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Abstract—In this paper, we present three new signal designs
for Enhanced Spatial Modulation (ESM), which was recently
introduced by the present authors. The basic idea of ESM is to
convey information bits not only by the index(es) of the active
transmit antenna(s) as in conventional Spatial Modulation(SM),
but also by the types of the signal constellations used. The original
ESM schemes were designed with reference to single-stream SM
and involved one or more secondary modulations in addition to
the primary modulation. Compared to single-stream SM, they
provided either higher throughput or improved signal-to-noise
ratio (SNR). In the present paper, we focus on multi-stream SM
(MSM) and present three new ESM designs leading to increasing
SNR gains when they are operated at the same spectral efficiency.
The secondary signal constellations used in the first two designs
are based on a single geometric interpolation step in the signal
constellation plane, while the third design also makes use of
additional constellations derived through a second interpolation
step. The new ESM signal designs are described for MIMO
systems with four transmit antennas two of which are active,
but we also briefly present extensions to higher numbers of
antennas. Theoretical analysis and simulation results indicate that
the proposed designs provide a significant SNR gain over MSM.

Index Terms—MIMO Systems; Spatial Modulation (SM); Mul-
tistream SM; Signal Design

I. I NTRODUCTION

Multiple-input multiple-output (MIMO) technologies are
now widely used in wireless communications systems stan-
dards. The objective of using these technologies is to increase
data throughput, increase performance, and make different
trade-offs between these two desired features. The main prob-
lem limiting the practical implementation of MIMO technolo-
gies is related to the decoding complexity, which increases
with the number of antennas [1]–[3]. In a number of cases,
cost and energy consumption considerations lead to the imple-
mentation of a smaller number of radio-frequency (RF) chains
in the transmitter than the number of transmit antennas. This is
often the case in mobile and fixed user equipment, because the
number of antennas is typically dictated by the performance
requirements for the downlink signal, and cost and energy
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consumption limitations may not allow the implementation
of as many RF chains. Spatial modulation (SM) is a MIMO
technique, which was precisely introduced for those cases.

The first papers on SM considered MIMO systems with a
single transmit RF chain [4]–[7]. These SM schemes convey
information bits by allocating them to the active antenna index,
while transmitting a group of other bits through the symbols
transmitted from the selected active antenna. Further workon
SM generalized this technique by relaxing the single transmit
RF-chain constraint and allowing more than one antenna to
transmit simultaneously, see e.g., [8]–[10]. A comprehensive
survey on Generalized SM appears in [11]. A simple variant
of SM is the so-called Space-Shift Keying (SSK) [12], where
only the index of the active antenna transmits information.In
other words, the active antenna in SSK does not transmit any
data symbols, but instead an unmodulated signal. This concept
too was naturally extended to multiple active antennas [13],
and the resulting scheme was coined Generalized SSK. The
literature on SM, SSK, and their generalized versions is now
quite abundant; we mention here [14]–[17], which address
space-time code design, and [18], [19], which address the
decoding aspects.

But even in its multi-stream version, the spectral efficiency
of SM remains modest compared to spatial multiplexing
(SMX) [1], which is widely used in conventional MIMO
systems. In order to improve spectral efficiency, the present
authors recently introduced a new SM concept in [20] using
multiple signal constellations. This technique, referredto as
Enhanced SM (ESM), conveys information bits using one or
two active transmit antennas and two or more reduced-size
secondary modulations in addition to the primary modulation.
The primary modulation in that scheme was restricted to the
periods of one active antenna, and the secondary modulations
were used with two active transmit antennas. A significant
performance gain was achieved compared to conventional SM
when the two techniques are operated at the same spectral
efficiency. In the comparisons, conventional SM employed one
active transmit (TX) antenna only, because the ESM design of
[20] was made with reference to single-stream SM.

In this paper, we introduce three new ESM designs taking
as reference Multi-stream SM (MSM) [18]. The description
is made for MIMO systems with four transmit antennas two
of which are active, but generalization to higher numbers
of antennas is also briefly presented. As in [20], the basic
principle is to use additional modulations with the primary
modulation in order to increase the number of antenna and
modulation combinations. The first two ESM schemes use
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a secondary constellation that is derived through a single-
step geometric interpolation between the primary constellation
points. When the indexes of two active TX antennas are
selected, the first scheme transmits a symbol from the primary
constellation on one antenna and a symbol from the secondary
constellation on the other. The second type of ESM does not
use the primary signal constellation in full. Instead, it uses
subsets in such a way as to further reduce the average transmit
energy. The third ESM scheme introduces a second step of
geometric interpolation, which leads to the derivation of two
additional constellations. The signal space is constructed over
blocks of two consecutive channel uses in order to preserve
the minimum Euclidean distance despite the reduced distance
between the different constellations used. The mathematical
analysis and the simulation results indicate that the proposed
schemes provide a significant performance gain with respect
to MSM. Parts of this work were presented in [21].

