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Abstract

Modeling and analysis of cooperative spectrum sensing is an important aspect in cognitive radio systems. In this

paper, the problem of energy detection (ED) of an unknown signal over Nakagami-m fading is revisited. Specifically,

an analytical expression for the local probability of detection is derived,while using the approach of ED at the

individual secondary user (SU), a new fusion rule, based on the likelihood ratio test, is presented. The channels

between the primary user to SUs and SUs to fusion center are consideredto be independent Nakagami-m. The

proposed fusion rule uses the channel statistics, instead of the instantaneous channel state information, and is based

on the Neyman-Pearson criteria. Closed-form solutions for the system-level probability of detection and probability

of false alarm are also derived. Furthermore, a closed-form expression for the optimal number of cooperative SUs,

needed to minimize the total error rate, is presented. The usefulness of factor graph and sum-product-algorithm

models for computing likelihoods, is also discussed to highlight its advantage, in terms of computational cost. The

performance of the proposed schemes have been evaluated both by analysis and simulations. Results show that the

proposed rules perform well over a wide range of the signal-to-noise ratio.

Index Terms
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I. I NTRODUCTION

It is well-known that most of the licensed spectrum is not fully utilized all the time [1], when fixed spectrum

allocation is used. Moreover, the rapid deployment of new wireless devices and applications with growing data rates

creates a spectrum scarcity problem. Cognitive radio networks (CRN) [2] is an emerging solution to the problem

of inefficient use of allocated licensed spectrum. In this approach, the secondary users (SUs) or cognitive radios

(CR)s are allowed to sense the spectrum dynamically, identifing the spectrum holes i.e. in the absence of a primary

user (PU) - in the target spectrum pool and opportunistically utilize it.
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A. Motivation and Literature

Spectrum sensing is the first critical step of the CR cycle [2]in order to dynamically utilize the unused spectrum.

Sensing techniques can be classified as, a)Local Sensing: Each SU individually and/or independently detects

spectrum holes. Although this kind of sensing is sensitive to fading, shadowing, and model uncertainty, it has a

simple implementation. A brief survey of different spectrum sensing techniques was presented in [3]. Furthermore,

it is shown in [4] that the energy detection (ED) is optimal for detecting zero-mean constellation signals, if no

prior knowledge about PU’s signal is available at the SU, except of the received signal power. Note, that ED is also

popular due to the simplicity of its implementation [5]. b)Cooperative Sensing: Information from multiple SUs are

jointly used to detect spectrum holes, and to mitigate multipath, shadowing etc., by exploiting the spatial diversity

among CRs. It enhances accuracy, reliability, and performance of sensing at the cost of complexity. Moreover,

cooperative sensing is most effective, when collaboratingCRs observe independent fading or shadowing [5]–[11].

Cooperative sensing may be further viewed as distributed detection problem, with the central coordinator to be

the fusion center (FC). This is also known as centralized cooperative spectrum sensing (CCSS) and is investigated in

this paper. A detailed survey on the distributed detection was presented in [12]. In this kind of detection, likelihood

ratio test (LRT) rule is known to be optimal. However, a global optimal solution with coupled local best rules

is known to be NP-hard and not available in closed-form [13].Moreover, it was proved that ED is optimal for

single-sensor detection [14], while identical decision rule is asymptotically optimal for global decision in a large

network [13]. LRT is implemented using either theNeyman-Pearson (N-P) criterion (maximization of probability

of detection subject to a constraint on probability of falsealarm) or theBayes criterion (minimization of error) [15].

Well-known sub-optimal fusion rules for ideal SU-FC (reporting) channels are: AND, OR, and VOTING [12].

Other sub-optimal decision fusion rules over noisy channels are Chair-Varshney fusion for the high signal-to-noise

ratio (SNR), equal gain combining (EGC) for low SNR, and maximum ratio combining (MRC) for medium SNR

[16]. Recently, suboptimal fusion rules, known as optimal linear cooperation strategy for additive white Gaussian

noise (AWGN) and linear-quadratic (LQ) strategy for ideal reporting channels have been discussed in [17] and [18],

respectively. Furthermore, in [14], [19], the authors useda probabilistic graphical approach to model the optimal

LRT based fusion for cooperative spectrum sensing. Other sensing algorithms for PU detection, such as optimum

matched filtering [20], eigenvalue based detection [21], cyclostationary feature detection [22], generalized likelihood

ratio test (GLRT) based sensing [23], [24], were also reported in literature.

