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Deep Learning Based Detection for
Communications Systems with Radar Interference

Chenguang Liu, Yunfei Chen, Senior Member, IEEE, Shuang-Hua Yang, Senior Member, IEEE

Abstract—Due to the increasing demand for spectrum re-
sources, the co-existence of communications and radar systems
has been proposed that allows radar and communications systems
to operate in the same frequency band. On the other hand, deep
learning has shown great potential in revolutionizing communica-
tions systems. In this work, we investigate the use of deep learning
in communications systems subject to interference from radar
systems. Specifically, we consider a single-carrier communica-
tions system. Linear frequency-modulated (LFM) and frequency-
modulated continuous-wave (FMCW) are considered for radar.
Several important system parameters, including the level of noise
and interference, the radar interference coverage, the symbol
duration, feature extraction methods and the number of hidden
layers are investigated for the performance of the detector. Fully
connected deep neural network (FCDNN) and long short-term
memory (LSTM) detectors are implemented, where principle
component analysis (PCA) is applied to preprocess the observed
signals for the FCDNN detector. Numerical results show that
the learning-based detector achieves comparable performance
in the radar-communication system to the traditional detector
but without interference cancellation. Preprocessing the received
signals with PCA can improve the performance of FCDNN
when interference is strong. Also, LSTM shows more robust
performance than FCDNN when the channel has time-related
distortion.

Index Terms—Communications, deep learning, radar interfer-
ence, signal detection.

I. INTRODUCTION

DUE to the increasing demand for wireless communica-
tions services, spectrum resources have become scarce.

The carrier frequency for wireless communications has been
moving towards the radar bands, as the utilization of radar
has been extended to civil applications, such as traffic control
and vehicle cruise. To improve spectrum efficiency, several
researches have been conducted on the co-existence of com-
munications and radar systems in different fields, such as
waveform design [1] [2] [3] [4], interference mitigation [5]
[6] [7], spatial separation [8], communication receiver design
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[9] and joint radar and communication systems [10] [11] [12]
[13].

One solution to the co-existence of radar and communica-
tions is to cooperatively manage the spectrum resources via
coordination to allow each system to operate efficiently. The
work in [8] proposed a carrier aggregation resource allocation
algorithm to manage the band allocation for the co-existence
of LTE advanced cellular and S-band radar. The works in [2]
[3] [4] proposed the transmit waveform designs to guarantee
the performance of the dual-functional radar-communication
system, whereas the work in [14] utilized the spectrum sensing
techniques from cognitive radio for waveform and receiver
design in the radar-communication system. Unlike the works
in [2], [3], [4], [8] and [14] with only one active transmitter in
the co-existence system, co-design (or joint-design) for both
radar waveform and communication system was proposed in
[10]- [11] [12] [13], which allows both systems to transmit
simultaneously. The work in [10] concluded that co-design
plays an important role in performance optimization in co-
existence. In [11], a joint radar-communication framework
was proposed to enable both systems to operate at the same
time with only one transmitted signal. The work in [12]
proposed a sharing and allocation-based joint-design for multi-
carrier waveforms in radar and communication systems, while
the work in [13] proposed a spectrum sharing scheme for
the co-existence between MIMO communication system and
surveillance radar.

Another solution to the co-existence of radar and com-
munications is to allow radar and communications systems
to operate over the same frequency and time. This leads
to mutual interference, and one has to modify one of the
systems to account for interference. The work in [6] imple-
mented an iterative joint interference elimination process at
the communications receiver by exploiting the structure of
the radar interferences in an uncoordinated scenario where
a communication receiver operated in the presence of radar.
The work in [7] proposed a novel beamforming algorithm for
MIMO radar and communication to save transmission power
by interference mitigation. All the aforementioned works have
provided useful results to improve spectrum efficiency, mit-
igate mutual interference or manage spectrum cooperatively.
However, sophisticated redesign and cooperation at transmitter
and receiver are often required at the radar or communication
systems, which dramatically increases the complexity of these
systems.

Signal detection plays a significant role by determining
the desired data from a set of noisy and interfered signals
collected at receiver. The traditional signal detectors, such
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as maximum likelihood detectors and zero-forcing forcing
detectors, highly depend on the channel state information. The
estimation of channel state information introduces extra costs
for detection. Also, the accuracy of signal detection is affected
by the channel estimation error. On the other hand, deep neural
networks have been successfully applied in many research
areas, including computer vision [15] and natural language
processing [16] due to their powerful capability of recognizing
patterns directly from raw data. Therefore, many works have
been conducted to apply deep learning to signal detection in
communications system without channel estimation.