The paper is organized as follows: In Section II, we give
a brief description of the system model and formulate the
ESM design problem. In Section III, we present a brief review
of MSM and describe the proposed ESM designs for MIMO
systems with four transmit antennas (4-TX) and M-QAM as
primary modulation. In Section IV, we extend our designs
to MIMO systems with a higher number of antennas. Error
rate performance and receiver complexity are investigated
in Section V. Finally, the simulation results are reported in
Section VI, and our conclusions are given in Section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

For a MIMO system operating on Rayleigh fading channels,
the received signal can be expressed as:

y = Hx+ n, (1)

where NR denotes the number of receive antennas,NT is
the number of transmit antennas,H is theNR ×NT channel
matrix,x is theNT ×1 transmitted symbol vector, andn des-
ignates the additive white Gaussian noise (AWGN). Assume
that the entries of the channel matrixH are independent and
identically distributed (i. i. d.) complex circularly symmetric
Gaussian variables of the formNc(0, 1) and the entries of
AWGN, n, are i. i. d. Gaussian noise of the formNc(0, N0).
The transmit energy isE[xHx] = Es, and the average
signal-to-noise ratio (SNR) is defined as SNR= Es/N0.
Note that the main difference between SM and conventional
MIMO is that in the former not all transmit antennas are
activated simultaneously, which means that there are some
zero elements in the transmit symbol vectorx. When only
two transmit antennas are active, a convenient representation
of the transmitted codewordx is as follows:

x =
[

0, · · · , 0, xm, 0, · · · , 0, xn, 0, · · · , 0
]T

, (2)

for m 6= n. Here vectorx is of dimensionNT , m andn with
m = 1, · · · , NT , andn = 1, · · · , NT are the indexes of the
two active TX antennas, andxm andxn denote the symbols
transmitted from these two antennas. This representation is
easily generalized to cases with a higher number of active
antennas by introducing in (2) as many non-zero components

as the number of active antennasNA. The new ESM designs
will be introduced in the next section forNT = 4 andNA =
2. Generalization of this ESM concept to higher number of
transmit and active antennas will be described in Section IV.

As in [20], we use here the concept of multiple constella-
tions in order to increase the number of codewords beyond
that given by the indexes of the active transmit antennas
and the primary constellation alone. The basic principle of
our design is to preserve in the signal space the minimum
Euclidean distanceδ0 of the primary constellation. The addi-
tional constellations too have a minimum Euclidean distance
of δ0, but the minimum distance between points selected from
different constellations is smaller than this value. Note that the
additional constellations are derived using optimum geometric
interpolation in the primary constellation plane, which consists
of placing the points of these constellations at the centersof the
squares formed by neighbor points of M-QAM used as primary
constellation. This choice guarantees a minimum distance of
δ0/

√
2 between the points of the primary constellation and

those of the secondary constellation derived after the first
interpolation step. Similarly, it guarantees a minimum distance
of δ0/2 between the points of the primary and secondary
constellations and those of the third and the fourth con-
stellations derived after the second interpolation step. Using
these multiple constellations, a minimum Euclidean distance
of δ0 is preserved in the signal space by imposing that
codewords differ in two or more components depending on
the constellations from which the non-zero components take
their values.

III. E NHANCED SM (ESM)

Before introducing our proposed ESM designs, we first
briefly describe the baseline Multi-stream SM (MSM) scheme
[18], which will be used as basis for comparisons.

A. Baseline: MSM

MSM with four TX antennas (NT = 4) out of which two
are active (NA = 2) and transmitting M-QAM symbols can
be described using the following signal space representation:
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, (3)

where the entryPM denotes the M-QAM constellation, and
the zero entries correspond to the silent transmit antennas. This
MSM scheme achieves a throughput of2 + 2 log2 M bits per
channel use (bpcu). Indeed,2 information bits are assigned
to select one of the four active antenna combinations which
appear in (3), and2 log2 M bits select two symbols from the
PM signal constellation to be transmitted from the two active
antennas. The throughput is10 bpcu with 16QAM and14
bpcu with 64QAM. The total energy per transmitted codeword
is Es = 20 for 16QAM andEs = 84 for 64QAM, which is
twice the average symbol energy.

We now describe our first ESM design, which we refer to
as ESM-Type1 in the sequel.
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Fig. 1. The constellations used in ESM-Type1 withM = 16. The blue
crosses represent 16QAM, and the red circles represent constellation S8.

B. ESM-Type1

For the same spectral efficiency as the MSM scheme de-
scribed above, the transmitted codewordx in this design are
given by:
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Here, we have8 antenna and constellation combinations in
the signal space: As in MSM, there are four active antenna
combinations, but while one of the active antennas transmits a
symbol from the primary M-QAM constellationPM , the other
antenna transmits a symbol from a secondary constellation of
half size, referred to asSM/2. The two signal constellations
are shown in Fig. 1 forM = 16 and in Fig. 2 forM = 64.
The secondary signal constellationSM/2 has the following
mathematical representation forM = 16 andM = 64:

S8 = {±2± 2i,±2,±2i},
and

S32 =







S8,±4,±4i,±6,±6i
±4± 2i,±4± 4i,±2± 4i

2 + 6i, 6− 2i,−6 + 2i,−2− 6i







.

Similarly to the baseline MSM of the previous subsection,
this ESM design achieves a throughput of2 + 2 log2 M bpcu
despite the fact that one of the antennas transmits symbols
from a half-size signal constellation. Indeed, the two symbols
transmitted in parallel from the two active TX antennas convey
2 log2 M−1 bits only, but the number of antenna/constellation
combinations (pairs ofm, n indexes along with the assigned
signal constellations) is8 in this case, and therefore3 bits
must be assigned to select one of these combinations.

Let us now examine the average energy per transmitted
codeword. To evaluate the average codeword energy, we first
need to evaluate the average energy of the secondary constel-
lation used. A simple inspection of Figs. 1 and 2 indicates
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Fig. 2. The constellations used in ESM-Type1 withM = 64. The blue
crosses represent 64QAM, and the red circles representS32.

that the average energy per symbol isES8
= 6 for the S8

constellation andES32
= 22 for the S32 constellation. Since

the average energy per16QAM symbol isE16QAM = 10 and
the average energy per 64QAM symbol isE64QAM = 42,
the average energy per transmitted codeword in this scheme
is 16 for M = 16 and64 for M = 64. We summarize these
properties as follows:

EESM−Type1−16QAM = 16,

and

EESM−Type1−64QAM = 64.