Good message-passing algorithms, like Pearl’s belief-propagation (BP) algorithm and sum-product algorithm

(SPA) [25] over suitable graphical models, have been successfully employed for solving inference problems in

various aplications, e.g. data mining, computational biology, statistical signal processing, and wireless communica-

tions. This approach provides exact solutions for acyclic graphs, while exhibiting a low computational complexity,

compared to explicit methods [26]. Moreover, BP/SPA is inherently suitable for distributed implementation [25].

Therefore, it becomes a practical and powerful tool to solvedistributed inference problems, such as cooperative

spectrum sensing in CRNs [14], [19].
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In the spectrum sensing literature, previous studies assume approximate channel statistics [18], [21], [27] or

known [7], [8], [17] or estimated [23], [24], instantaneouschannel state information (CSI). The effects of different

signal models with known CSI on sensing have also been investigated in [7], [28]. Furthermore, the problem of

energy detection of an unknown signal over Nakagami-m fading was addressed in a few papers [29], [30], but,

the results were presented only for high SNRs. Regarding thedecision fusion most of the works consider non-

ideal sensing channels with ideal [12], [31] or binary symmetric (BSC)/AWGN reporting channels [17], [19], [32].

Optimization of the CCSS scheme over Rayleigh fading and ideal reporting channels, was also addressed in [31].

Furthermore, decision fusion over non-ideal reporting channels was introduced by [16], in the context of wireless

sensor networks (WSN). However, multipath fading on sensingand reporting channels is common in a CRN and

limits the performance of CCSS. However, none of the above works consider multipath fading on both PU-SUs

and SUs-FC links, simultaneously.

Nakagami-m, is a general fading model [33], which often gives the best fitfor land and indoor mobile applications

[34]–[37]. However, cooperative spectrum sensing, in the presence of Nakagami-m fading with channel statistics, is

relatively less investigated. Moreover, SUs may be mobile in many applications, like object tracking, environment,

habitat management etc., where the channel estimation is costly. Therefore, spectrum sensing over Nakagami-m

fading for a wide range of SNR and LRT based decision fusion without knowledge of instantaneous CSI, is useful

for the system design. Moreover, in a large CRN it also involves conditional and unconditional independence on

large number of random variables (RVs) and thus it leads to anincrease of the overall system complexity. Hence,

inference over graph with message passing is a good approachfor this problem [14], [19].

B. Contribution

In this work, we study the performance of CCSS systems, by assuming that both PU-SU and SU-FC channels

are Nakagami-m and independent accross the SUs. The LRT statistics is computed through message passing over

the representative NFG, in order to reduce the computation complexity. Specifically, the main contributions of this

paper are as follows.

• Derivation of an LR based fusion rule without knowledge of the instantaneous CSI. Closed-form expressions for

the system level probabilities of detection,PD, miss,PM , and false alarm,PF , are also derived. Furthermore,

we present an alternate expression for the local probability of energy detection over Nakagami-m fading.

• Determination of the optimal number of cooperating SUs, needed to minimize the total error rate,PTOT =

PM + PF , as a function of the SNR and the total number of SUs.

• Modeling of CCSS using NFG and SPA in order to analyse the computation time complexity, compared with

explicit method.

C. Structure

The rest of this paper is organized as follows. Section II refers to NFG and SPA, while Section III represents the

system model, the assumptions used, and the problem formulation. Expressions for local probalilities of detection and
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false alarm are presented in Section IV, while the LRT-basedfusion rule with NFG-SPA based model, closed-form

analysis of system-level performance metrics and optimization of the CRN, are presented in Section V. Simulation

results are reported in Section VI, and the complexity analysis and advantages of NFG-SPA settings are discussed

in Section VII. Finally, Section VIII concludes the paper and propose some future research directions.

D. Notations

Throughout this paper,K denotes the total number of SUs present in the CRN,N denotes the total number of

(complex) signal samples available for detection, also known as time-bandwidth product. We useaK1 to denote the set

of RVs {a1, ..., aK}. Here,E[.] denotes statistical expectation,|a| denotes modulus ofa, Pa (.) denotes probability

density function (pdf ) and Fa (.) denotes cumulative distribution function (cdf ) of a. Nak(m, .), CN (., .), and

N (., .) denote Nakagami-m distribution with fading severity parameterm, complex Gaussian, and real Gaussian

distribution, respectively.

II. FACTOR GRAPH, SUM-PRODUCT ALGORITHM (SPA)

Probabilistic graphical model (PGM) [38] is an effective way to represent the probabilistic dependencies between

RVs. Well-known graphical models are Bayesian network (BN), Markov random field (MRF), Tanner graph (TG),

junction tree (JT), and factor graph (FG) [38]. Among those,FGs are more general, since any BN, MRF or TG can

be transformed as FG, with no increase in its representationsize [25]. Throughout the present work, we consider a

version of FG, called normal factor graph (NFG) [26], as the PGM. The primary goal of FG-SPA based modeling

of CCSS is to reduce computational complexity.

