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Abstract

Modeling and analysis of cooperative spectrum sensing is an impogpattin cognitive radio systems. In this
paper, the problem of energy detection (ED) of an unknown signal Makagamim fading is revisited. Specifically,
an analytical expression for the local probability of detection is deriveule using the approach of ED at the
individual secondary user (SU), a new fusion rule, based on the ldadilratio test, is presented. The channels
between the primary user to SUs and SUs to fusion center are consitet®s independent Nakagami- The
proposed fusion rule uses the channel statistics, instead of the instaugasteannel state information, and is based
on the Neyman-Pearson criteria. Closed-form solutions for the syisteghprobability of detection and probability
of false alarm are also derived. Furthermore, a closed-form ssiare for the optimal number of cooperative SUs,
needed to minimize the total error rate, is presented. The usefulnestof fyraph and sum-product-algorithm
models for computing likelihoods, is also discussed to highlight its advantagerms of computational cost. The
performance of the proposed schemes have been evaluated bottalggi® and simulations. Results show that the

proposed rules perform well over a wide range of the signal-to-naise. r

Index Terms
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I. INTRODUCTION

It is well-known that most of the licensed spectrum is notyfultilized all the time [1], when fixed spectrum
allocation is used. Moreover, the rapid deployment of neveless devices and applications with growing data rates
creates a spectrum scarcity problem. Cognitive radio nésv¢CRN) [2] is an emerging solution to the problem
of inefficient use of allocated licensed spectrum. In thiprapch, the secondary users (SUs) or cognitive radios
(CR)s are allowed to sense the spectrum dynamically, iilegtihe spectrum holes i.e. in the absence of a primary

user (PU) - in the target spectrum pool and opportunistiaatilize it.
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A. Moativation and Literature

Spectrum sensing is the first critical step of the CR cyclaj2jrder to dynamically utilize the unused spectrum.
Sensing techniques can be classified aslL@al Sensing: Each SU individually and/or independently detects
spectrum holes. Although this kind of sensing is sensitivdéatling, shadowing, and model uncertainty, it has a
simple implementation. A brief survey of different speatrgsensing techniques was presented in [3]. Furthermore,
it is shown in [4] that the energy detection (ED) is optimat ftetecting zero-mean constellation signals, if no
prior knowledge about PU’s signal is available at the SUgexof the received signal power. Note, that ED is also
popular due to the simplicity of its implementation [5]. ®poperative Sensing: Information from multiple SUs are
jointly used to detect spectrum holes, and to mitigate mpaiti, shadowing etc., by exploiting the spatial diversity
among CRs. It enhances accuracy, reliability, and perfoo@eaof sensing at the cost of complexity. Moreover,
cooperative sensing is most effective, when collabora@is observe independent fading or shadowing [5]-[11].

Cooperative sensing may be further viewed as distributéeictien problem, with the central coordinator to be
the fusion center (FC). This is also known as centralizegedaative spectrum sensing (CCSS) and is investigated in
this paper. A detailed survey on the distributed detectias presented in [12]. In this kind of detection, likelihood
ratio test (LRT) rule is known to be optimal. However, a glbbatimal solution with coupled local best rules
is known to be NP-hard and not available in closed-form [M\greover, it was proved that ED is optimal for
single-sensor detection [14], while identical decisioferis asymptotically optimal for global decision in a large
network [13]. LRT is implemented using either thieyman-Pearson (N-P) criterion (maximization of probability
of detection subject to a constraint on probability of fadégrm) or theBayes criterion (minimization of error) [15].

Well-known sub-optimal fusion rules for ideal SU-FC (refirng) channels are: AND, OR, and VOTING [12].
Other sub-optimal decision fusion rules over noisy chasmaeé Chair-Varshney fusion for the high signal-to-noise
ratio (SNR), equal gain combining (EGC) for low SNR, and maxin ratio combining (MRC) for medium SNR
[16]. Recently, suboptimal fusion rules, known as optinia¢ér cooperation strategy for additive white Gaussian
noise (AWGN) and linear-quadratic (LQ) strategy for idegdosing channels have been discussed in [17] and [18],
respectively. Furthermore, in [14], [19], the authors usegrobabilistic graphical approach to model the optimal
LRT based fusion for cooperative spectrum sensing. Othesiisg algorithms for PU detection, such as optimum
matched filtering [20], eigenvalue based detection [21¢|astationary feature detection [22], generalized liketid
ratio test (GLRT) based sensing [23], [24], were also reggbih literature.

Good message-passing algorithms, like Pearl's beligbggation (BP) algorithm and sum-product algorithm
(SPA) [25] over suitable graphical models, have been ssfads employed for solving inference problems in
various aplications, e.g. data mining, computationaldgjg| statistical signal processing, and wireless comnainic
tions. This approach provides exact solutions for acydaphs, while exhibiting a low computational complexity,
compared to explicit methods [26]. Moreover, BP/SPA is mendly suitable for distributed implementation [25].
Therefore, it becomes a practical and powerful tool to saliaributed inference problems, such as cooperative

spectrum sensing in CRNs [14], [19].



In the spectrum sensing literature, previous studies assapproximate channel statistics [18], [21], [27] or
known [7], [8], [17] or estimated [23], [24], instantanecotizannel state information (CSI). The effects of different
signal models with known CSI on sensing have also been igatstl in [7], [28]. Furthermore, the problem of
energy detection of an unknown signal over Nakagamiading was addressed in a few papers [29], [30], but,
the results were presented only for high SNRs. Regardingdéugsion fusion most of the works consider non-
ideal sensing channels with ideal [12], [31] or binary syrmugBSC)/AWGN reporting channels [17], [19], [32].
Optimization of the CCSS scheme over Rayleigh fading andlideporting channels, was also addressed in [31].
Furthermore, decision fusion over non-ideal reportingncigds was introduced by [16], in the context of wireless
sensor networks (WSN). However, multipath fading on sensimg) reporting channels is common in a CRN and
limits the performance of CCSS. However, none of the aboveksvaonsider multipath fading on both PU-SUs
and SUs-FC links, simultaneously.

Nakagamim, is a general fading model [33], which often gives the bedbfitand and indoor mobile applications
[34]-[37]. However, cooperative spectrum sensing, in ttes@ence of Nakagami: fading with channel statistics, is
relatively less investigated. Moreover, SUs may be molnilenany applications, like object tracking, environment,
habitat management etc., where the channel estimationsityc@herefore, spectrum sensing over Nakagami-
fading for a wide range of SNR and LRT based decision fusichaut knowledge of instantaneous CSI, is useful
for the system design. Moreover, in a large CRN it also inesleonditional and unconditional independence on
large number of random variables (RVs) and thus it leads tmamase of the overall system complexity. Hence,

inference over graph with message passing is a good appfoadiis problem [14], [19].

B. Contribution

In this work, we study the performance of CCSS systems, bynaisgy that both PU-SU and SU-FC channels
are Nakagamin and independent accross the SUs. The LRT statistics is deehplarough message passing over
the representative NFG, in order to reduce the computatiomptexity. Specifically, the main contributions of this
paper are as follows.

« Derivation of an LR based fusion rule without knowledge @& thstantaneous CSI. Closed-form expressions for
the system level probabilities of detectiaBy, miss, Py, and false alarmPr, are also derived. Furthermore,
we present an alternate expression for the local probahifienergy detection over Nakagami-fading.

« Determination of the optimal number of cooperating SUs,daéeto minimize the total error ratéror =
Py + Pr, as a function of the SNR and the total number of SUs.

« Modeling of CCSS using NFG and SPA in order to analyse the cdatipn time complexity, compared with

explicit method.