This means that in terms of total transmit energy, ESM-Type1
with 16QAM (resp. 64QAM) as primary modulation saves
20% (resp. 24%) compared to baseline MSM. In the dB scale,
this corresponds to a gain of 1 dB (resp. 1.2 dB).

C. ESM-Type2

By using anM -point primary constellation and a half-size
secondary constellation (withM/2 points), we managed to
reduce the total transmit energy to some extent using ESM-
Type1. We will now describe a second ESM design, which
brings additional gain. In this design, which we refer to as
ESM-Type2, we do not use the original primary constellation
PM in full, but instead a subsetPM/2, which consists of the
M/2 points of smallest energy. ForM = 64, PM/2 is the
conventional 32QAM signal constellation, and forM = 16, it
is a (non-conventional) 8QAM signal constellation given by:

P8 = {±1± i, 3 + i, 1− 3i,−3− i,−1 + 3i}.

In ESM-Type2, the design procedure is as follows: The
transmitted codewordsx belong to a signal spaceL, which
is the union of four subspacesL1, L2, L3, L4:

x ∈ {L1, L2, L3, L4}. (5)
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Fig. 3. The constellations used in ESM-Type2 withM = 16. The blue
crosses representP8, the red circles representS8, and the black stars represent
Q4.

The first three subspaces are defined as:
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Different subspaces use different active antenna combinations,
but in all of these three subspaces one active antenna transmits
symbols from thePM/2 signal constellation, while the other
active antenna transmits symbols from theSM/2 constellation.
Note that2 log2 M − 2 information bits are conveyed by the
transmitted symbols, and 2 information bits are used to select
one antenna combination in each subspace. Also, 2 prefix bits
select a particularLj subspace, and hence the total number of
bits per channel use is2 + 2 log2 M .

The fourth signal subspaceL4 is more involved. ForM =
16, it is given by
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In this subspace, one of the active antennas transmits a symbol
from theS8 constellation, while the other antenna transmits a
symbol from aQ4 signal constellation, defined as follows:

Q4 =
{

1 + 3i, 3− i,−1− 3i,−3 + i
}

.

This constellation is shown in Fig. 3 together withP8 and
S8. The symbols in signal subspaceL4 carry 5 information
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Fig. 4. The constellations used in ESM-Type2 withM = 64. The blue
crosses represent 32QAM, the red circles representS32, the black stars
representR8, and the black squares representQ8.

bits only, but this subspace includes8 active antenna and
modulation combinations, and therefore3 bits are needed to
select one of them. Together with the prefix bits assigned to
theL4 subspace itself,10 bits are transmitted per each channel
use.

For M = 64, direct extension of theL4 subspace as given
by (9) is not optimal in terms of transmit energy. Direct
extension means that theS8 and theQ4 constellations in (9)
are replaced byS32 andQ16, whereQ16 consists of a16-point
extension ofS32. Instead, we found that the following choice
of subspaceL4 minimizes the average transmit energy:

L4 =
{

L5, L6

}

(10)

with
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and
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. (12)

TheQ8 andR8 constellations are shown in Fig. 4 together
with P32 andS32. Mathematically, they can be represented as:

Q8 =

{

4 + 6i,−4− 6i, 6− 4i,−6 + 4i
6− 4i,−6 + 4i6 + 2i,−6− 2i

}

and

R8 =

{

5 + 5i, 5− 5i,−5 + 5i,−5− 5i
1 + 7i, 7− 1i,−1− 7i,−7 + 1i

}

.
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For M = 16, the average energy of the transmitted code-
words is12 in subspacesL1, L2, andL3, because both of the
two constellations used in these subspaces have an average
energy of6. In contrast, the average codeword energy is16
in L4, since constellationQ4 has an average energy of10.
Therefore, the average energy per codeword is given by:

EESM−Type2−16QAM =
3

4
× 12 +

1

4
× 16 = 13.

This scheme provides an energy saving of approximately
35% (13 instead of 20) compared to baseline MSM, which
corresponds to a 1.9 dB gain in the decibel scale.

For M = 64, symbol selection in signal subspacesL1, L2,
andL3 requires10 bits. Together with the2 prefix bits of the
Li subspaces and the2 bits needed for selection of an antenna
and constellation combination in the selected subspace, the
total number of bits is14. In subspaceL4, symbol selection
requires only8 bits, but one additional bit is needed to select
L5 or L6, and 3 bits are needed to select one antenna and
modulation combination in the selectedLi subspace. Here too,
together with the2 prefix bits of theL4 subspace, the number
of bits is14, and clearly the proposed design achieves14 bpcu.

To compute the total energy per transmitted codeword, we
first evaluate the average energy of the constellations usedin
this design: A simple inspection of Figs. 3 and 4 shows that
the average energy isEP32

= 20 for P32, ES32
= 22 for

S32, EQ8
= 46 for Q8, and ER8

= 50 for R8. Since the
symbols take their values from the setP32, S32 in 3 out of the
4 subspaces, fromP32, Q8 in one subspace, and fromS32, R8

in the remaining subspace, the average energy per codeword
is given by:

EESM−Type2−64QAM =
3

4
× 42+

1

8
× 66+

1

8
× 72 = 48.75.

Compared to the baseline MSM scheme, this ESM design
achieves a transmit energy saving of approximately 42%. This
represents an SNR gain of 2.4 dB.

D. ESM-Type3

The reduced-size secondary signal constellation used in our
first two designs (ESM-Type1) and ESM-Type2) was derived
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Fig. 6. The constellations of ESM-Type3 withM = 64: The blue points
representTR, the blue crosses representT ′

16
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through a single-step geometric interpolation in the primary
constellation plane. Our third design goes one step further
and uses two additional signal constellationsTM/2 andFM/2,
which are derived through a second interpolation step.