A. Factor Graph

Factor graph is a standard bipartite graphical representation of a mathematical relation between variables and

local functions. There are two types of factor graphs [26]: conventional and normal (Forney-style) factor graph

(NFG). In an NFG, functions or factors{fj} are represented by nodes and variables{xl} are represented by edges.

Example: Consider a joint probability mass (density) functionf(.) of L variables asf (x1, x2, x3, x4, ..., xL).

Suppose, the function is factorized as

f(x1, x2, ..., xL) =
1

Z

J
∏

j=1

fj(sj), sj ⊆ {x1, x2, ..., xL} , (1)

whereZ is a normalization factor. Alternatively, it can be represented through a graph with function nodes and

variable edges. We consider the factorization withL=7 andJ =6, where one variable is involved in more than

two factors. Then,

f (x1, x2, x3, x4, x5, x6, x7)=
1

Z
fA(x1, x2, x3, x4)fB(x1, x5)×

fC(x2, x7)fD(x4)fE(x5)fF (x5, x6).

(2)

Fig.1 depicts an example of (2) as a normal factor graph. We summarize the construction of NFG as follows:
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Fig. 1. Normal factor graph corresponding to Eq. (2).

• Equality node,Θ, indicates variables corresponding to more than two functions i.e. the node with degree,

D > 2.

• Computation of marginal can be performed in an efficient and automated way by using SPA on factor graph.

• A function can have many factorizations; therefore, it can have many factor graphs. As long as the graphs

have no cycles, the same marginal will be computed for all.

B. Sum-Product Algorithm and Message Passing

Sum-product algorithm (SPA), also known as message-passing or belief-propagation (BP) algorithm, can often

be applied successfully in situations, where exact solutions to themarginalize product-of-function (MPF) problems

become computationally intensive [25], [38]. SPA operatesover an NFG associated with the global function and

computes various marginal probabilities by approximatingthrough beliefs. Let us define the message from function

nodefj ∈ N (xl) to variable edgexl asMfj→xl
(xl). The message from variable edgexl ∈ N (fj) to function

nodefj is denoted byMxl→fj (xl), whereN (xl) andN (fj) are the set of neighboring functions ofxl and the set

of variables involved in functionfj , respectively. Message from edgexl to nodefj is computed as

Mxl→fj (xl) ∝
∏

f∈N (xl)\{fj}
Mf→xl

(xl). (3)

and message from nodefj to edgexl is computed as

Mfj→xl
(xl)∝

∑

Xj∈N (fj)\{xl}

fj(Xj)
∏

xj∈N (fj)\{xl}

Mxj→fj (xj), (4)

whereN (i)\ {a} denotes all the nodes/edges that are neighbors of edge/nodei except for node/edgea. In SPA,

sum is due to summation andproduct is due to product operation in (4). In case of continuous variables, summation

operation is replaced by integration. The proportionalitysign in (3) and (4) is used to indicate a normalization

factor, such that the distribution sums/integrates to one.Final marginal for any variablexl is calculated as belief

i.e. the product of all incomming mesages as

b(xl) ∝
∏

f∈N (xl)

Mf→xl
(xl).
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III. SYSTEM MODEL FORCCSSOVER FADING CHANNELS

The block diagram of CCSS system is shown in Fig. 2. It consists of one PU,K number of SUs, and one FC.

All SUs are independently sensing the PU and then sending their local decisions to FC. Final decision is taken by

the FC.
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Fig. 2. System block diagram of Centralized Cooperative Spectrum Sensing (CCSS) scheme with K SUs, one PU and one FC.

A. Assumptions

Throughout this paper, Nakagami-m fading is used to model rapid fluctuations of the amplitudes of a radio signal,

and it is assumed that the average sensing duration is much shorter than the averagebusy-to-idle and idle-to-busy

state transition periods of PU [31]. Transmit power of PU is assumed to remain constant over a typical sensing

period anda prior probability of PU’s traffic is unavailable at each SU.

Furthermore, it is assumed that all SUs stay silent during the sensing interval, such that the spectral power

remaining in the targeted band is transmitted only by the PU.Next, it is considered that all SUs use same transmit

power relative to the PU (as in the interweaveDynamic Spectrum Access (DSA) model [39]) and each SU makes a

binary local decision (hard-sensing) using ED [6]. At FC, the final decision (u) is taken when local decisions from

all SUs are arrived. We formulate our problem by assuming that all sensing and reporting channels are time-invariant

(during the sensing process), frequency-flat fading and statistically independent, across different SUs.