Some representative works on deep learning in commu-
nications signal detection are summarized in [17] and [18].
The work in [19] proposed a learning-based signal detector,
DetNet, for MIMO communication, while convolutional neural
network and recurrent neural network were applied in [20]
to detect signals in MIMO communications system assuming
perfect channel estimation. The work in [21] proposed to
apply a fully connected neural network to estimate channel
state information implicitly to recover the transmitted sig-
nals. It showed that deep neural network has advantages in
wireless channels with severe distortion and interference. The
work in [22] proposed a sliding bidirectional recurrent neural
network for sequential signal detection, which outperformed
a Viterbi detector with imperfect channel state information
and showed robustness in fast-changing channels. The work
in [23] proposed ViterbiNet as an ML-based symbol detector
incorporating deep neural networks into the Viterbi algorithm.
ViterbiNet outperformed previously proposed ML-based de-
tectors and showed the capability of operating under uncertain
channel state information and complex channel models. The
work in [24] integrated deep neural network into orthogonal
approximate message passing algorithm for MIMO detection.
Furthermore, the method was improved in [25] by consider-
ing imperfect channel state information and adapting various
channel environments. In [26], a parallel detection network
was proposed to solve the problem that increasing the number
of network layers cannot improve the system performance. The
work in [27] evaluated the system performance of signal detec-
tion in the presence of co-channel interference and proved that
the learning-based detectors can perform better than traditional
detectors. These works have demonstrated that the learning-
based signal detector can achieve good performance in the
communications system under various channel conditions.

Although the above studies have elucidated how radar and
communications systems can coexist with acceptable perfor-
mance deterioration and how the communications systems
can benefit from deep learning, to the best of the authors’
knowledge, there has been no existing work on the use of
deep learning in signal detection for communications systems
in the presence of radar interference. In this paper, our research
focuses on the application of deep learning to a single-carrier
communications system in the presence of radar interference.
The main contributions of this paper are summarized as below:

1) We analyze the detection performance with respect
to different modulations, interference coverage, symbol
durations, signal-to-interference ratios (SIRs) and signal-
to-noise ratios (SNRs). We also discuss the effect of the

number of layers and features on the fully connected
deep neural network (FCDNN) detector.

2) Unlike most existing works which improve the radar-
communication system by using sophisticated wave-
form design, interference mitigation or coordination
algorithms, we directly use deep neural networks as
the signal detector in communications system without
estimating the channel or waveform designs.

3) Both symbol-by-symbol detector FCDNN and sequence
detector LSTM are implemented. From the numerical
results, the learning-based detectors FCDNN and LSTM
have considerable accuracy in the radar-communication
system compared with the zero-forcing detector with the
least-squares channel estimator. Additionally, principal
component analysis (PCA) as the preprocessing algo-
rithm can improve the performance of FCDNN when
SIR is below 15 dB. Furthermore, LSTM shows more
robustness than FCDNN when the channel has time-
related distortion. Also, higher interference coverage can
degrade the system more than higher peak amplitude
of the radar interference for the same SIR condition.
FCDNN over ten layers can cause overfitting and com-
promise the system performance.

The rest of the paper is organized as follows. In Section II, we
will introduce the radar-communication system model. Section
III discusses the deep learning-based detection, radar interfer-
ence in communications systems and the data preprocessing
methods. Simulation settings will be discussed in Section IV.
Simulation results will be presented in Section V. Finally,
Section VI will conclude the work.

II. SYSTEM MODEL

Consider a narrow-band radar interference in a single-input
single-output communications system. The received discrete
complex-valued baseband equivalent signal can be expressed
as

y = hx + mr + n, (1)

where h and m are the communications channel gain and radar-
to-communications channel gain following Gaussian distribu-
tions, respectively, n denotes the additive white Gaussian noise
with mean zero and variance σ2, x denotes the transmitted
symbols with unit energy and r is the corresponding narrow-
band radar signals.