In partitioned form, these constellations are defined as

TM/2 = T ′
M/4 ∪ T ′′

M/8 ∪ TR

and
FM/2 = F ′

M/4 ∪ F ′′
M/8 ∪ FR,

whereT ′
M/4 denotes theM/4 points ofTM/2 of smallest en-

ergy excluding the innermost points, which formTc = {i,−i},
T ′′
M/8 is theM/8 point extension ofT ′

M/4 of minimum energy,
andTR denotes the rest of the points inTM/2. For theFM/2

constellation, we use the same definition and similar notations,
because as it will be clear later this constellation is obtained
by a simpleπ/2 rotation of constellationTM/2. The innermost
points ofFM/2 are given byTc = {1,−1}.

For M = 16, Fig. 5 shows the 6 component constellations
which formTM/2 andFM/2. They have the following math-
ematical representation:

T ′
4 = {±2± i}, T ′′

2 = {±3i}, TR = {±i},
F ′
4 = {±1± 2i}, F ′′

2 = {±3}, FR = {±1}.

For M = 64, the 6 component constellations ofT32 and
F32 are shown in Fig. 6. Their mathematical representation is:

T ′
16 = {±2,±2± i,±3i,±4± i,±5i},
T ′′
8 = {±2± 5i,±4± 3i},

TR = {±i,±6± i, 4 + 5i,−4− 5i},

and

F ′
16 = {±1± 2i,±3± 2i,±1± 4i,±3,±5},
F ′′
8 = {±3± 4i,±5± 2i},

FR = {±1,±1± 6i,−5 + 4i, 5− 4i}.

Note that all constellations used in the ESM-Type3 design,
i.e. (PM/2, SM/2, TM/2, FM/2), have the minimum Euclidean
distance ofδ0. Next, the minimum distance between thePM/2
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andSM/2 constellations (resp. theTM/2) andFM/2 constel-
lations) is δ0/

√
2. Finally, the minimum distance between

a point taken fromPM/2 ∪ SM/2 and a point taken from
TM/2 ∪ FM/2 is δ0/2. Since the number of active antennas
is limited to2, a particular care must be exercised to preserve
a minimum distance ofδ0 in the signal space.

More specifically, the use of different constellations cannot
be made independently from a channel use to the next. Instead,
the antenna/constellation combinations must be jointly defined
over a block of two consecutive channel uses. The minimum
distance can be preserved in the following two cases: In the
first case, thePM/2 andSM/2 constellations (resp. theTM/2

andFM/2 constellations) are employed during both channel
uses. In the second case, thePM/2 andSM/2 constellations
are used during the first channel use, and theTM/2 andFM/2

constellations are used during the second channel use, or vice
versa. In this paper, we take the second approach, because the
number of bits transmitted per block is not constant in the
first.

For presenting our ESM-Type3 scheme, we first extend the
system model by stacking two consecutive received signal vec-
tors. Assuming slow-fading channels essentially constantover
two consecutive channel uses, the transmitted and received
signals are related by the following equation:

Y = HX + N, (13)

whereY = [y1, y2] denotes theNR×2 received signal matrix,
X = [x1, x2] is theNT × 2 transmitted signal matrix,N is the
NR × 2 AWGN matrix, and the subscriptk ∈ {1, 2} denotes
the time index of the symbol vector. The transmitted codeword
(symbol matrix)X belongs to the following signal space:

X ∈ {S1, S2}, (14)

where

S1 = {x1 ∈ SPS , x2 ∈ STF } (15)

S2 = {x1 ∈ STF , x2 ∈ SPS}. (16)

In this representation,SPS denotes the set of symbol vectors
based on the primary and the secondary constellations, and
STF denotes the set of symbol vectors based on the third and
the fourth constellations. The transmittedNT × 2 codeword
takes its values from the setSPS during the first channel use in
the block and from the setSTF during the second channel use,
or vice versa. The number of bits per codeword is4+4 log2 M
, which is twice the number of codewords per channel use.
From those, 1 bit selects subsetS1 or subsetS2. Next, 2 +
2 log2 M bits select a vector fromSPS and1 + 2 log2 M bits
select a vector fromSTF , and these two vectors are transmitted
in the order determined by the first bit.

The details of the proposed design process can be described
as follows: First, the set of symbol vectorsSPS is actually
the signal space of ESM-Type2 described in the previous
subsection. A signal vector from this set is of the form:

SPS : x ∈ {L1, L2, L3, L4}, (17)

where the subsetsL1 − L4 are given by eqns. (6)− (9). As
shown in the previous subsection, this scheme transmits2 +

2 log2 M bits per channel use, and the average total energy
per transmitted symbol vector isEs = 13 for M = 16 and
Es = 48.75 for M = 64.

Next, the set of symbol vectorsSTF is based on the third
and the fourth constellationsTM/2 and FM/2, but symbol
vectors inSTF transmit one bit less than the2+2 log2 M bpcu
transmitted in the case ofSPS . The setSTF is constructed by
the union of four subsetsL′

1, L′
2, L

′
3, L′

4:

STF : x ∈ {L′
1, L

′
2, L

′
3, L

′
4}. (18)

The first subset is defined as:
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. (19)

The L′
1 subset can transmit2 + 2 log2(M/2) bits: 2 bits

select one of the four combinations of active TX antennas and
associated constellations,log2(M/2) bits select a symbol from
the TM/2 constellation, andlog2(M/2) bits select a symbol
from theFM/2 constellation.