B. Problem Formulation

Suppose that all SUs monitor the same frequency with the PU (Fig. 2). Spectrum sensing at thek-th SU can be

formulated as a binary hypothesis testing problem [15]. Thereceived signal samples atSUk for the two hypotheses

can be modeled as

H0 : PU is idle:xk(n) = wk(n)

H1 : PU is busy:xk(n) = zk(n) + wk(n), (5)



7

wheren = 1, ..., N , k = 1, ...,K, wk(n) ∼ CN (0, 2σ2
wk

) is the sample of AWGN, andzk(n) represents the

signal sample, received from the primary user if active. Thesignal is modeled as RV with average power of

E[|zk(n)|2]=Ωzk , which includes the channel gain. In practice,zk(n) andwk(n) are independent.

Classically, the received primary signal samples atSUk are assumed (reasonable approximation for unknown PU

signals over fading; [14], [23], [24]) to be independent andidentically distributed (i.i.d.) complex Gaussian RVs

with zero mean and variance,E[|zk(n)|2]. This implies that the magnitude of the complex envelope is Rayleigh

distributed. However, in practice, the received signal at each SUk is composed of a large number of resolved

multipath components. Therefore, the magnitude of the envelope is the norm of anm-dimensional complex vector,

wherem is the fading parameter of the Nakagami-m distribution [40]. Therefore,|zk(n)| ∼ Nak(m,σzk), and the

average power of the received primary signal can also be written asE[|zk(n)|2]=Ωzk=2mσ2
zk

[40]. The average

received SNR of thePU−SUk link, measured atSUk, is defined as

ρ̄
(m)
psk

=
mσ2

zk

σ2
wk

. (6)

At SUk, the ED computes the energy of the received signal overN samples. The computed energy is compared

with the thresholdτk, which is determined from a given local probability of falsealarm, and the binary local

decisionuk∈{−1, 1} is generated, whereuk=−1 anduk=1 denote absence and presence of the PU, respectively.

Therefore, the test statistic atSUk becomes

tk=
N
∑

n=1

|xk(n)|2 ≷ τk. (7)

Each decision,uk, is transmitted to the FC over an independent, frequency-flat fading channel. The signal received

at the FC fromSUk is

yk = vk + nk, (8)

wherenk ∼ CN (0, 2σ2
nk
) is the observation noise andvk is the secondary signal, over theSUk−FC link. Similarly,

we assume|vk|∼Nak(m,σvk
), where the average power of the signal isE[|vk|2]=Ωvk

=2mσ2
vk

. In practice,vk

andnk are independent and the noise samples at FC and SUs are also independent across differentPU−SUk−FC

links. The average received SNR forSUk−FC link is defined as̄ρ(m)
sfk

=
mσ2

vk

σ2
nk

.

The vector of received signal at the FC from all SUs is denotedby yK1 = {y1, y2, ..., yK}. For anyyK1 the binary

hypothesis problem at FC is

I0 : Primary user is idle: P (yK
1 |H0)

I1 : Primary user is busy: P (yK
1 |H1), (9)

whereP (yK1 |I0) andP (yK1 |I1) are the distributions ofyK1 in absence (I0) and presence (I1) of the PU, respectively.

Final decision (u) is derived at the FC by LRT using these two distributions.
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We assume that SUs use the spectrum, whenever they detect a spectral hole (white space). The constraint in the

system model is the probability of erroneous decision aboutthe presence of the PU. Hence, for efficient utilization

of spectrum, according toNeyman-Pearson criteria [15], the system designer needs to minimize the probability of

miss or maximize the probability of detection, subject to the constraint that the probability of false alarm satisfies

a minimum requirement.

IV. L OCAL PERFORMANCEANALYSIS

This section presents the local performance analysis (probabilities of detection and false alarm atSUk) for the

system model defined in section-III.B. Throughout the analysis, the variableak(n) is used asak for notational

simplicity.

A. Analysis Under the Hypothesis H0

UnderH0, the received signal contains only noise and thus,xk ∼ CN (0, 2σ2
wk

). As the numberN of complex

samples is considered as sensing period, thepdf of tk underH0 follows Chi-square distribution with2N degrees

of freedom [41]. In this case, the probability of false alarmat SUk is obtained as [29]

pfk =

∫

tk>τk

P (tk|H0)dtk =
Γ(N,

τk
2σ2

wk

)

Γ(N)
=1−

γ(N,
τk

2σ2
wk

)

Γ(N)
, (10)

whereγ(N,x), Γ(N,x)=Γ(N)− γ(N,x), andΓ(N) are the lower incomplete gamma, upper incomplete gamma,

and complete gamma functions, respectively [41]. Assumingthat the noise variance is perfectly known, the local

thresholdτk is obtained for a givenpfk as

τk=2σ2
wk

Γ−1 (N, (pfkΓ (N))) . (11)