The transmitted symbols x are digitally modulated to repre-
sent M possibilities, and its m-th possible baseband equivalent
signal can be expressed by

xm = Im + jQm (2)

= Ame jϕm (3)

Am =

√
I2
m +Q2

m (4)

ϕm = tan−1 Im
Qm

,1 ≤ m ≤ M, (5)

where Am and ϕm denote the amplitude and phase of the m-th
possible signal, Im and Qm are the in-phase and quadrature
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components of of the m-th possible signal. Then, its passband
representation can be expressed as

x̃m(t) = R[xme j2π fc t ] (6)

= R[Ame j[2π fc t+ϕm]] (7)
= Am cos [2π fct + ϕm], (8)

where fc denotes the carrier frequency. In this work, we
consider two types of modulation schemes:

1) Phase shift keying (PSK): The signal phase ϕm = 2π
M (m−

1), where m = 1,2, ...,M , to represent log2 M bits. When
M = 4, the sinusoids represent symbol 00, 01, 11 or 10
with phase angles 0, π

2 , π, 3π
2 and a constant amplitude

assuming Am = 1 [28]. Additionally, the phase angles
for QPSK can also be π

4 , 3π
4 , 5π

4 and 7π
4 .

2) Quadrature amplitude modulation (QAM): QAM
changes both phases and amplitudes to represent
log2 M bits. For retangular 16QAM, Im = (2m − 5)d
and Qm = (2m − 5)d for 1 ≤ m ≤ 4 with d = 1,
representing 4-digits symbols from 0000 to 1111.
Moreover, the signal diagram can also be circular for
different values of phases and amplitudes [28].

Linear frequency-modulation (LFM) and frequency-modulated
continuous-wave (FMCW) are used as the interfering radar
signal r . The baseband equivalent signal of a pulsed LFM
radar waveform can be expressed as

rLFM (t) = a(t)e jφ(t), (9)

φ(t) =
πβ1t2

τ1
, (10)

a(t) =

{
1 0 ≤ t ≤ τ1

0 otherwise
, (11)

where φ(t) denotes the instantaneous phase, a(t) denotes the
amplitude of the pulse waveform, β1 is the signal bandwidth,
τ1 denotes the pulse duration. The baseband equivalent model
of a FMCW radar rFMCW (t) can be expressed as

rFMCW (t) = Ae jθ(t), (12)

θ(t) = 2π
∫ t

0

β2x
τ2

dx, (13)

where A denotes the signal amplitude, β2 is the signal band-
width and τ2 is the time duration.

In this paper, we will conduct experiments on detecting 16-
ary quadrature amplitude modulation (16QAM) and quadra-
ture phase shift keying (QPSK) signals in the presence of
LFM and FMCW interference. The goal of this learning-based
system is to recover the transmitted symbols from the received
signals y directly without channel estimation and minimize the
errors between the estimated symbols x̂ and the transmitted
symbols x in the presence of radar interference r , fading h
and noise n.

III. LEARNING-BASED DETECTION

The desired signals can be detected from the received
signals by using neural networks with supervised learning. The
structure of the learning-based detection is described in Fig.1.

It is divided into two phases: training and deployment. In the
training phase, we collect the transmitted symbols x and the
corresponding received signals y corrupted by noise n and
radar interference r . Note that the kth observed signal yk is
correctly matched with the kth transmitted symbol xk . To let
the machine recognize the transmitted symbol xk , we model
the detection process as a multi-classification problem and the
kth symbol xk can be represented by

sk =
©­­­«
Ω(xk = c1)
Ω(xk = c2)

...
Ω(xk = cM )

ª®®®¬ , (14)

where sk is the one-hot representation of the transmitted
symbol xk , cM denotes the constellation site of the transmitted
symbols, Ω(.) is the encoding function that lets the symbol
correspond to the element in the constellation be 1, and other
elements be 0. The received signal training input for sk as the
training input can be expressed as

yk =

©­­­­­«
yk
yk−1
yk−2
...

yk−l+1

ª®®®®®¬
,1 ≤ l ≤ k, (15)

where yk has a sequence of length l. Then, we label the
training input yk with the one-hot representation sk of the
corresponding transmitted symbol xk to form the training
dataset as

{(s1,y1), (s2,y2), ..., (sk,yk)}. (16)

This dataset is utilized as the input to train the DNN detector
that predicts the desired symbol xk . Also, the features extracted
from the observed signals can be added to the input of the
neural network to help the training process. The outputs of
the neural networks can be expressed as

ŝk = f m( f m−1(· · · f 1(yk, β)))), (17)

where ŝk is the output prediction representing the estimation
of the probability distribution of the transmitted symbol xk ;
f m(.) denotes the mth layer of the neural network, β denotes
the parameters of the network.