The other three subsetsL′
2 − L′

4 are defined as follows:
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(20)

L′
3 = {L′

2|T ′
M/4 → T ′′

M/8} (21)

L′
4 = {L′

2|F ′
M/4 → F ′′

M/8}. (22)

This representation indicates that the combinations of active
antennas in subsetL′

3 are the same as those inL′
2, but

here constellationT ′
M/4 is replaced by constellationT ′′

M/8.
Similarly, subsetL′

4 is obtained fromL′
2 by substituting

constellationF ′′
M/8 for F ′

M/4.
The signal subsetL′

2 transmits3 + 2 log2(M/4) bits per
symbol vector: 3 bits are needed to select one of the 8
combinations,log2(M/4) bits to select a symbol fromT ′

M/4,
andlog2(M/4) bits to select a symbol fromF ′

M/4. Next, since
the L′

3 subset is derived fromL′
2 by substitutingT ′′

M/8 for
T ′
M/4, it transmits3+log2(M/4)+log2(M/8) bits per symbol

vector. Again, 3 bits select one of the 8 combinations, and then
log2(M/8) bits select a symbol fromT ′′

M/8, and log2(M/4)

bits select a symbol fromF ′
M/4. Similarly,L′

4 subset transmits
3 + log2(M/4) + log2(M/8) bits per symbol vector. Here, 3
bits select one of the 8 combinations,log2(M/8) bits select a
symbol fromF ′′

M/8, andlog2(M/4) bits select a symbol from
T ′
M/4.
The discussion above indicates that the number of bits

transmitted per symbol vector is not uniform across the
L′
1 − L′

4 subsets. The implication of this is that the prefix
of these subsets inSTF must have a variable number of bits.
Specifically, subsetL′

1 must have a 1-bit prefix, subsetL′
2 a 2-

bit prefix, and subsetsL′
3 andL′

4 must have a 3-bit prefix. With
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these variable-length prefixes, it can be seen that all symbol
vectors inSTF carry 1 + 2 log2 M bits.

At this point, it is important to clarify the difference between
the construction of theL′

1 subset and that of theL′
2 − L′

4

subsets included inSTF . Notice that the innermost points of
the TM/2 and FM/2 constellations, namelyTc and Fc, are
only used in the first subsetL′

1. These points cannot be used
in L′

2, because otherwise the minimum Euclidean distance in
the signal space would beδ0/

√
2, which is 3 dB smaller than

the minimum Euclidean distance inSPS . This is the case,
for instance, between the symbol vectors[1, i, 0, 0] ∈ L′

1 and
[1, 0, i, 0] ∈ L′

2. Similarly, the innermost points are not allowed
in subsetsL′

3 andL′
4. As a result, the signal vectors inSTF

carry only1 + 2 log2 M bits, while the signal vectors inSPS

carry 2 + 2 log2 M bits.
For M = 16, the average energy per transmitted symbol

vector fromSTF is Es = 11. Since the signal vector sets in
SPS andSTF are used with the same probability, the average
energy of the transmitted codewords in ESM-Type3 is:

EESM−Type3−16QAM =
1

2
× (13 + 11) = 12.

This represents a 2.2 dB SNR gain over MSM and a 0.4 dB
gain over the ESM-Type2.

For M = 64, the average energy per transmitted symbol
vector fromSTF is Es = 37, and the average energy of the
transmitted ESM-Type3 codewords is:

EESM−Type3−64QAM =
1

2
× (48.75 + 37) = 42.875.

This represents a 2.9 dB SNR gain over baseline MSM.

IV. EXTENSIONS TOHIGHER NUMBER OF ANTENNAS

In this section, we investigate the extension to higher
numbers of antennas of the new ESM designs presented in
the previous section. Before doing this, we describe the MSM
concept used for benchmarking these designs. In MSM with
NT transmit antennas out of whichNA antennas are active
usingM -QAM modulation, the maximum number of active
antenna combinations isCNA

NT
= NT !

NA!×(NT−NA)! . Usually, the
number of combinations is restricted to be an integer power of
2 in order to have an integer number of address bits to select
the active antennas. This number is given by:

n = ⌊log2(CNA

NT
)⌋, (23)

where⌊x⌋ stands for the integer part ofx. In this scheme, the
transmitted average energy is10×NA for M = 16 (16QAM
modulation) and42×NA for M = 64 (64QAM modulation).
As for the throughput, it is given byn+NA log2 M .

A. ESM-Type1

The basic principle of ESM-Type1 is to use a secondary
constellation of half size (withM/2 points) in addition to
the primary constellation withM points in order to reduce
the average transmit energy. The primary constellation is the
M -QAM constellation (denotedPM ) used by the reference
MSM scheme, and the secondary constellation is theSM/2

constellation. Selection of the active antennas requires the

same number of address bits as in MSM. But on top of
this, ESM-Type1 requires additional address bits to selectthe
antennas which transmit symbols from theSM/2 constellation.

Assuming that the number of active antennasNA is an even
number, half of the active antennas transmit symbols from the
PM constellation, and the other half of the antennas transmit
symbols from theSM/2 constellation. Compared to MSM, the
number of bits in the transmitted symbols is reduced byNA/2.
This reduction is compensated by the bits assigned to the
selection of the active antennas which transmit symbols from
theSM/2 constellation. For a given set of active antennas, the
number of bits assigned to this selection is

m =
⌊

log2

(

C
NA/2
NA

)⌋

. (24)

For example, withNA = 4, we havem = 2, and precisely,
this is the number of bits that we need to compensate for the
fact that the4 symbols in ESM-Type1 transmit2 bits less than
in MSM. Consequently, in this scheme too the throughput is
given byn+NA log2 M .