B. Analysis Under the Hypothesis H1

Under the hypothesisH1, the received signal contains both PU signal and noise. Therefore, the distribution of

the test statistic depends on distribution of the envelope of the signal (i.e.|xk|), which further depends on|zk|. The

unconditionalpdf of |xk| underH1 is obtained using Bayesian approach, i.e. marginalizing the conditionalpdf of

|xk| over |zk|. Here,|zk| is Nakagami-m distributed [33] and is defined as

P|zk|(ck) =
2ck

2m−1

Γ(m)

(

1

2σ2
zk

)m

e
−

ck
2

2σ2
zk , (12)

The pdf of |xk| underH1 is obtained as
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P|xk|(ak|H1)=

∫ ∞

0

P
|xk|
∣

∣|zk|
(ak|ck;H1)P|zk|(ck)dck

=

(

σ2
wk

Awk

)m

e
−

ak
2

2σ2
wk

Γ(m)
√

2πσ2
wk

[

Γ(m)1F1

(

m,
1

2
, ak

2
Dwk

)

+

ak

√
2Γ(m+ 1

2
)1F1

(

m+ 1
2
, 3
2
, ak

2Dwk

)

σwk

σzk

√

Awk



 , (13)

whereAwk
=
(

σ2
zk
+σ2

wk

)

, Dwk
=

σ2
zk

2σ2
wk

Awk

=
αpsk

2σ2
wk

, αpsk
=

σ2
zk

σ2
zk

+σ2
wk

=
ρ̄(m)
psk

m+ρ̄
(m)
psk

, ρ̄(m)
psk =

mσ2
zk

σ2
wk

, and1F1(.; .; .) is the

confluent hyper-geometric function [41, (13.1.2)].

As, tk =
∑N

n=1 |xk(n)|2 and xk(n) is complex,tk has2N degrees of freedom. After a transformation of the

variables in (13) we get thepdf of tk underH1 as

PNak(tk|H1) =
1

2
√
tk

[P
|x|
∣

∣H1
(
√
tk) + P

|x|
∣

∣H1
(−

√
tk)]

=
tk

Ne
−

tk
2σ2

wk

N !
(

2σ2
wk

)(N+1)

(

m

m+ ρ̄
(m)
psk

)m

1F1 (m;N + 1; tkDwk
) . (14)

Integrating (14) using Laguerre polynomials [42], [43, (6.9.2.36)], and after some algebra [41, (6.5.12)], the local

probability of detection can be written as

p
(m)
dk

= 1− FNak(tk|H1)

=1−
(

m

m+ρ̄
(m)
psk

)m

(

τk
2σ2

wk

)(N+1)

N ! e

τk
2σ2

wk

Φ2

(

m, 1;N+1;
αpskτk

2σ2
wk

,
τk

2σ2
wk

)

. (15)

In (15), Φ2 (., .; .; ., .) is the hypergeometric function of two variables [41]. The steps for (14)-(15) are given in

Appendix B. Note that Eq. (15) is more general (as it holds∀m ≥ 1
2 ) than [29, (7)], which is restricted to integerm.

Moreover, Eqs. (15) and [29, (7)] can be implemented via the MATHEMATICA software, which requires truncation

of infinite series and computation of error bounds [30], [44]. However, a general closed-form expression ofp
(m)
dk

is

intractable, due to the presence of1F1(m; .; .), e−t, andtN in (14), simultaneously [41]. Therefore, it is interesting

to find p
(m)
dk

for specific values ofm.

Case-I: m=1

For m=1, (13) is simplified as

P|xk|(ak|H1)=
σwk

e
−

ak
2

2σ2
wk

Awk

√
2π

+
σwk

Bwk
ak

Awk

e
−

ak
2

2Awk Q(−Bwk
ak), (16)

whereBwk
=

σzk

σwk

√
Awk

and Q(a) is the well-known GaussianQ-function [41]. For the derivation of (16) see

Appendix C. Settingm=1 in (14) and using [41, (6.5.12)] we obtain
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P(m=1)(tk|H1)=
(1− αpsk ) e

−
tk(1−αpsk )

2σ2
wk

(αpsk )
N 2σ2

wk
Γ(N)

γ

(

N,
tkαpsk

2σ2
wk

)

, (17)

where ρ̄(1)psk=
σ2
zk

σ2
wk

. The cdf is obtained by integrating (17) overtk using [45, (1.2.2.1)]. Hence, the probability of

detection atSUk can be written as

p
(m=1)
dk

=

∫

tk>τk

P(m=1)(tk|H1) dtk=1−
∫ τk

0

P(m=1)(tk|H1)