During the training, the optimal performance of the neural
network is obtained by finding the optimized value of the pa-
rameter β in the network. First, the loss between the predicted
symbol and the actual symbol is calculated through forward
propagation. The categorical cross-entropy loss function is
used for the multi-classification problem as

L = −

M∑
k=1

sk log ŝk, (18)

where sk and ŝk are the actual labels and the outputs of
the network, respectively. Then, gradient descend and back
propagation algorithms are operated by feeding the training
datasets to calculate the error and update the parameters
of the network. To minimize the loss of each layer in the
network, this iterative process continues until the loss cannot
be reduced.
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Fig. 1: The structure of learning-based detection.

In the deployment phase, the network is implemented at
the receiver for detection. The output symbol representations
ŝk are transformed to the predicted symbol x̂k . Note that
the learning-based detection makes prediction by recognizing
different patterns embedded in the signals and interference,
and therefore, waveform design or interference mitigation is
not required at the receiver.

A. FCDNN detector

FCDNN consists of several fully connected layers ending
with a Softmax layer. Every neuron in the current layer takes
the outputs of the previous layer as the input. The output of
each fully connected layer can be expressed by

pm = λ(Wmpm−1 + bm), (19)

where pm−1 is the output of the (m − 1)-th layer of the fully
connected neural network, Wm and bm denote the weight
and bias of the mth layer, respectively, λ is the activation
function that introduces nonlinearity to the network. ReLU
[29] and Softmax [30] are used in FCDNN. ReLU function
can increase sparsity in the network by making a part of
neurons, which reduces the interdependence of parameters
and alleviate overfitting problems. Also, ReLU can effectively
prevent gradient vanishing problem by maintaining a certain
slope when the network is close to convergence. Softmax is
used for the final layer, which outputs a probability mass
function for the multi-classification problem.

B. LSTM detector

Recurrent neural networks (RNN) is applied mainly for
sequence prediction in natural language processing and time
series data processing. Long short-term memory (LSTM) is

used as the RNN to reduce the long-term dependencies to the
sequence. A LSTM layer can be described by

ft = σg(W f xt + U f ht−1 + b f ), (20)
it = σg(Wixt + Uiht−1 + bi), (21)
ot = σg(Woxt + Uoht−1 + bo), (22)
Ct = fmCt−1 + im tanh(Wcht + Ucht−1 + bc), (23)
ht = ot tanh(Ct ) (24)

where ft , it , ot , Ct and ht denote the forget gate, the input
gate, the output gate, the cell state and the layer output; W,
U and b are the weights and bias in the model; σg denote
the gate activation function which is normally the sigmoid
function. The current layer output ht can be calculated by
above equations with the input xt and previous state ht−1.
RNN can be used to cope with time series data by considering
data information in the previous time period. In this case, the
observations from the previous symbols are concluded as the
states for predicting the current symbol. Unlike the symbol-by-
symbol detector FCDNN, RNN makes predictions by learning
from a sequence of symbols and recover a sequence of
symbols. In this paper, we use LSTM as the sequence detector
which is improved from traditional RNN by reducing the long-
term dependencies, gradient vanishing and exploding.

C. Interference at communication

In a traditional wireless communications system, interfer-
ence is commonly mitigated by filters according to their
different characteristics from the transmitted signals, such
as frequency. Unlike the traditional communication system,
DNN signal detector directly recovers signals at the receiver
from the corrupted signals by recognizing the patterns without
filtering. This process is modeled as a multi-classification
problem. Therefore, a DNN signal detector does not require
interference mitigator at receiver. This simplifies the system
design. Previous works have proved the feasibility of using
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(a) (b)

(c)

Fig. 2: Constellations of 16QAM signals in the presence of
radar interference (a) SIR = 30 dB (b) SIR = 10 dB (c) SIR
= 10 dB with preprocessing by PCA.

deep neural network to solve the signal detection problem and
most of these works focused on how signal detection benefits
from the different structures of neural networks. However, the
detection accuracy encounters a bottleneck in the presence
of interference when the raw data is used as the input to
the network. Fig. 2 shows the 16QAM signals with different
signal-to-interference ratios of radar interference. It can be
observed that different symbols maintain a clear distance
from each other when SIR is 30 dB in Fig. 2(a), which
can be classified easily by their coordinates in the constel-
lation diagram. However, when SIR is 10 dB in Fig. 2(b),
the adjacent symbols start to intersect. Therefore, different
symbols may have similar coordinates on the constellation.
Consequently, it is difficult for the neural network to identify
different symbols with similar data input. Also, this problem
cannot be solved by improving the structure of the network
since we have to consider the tradeoff between overfitting
and identifying symbols. Therefore, preprocessing the datasets
becomes necessary to improve the detection performance.