C. Sructure

The rest of this paper is organized as follows. Section knefo NFG and SPA, while Section Ill represents the

system model, the assumptions used, and the problem faiorul&xpressions for local probalilities of detection and



false alarm are presented in Section IV, while the LRT-bdasibn rule with NFG-SPA based model, closed-form
analysis of system-level performance metrics and optitioimaof the CRN, are presented in Section V. Simulation
results are reported in Section VI, and the complexity asialgnd advantages of NFG-SPA settings are discussed

in Section VII. Finally, Section VIl concludes the paperdapropose some future research directions.

D. Notations

Throughout this papetl’ denotes the total number of SUs present in the CRNJenotes the total number of
(complex) signal samples available for detection, alsmknas time-bandwidth product. We usg to denote the set
of RVs{ay,...,ax }. Here, E[.] denotes statistical expectatidn| denotes modulus af, P, (.) denotes probability
density function gdf) and F, (.) denotes cumulative distribution functioedf) of a. Nak(m,.), CN(.,.), and
N(.,.) denote Nakagamin distribution with fading severity parametet, complex Gaussian, and real Gaussian

distribution, respectively.

[1. FACTOR GRAPH, SUM-PRODUCTALGORITHM (SPA)

Probabilistic graphical model (PGM) [38] is an effectiveywa represent the probabilistic dependencies between
RVs. Well-known graphical models are Bayesian network (BMarkov random field (MRF), Tanner graph (TG),
junction tree (JT), and factor graph (FG) [38]. Among thds&s are more general, since any BN, MRF or TG can
be transformed as FG, with no increase in its representatmn[25]. Throughout the present work, we consider a
version of FG, called normal factor graph (NFG) [26], as tli&MP The primary goal of FG-SPA based modeling

of CCSS is to reduce computational complexity.

A. Factor Graph

Factor graph is a standard bipartite graphical representaf a mathematical relation between variables and
local functions. There are two types of factor graphs [2@nventional and normal (Forney-style) factor graph
(NFG). In an NFG, functions or factofsf; } are represented by nodes and varial{leg are represented by edges.
Example: Consider a joint probability mass (density) functigii.) of L variables asf (1, x2, 23, 4, ...,ZL).

Suppose, the function is factorized as

J
f(x175627 ~-7-’L’L) = %H fj(Sj),Sj g {CC17I2, ...,I'L}, (1)
j=1

where Z is a normalization factor. Alternatively, it can be repmsel through a graph with function nodes and
variable edges. We consider the factorization with-7 and J =6, where one variable is involved in more than

two factors. Then,

1
f (ZCl,fEQ,Ig,1'47$5,Z'6,CC7):EfA(@j,CEQ,ZE3,ZC4)fB(ZE1,$5)><

fo(x2,x7) fo(x4) fE(25) fr (25, 26).

)

Fig.1 depicts an example of (2) as a normal factor graph. Wensarize the construction of NFG as follows:



Fig. 1. Normal factor graph corresponding to Eq. (2).

« Equality node,®, indicates variables corresponding to more than two fonstii.e. the node with degree,
D > 2.
« Computation of marginal can be performed in an efficient amraated way by using SPA on factor graph.

« A function can have many factorizations; therefore, it cawehmany factor graphs. As long as the graphs

have no cycles, the same marginal will be computed for all.

B. Sum-Product Algorithm and Message Passing

Sum-product algorithm (SPA), also known as message-passitbelief-propagation (BP) algorithm, can often
be applied successfully in situations, where exact saistio themarginalize product-of-function (MPF) problems
become computationally intensive [25], [38]. SPA operaiesr an NFG associated with the global function and
computes various marginal probabilities by approximatmgugh beliefs. Let us define the message from function
node f; € N(x;) to variable edger; as My, ., (x;). The message from variable edge € N(f;) to function
node f; is denoted byM,,_, f, (;), whereN (z;) and N'(f;) are the set of neighboring functions ef and the set

of variables involved in functiory;, respectively. Message from edggto nodef; is computed as

Moy g (1) o I Mo (@) ®3)
FEN(@)\{f;}

and message from nodg to edgex; is computed as
My oy (@)oY fi(X5) [ Mayos, (25), 4
XGEN (@i} a;eN(F)\ {21}
where N'(i)\ {a} denotes all the nodes/edges that are neighbors of edge/nexizept for node/edge. In SPA,
sumis due to summation angtoduct is due to product operation in (4). In case of continuousaides, summation
operation is replaced by integration. The proportionatitgn in (3) and (4) is used to indicate a normalization
factor, such that the distribution sums/integrates to éieal marginal for any variable; is calculated as belief

i.e. the product of all incomming mesages as

b(z) o H My o, (z1).

FEN (x1)



I1l. SYSTEM MODEL FORCCSSOVER FADING CHANNELS
The block diagram of CCSS system is shown in Fig. 2. It cossi$tone PU,K number of SUs, and one FC.
All SUs are independently sensing the PU and then sendingltval decisions to FC. Final decision is taken by
the FC.

Independent ) Independent
‘«- - PU-SU Channels-» «---SU-FC Channels - >

FC

‘YK

Fig. 2. System block diagram of Centralized Cooperativec8pm Sensing (CCSS) scheme with K SUs, one PU and one FC.

A. Assumptions

Throughout this paper, Nakagami-fading is used to model rapid fluctuations of the amplitudes @dio signal,
and it is assumed that the average sensing duration is muctesthan the averagausy-to-idie andidle-to-busy
state transition periods of PU [31]. Transmit power of PU ssuamed to remain constant over a typical sensing
period anda prior probability of PU’s traffic is unavailable at each SU.

Furthermore, it is assumed that all SUs stay silent durirgy génsing interval, such that the spectral power
remaining in the targeted band is transmitted only by the R&xt, it is considered that all SUs use same transmit
power relative to the PU (as in the interwedgnamic Soectrum Access (DSA) model [39]) and each SU makes a
binary local decisionKard-sensing) using ED [6]. At FC, the final decision:] is taken when local decisions from
all SUs are arrived. We formulate our problem by assumingat&ensing and reporting channels are time-invariant

(during the sensing process), frequency-flat fading antisstally independent, across different SUs.

B. Problem Formulation

Suppose that all SUs monitor the same frequency with the Ry 2. Spectrum sensing at tiieth SU can be
formulated as a binary hypothesis testing problem [15]. foeived signal samples U}, for the two hypotheses

can be modeled as

Hy : PU is idle: zx(n) = wik(n)

Hi : PU is busy:zi(n) = zi(n) + wk(n), (5)



wheren = 1,..,N, k = 1,..,K, wy(n) ~ CN(0,202, ) is the sample of AWGN, and;(n) represents the
signal sample, received from the primary user if active. Bignal is modeled as RV with average power of
E[|zx(n)?]=9.,, which includes the channel gain. In practieg(n) andwy(n) are independent.

Classically, the received primary signal samples'&j, are assumed (reasonable approximation for unknown PU
signals over fading; [14], [23], [24]) to be independent adentically distributed i(i.d.) complex Gaussian RVs
with zero mean and variancé;[|z;(n)|?]. This implies that the magnitude of the complex envelope agl&gh
distributed. However, in practice, the received signal atheSU;, is composed of a large number of resolved
multipath components. Therefore, the magnitude of thelepeeis the norm of amn-dimensional complex vector,
wherem is the fading parameter of the Nakagamidistribution [40]. Therefore|zx(n)| ~ Nak(m, o, ), and the
average power of the received primary signal can also béenraasE||z;(n)[*]=2.,=2mo?_[40]. The average
received SNR of the?U — SU,, link, measured abUy, is defined as

2
_(m) _ MOz,
Ppay, = N (6)

At SUg, the ED computes the energy of the received signal &esamples. The computed energy is compared
with the thresholdr;, which is determined from a given local probability of falakrm, and the binary local
decisionuy, €{—1, 1} is generated, where, =—1 andu;, =1 denote absence and presence of the PU, respectively.