The average transmit energy is clearly10NA

2 + 6NA

2 =
16NA

2 for M = 16, and42NA

2 +22NA

2 = 64NA

2 for M = 64.
For all NA values, the gain with respect to MSM is 1 dB and
1.2 dB withM = 16 andM = 64, respectively.

B. ESM-Type2

The idea here is not to use the original primary constellation
PM in full, but instead a subsetPM/2, which consists of the
M/2 points ofPM of smallest energy. WithNA active anten-
nas, the number of bits carried by the transmitted symbols is
reduced byNA with respect to MSM which uses the original
PM constellation. Since both of the constellations used in this
design have the same size and essentially the same average
energy, we do not need to restrict here that half of the symbols
must take their values fromPM/2 and the other half from the
SM/2 constellation. All we need instead is to have an even
number of symbols taking their values fromSM/2, as this
condition is sufficient to ensure that the minimum Euclidean
distance in the signal space will not be reduced. The group of
bits assigned to the selection of the constellation must form a
parity-check code and hence it containsNA − 1 information
bits. This compensates for the loss ofNA bits due to the
half-size constellations, except for1 bit. Compensation of this
bit can only be made by increasing the number of active
antenna combinations and adding some other combinations
which make use of additional modulations, as illustrated by
the signal space in section III.C.

We now illustrate the signal space construction forNT = 8
and three different values ofNA, namelyNA = 2, NA = 4,
andNA = 6. For bothNA = 2 andNA = 6, the maximum
number of active antenna combinations isC2

8 = 28. From
those, MSM uses16, which require4 address bits. In contrast,
ESM-Type2 uses all of these combinations, and in addition
to them, it uses additional antenna/modulation combinations
which involve other constellations, similar to the subspace
given by (9) forM = 16 and to the subspaces given by (11)
and (12) forM = 64. It can be easily verified that the average
energy per codeword is given by(28×12+4×16)/32 = 12.5



8 SUBMITTED TO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS

for M = 16, and(28 × 42 + 2 × 66 + 2 × 72)/32 = 45.375
for M = 64. Note that the energy saving with respect to
MSM here is higher than that reported in Section III.C. More
specifically, the energy saving is 2.04 dB forM = 16 and 2.7
dB for M = 64.

For NT = 8 andNA = 4, the situation is not as favorable:
Indeed, the number of active antenna combination isC4

8 = 70,
and MSM can use64 of them. Instead of trying to find suitable
antenna and modulation combinations to increase the signal
space and recover the missing bit, we found that in this case
a simple alternative consists of using constellationSM/2 on
two antennas, constellationPM/2 on one antenna, and the
full constellationPM on the remaining active antenna. The
energy saving with respect to MSM in this case is 1.55 dB
for M = 16 and 2.0 dB forM = 64, which is a worst-
case situation corresponding to one of the active antennas
transmitting symbols from the full primary constellation.In
summary, the gain achieved with respect to MSM is a function
of theNT andNA parameters, and it will exceed 2 dB in most
cases.

C. ESM-Type3

We will not attempt here to fully describe ESM-Type3 for
an arbitrary number of transmit antennasNT and an arbitrary
number of active antennasNA, because the signal space will
depend on both of these parameters. Instead, we will give the
basic design rule and indicate the achievable performance.

Recall that this ESM design makes use of 4 different
constellations, namelyPM/2, SM/2, TM/2, andFM/2, the first
being a subset of the primary constellation, the second being
a secondary constellation derived through a first interpolation
step, and finally the third and the fourth being derived through
a second interpolation step. Also recall that all of these
modulations have a minimum Euclidean distance ofδ0, the
minimum distance betweenPM/2 and SM/2 (resp. between
TM/2 andFM/2 is δ0/

√
2, and the minimum distance between

PM/2 ∪ SM/2 andTM/2 ∪ FM/2 is δ0/2.
Let us define 2 bit sequences{αi} and {βi}, i =

1, 2, · · · , NA whereαi determines whether theith component
of the codeword belongs toPM/2 ∪SM/2 or to TM/2∪FM/2,
andβi determines whether this component belongs toPM/2∪
TM/2 or to SM/2 ∪ FM/2. In order to preserve a minimum
distance ofδ0 in the signal space, the{αi} sequence must
form a binary code of Hamming distance 4, and the{βi}
sequence must form a binary code of Hamming distance 2.
With NA = 2, a Hamming distance of 4 cannot be achieved
if the codewords are defined over a single channel use, and
for this reason two consecutive symbol vectors were stacked
and the codewords were defined over two consecutive channel
uses in Section III.C. This constraint remains with higherNT

values as long asNA = 2. But for NA values of 4 or higher,
no stacking is required, because a Hamming distance of 4
can be achieved between{αi}, i = 1, 2, · · · , NA sequences
defined over a single channel use. The design rule in ESM-
Type3 is to define the signal space in such a way that these
two Hamming distance requirements are met. Then, the SNR
gain over MSM is obtained simply by comparing the average
transmit energies.

TABLE I
AVERAGE TRANSMIT ENERGY FOR10 BPCU AND 14 BPCU

SM [4] SMX-2TX ESM [20] MSM [18]

10bpcu 170 40 28.5 20

14bpcu 2730 164 202 84

ESM-Type1 ESM-Type2 ESM-Type3 SMX-4TX

10bpcu 16 13 12 16

14bpcu 64 48.75 42.875 32

V. PERFORMANCE ANDCOMPLEXITY ANALYSIS

A. The Minimum Euclidean Distance

Assuming the channel state information (CSI) is perfectly
known at the receive side, the maximum-likelihood (ML)
decoder estimates the transmitted codeword according to:

X̂ = argmin
X∈X

‖Y −HX‖2, (25)

where the minimization is performed over all possible code-
words from the signal spaceX.