=1−
γ

(

N,
τk

2σ2
wk

)

Γ(N)
+

e
−

τk
2Aw

(αpsk )
N
×
γ

(

N,
τkαpsk

2σ2
wk

)

Γ(N)
. (18)

Case-II: m=2

Similarly, for m=2, (14) can be written as

P(m=2)(tk|H1)=

tk
Ne

−
tk

2σ2
wk

(

2

2+ρ̄
(2)
psk

)2

(N)!
(

2σ2
wk

)N+1 1F1 (2;N + 1; tkDwk
) , (19)

whereρ̄(2)psk=
2σ2

zk

σ2
wk

. With the help of Appendix D, the probability of detection can be expressed as

p
(m=2)
dk

=1−
∫ τk

0

P(m=2)(tk|H1) dtk

=1−
γ

(

N−1, τk
2σ2

wk

)

Γ(N − 1)
+

e
−

τk
2Aw

(αpsk )
N−1

γ

(

N−1,
τkαpsk

2σ2
wk

)

Γ(N−1)

(

1+
τk

2Awk

)

+(N−1) (1− αpsk)









1− e
−

τk
2Awk

(αpsk )
N

γ

(

N,
τkαpsk

2σ2
wk

)

Γ(N)









. (20)

Similarly, using other values ofm in (14) and integrating overtk, correspondingpdk
’s can be obtained. For

example, an expression forpdk
, whenm= 1

2 , is presented in Appendix F.

In the next subsection, we present another approach for the determination ofpdk
’s, following the same assumptions

as in [46], [47]. For the sake of bravity and simplicity, we consider an approximate model, which is valid for moderate

and high SNRs.

C. Approximate Complex Representation of the Nakagami-m Envelope

In [47], it is shown that the exact distributions of real and imaginary parts of the complex signal for Nakagami-m

envelope are non-Gaussian. As a special case, either the in-phase or quadrature signal may be assumed as zero-mean

Gaussian, while the other part will be non-Gaussian [47]. In[46], the distributions of in-phase and quadrature parts

of a signal having Nakagami-m fading envelope, are derived for bothm> 1 and 1
2 ≤m< 1. However, at high

SNRs, the proposed model of [46] closely approximates the distributions of real and immaginary parts of signals
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Fig. 3. ROCs over Nakagami-m fading for different SNRs, withN=10 andm=1.

with Rician [46, (59)] form > 1 and Hoyt [46, (61)], for12 ≤m<1 fading envelopes. These approximations are

considered here for simplicity. However, form = 1, zk(n) can be assumed asCN
(

0, 2σ2
zk

)

for all SNRs [14],

[19], [23], [24]. Therefore, with the help of [46], the complex signals over Nakagami-m fading can be written as

zk(n) ∼ CN
(

0,
Ωzk (1 + b)

2
+

Ωzk (1− b)

2

)

,
1

2
≤ m < 1

zk(n) ∼ CN
(

0, 2σ2
zk

)

, m = 1

zk(n) ∼ CN
(

µIzk
+ jµQzk

,Ωsk

)

, m > 1, (21)

whereΩsk =
(

m−
√
m2−m
m

)

Ωzk =2σ2
zk

(

m−
√
m2 −m

)

, µIzk
=
(√

Ωzkd
)

cos(ϕ) and µQzk
=
(√

Ωzkd
)

sin(ϕ),

d=
√

m−1
m

, andb=
√

1−m
m

. ϕ is defined in [46, (39)]. PU is active underH1 and the distribution of the decision

statistic is obtained from that of the signal. At high SNR, the distribution ofzk(n) can be approximated according

to (21) for different range ofm, as in [46]. Thus, the associated probabilities of detection at SUk for different

values ofm are obtained as follows

p
( 1
2
≤m<1)

dk
=1−

γ

(

N
2
,

τk
(

Ωzk
(1+b)+2σ2

wk

)

)

Γ
(

N
2

) −
γ

(

N
2
,

τk
(

Ωzk
(1−b)+2σ2

wk

)

)

Γ
(

N
2

)

p
(m=1)
dk

= 1−
γ

(

N,
τk

2
(

σ2
zk

+σ2
wk

)

)

Γ (N)

p
(m>1)
dk

= QN

(

√
µzk ,

√

2τk
Ωsk + 2σ2

wk

)

, (22)

whereQN (a, b) is the generalized Marcum-Q function [41]. Here, the probability of missed detection isdefined

asp(m)
mk =1−p

(m)
dk

. For the derivation of (22) see Appendix G.
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D. Comparisons of the Two Models

Figs. 3 and 4 plot receiver operating characteristic (ROC),i.e. pdk
vs pfk curves for different values of SNR4

dB, 10 dB, and20 dB, over Nakagami-m fading withm = 1, and2, respectively.