D. Data preprocessing

Data preprocessing has been widely utilized in machine
learning, such as data quality assessment, feature aggregation,
dimensionality reduction and feature extraction. Data prepro-
cessing is a process to transform the data so that machines can
efficiently parse it to improve the performance. In this paper,
the input to the network is the observed signals or their fea-
tures. Each observed complex-value symbol can be considered
as a two-dimensional coordinate on the constellation diagram.
To make different symbols less intersect on the constellation,
we use principal component analysis (PCA) to preprocess the
datasets. PCA is often considered as an unsupervised learning
method for dimensionality reduction. However, we use PCA to

generate new features from the observed symbols. As shown
in Fig. 2(c), the constellation diagram is rotated with a certain
angle by PCA compared with Fig. 2(b). PCA can learn the best
rotation angle based on the density of points in the original
coordinate system and convert these points into the same space
to obtain higher accuracy. Mathematically, PCA is based on
orthogonal transformation and the values of the transformed
data are the scalar projection of the original coordinates.

IV. SIMULATION ENVIRONMENT

The simulation environment of this work is implemented
using Matlab and the key components are shown below:

1) Input bitstream: A binary bitstream is generated ran-
domly as the input information of the signal transmitter.

2) Digital modulator: The binary information in the com-
munications system is modulated to complex-value I/Q
signals. 16QAM and QPSK modulation schemes are
used as the modulators in the simulation.

3) Radar waveform: LFM and FMCW signals are generated
as the radar interference.

4) Channel: Rician fading channel is applied for communi-
cation system to describe a line-of-sight radio propaga-
tion. LOS channel is also modeled for radar waveforms
with the attenuation due to the atmospheric parameters.

5) AWGN: The thermal noise at the receiver is described by
additive white Gaussian noise and its variance is applied
to model the noise power.

6) Transmitter: Power adjuster is implemented to control
the signal-to-interference ratio and signal-to-noise ratio.

7) Receiver: Both LSTM and FCDNN based signal detec-
tors are deployed at the receiver to detect the signals,
while the traditional detector with least-squares channel
estimation and zero-forcing detection is deployed as a
benchmark.

The signal-to-interference ratio (SIR) is defined by

SIR = 10 lg
Ps

Pr
, (25)

where Ps denotes the average power of the transmitted signal
in the communications system, which is normalized as unit
in the simulation; Pr denotes the average power of the
interference radar signals. The signal-to-noise ratio (SNR) is
determined by

SNR = 10 lg
Ps

Pn
, (26)

where Pn denotes the noise power which specifies the variance
of the AWGN. In the simulation, SIR and SNR are measured at
the receiver and the signal intensity is adjusted at transmitter.

The parameters setting for the learning-based detectors are
given in Table I. We use open-source Keras and TensorFlow
as the backend to implement FCDNN and LSTM. Adam
optimizer is applied and the learning rate is set at 0.001. To
prevent overfitting, we use early stopping techniques during
training.
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TABLE I: Parameters of learning-based detector

LSTM FCDNN

Batch size 32 512

Learning rate 0.001 0.001

Training epochs 100 150

Number of LSTM layers 2 -

Number of fully connected layers 1 10

Sequence length 20 1

V. NUMERICAL RESULTS AND DISCUSSION

In this section, numerical results are presented to evalu-
ate the performances of the learning-based detectors in the
presence of radar interference. Note that we use the signals
for all SNR and SIR values to train the model and then
we test our model in different SNRs and SIRs. Firstly, we
compare the performance for different numbers of layers and
features for the FCDNN detector. Then, we compare the
performance of FCDNN, LSTM and the zero-forcing detectors
with varying SIRs. Afterwards, we investigate the effects of
interference coverage represented by different pulse widths of
LFM. Finally, we consider the effect of symbol duration of
the transmitted signals.