In ML detection using exhaustive search, the receiver com-
putes the Euclidean distance between the received noisy signal
and the set of all possible codewords transmitted over the
channel matrix. At high SNR, the receiver performance is
dominated by the minimum squared Euclidean distance over
the signal space [22]:

L2
min = min ‖X − X′‖2. (26)

The ESM schemes introduced in this paper were designed
in such a way as to preserve the minimum squared Euclidean
distanceδ0 of the primary modulation, i.e.,L2

min = δ20 in all of
them. The same minimum distance being also valid for single-
stream SM, MSM, the ESM schemes introduced in [20], and in
SMX, comparison of the respective asymptotic performances
of the different schemes is reduced to comparing their average
transmit energyEs. The average transmit energy for all of
these MIMO schemes is summarized in Table I for 10 bpcu
and for 14 bpcu transmissions.

The gains achieved by the new ESM designs over MSM
have already been indicated in Section III. The main purpose
of this table is to give an indication as to how these schemes
compare to spatial multiplexing with 4 transmit antennas
(SMX-4TX), spatial multiplexing with 2 transmit antennas
(SMX-2TX), single-stream SM of [4], and also to the original
ESM schemes of [20]. First, note that SMX-4TX must use
two different modulations at these two spectral efficiencies.
For 10 bpcu transmission, we assume that 2 antennas transmit
QPSK symbols (of average energy 2) and the other 2 antennas
transmit symbols from theP8 constellation used by ESM-
Type2 (see Subsection III.C). The average transmit energy of
SMX-4TX is 2 × (2 + 6) = 16 in this case. For 14 bpcu
transmission, 2 antennas transmit 16QAM symbols and the
other 2 antennas transmit symbols from theP8 constellation.
The average transmit energy is2 × (10 + 6) = 32. Clearly,
this transmission scheme has better performance than our new
ESM schemes at 14 bpcu, but it involves 4 RF chains

Next, SMX-2TX uses 32QAM for 10 bpcu and 128QAM
for 14 bpcu transmission. The average transmit energy is 40
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and 164, respectively. The gains achieved by our new ESM
designs over this scheme are substantial: around4.0− 4.1 dB
with ESM-Type1,4.9−5.3 dB with ESM-Type2, and5.2−5.8
dB with ESM-Type3.

Single-stream SM must employ 256QAM modulation to
achieve 10 bpcu and 4096QAM to achieve 14 bpcu. It is
needless to say that the gap is tremendous here. Finally,
our original ESM scheme of [20] achieves 10 bpcu using
64QAM as primary modulation and 14 bpcu using 1024QAM
as primary modulation. In the first case, it uses two secondary
modulations of 8 points, and in the second case, it uses
secondary modulations of 32 points each, following the design
rules described in that paper. The average transmit energy
values given in Table I indicate that in the case of 10 bpcu
transmission ESM-Type3 gains10 log10(28.5/12) = 3.8 dB
over our original ESM scheme. In the case of 14 bpcu, the gain
is as high as 6.7 dB. These results are not surprising, because
the ESM scheme of [20] was designed to improve over single-
stream SM, while the new ESM schemes introduced in this
paper were specifically designed to improve over MSM.

B. The Union Bound Analysis

For each channel use, the signal codewordX is in a vector
form x and its performance can be evaluated by using the
union bound analysis shown in [20]. We define the pairwise
error probability (PEP) as the probability that the ML decoder
decodes a symbol vectorx instead of the transmitted symbol
vectorx. The average PEP (APEP) can be computed by using
the union bound as follows:

APEP ≤ 1

|X|
∑

x∈X

∑

x′∈X

PEP (x → x′). (27)

For Rayleigh fading channels, the PEP is given by

PEP (x → x′)

= EH



Q





√

Es‖Hx − Hx′‖2
2N0









=

(

1− µ

2

)NR NR−1
∑

k=0

Ck
NR−1+k

(

1 + µ

2

)k

, (28)

where the Gaussian Q-function is denoted byQ(·), µ =
√

τ/(4N0/Es + τ), and τ = ‖x − x′‖2 denotes the squares
Euclidean distance between two symbol vectors.

The APEP shown in (27) can be used for an analytic
evaluation of the proposed ESM schemes. Given the codeword
length withNc channel uses, the codeword error rate (CER)
can be upper bounded by:

CER ≤ Nc ×APEP. (29)

For ESM-Type1 and ESM-type2, error events are independent
from a channel use to the next, because each symbol vector
is generated independently. Therefore, the CER is bounded by
the product of the APEP per channel use and the codeword
lengthNc. For ESM-Type3, a codeword is composed of two
symbol vectors transmitted over two channel uses. These two
symbol vectors have the same error rate, due to the symmetry

imposed on the signal design. As a result, the CER of ESM-
Type3 can also be bounded using equation (29).

C. Receiver Complexity

We define the receiver complexity as the number of floating
point operations (flops) required per ML decoder decision,
where each addition, subtraction, multiplication, division, and
square-root operation counts as one flop [23]. Using this
definition, we found that the first two of the proposed ESM
schemes have essentially the same receiver complexity as
MSM, while the third has a 50% higher complexity.

Using the system model given by eqn. (1), the ML decoder
needs to compute2b decision metricswk = ‖y−Hxk‖2, k =
1, · · · , 2b, whereb is the total number of transmitted bits per
channel use. This holds for MSM as well as for ESM-Type1
and ESM-Type2. For different operations, the number of flops
is given by:

• ComputingHxk requiresNR(2NA − 1) flops,
• Computingy − Hxk requiresNR flops,
• Computing‖y − Hxk‖2 requires2NR − 1 flops.