It is observed from Fig. 3 that both analytical models form = 1 perfectly match with simulations for all SNRs.

Further Fig. 4 shows that, form = 2, at very low SNR none of the models matches with simulations,but, it

becomes closer to the proposed model in (20). However, at moderate SNRs (4 dB to 10 dB) the simulations match

with the results of the proposed approaches, while it matches perfectly at high SNR (20 dB). Therefore, we can

say that form > 1, the analysis based on the complex signal model [46] is only suitable for high SNRs. However,

(22) is reasonable and also validates the well-known approximation of zk(n) for m = 1 [19], [23], [24]. Note that,

the analytical models proposed in this paper suit well over awide range of SNR form ≥ 1. A similar comparative

study can be presented for12 ≤ m < 1. It can also be proved that the proposed model in (61) suits better than the

complex one in (22) over a wide range of SNR. In this paper, we drop the figure for12 ≤ m < 1 due to space

limitations.
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Fig. 5 plots complementary ROC i.e.pmk
vs pfk curves for different SNRs (0 dB, 10 dB 20 dB) over different

fading channels (m=1, 2) and compares the proposed model with Digham et. al’s [29]. It is observed that the model

proposed in this paper is better than [29] over a wide range ofSNR. Hence, we always consider the analytical

models of (18), (20), and (60) for further system-level analysis in the next section.

V. SYSTEM-LEVEL PERFORMANCEANALYSIS

A. Probability Models of the Detection Problem

The CSS problem, described in Fig. 2, can also be viewed as a system-on-graph (Fig. 6). Thus, we can model

the problem as inference over the representative NFG and tryto solve it by passing messages over the graph using

SPA. This approach can adopt all the unknown parameters, such as signals, channel effects, noise, and complex

dependencies in a single framework. It is shown that the FG-SPA approach finds the desired likelihoods in an

automated way. Accomplishable reduced complexity is shownin Section-VII.

As explained above, the goal is to find the likelihood functions,P (yK1 |H0) andP (yK1 |H1), in order to compute the

LRT statistic and thus, to solve the distributed detection problem. These likelihoods can be obtained by marginalizing

the joint probability distribution of interest over all unknown variables. Thus the detection problem is mapped to a

Bayesian inference one, in order to find the likelihoods through message passing via SPA over the representative

NFG. The joint probability distributionP (Hi, z
K
1 , tK1 , uK

1 , vK1 , yK1 ) represents the CCSS model of Fig. 2. Likelihood

functions, represented byP (yK1 |Hi) for i∈{0, 1}, can be evaluated as

P (yK
1 |Hi)=

∫

P (zK1 , t
K
1 , u

K
1 , v

K
1 , y

K
1 |Hi)dv

K
1 du

K
1 dt

K
1 dz

K
1 , (23)

whereP (zK1 , tK1 , uK
1 , vK1 , yK1 |Hi) is the joint distribution of interest. This can be further factorized as

P (zK1 , t
K
1 , u

K
1 , v

K
1 , y

K
1 |Hi)

= P (yK
1 |uK

1 , v
K
1 )P (uK

1 |tK1 )P (tK1 |Hi, z
K
1 )P (zK1 )P (vK1 )

=
K
∏

k=1

P (yk|uk, vk)P (uk|tk)P (tk|Hi, zk)P (zk)P (vk). (24)

The last line in (24) holds because the channels are independent accross the SUs. Fig. 6 represents the NFG for the

joint distribution of interestP (zK1 , tK1 , uK
1 , vK1 , yK1 |Hi). Each branch represents the PU-SU-FC path of Fig. 2. The

equality node,Θ, indicates that variableHi is associated with more than two functions i.e. with allP (tk|Hi, zk).

It computes likelihoods from the joint distribution by employing hard decisions at SUs. The graph has no cycle,

as all PU-SU-FC channels are statistically independent. Therefore, SPA can compute the exact marginals over the

graph.

B. Computation of Messages in NFG-SPA Settings

In NFG, probability functions are represented by nodes and variables are represented by associated edges. The

desired likelihoodsP (yK1 |H0) andP (yK1 |H1) have to be computed from the graph. By applying the SPA as message
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Fig. 6. Forney-style factor graph for joint distribution ofinterestP (zK1 , tK1 , u
K
1 , v

K
1 , yK1 |Hi). The graph is shown for two PU-SU-FC channels.

computation rule [26], intermediate messages are computedand passed between the nodes of the FG. The message

propagation follows a single step of natural scheduling. Asthe graph has no cycle, the computation of messages

starts from the half edge (yk) (edge connected to only one node) and leaf node (P (zk) andP (vk)) and proceed from

node to node. The message (MP (zk)→zk ) from the leaf node (P (zk)) to the connecting edge (zk) is the marginal

value of the function (node) with respect to that variable (edge). For half edge, the message (Myk→P (yk|uk)) from

the edge to the node is initialized with the value1. For intermediate nodes, all incoming messages to that node

are computed first and every message is computed only once. The messages are indexed with(i), ..., (xi) and are

shown in Fig. 6 on the corresponding edges of the graph. Dotted arrows show the flow of messages for computing

the marginals. Step-by-step computations are presented inAppendix A.