A. Effects of features and layers for FCDNN
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Fig. 3: Symbol error rate of 16QAM signals with detectors
having different features when the SNR is 40 dB.

To improve the accuracy of FCDNN symbol-by-symbol
detector, feature extraction is utilized to find a better represen-
tation for the raw datasets as the input to the network. Each
complex-value received signal can be considered as a two-
dimensional coordinate on the constellation, and we transform
the coordinates to rotational coordinates to add more feature
information. PCA is applied to learn the best rotational angle
and transform the data into the same space in order to obtain
higher accuracy. We evaluate the performance for varying SIRs
from 0 to 40 dB with a step size of 5 dB and we take the SER

performance of FCDNN in the absence of interference as the
benchmark.
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Fig. 4: Symbol error rate of 16QAM signals with detectors
having different layers when the SNR is 40 dB.

Fig. 3 compares the performance of the detector with dif-
ferent feature transformation methods. The SER performance
without interference remains the lowest at about 1.2 × 10−4

as it is not affected by SIR. One sees that FCDNN with
features preprocessed by PCA has better performance than
the detectors trained by raw datasets or manual rotation
features. When SIR is less than 15 dB, FCDNN trained by
raw datasets achieves similar accuracy to FCDNN trained by
rotation features while FCDNN trained by PCA outperforms
them by approximately 40% in SER, although the gap reduces
as SIR increases. This is because PCA transformation reduces
the intersection on the constellation caused by interference and
noise, which simplifies the classification for the detector. When
SIR is beyond 30 dB, FCDNN trained by raw datasets outper-
forms FCDNN trained by rotational features, while FCDNN
trained by PCA has the lowest SER among the 3 FCDNN
detectors. This shows that PCA preprocessing improves the
performance in the conditions of very low SIRs and very high
SIRs.

On the other hand, the classification capacity of neural
networks can be improved by simply increasing the number of
hidden layers, but too many hidden layers can cause overfitting
and consequently degrade the system performance. Therefore,
we conducted experiments to discover how the system perfor-
mance changes with the increase of layers. We consider the
system of detecting 16QAM signals under LFM interference
for SIR from 0 to 40 dB with a step size of 5 dB. In Fig. 4,
the performance of FCDNN detector for different numbers of
hidden layers is evaluated. FCDNN with ten layers achieves
the best performance while FCDNN with one layer has the
highest SER due to the lack of learning ability. When SIR is
less than 20 dB, the performance of the detector improves as
the number of layers increases although the performance gap
narrows as the SIR grows. When SIR reaches 40 dB, FCDNN
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with ten layers remains the lowest SER while FCDNN with
15 and 20 layers outperforms FCDNN with one layer. This
shows that increasing layers can improve the learning ability
for recognizing highly corrupted signals. However, having
over ten layers can cause overfitting problems and affect the
performance in high SIR conditions.

B. Effect of varying SIRs

In this section, we compare the SER performance with
respect to the SIRs of the radar-communication system. To
simulate the performance, SIR are set from 0 to 40 dB with
a step size of 5 dB and randomly generated sequences of
32000 bits are utilized as the input stream. LFM waveform
with pulse width 10−3 seconds and pulse repetition frequency
103 Hz is simulated as the radar interference. A suboptimal
zero-forcing detector with pilot-aided least-squares channel es-
timation is implemented as the benchmark. Sequence detector
LSTM and symbol-by-symbol detector FCDNN with PCA are
implemented for comparison.

Fig. 5(a) compares the performance when the SNR is 40
dB to simulate the situation where there is weak noise. The
SER of FCDNN ranges from about 3×10−1 to 2×10−4 when
the SIR increases from 0 to 40 dB while the SER of LSTM
decreases from about 8×10−1 to 1.5×10−4. When SIR is less
than 15 dB, FCDNN can outperform other detectors while
the sequence detector LSTM can achieve similar performance
to the zero-forcing detector. This proves that FCDNN trained
with PCA can improve the performance when SIR is low,
compared with the zero-forcing detector and LSTM sequence
detector. As the SIR goes beyond 15 dB, the SER of FCDNN
becomes lower than other detectors and mixes with the SER of
the zero-forcing detector. Also, the sequence detector LSTM
starts to outperform others until SIR reaches 40 dB. This
is because PCA cannot effectively reduce the intersection
between symbols when the SIR condition is relatively good
while sequence detector and traditional detector can handle the
channel distortions by training with a sequence of symbols or
having pilot-aided channel estimation.

