 + P - NE ST I TR T . )‘i) ,

— —H
where \? denotes the-th singular value of7efs

Hence, we have

To— M
lim R =29 . M, . M, [mg2 Py + o(log, Py)
P0—>oo TO (73)
ToN2 T3\ M. -[logy, Py + o(logy Py)]
=3 = (M=) + 0L :
2 4 T

whereo(z) is defined aﬂirré @ = 0.
T—>

Then, the degrees-of-freedom metric becomes

. R To\2 T2 M.
=1 -] _ 20 2o b e
DoF Pognoo 10g2 PO { (Mg 2 ) + 4 (74)

which is maximized byM; = .
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