Therefore, the test statistic &f/;,, becomes

N
th=>_|zx(n)]* = 7. (7
n=1

Each decisionyy, is transmitted to the FC over an independent, frequentydtting channel. The signal received
at the FC fromSU,, is

Yk = Vg + Nk, (8)

wheren;, ~ CN(0,207 ) is the observation noise ang is the secondary signal, over t&/,—FC link. Similarly,

we assumevy |~ Nak(m,a,, ), Where the average power of the signalifvy |*] =, =2mo? . In practice,vy

vE "

andny, are independent and the noise samples at FC and SUs are ddpeindent across differef/ —SU,—FC
U"k

The vector of received signal at the FC from all SUs is denbteg’ = {y;, 2, ..., yx }. For anyyX the binary

links. The average received SNR f8U; — F'C link is defined asag}"lj =
hypothesis problem at FC is

Io : Primary user is idle: P(yi|Ho)
I, : Primary user is busy: P(y{|Hy), (9)

whereP(yf|Iy) and P(y¥ |I,) are the distributions of* in absencely) and presencel() of the PU, respectively.

Final decision ¢) is derived at the FC by LRT using these two distributions.



We assume that SUs use the spectrum, whenever they deteettaasole (white space). The constraint in the
system model is the probability of erroneous decision alimipresence of the PU. Hence, for efficient utilization
of spectrum, according tbleyman-Pearson criteria [15], the system designer needs to minimize thdaiodity of
miss or maximize the probability of detection, subject te tonstraint that the probability of false alarm satisfies

a minimum requirement.

IV. LOCAL PERFORMANCEANALYSIS

This section presents the local performance analysis §hibities of detection and false alarm &8t;) for the
system model defined in section-IIl.B. Throughout the asialythe variablex;(n) is used asa; for notational

simplicity.

A. Analysis Under the Hypothesis H

Under Hy, the received signal contains only noise and thyss~ CA(0,202, ). As the numbetN of complex
samples is considered as sensing period ptifeof ¢, under H, follows Chi-square distribution witR N degrees

of freedom [41]. In this case, the probability of false alaanSU;, is obtained as [29]

TN %) N, )
pr = [ Pltu|Ho)dty = ———k "ok (10)
=, EAixl Ho) () V)

wherey (N, z), T'(N,z)=T(N) —v(N,z), andT'(N) are the lower incomplete gamma, upper incomplete gamma,
and complete gamma functions, respectively [41]. Assuntiivag the noise variance is perfectly known, the local

thresholdr; is obtained for a givepy, as

=200, " (N, (ps, T (N))). (11)

B. Analysis Under the Hypothesis H;

Under the hypothesiél,, the received signal contains both PU signal and noise.€eftwe, the distribution of
the test statistic depends on distribution of the enveldgbesignal (i.e|zx|), which further depends oy |. The
unconditionalpdf of |z| underH; is obtained using Bayesian approach, i.e. marginaliziegctnditionalpdf of
|x| over|zx|. Here,|zi| is Nakagamim distributed [33] and is defined as

2021 (1 \™ -5
Peaten = 2 ()« "

The pdf of |xx| under H; is obtained as



o]

aIk\(ak|H1)ZA P|1k|||zk\ (aklcw; Hi) Pz, (ck)dek

02 mo— ak22
wi 1
v O

= akQD ) +
L(m)y/2ro%, 2
arV20(m + )iF (m+ L, 2,ax% Dy, (13)
Gy, ’
T Ay
2 2 Uzk Qpsy, ggk ﬁi’zlk) ~(m) mo’ik i
WhereAwk = (Uzk +0wk)’ Dwk = m = 720_12% i apsk = UszrU%”k = m+ﬁ](om) y Pps, — Uiz“k ’ and lFl(-§ i ) is the
. . X : Sk ¢

confluent hyper-geometric function [41, (13.1.2)].
As, ty, = 22;1 |71 (n)|? and zx(n) is complex,t; has2N degrees of freedom. After a transformation of the

variables in (13) we get thpdf of ¢, underH; as

Pnak(te|H1) = Vi) +P| V)]

w||H1(_

1
37 el 1, €

tr

trlNe *7wn m "
N1 (203, )0 oy | 1FL (s N+ 1t D) (14)
! (202,

m + Ppsy,
Integrating (14) using Laguerre polynomials [42], [43,9(@.36)], and after some algebra [41, (6.5.12)], the local

probability of detection can be written as

Py =1 — Fyak(ts| H1)

(N+1)

Tk

m " (2"3%) Ops, Tk Tk

=1- ) 7 P2 (m, 1, N+1; %92 502 ) . (15)
m+ppsk N' eza%}k awk Owk

In (15), @5 (., .;.;.,.) is the hypergeometric function of two variables [41]. Thepst for (14)-(15) are given in

Appendix B. Note that Eg. (15) is more general (as it halgds > %) than [29, (7)], which is restricted to integer.
Moreover, Egs. (15) and [29, (7)] can be implemented via t#d NEMATICA software, which requires truncation
of infinite series and computation of error bounds [30], [44dwever, a general closed-form expressiorpgfzf) is
intractable, due to the presence 6t (m; .;.), e~%, andt" in (14), simultaneously [41]. Therefore, it is interesting

to find pS:) for specific values ofn.

Casel: m=1

Form=1, (13) is simplified as

(Lk2
2052 2
Ow,€ Wk Owy, Bw,ar -5
ool == e v A, ¢ A B, (16)
where B, :L\/"T and Q(a) is the well-known Gaussia-function [41]. For the derivation of (16) see
O-Ulk ‘U)k

Appendix C. Settingn=1 in (14) and using [41, (6.5.12)] we obtain
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tr(1—opsy, )

(1—aps)e >0

k tkaps)
Py, (te| H1) = N,k ) 17
e inlf) = S ( = (17)

Wi

whereﬁﬁ)k:z;’v . Thecdf is obtained by integrating (17) ovef using [45, (1.2.2.1)]. Hence, the probability of
W

detection atSU,. can be written as

— Tk
p((jl?*l): Pl—1y(te|H1) dtr =1 */OP(m:m(tkIHﬂ

te>Tk

(va) e ()
-1 + . (18)

TN) " (ape)™  T(N)

Casell: m=2

Similarly, for m=2, (14) can be written as

_ tlzc 2
N _ 202 2
tr e k (Trﬁ;(f)k)
Pm:2 (tk|H1): L 1F1 (2,N+1,tka ), (19)
(m=2) (V) (202, )V -

whereﬁz(i)k:i?k. With the help of Appendix D, the probability of detectionnche expressed as

(m=2) T
pdk_ = —/0 P(ng)(tk|H1) dty,

T Tk%ps
1 ! (N_l’%g’k) + e s 7 <N_17 205;) 1+ Tk
(N -1) (cps, )" I'(N-1) 2A.,
.

(apsk)N P(N)

+(N-1) (1 — aps) |1 —

(20)

Similarly, using other values of: in (14) and integrating ovet;, corresponding,,'s can be obtained. For
example, an expression fog, , whenm:%, is presented in Appendix F.

In the next subsection, we present another approach foretieerdination op,, s, following the same assumptions
as in [46], [47]. For the sake of bravity and simplicity, wenster an approximate model, which is valid for moderate
and high SNRs.