That is, computation of the decision metrics by the ML
decoder requires in total2b(2NR(NA + 1)− 1) flops.

A close look at ESM-Type3 reveals that the decoder com-
plexity is more involved than in the first two ESM schemes,
because the ML decoder must jointly decide two consecutive
symbols. The ML decoder must search in this space using two
consecutive received signal samplesy1 andy2 and computing
metrics of the formwk = ‖y1 −Hxi‖2 + ‖y2 −Hxj‖2, where
xi ∈ SPS , xj ∈ STF , or xi ∈ STF , xj ∈ SPS . The number of
flops per decoder decision is2(2b+2b−1)(2NR(NA+1)−1).
But since only one decision is made every two channel uses,
the number of flops per channel use is(2b+2b−1)(2NR(NA+
1) − 1). This is 50% higher than in MSM, ESM-Type1, and
ESM-Type2.

D. Sphere Decoding for ESM

Implementation of the ML decoder using exhaustive search
involves a very high complexity and becomes prohibitive at
very high spectral efficiencies, and this holds for any MIMO
scheme. In practice, the ML decoder can be implemented
efficiently using the sphere decoding (SD) technique. This
technique reduces the complexity of the ML decoder by
shrinking the search space to an acceptable level and counting
those combinations that lie within a sphere centered on the
received signal. The general SD scheme for SM was described
in [19], where it was shown that this decoding technique
significantly reduces the computational complexity with no
performance loss. In the simulations section which follows,
we use a multi-stream complex-valued SD for ESM, which is
a modification of the single-stream and real-valued SD [19]
that takes the signal space of ESM into account and uses an
infinite search radius to guarantee the ML performance.

VI. SIMULATION RESULTS

Monte Carlo simulations were carried out using uncorre-
lated Rayleigh fading MIMO channels and assuming perfect
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CSI at the receiver. In the simulations, symbol codewordsX
were randomly generated transmitted over the channel, the SD
was performed using the received noisy signal samples, and
error eventsX 6= X′ were counted. The obtained codeword
error rate (CER) was used to compare baseline MSM and the
presented ESM schemes.

Fig. 7 gives the Monte-Carlo simulation results of the
system performance for 10-bpcu transmission. The number
of receive antennas used in these simulations is 8. These
results show that atCER = 10−3 the presented ESM schemes
achieve SNR gains over MSM of around 0.6 dB, 1.3 dB, and
1.8 dB, respectively. In this figure, we also give the analytic
bound of the ESM schemes obtained given by (29) to show
its tightness in the high SNR region.

In Fig. 8, we report the CER performance of MSM and the
proposed ESM schemes providing 14 bpcu using 16 receive
antennas. Here, we can see that at theCER = 10−3, the ESM
schemes achieve gains of around 0.9 dB, 1.9 dB, and 2.2 dB,
respectively, over MSM. Note that the gains are higher than
those achieved in the 10 bpcu case. This is due to the fact
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Fig. 9. Performance gain vs. the number of RX antennas for ESM-Type1
and ESM-Type2 with 10bpcu.

that the average energy of the secondary constellations used
in our signal design becomes lower (relatively to the primary
constellation) when higher spectral efficiencies are considered.
Also note that the gains observed in these simulations are
lower than those predicted by the average transmit powers,
but this is not surprising, because the latter are asymptotic
results that are valid at high SNR values.

A final investigation in this work concerned the evaluation
of the number of RX antennas required to approach the
gains predicted by the average transmit energies. The results
corresponding to ESM-Type1 and ESM-Type2 with 10 bpcu
are reported in Fig. 9. The specific numbers of RX antennas
used in this investigation were 4, 8, 16, 32, and 64. The results
show that a large number of RX antennas are needed in order
to closely approach the asymptotic performance gain, but 80%
of this gain in ESM-Type1 and 90% in ESM-Type2 can be
achieved with 16 RX antennas.

This can be interpreted by using the union bound equation
shown in (27). As the number of receiving antennas grows
large with a high SNR value, the union bound on the error
probability depends only on the average transmit energy and
the minimum Euclidean distance between all pairs of code-
words, i.e.,PEPw = Q

(

Es·δ0√
2N0

)

whenNR → ∞ andNT is
finite [24]. Since the the minimum distanceδ0 is the same for
all schemes in this paper, this result shows that the theoretical
gain can be achieved with a large number of RX antennas and
a high SNR value.

VII. C ONCLUSION

Taking multi-stream SM as reference, we introduced in this
paper three new ESM designs which lead to increasing SNR
gains. The new schemes were described for MIMO systems
with 4 transmit antennas two of which remain systematically
active, but their extension to higher number of antennas was
also presented. The proposed designs extend our previous
work reported in [20], and are based on the concept of multiple
constellations. The basic principle is to increase the signal
space using additional signal constellations to the primary
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constellation used by MSM. The first and the second ESM
schemes make use of a secondary constellation, which is
obtained through a single step of geometric interpolation in
the primary constellation plane. The third ESM scheme goes
one step further and uses two additional constellations derived
through a second interpolation step. In all of them, the signal
space is designed in such a way as to preserve the minimum
Euclidean distance of the primary constellation while reducing
the average total transmit energy. This makes performance
comparisons with MSM and other MIMO schemes such
as spatial multiplexing straightforward. Focusing on spectral
efficiencies of 10 bpcu and 14 bpcu and using Monte Carlo
simulations on Rayleigh fading channels as well as analytic
performance bounds, it was found that the proposed schemes
achieve significant performance gains compared to MSM with
two active TX antennas.
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