Fig. 5(b) evaluates the performance when the SNR is 0 dB
to simulate the strong noise. In Fig. 5(b), both FCDNN and
LSTM outperform the zero-forcing detector with the least-
squares channel estimation, while LSTM is slightly better than
FCDNN when SIR is beyond 10 dB. FCDNN and LSTM
can achieve the best performance of 7 × 10−2 and 6 × 10−2

SER, while the zero-forcing detector can only achieve about
2×10−1 and 4×10−1 SER when the pilot interval is 10 and 100
symbols, respectively. Least-squares channel estimation may
aggravate the influence of noise in the case of low SNR for
the zero-forcing detectors, but it also proves that the learning-
based detector can reduce performance degradation when the
channel is highly corrupted by noise. Also, LSTM takes a
sequence of symbols into consideration in the estimation of
one symbol by memorizing the state of the previous symbols.
This enables LSTM to know the hidden connections between
symbols. On the other hand, FCDNN learns the symbols
distributions in the constellations but cannot overcome the
time-related channel distortions.

We also conducted experiments to detect QPSK signals
in the presence of LFM interference. In Fig. 6(a), LSTM
and FCDNN outperform the zero-forcing detector because
the learning-based detector can benefit from the increased
Euclidean distance of QPSK symbols. Specifically, the SER
of LSTM and FCDNN decreases from about 7 × 10−2 and
1.5 × 10−1 to 10−3 when SIR grows from 0 to 5 dB, while
the zero-forcing detector requires about 4 dB more to achieve
similar performances. In Fig. 6(b), the learning-based detector
can achieve about 10−3 at a SIR of 10 dB while the zero-
forcing detector can only achieve about 1.4 × 10−1. Also,
when the SNR is 10 dB, the performance gap between the
zero-forcing detector and the learning-based detector increases
as the SIR grows and the SER of the learning-based reduces
much faster than the zero-forcing detector.

C. Effect of FMCW interference

In this section, we evaluate the performance of detecting
16QAM signals in the presence of FMCW interference. Fig.
7 describes the SER performance when the SNR is 40 dB and
10 dB to simulate different levels of noise corruption. In Fig.
7(a), LSTM and FCDNN have better SER performance than
the zero-forcing detector when SIR is less than 25 dB while the
zero-forcing detector slightly outperforms the learning-based
detectors when SIR is over 35 dB. To explain this, LSTM and
FCDNN are trained by the datasets with signals for SIR from
0 to 40 dB with a step size of 5 dB. In order to optimize the
overall performance across all the SIR conditions, the training
may make compromisation between the performance in the
low SIR range and the performance in the high SIR range. In
this case, the learning-based model sacrificed a bit accuracy
in the high SIR range to obtain a better overall accuracy so
that they are worse than the ZF detectors in the high SIR
range. Numerically, the SER of LSTM and FCDNN ranges
from about 5.5 × 10−1 to 2 × 10−3 when SIR grows from 0
to 40 dB, which is slightly higher than those in the presence
of LFM interference in Section V-B. This shows that FMCW
degrades the performance more under the same SIR, because
the continuous wave of FMCW occupies a longer time than
the pulsed wave of LFM. To prove this, we will evaluate
the performance of different interference coverage in the next
section. In Fig. 7(b), LSTM and FCDNN outperform the zero-
forcing detector, similar to the results in Section V-B. This
shows that LSTM and FCDNN can achieve good performance
when SNR is low.

D. Effect of interference coverage

In this section, we evaluate the performances of the
learning-based detectors with respect to different interference
coverage. The continuous wave has full interference coverage
on the transmitted communications signals while pulsed wave
has a periodic interference zone depending on the pulse width
and pulse repetition frequency. Therefore, We describe the
interference coverage by the pulse width of LFM interference,
which specifies the length of each pulse in seconds. We
consider the pulse width from 10−4 to 10−3 seconds with a
step size of 10−4 seconds and pulse repetition frequency 103
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Fig. 5: Symbol error rate of 16QAM signals in the presence of LFM interference. (a) The performance when the SNR is 40
dB. (b) The performance when the SNR is 10 dB.
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Fig. 6: Symbol error rate of QPSK signals in the presence of LFM interference. (a) The performance when SNR is 40 dB. (b)
The performance when SNR is 10 dB.