C. Approximate Complex Representation of the Nakagami-m Envelope

In [47], it is shown that the exact distributions of real amthginary parts of the complex signal for Nakagami-
envelope are non-Gaussian. As a special case, either fitease or quadrature signal may be assumed as zero-mean
Gaussian, while the other part will be non-Gaussian [47]48], the distributions of in-phase and quadrature parts
of a signal having Nakagami» fading envelope, are derived for both > 1 and % <m < 1. However, at high

SNRs, the proposed model of [46] closely approximates tktrildutions of real and immaginary parts of signals
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Fig. 3. ROCs over Nakagami: fading for different SNRs, withV =10 andm=1.

with Rician [46, (59)] form > 1 and Hoyt [46, (61)], for% <m<1 fading envelopes. These approximations are
considered here for simplicity. However, fat = 1, z;(n) can be assumed &\ (0,202 ) for all SNRs [14],

[19], [23], [24]. Therefore, with the help of [46], the conagl signals over Nakagami- fading can be written as

zk(n)NCN(O,QZk(21+b)+sz(21_b)),%§m<1

zr(n) ~ CN (0, 203,@) ,m=1

zp(n) ~ CN (Mzk, +jMsz,QSk) ym > 1, (21)

where Q,, = (@) Q., =202, (m—vm?—m), ur. = (y/Q.,d)cos(p) and uq., = (1/9-.d)sin(y),
d:\/%, and b:\/%. @ is defined in [46, (39)]. PU is active undéf; and the distribution of the decision
statistic is obtained from that of the signal. At high SNRe thistribution ofzy(n) can be approximated according
to (21) for different range ofn, as in [46]. Thus, the associated probabilities of detactbSU, for different

values ofm are obtained as follows

N o T N o T
v (2 ’ (sz<1+bk)+zoak)) v (2 ’ (sz(l—b]3+203)k))

(3sm<1)
D =1- -

o r(3) r(3)

o N’ 7716)

pm=D ( 2(02, +o%,)

e I'(N)

(m>1) _ 27y, 22
pdk QN <\/Uzk7 st +20_12Uk 5 ( )

whereQx (a,b) is the generalized Marcu®- function [41]. Here, the probability of missed detectiondisfined

aSp%’z) =1 —pfl’:). For the derivation of (22) see Appendix G.
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Local Probability of detection (pd)
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Fig. 4. ROCs over Nakagami fading for different SNRs, withV =10 andm =2.
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Fig. 5. Comparisons of CROC curves over Nakagamfading for different SNRs, withV = 10 andm = 1, 2.

D. Comparisons of the Two Models

Figs. 3 and 4 plot receiver operating characteristic (RO€)pq, Vs py, curves for different values of SNR
dB, 10 dB, and20 dB, over Nakagamir fading withm = 1, and2, respectively.

It is observed from Fig. 3 that both analytical models for= 1 perfectly match with simulations for all SNRs.
Further Fig. 4 shows that, fom = 2, at very low SNR none of the models matches with simulatidnsg, it
becomes closer to the proposed model in (20). However, atratel SNRs4 dB to 10 dB) the simulations match
with the results of the proposed approaches, while it matgefectly at high SNR20 dB). Therefore, we can
say that form > 1, the analysis based on the complex signal model [46] is ambpalsle for high SNRs. However,
(22) is reasonable and also validates the well-known apm@ation of z(n) for m = 1 [19], [23], [24]. Note that,
the analytical models proposed in this paper suit well overiide range of SNR forn > 1. A similar comparative
study can be presented férg m < 1. It can also be proved that the proposed model in (61) suiterbhan the
complex one in (22) over a wide range of SNR. In this paper, vop dhe figure for% < m < 1 due to space

limitations.
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Fig. 5 plots complementary ROC i.g,,, vs py, curves for different SNRs0(dB, 10 dB 20 dB) over different
fading channelsrt =1, 2) and compares the proposed model with Digham et. al's [28§.dbserved that the model
proposed in this paper is better than [29] over a wide rang8MIR. Hence, we always consider the analytical

models of (18), (20), and (60) for further system-level ga@l in the next section.

V. SYSTEM-LEVEL PERFORMANCEANALYSIS
A. Probability Models of the Detection Problem

The CSS problem, described in Fig. 2, can also be viewed astamnsyon-graph (Fig. 6). Thus, we can model
the problem as inference over the representative NFG ant sglve it by passing messages over the graph using
SPA. This approach can adopt all the unknown parameters, asisignals, channel effects, noise, and complex
dependencies in a single framework. It is shown that the P&-8pproach finds the desired likelihoods in an
automated way. Accomplishable reduced complexity is shimm@ection-VII.

As explained above, the goal is to find the likelihood funesicP (y | Hy) and P(y{<|H,), in order to compute the
LRT statistic and thus, to solve the distributed detectimbjfem. These likelihoods can be obtained by marginalizing
the joint probability distribution of interest over all unéwn variables. Thus the detection problem is mapped to a
Bayesian inference one, in order to find the likelihoods dlglo message passing via SPA over the representative
NFG. The joint probability distributiol( H;, 2, t& u, v y) represents the CCSS model of Fig. 2. Likelihood

functions, represented b (y|H;) for i€ {0,1}, can be evaluated as

PO H) = [PA S ul ol H ol duf a1, (23)
where P(=f 5w o yK|H,) is the joint distribution of interest. This can be furthectfarized as

K K K K K
P(Z1 7t1 > UL V1, Y1 |HZ)

= Pyi* [ur', vi ) P(u” [t P(t | Hi, 217 ) P (1) P(o1)
K

= [T P (vl o) PCur ) P (k| i 21) P(zi) P (v). (24)
k=1

The last line in (24) holds because the channels are indepemdcross the SUs. Fig. 6 represents the NFG for the
joint distribution of interestP (21, +1 w& oK K| H;). Each branch represents the PU-SU-FC path of Fig. 2. The
equality node©, indicates that variablél; is associated with more than two functions i.e. with Blltx|H;, 21 ).

It computes likelihoods from the joint distribution by ermaping hard decisions at SUs. The graph has no cycle,
as all PU-SU-FC channels are statistically independentr&fbre, SPA can compute the exact marginals over the

graph.

B. Computation of Messages in NFG-SPA Settings

In NFG, probability functions are represented by nodes arthbles are represented by associated edges. The

desired likelihoods”(yX|Hy) and P(y¥|H,) have to be computed from the graph. By applying the SPA asagess
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Y2

Fig. 6. Forney-style factor graph for joint distributionioterestP (£, ¢, v X v X y K| H,). The graph is shown for two PU-SU-FC channels.

computation rule [26], intermediate messages are compnddassed between the nodes of the FG. The message
propagation follows a single step of natural scheduling.tifes graph has no cycle, the computation of messages
starts from the half edge/{) (edge connected to only one node) and leaf ndélef) and P(v;)) and proceed from
node to node. The messagk/,.,)-,.,) from the leaf node ®(z)) to the connecting edgez() is the marginal
value of the function (node) with respect to that variablég@. For half edge, the messagd,( _, p(y,|u,)) from

the edge to the node is initialized with the valueFor intermediate nodes, all incoming messages to that node
are computed first and every message is computed only oneemEssages are indexed with, ..., (xi) and are
shown in Fig. 6 on the corresponding edges of the graph. Dattews show the flow of messages for computing
the marginals. Step-by-step computations are presentégpendix A.

The marginal ofH; on k—th branch is computed from the final messages of interestasiynas [19, (21)]

Q(Hi<k)) :/ Mp sy 5, 2)—H; X M, p(eg | H; 2p,) A2k dEE

tr 2
Tk 0o
:P(yk|uk:71)/P(tk|Hi)dtk+P(yk|uk:1)/P(tk‘Hi)dtk, (25)
0 Tk
where
2k

is obtained by marginalizing ovef,, andy is local threshold ak-th SU.

The final message on each branch is computed as the producssiges from nodB (¢, |H;, ;) to edgeH;
and from edgeH; to nodeP(t,|H;, zi). The desired likelihood functions for cooperative sensingobtained from
the marginal distribution off; and computed as the accumulated final message (product ibvea@aches) over
all edgest; Y, .., H;%) for i {0,1} from (25) as

K
Pyt |Hy) = [ ] 9(H:™). (27)
k=1

Likelihoods are computed in automated way using NFG-SPA.
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C. Analysis of Decision Fusion at FC

LRT based decision fusion is performed at the FC. It requikedihoods underH, and H; for each received
signaly. Using (25), the likelihood undef, can be viewed as the message unHgrand can be written as [19,
(23)]

P(ye|Ho) = Mp(ty)2y,, Ho)— Ho
=P(yklur = =1)(1 = Py,) + P(yxlur, = 1) Py, . (28)

Similarly, the likelihood underf, can be written as

P(yx|H1)=Mp, |2, H1)— H:

=P(yrlur = —1)(1 — pa, ) + P(yxlur = 1)pq, - (29)

As the observations are independent, the LRT for chooglingn N-P method can be written with help of (27) as

Y1 H1) 1Pl —Pa,) +Pr|1)pa,
L(y; >,
(wr* y | Ho) HP(ykl* —ps) + Pkl Dpy,

where ) is the threshold at FC. In N-P settings, this is obtained Hyisg

(30)

/ P(yi* | Ho) dyi* f/ P(L|Hy) dL=Pr,
L(yH)>x

for a constraint on probability of false alarm at FC.
According to (8),n ~ CN(O,Qaik) and the envelope of the received signal at FC o¥&f, — F'C link is
Nakagamim distributed i.e|v;| ~ Nak(m,0,,). In general,P(y;|u) follows (13) by replacingey, o2 ando?,

with y, 02, ando? , respectively. Forn=1, as P(y;|uy) follows (16), the LRT statistic (using Appendix E) can

ng!?

be written as

52 2
— _ Yk
K ¢ iy ik +{ <m D Q(Bnyk,)}\/ZTankyke 24ny,
:H ykz 2 ’ (31)
— - _ Y™
e P 1 {pg — Q By} V21 Bugyre P
Similarly, for m=2, the LRT statistic (using Appendix E) is given by

2
— e B 2
K By, yre 2% +{pfi’:*m—Q(Bnkyk)}\/ZTarke 2Any,

K
L(y1)= vi? > (32)
k=1 T 202 - 2yAk
B, yre 7" +{ps, —QBn,yr) } V2T Ry, € s
where A ( + ) 1+ 72'}2 02 B —_ %w V% 5m) To ﬁi?:
Nk 0- O- nk, e Ony m - Ony, ! psfk O'”k ! ank +a-7lk ’nl“rp(;):L) ,

Rnk:(Q + Bﬁkyk ) andpy, is obtained from (10). They,’s are obtained from (18) and (20) forn = 1 and 2,
respectively. Similarly, other likelihood ratios may betaibed by substituting corresponding valuesnofin (30)

with associated)g:l)’s. The LRT statistic forn =3 is derived in Appendix F.
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According to this approach, local thresholds are derivedgeld on the probability of false alarm, and therefore,
CSl is not needed at each SU. However, local probabilitiedetéction and final LRT statistics, i.&(.) values,
depend on channel statistics instead of instantaneous NI@kover, system-level thresholds for LRT at FC are
selected based on the(.) values. Therefore, we can state that, for the overall systesign, the proposed fusion

rule requires the knowledge of channel statistics, i.erangNRSﬁz(ﬂf and ﬁg’}? instead of the instantaneous CSI.

D. Closed-form Analysis

Egs. (31) and (32) are LR based fusion rules, but, the dasivatf closed-form expressions fét, and Pr from
them, seems to be a hard task. However, LR based optimunnfusie can be approximated as Chair-Varshney
one [13], under the assumption of high SNR and identicalaets (i.e.pq, = p4, ps, = ps Vk) [16]. It is already
assumed thay,'s are statisticallyi.i.d. for large number of SUs. To derive the closed-form expressfor P, and
Pr, we also define a&’; the number of SUs for whicl;, > 0 and K — K the number of SUs for whicl, < 0.

Hence, the log-likelihood-ratio (LLR) from (30) can be e in terms ofK; and K

P(yr <0| = 1)(1 =pa)+P(yx <0[1)pa
P(yx <0] = 1)1 —pp)+P(yr <O[1)py
P(yr > 0] = 1)(1—pa) + P(yx > 0[1)pa

P(yx > 0] = 1)(1—py) + P(yx > 0[1)ps

Therefore, K7 is binomial (K, p) distributed, where the probability of successs defined app = P(y, > 0).

log(L(y1")) = (K— K1) Log

+ Ki1Log (33)

Let us denotep,; andp, are the probabilities of success undér and Hy, respectively. Then, the system-level
detection performance, i.€p, Pr and Py, (= 1— Pp) can be computed using the binomial distribution. Assodiate

closed-form solutions are

K
Po= ) (?)Plj(l -p) 7, (34)

j=K1
K (5 , ,
Pp = Z (] >p0](1 _pO)K_]v (35)
J=K1

where K takes values fromd to K. Form = 1, p; andpg can be evaluated as (see Appendix E for the derivation)

p_l_‘r(pd*%)avk_l
1= —= =
2 ’/ng+0%k 2
L (= Yo 1 < 1)
Po=5 =5+\Pr— 5 ) Vs,
2 ‘/U%k+0%k 2 2 k

Similarly, p; and po are obtained for other values af with associated, (see Appendix E and F). Hence, we

m= 1
+(pfi 1)_§>\/a5fk
; (36)

state that N-P test is equivalent to J-out-of-K rule when
« All PU-SU-FC channels are statistically independent.
« All SU's are employing identical decision rules and tranimg hard local decisions to FC.

The theoretical ROC curve at FC is obtained from (34)-(35).
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Fig. 7. Number of cooperating SU#) s Pror curve when all channels as Nakagamiaded.py =0.03, N =20, K = 20 and 15.

E. Optimization of Cooperative Spectrum Sensing

In general, whenPp, increasesPr also increases and as a resHI; decreases. However, an effective system
design should always minimize the total error rateor = Py + Pr. An optimal voting rule that minimizes Bayes
risk function has been addressed in [13, (pp. 94)]. Minitvzaof Pror over ideal SU-FC channels using some
linear approximation has also been reported in [31]. Nexgtinvestigate the optimal numbés,,, of SUs required
to minimize the total error rate over non-ideal SU-FC chdsine

Let, I be the number of SUs required to achieve certain valued,pfand Pr. From (34) and (35), let us define
a functionD(l) = Pr — Pp. Therefore,

D(l) = (PM + Pp — 1)

:ZC() [poj(l—po)K’j —plj(l—pl)K’j} : 37

Jj=l
From the properties of ROC curve [15], it is known that > p;. Then, from (36) and (58) form = 1 and
2, respectively, holds that; > py. Under this condition, it is evident from (37) that minimien of Pror is
equivalent to the minimization ab (/). Now, whenl is increased by 1, it holds that
K _ _
D(+1)-D(l)= ( ! ) [Pll(l—pl)K '—po' (1-po)” l] - (38)

From (38),D(I + 1) > D(i) if,

P (1—p1)* " > po' (1—po) !