Hz. Also, we set SIR=0 dB and SIR=30 dB to describe the
strongly interfered and weakly interfered cases.

Fig. 8 compares the SER for 16QAM signals in the presence
of LFM interference with different pulse widths. Interestingly,
we can observe that the SER increases as the pulse width
increases. This is because there is no interference during the
time interval between adjacent radar pulses and the longer
pulse width causes more interference coverage for fixed pulse
repetition frequency. Although the longer pulse width also
reduces the peak amplitude of the radar interference for the
same SIR, the results indicate that radar interference coverage

can have a greater impact on performance than the peak
amplitude of interference. Also, FCDNN outperforms LSTM
when SIR is 0 dB, while LSTM has better performance when
SIR is 30 dB. Specifically, the SER performance of FCDNN
increases from 4 × 10−2 to 3 × 10−1 when the pulse width
increases and the SIR is 0, while the SER performance of
LSTM ranges from about 9 × 10−2 to 7 × 10−1. When SIR is
30 dB, the SER of LSTM increases from about 2 × 10−4 to
1.5× 10−3 while the SER of FCDNN ranges from 8× 10−4 to
5 × 10−3.
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Fig. 7: Symbol error rate of 16QAM signals in the presence of FMCW interference. (a) The performance when the SNR is
40 dB. (b) The performance when the SNR is 10 dB.
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Fig. 8: Symbol error rate of 16QAM signals in the presence of
LFM interference with different pulse widths when the SNR
is 40 dB.

E. Effect of symbol duration

In general, increasing the number of training samples im-
proves the classification of the detector. In a communications
system, this takes more time to receive the signals and intro-
duces more time-related distortions on signals. Therefore, we
conducted experiments to study how the symbol duration af-
fects the detection performance. Fig. 9 shows the performance
of detecting 16QAM signals with a symbol duration of 0.5,
0.75 and 1.0 seconds, which means we collected 16000, 24000
and 32000 symbols for training at a 32000 Hz sample rate.

In this figure, the SER of FCDNN and LSTM increases
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Fig. 9: Symbol error rate of 16QAM signals with detectors
having different symbol duration when the SNR is 40 dB.

as the symbol duration increases. Also, FCDNN outperforms
LSTM at 20 dB SIR for a symbol duration of 0.5 seconds,
which is different from those at 0.75 and 1.0 seconds. To show
why FCDNN performs differently from LSTM at 20 dB SIR,
Fig. 10 shows the 16QAM constellations with a symbol dura-
tion of 0.5, 0.75 and 1.0 seconds when SIR is 20 dB. One sees
that, as the symbol duration increases, signals on constellation
appear clockwise distortion and offset. The distortion is mainly
caused by Doppler shift. This distortion blurs the boundaries of
different symbols and causes difficulties especially to FCDNN
detector for classification as it only takes features of the current
symbol without considering the previous symbols. Therefore,
LSTM can outperform FCDNN when the symbol duration
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Fig. 10: Constellations of 16QAM signals with different symbol duration when the SIR = 20 dB and the SNR = 40 dB. (a)
The constellation when symbol duration is 0.5 seconds. (b) The constellation when symbol duration is 0.75 seconds. (c) The
constellation when symbol duration is 1.0 second.

increases, while FCDNN has high accuracy when the symbol
duration is short and the boundaries of different symbols are
clear.

VI. CONCLUSION

In this paper, we have proposed the learning-based signal
detection scheme for the co-existing radar-communication
system using FCDNN and LSTM. LFM and FMCW have
been studied as interference to the communications system.
Performance of the learning-based detector has been compared
under several scenarios, including intensity of interference and
noise, layers of the networks and symbol duration. Numerical
results have shown that the learning-based detector achieves
better performance than the zero-forcing detector for 16QAM
and QPSK signals in varied SIRs and SNRs. In addition, the
simulation results have proven that preprocessing the complex-
value observed signals with the PCA algorithm improves the
system performance of the FCDNN detector. Also, increasing
layers improves the performance of the FCDNN detector in the
low-SIR conditions but beyond a certain number of layers may
cause overfitting and consequently compromise the accuracy
when SIR is high. However, the performance of FCDNN can
be affected more by time-related distortion than LSTM. Fur-
thermore, for the same SIR, the communications system can
be degraded more by the more extensive interference coverage
than the higher peak amplitude of the radar interference.
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