1—
or,lxlnp—lz(K—l)xlnl Po

Po — D1
K p1
or,l > —— , wheref=—29_. 39
> b= i (39)

Similarly, when! is decreased by 1,
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D(l) — D(I — 1)
- (l " 1) [p1! 7 (=) = ' (o). (40)

From (40),D(l) < D(I — 1) if

pll_l(l _pl)K—l+1 <p0l—1(1 _pO)K—l+l

1 1—po
o, [ —1) xIn— < (K—-1+4+1)xlIn
( ) Po ( ) 1-p1
K p
l<1+—— ,wh =_—_Fo 41
or,l < +1+B,wereﬁ T (41)

1-p1

Thus, from (39) and (41) the optimal number of SUs, which miaes Pror can be written as

K
lopt = ’771 “rﬁ—‘ (42)
where
InBL
_ Po
p= Ini=po’

1-p1

andp;, po are given by (36) or (58). Thereforg,,; depends or¥, py, andp;, subject to the constraint > po.
These probabilities of success undér and H, further depend on the average SNRs of SU-FC channels, local
thresholds 1), noise varianceo(f”k) of individual SU.’s, and average SNRs of PU-SU channels. Hence, it is
observed that the optimal number of SUJ,() depends orK, 7, and average SNRg,; and p,;. Moreover, it is
concluded that a fast spectrum sensing algorithm can bauteaby considering only,,: SUs instead of alK in

a CRN, with statistically independent channels.

Fig. 7 plots the number of cooperating SUsRsor for different values ofK and different channel conditions.
The figure shows that, for a fixed average SNR @fdB over SU-FC channels, the optimal number of cooperating
SUs increases from1 to 14, while the total number of SUs increases from 15 to 20, rdsmdy. It can also
be observed that a&” increasesPror of corresponding,,: decreases. However, to achieve a giverpbr (say,
0.63) with fixed K = 20, the required number of cooperating SUsificreases from 10 to 12, as the average SNR
decreases from0 dB to 7 dB. It infers that, for a fixed values dk, the value ofl increases to achieve a given
(bounded)Pror, as SNR decreases. Hence, we can say that there exist arabptimber of cooperating SUs for

different K and different SNRs, subject to minimization 8for.

VI. SIMULATIONS AND DISCUSSIONS

In this section, simulation results are presented to etalttee proposed CCSS scheme. The parameters used
in the simulations are’ = 5, and10, N = 20 and number of Monte Carlo iterations 10,000. Independent,
frequency-flat, Nakagamiz fading with m =1 and 2, and aik:aﬁk: 1, are considered. In the following, ED

threshold ¢;) at SU;;, Yk, are obtained from (11), to maintain a target local proligbdf false alarmp;, =0.03.



19

i

0.9r
o 08
j =
i<
5 0.7f
Q
@
S 06
o
2
z 0.51
s —o6— Proposed fusion rule (for m=2)
e 0.49f —=&— Prop. fusion rule for heterogeneous CRN| 4
& —+— Proposed fusion rule (for m=1)
0.3 - © - EGC (for m=1)
—+-MRC (for m=1)
025 T n T T
0 0.2 0.4 0.6 0.8 1

Probability of false al'arm (PF)

Fig. 8. Comparison of ROC curves for various fusion rules dvakagamii, 2 sensing and reporting channels where meafi®f. } ~4 dB
and {p; s} ~4 dB with K=10, N =20, p; =0.03.

1 .
0.9

- mean of'avg. s

o’ P SNRs =7dB o

Z o8 .

o ‘572 ‘mean of avg.

5] / SNRs =2dB

L 07r

()

=] -

k) o,

> 06f

%

-g 0.5r 1

o —— Simulation
0.4, <@+ Analytical B
0.3

0.2 0.4 0.6 0.8 1
Probability of false alarm (PF)
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However, eactSU,. has different probabilities of detectiop.{ ) based on the different valuse of (e.g. (18), (20)

for m = 1,2, respectively). The system-level performance is quadtifig the ROC. The average SNRs of sensing
and reporting channels are defined;‘é%ﬁj(dB):IOIOg10 ﬂ;gk and pi’;f(dB):l()logw%Fk, Vk, respectively.

Fig. 8 describes the ROC curves at different LRT thr;shordlﬂa for different fusionk statistics of the CCSS. It
is assumed that{ﬁpsk}lez{—zx, -2,0,2,3,5,10,8,7,11} dB and {psfk}f:lx {~5,-3,-1,0,2,4,7,12,10, 14}

dB, m=1,2, and K =10. It can be seen from Fig. 8 that the performance of the LRT daseposed fusion rule
is better than the two suboptimal schemes, e.g. EGC and MBC Whenm = 1. Fig. 8 also depicts that the ROC
curve improves as increases for all channels, since the effect of fading degs

A more practical heterogeneous scenario with 10 SUs is aeeidered in Fig. 8. It is assumed that in the first
six PU-SU-FC channelsp = 1 and for the rest four channels, = 2. It is shown that ROC performance improves
for the heterogeneous case, when compared with that of 1, because of the SU’s spatial diversity (i.e. different
fading severity parameters).

Fig. 9 represents the ROC curves at FC of the LRT based prdposéon rule, withm = 1, K = 10, and
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py = 0.03. We consider single set of average SNRs for PU-SU Iinkéﬁ@@k}kilz {~4,-2,0,2,3,5,10,8,7,11}
dB, where the mean of all the average channel SNRs for the PUREs is = 4 dB. However, the two sets (low and

K
high) of average SNRs for SU-FC links have been considere{ﬁg%}k 1% {~10,-5,-2,-1,0,3,5,7,10,12}

K
dB and {psf-k2}k
SU-FC links arex~2 dB and7 dB, respectively. The system-level analytical results kahte Carlo simulations

~{-3,-1,0,4,6,8,10,12,14,20} dB. Here, the means of all the average channel SNRs for
1

are obtained from (34)-(35) and (31), respectively. As eigk ROC performance increases as average SNRs of
SU-FC channels increase.

For better clarity, in Fig. 10, the local and system-levellabilities of detection are plotted as a function of the
mean of the average SNRs of all the PU-SU channels. The cases-a, 2 with K =10, py =0.03, and Pr =0.02,
are considered. Here, SU-FC channels have mean of all thragev&NRs= 10 dB and that for PU-SU links are
varying from —20 dB to 30 dB. Note that there are significant variations for averageRUchannel SNRs. In
Fig. 10, the performances of both cooperative and non-gatipe sensing schemes are presented for diffenent
values. It shows that cooperation among SUs significantiyraves the probability of detection compared to the
non-cooperative case, over a wide range of SNR. It is alserued that form =1, the coopeative scheme achieves
0.95 probability of detection ab dB of SNR, whereas non-cooperative sensing reaches to the aahigher SNR
(17 dB). Fig. 10 also shows that the probability of detectiornréases significantly for all SNRs, as increases
from 1 to 2, in both the cases.

Fig. 11 plots ROC curves obtained from (34)-(35) for différealues of K =5,10 andm=1, 2 with p;=0.03.
The case of p,s }=~{—4,-2,0,2,3,5,10,8,7,11} dB and{pss}~{1,3,5,8,9,10,13,15,17,9, } dB are considered.
Here, the mean of the SNRs for PU-SU and SU-FC channeld di#g and9 dB, respectively. FoiK =5, SNRs
are drawn from index 3 to 7 of the above sets (to maintain timeesmean for bothX). It shows that detection
performance increases significantly as the number of catipgrusers increases from 5 to 10 far= 1 and 2

both. The reason is the accumulation of information from enoumber of SUs.
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VII. COMPLEXITY ANALYSIS AND ADVANTAGE OF NFG-SPA BASED APPROACH FOR THESENSING PROBLEM

The usefulness of the NFG-SPA based approach to coopesgaerum sensing problem can be analyzed via
the computational cost to find the marginal likelihoods. Adtion may be factorized in several ways, resulting in
respective FGs. As long as the graphs are acyclic, the samginals will be computed. The physical meaning
of acyclic is that all PU-SU-FC channels are statisticatiggdpendent. However, in correlated cases it may lead to
more complex SPA, due to the presence of cycles in the gragh [2

The complexity of an algorithm is usually measured in terrh#gsoperformance as a function of the size of the
input. Here, it depends on the number of functions (noded)ariables (edges) [26]. Let us consider a function with
M variables that may be factorized (acyclic) ihfactors. We assume that each variable is defined over the same
X discrete-sampled values from a continuous domain or dom¥afor discrete RVs. The function is represented
by an NFG of FF nodes. Suppose, amorig nodes,d; have degree 1g, have degree 2,..dp have degreeD,
whereD is the maximum degree of a node in the graph. For simplicityassume that 1 CPU cycle is required for
computing message at any node and that time is negligiblayaedge. Then the total complexity (in CPU cycles)
in the graphical method can be written as [26]ngzi’;1 id;| X|*, where|X| is the cardinality of the domain
of RVs. Following the conventional (explicit) method, itriequired to integrate out all other variables which has
a complexity equal t@Cc :M|X\M. Thus, the NFG-SPA based approadh(|(X|?)) is computationally more
efficient than the explicit method(| X |*). In generalD << M, henceCrg << Ccy.

Example: Consider the graph of Fig. 6 with' =1, i.e. the case o/ = 6 and assumé¢X|=2. Therefore, the total

complexity to find the marginals using the graphical method i
Cra=[1x2x2'+2x1x224+3x2x2% = 60 cycles (43)
In comparison, the complexity in the numerical method is

Con =6 x 2% = 384 cycles (44)

384

It is interesting to note that NFG is computationally morkcednt by < ~ 6.4 times than the conventional method.
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To understand the advantage of the factor graph for thellistid detection problem addressed in this paper, Fig.
12 plots the computation complexity as a function of the nendd RVs involved. The desired likelihoaB(yy | H;)
is obtained by marginalizind®(zy, tx, uk, vk, yx|H;) in (23). Each variable of interest of the function is defined
over the sameX discrete-sampled values from a continuous domain (i.dommly quantized with@Q = | X| =4
levels). We consider two cases @| =2, and|X|=4 for K =10. From the previous discussions and Fig. 6, in
this caseM = 4, D = 2. The total complexities to find likelihoods in both convemial ((23)) and graphical ((24))

methods are computed as

D
Cra=>_idi|X|"=[1x2x2'+2 x3x2°] x 10=280 cycles

=1 )
CZn=M|X[M=[4x2"] x 10=640 cycles
for | X|=2, and

D
Cra=_idi| X|'=[1x2x4"+2x3x4%] x 10=1040 cycles

i=1 )

Cén=M|X|" =[4 x 4] x 10=10240 cycles
for | X| = 4, respectively. Fig. 12 shows that the complexity monotalhjcincreases with the number of RVs
involved (i.e. as the system becomes more complex) in bothads. It also shows that complexity increases as the
guantization level) increases. However, it is interesting to note that the réteaement in NFG-SPA setting is
considerably less than that of the explicit method. It implihat NFG-SPA setting is computationally more efficient
(e.9. 533 ~ 2.4 times for | X|=2) than the conventional method (for acyclic FG). Therefove, can state that for
a large network and higher quantization level, graphicatho@ is more effective from an implementation point
of view, even for statistically independent channels. Mweeg, collaborative spectrum sensing is very effective,
when collaborating CRs observe independent fading [5]cwhésults in acyclic FG. Hence, NFG-SPA settings are

suitable from implementation perspective.
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VIII. CONCLUSIONS

In this paper the problem of centralized cooperative spattsensing over Nakagami-fading in a CRN, was
addressed. We have presented a new fusion rule based on bR wequires only the statistical characteristics of
the wireless channels between PU-SU-FC. It was comparddatlier suboptimal rules e.g. EGC, MRC and better
performance has been observed. Furthermore, we derivedled expression for the local probability of detection
for ED over Nakagamin fading. It is shown that the proposed models perform bettezr a wide range of SNR
for different values ofmn, compared to the approximate complex signal representaticlosed-form solutions for
the system-level probabilities of detectioR{) and false alarm Br) were derived. Furthermore, an expression
for the optimal number of cooperative SUs, needed to mirentiie total error rate, is also obtained. It leads to a
fast spectrum sensing algorithm, by considering only thiénmed number [,,,:) of cooperative SUs instead of the
total one. Furthermore, decision fusion based on SPA oyeesentative factor graphs was used. It was shown that
a considerable amount of gain in computational complexity be achieved through NFG-SPA settings, even if
PU-SU-FC channels are assumed to be statistically indeméniilore complex channel conditions, e.g. correlated

PU-SU-FC channels, and design of fusion rules for soft dmtiscan be investigated as future works.
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MESSAGEPASSING ONFACTOR GRAPH OFFIG. 6

() My, - P(yylug) = 13 (@) Mp (o), = P(0x)
(iii)kaﬁP(yklukwk) = P(Uk); (U)M7Lk—>P(“k|tk):P(yk‘uk)

(iv)MP(yk\uwkHuk:/ P(yk|uk, ve) P(vk) dok = P(yk|uk)
UV

V) Mp(uy lt) sty = P (Y] — 1)1 (te <7i) +P(yr| 1) (tr > 7i)
Vit) My, s peg Hy ) =P k| — DItk <7r)+P(ye|1)I (L >7k)
Vi) Mp (2, )z, = P(2k)

1) M, s pty | Hy2n) = P(2r) and (@) My, py Hy 2 = 1

(@) Mp (e, | H;,21)— H; 7‘/ P(tig|Hi, zx)dzrdtr X (iz) X (vit)

tr zp

/ P(2) Pt | Hs, 21) [Plylur = —1)I(tx < )
t

kY 2k

+ P(yg|lur = D)I(tx > 7%)] dzidts (45)

APPENDIXB
STEPS FROM(14) TO (15)

Integrating (14) using Laguerre polynomials [43, (6.982]3[42], thecdf of ¢; is obtained as

Pt 1) 1 3= e o (-1, ) o
O wy,
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In (46), (G); = FC(;CJ;” for i=0,1,2,..00 is the Pochhammer symbol [41]. Using [41, (6.5.12)] in (46} &hen
[41, (13.1.2)], we get

Fnaox(te|H1)=

N+149)
<2;—§) 1 (1;N+1+i+1; %T—g)
wk 'wk

aPSk
(N +1+1i) e

(N+1)
M(Q‘:?’z ) Ops Tk T
- " 9, (m,1,N+1 72“; 3 . ) (47)

where M = <<n)> and(a)! (a+1),=N!(N +1),,,, whena = N +1 +.

’fTH’Ppek

APPENDIXC
DERIVATION OF EQ. (16)

For m=1, using the values ofF; (2,32,a), 1F} (1,1,a), I'(2) [41] , and after some algebra, (13) may be
simplified as (without loss of generality, indéxis dropped from variables, B, D)

a2

202
o Wy, .
P = [ g (20 ]

AupV2m Ow, VAw
2
Ouw, ﬁ: Ow, Bwa _ a2
+—— € 24w —Bya). 48
s % Q(~Bua) “®)

Similarly, for m=2, using the values of (2), 1F% (3, 2,4), andFy (2, 3, a) [41] , and after some algebra, (13)
becomes

P (alHy)

u.2

3 T 202
opBwa |aBye Tk 2 __a?
= 24+B2 24w —Bya)| , 49
oAL? | vz BT Q(=Bua) (“49)
where B, = - and A, = (0%, + 03, ).
APPENDIXD

DERIVATION OF EQ. (20)
As v (N,a)=N"1taNe % F; (1; N + 1;a) [41, (6.5.12)], and using [41, (13.4.3), (6.5.12)], we caritev

1Fi(;N+1La)=(1—-NuFi (1N +1;a)+N1F1 (1; N a)

=D ety (V — 1)~ (N, )} (50)

Therefore, (19) can be simplified as

P2y (tx|H1)=

_ (1’%;}:)%
(—aps)’e  *7ox |:Olpsktk: ( tkapsk> ( tkapsk>:|
: N1, —v [N, : 51

202, T(N — 1) (apa)™ L 202, 202, ) T\ 202, (51)
ltegrating (51) ovet;, by parts, then, using v (N, a) da=ay (N,a)+I (N + 1,a) and [45, (1.2.2.1)] we get the
local probability of detection forn = 2 in (20).
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APPENDIXE
DERIVATION OF EQ. (35)

Consider, for all SUg,,’s andpy,'s are same i.epg, =pq andpy, =py Vk. As up € {—1,1}, P(yx|us) follows
(13). Thus, form =1 P(y|uy) follows (16), by replacinge,, o2, andoZ with y,, 07 ando? , respectively.
Then,

yk-,2

P O'nke_ 205, ukananyk ,% B 52
(yk|uk)_ Anm A'n € " Q(iuk nyk) ( )
Therefore, likelihood undefl; is written as

Pim=1)(ye|H1) = P(yk|lur = =1)(1 — pa) + P(yx|ur = 1)pa

2
- - _w?
—A”m[ 278k 4 {pa—QBny) }V 27 Buyre ] (53)

where 4,=(02, +02 ) and Bn:%:%. We further compute

p1=Py > 0|H))= / Py Hy) dy
(0]

_ On, ™ v 27 B, _

= A vor [1 / 5 T +paV2rnBrAn, 5 (An oy V An)}
_1

2

m=1
(pfi ) — %)J“k

7 ror . (54)
Form = 1, by replacingp, with p; in (53) and (54) we gef,,,—1)(yx|Ho) andpy, respectively as

po:P(yk>0\H0):l+M o5
) 2" Jorror,
Similarly, for m=2, P(yx|uy) follows (49). Thus, we get

O’?l Bnyk
P(ykluk) = ST

By, - .
X [\/%e 2 %k +Uk (2+BZZJ§)€ 24n Q(—Uanyk)] )

and the likelihood undefl; as

(56)

3
g Bnyk
Pam=z (sl Fh) = 252 15

2

_ Yk y%
’ [Bnyke 207211"’ +{pdk _Q(Bnyk)} V2T (2+B721y13) e_mn] .

(57)
Then, p; is computed from (57), using [45, (1.5.3.1,8)], as

2 2 (m=2) 1
o, o, D 5)0
p1= k 5 < k4 o'nk) + M

2 (58)
(02, +02,) Ony\/ 0%, +0
Similarly, for m = 2, by replacingps with py in (57) and (58), we geP(,,—o) (yx|Ho) andp,, respectively.
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mfl) % (m:l) d%
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o2 o2
—_ £/ = "k Y
(1= ps) {1 kerf( 204 (1+2p oI ))}""pfk {H' 2 erf( 2a;ﬁk<1k+2ﬁsfk>>]
APPENDIXF
DERIVATION OFp;sz) AND THE LR FORmM = 3.
As discussed earlief?]|z;|*]=2mo> andE[\vk| |=2mo?, . Settingm = § in (14), we get
1
_ "k 1 5
tkNe 2072”1@ 2 .
P th|H b7t
(7n:1)( k| 1)7 (N)' (20_12‘) )N+1
x 11 (%,N-i— 1,tkak) s (59)
wherepéék) link. Now, integrating (59) ovet; and using [41, (6.5.12)],
the probablhty of detection fom = = may be computed as
'rn:l 7 N’qukw
As, up € {—1,1}, P(yx|uy) is obtained by replacingy, o2, , ando?_ with y;, 02 , ando? , respectively in (13)
as )
= 2
_ 1 T T )
P(yk|uk) - /271—0-72% (g%k —+ O’%k> € k

Un YUk
144/ =% , 61
V2 erf( QU%k(ng—i-U%k))] (61)

,(771:2) 2

whereA, = (o2 +o2 )=02, (1+ 2p( )) and average SNR Uy, — F'C'link is defined ag,; *" = 54 -

LRT statistic may be written as (62). For both = % and 2, LRT thresholds X) are obtained by (numerically)

. Now,

solving f;°P(L|H0) dL = Pp, for given probabilities of false alarm.

APPENDIXG
DERIVATION OF EQ. (21) AND EQ. (22)

Case-l: % m < 1. In this case, the complex Nakagami-envelope are expressed as Hoyt approximation

[46, (61)]. The real and imaginary parts ame(o, M) andN(O, W) respectively, wheré:,/ljnm.
Therefore zi (n) ~ €A (0, 22 4 2100 Now, aswi (n) ~ CN (0,202, ), we may write
zx(n) ~ CN (07 (sz(21+b) 4 202 g ik>) The test statisti¢, is the sum ofV squares of.i.d. A/ (07 [W +aik])

sz(l b)

and anothetV squares of.i.d. A/ (0 [ + wk]) real Gaussian RVs with each having zero mean. Thus, the
pdf of ¢, under H; is the sum of two central Chi-square distributions with ehelring N degrees of freedom

(DOF) and written asP 1 <, 1) (tx|H1) =

otk _ 123
tkgile (ﬂzk(HbH%?‘Jk) tk%’le (nzk(l b>+2”’”k>
~ T - (63)
L) (O (140 +208,) T (3)(2, (1-b)+203,) 3
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Hence, for% < m < 1, the corresponding probability of detection at e&il}, is obtained by integrating (63) as

~ <ﬂ T—k> v (ﬂ T—k>
2 b 2
pgfgm“):l - (22 (0120t ) (22 0 4208,)) (64)

r(3) r(3)

Case-ll: m = 1: This is the case of Rayleigh distribution whergn) ~ CA (0,202,) [28]. Then, the signal is

written aszx(n) ~ CN (0,2 (o2, + o2, )). Therefore, thepdf of test statistia;, underH, follows central Chi-square

distribution with2 N DOF. The probability of detection &U), is computed by integrating,,,—1)(tx| H1) as [19]

v (N7 T )
(m=1) Q(Uzk +U"“k)
=1- .
Pay I'(N) (65)

Case-lll: m > 1: In this case, the complex Nakagami-envelope are expressed as Rician approximation [46,

(59)]. Here, the real and imaginary parts afe(;uzk , QT’C) and N (“sz ng) distributed, respectively. Therefore,

zi(n) ~ CN (/‘lek +ikq., ; st). Now, aswx(n) ~ CN (0,207, ), we may writery (n) ~ CA (MIZI« +JrQ., (), + QJE,k)).
Then, the test statisti¢,) is a sum o2V squares of independent and non-identically ditributedsSiam RVs with

each having non-zero mean. Therefore, pldé of ¢, under H; follows non-central Chi-square distribution with

m—1

2 2 _
#Izk #sz 2Np,,sk_ 'm

+ = .
Q 5, B —
(Feen) (Tt )] o (v )

2N degrees of freedom and non-centrality paramgter=>""_,

With help of [41], it may be written as

() 2
Qa z
Py (te|H1) = = o In_1 ( ”6’“) , (66)
()5 F ()
where0 <t <oo, Q, =Q5, + 205%, and[,(.) is the modified Bessel function of the first kind of orderThe
probability of detection abUy, is given as [28, (2.13)]
(m>1) 27—k
Pa, =@ (V“Z’“ Qsp + 203%) ' (67)
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