The marginal ofHi on k−th branch is computed from the final messages of interest similarly as [19, (21)]

g(Hi
(k)) =

∫

tk

∫

zk

MP (tk|Hi,zk)→Hi
×MHi→P (tk|Hi,zk)dzkdtk

=P (yk|uk=−1)

∫ τk

0

P (tk|Hi)dtk+P (yk|uk=1)

∫ ∞

τk

P (tk|Hi)dtk, (25)

where

P (tk|Hi)=

∫

zk

P (tk|Hi, zk)P (zk)dzk (26)

is obtained by marginalizing overzk, andτk is local threshold atk-th SU.

The final message on each branch is computed as the product of messages from nodeP (tk|Hi, zk) to edgeHi

and from edgeHi to nodeP (tk|Hi, zk). The desired likelihood functions for cooperative sensingare obtained from

the marginal distribution ofHi and computed as the accumulated final message (product over all branches) over

all edgesHi
(1), .., Hi

(K) for i∈{0, 1} from (25) as

P (yK
1 |Hi) =

K
∏

k=1

g(Hi
(k)). (27)

Likelihoods are computed in automated way using NFG-SPA.
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C. Analysis of Decision Fusion at FC

LRT based decision fusion is performed at the FC. It requireslikelihoods underH0 andH1 for each received

signalyk. Using (25), the likelihood underH0 can be viewed as the message underH0 and can be written as [19,

(23)]

P (yk|H0)=MP (tk|zk,H0)→H0

=P (yk|uk = −1)(1− Pfk ) + P (yk|uk = 1)Pfk . (28)

Similarly, the likelihood underH1 can be written as

P (yk|H1)=MP (tk|zk,H1)→H1

=P (yk|uk = −1)(1− pdk ) + P (yk|uk = 1)pdk . (29)

As the observations are independent, the LRT for choosingH1 in N-P method can be written with help of (27) as

L(yK
1 )=

P (yK
1 |H1)

P (yK
1 |H0)

=

K
∏

k=1

P (yk|−1)(1−pdk)+P (yk|1)pdk
P (yk|−1)(1−pfk)+P (yk|1)pfk

≥λ, (30)

whereλ is the threshold at FC. In N-P settings, this is obtained by solving

∫

L(yK
1 )>λ

P (yK
1 |H0) dy

K
1 =

∫ ∞

λ

P (L|H0) dL=PF ,

for a constraint on probability of false alarm at FC.

According to (8),nk ∼ CN (0, 2σ2
nk
) and the envelope of the received signal at FC overSUk − FC link is

Nakagami-m distributed i.e.|vk| ∼Nak(m,σvk
). In general,P (yk|uk) follows (13) by replacingxk, σ2

zk
andσ2

wk

with yk, σ2
vk

andσ2
nk

, respectively. Form=1, asP (yk|uk) follows (16), the LRT statistic (using Appendix E) can

be written as

L(yK
1 )=

K
∏

k=1

e
−

yk
2

2σ2
nk +

{

p
(m=1)
dk

−Q (Bnyk)
}√

2πBnk
yke

−
yk

2

2Ank

e
−

yk
2

2σ2
nk +{pfk−Q (Bnk

yk)}
√
2πBnk

yke
−

yk
2

2Ank

, (31)

Similarly, for m=2, the LRT statistic (using Appendix E) is given by

L(yK
1 )=

K
∏

k=1

Bnk
yke

−
yk

2

2σ2
nk +

{

p
(m=2)
dk

−Q(Bnk
yk)
}√

2πRnk
e
−

yk
2

2Ank

Bnk
yke

−
yk

2

2σ2
nk +{pfk−Q(Bnk

yk)}
√
2πRnk

e
−

yk
2

2Ank

, (32)

whereAnk
=
(

σ2
vk

+ σ2
nk

)

=

(

1 +
ρ̄
(m)
sfk

m

)

σ2
nk

, Bnk
=

σvk

σnk

√
Ank

=
√
αsfk

σnk

, ρ̄(m)
sfk

=
mσ2

vk

σ2
nk

, αsfk
=

σ2
vk

σ2
vk

+σ2
nk

=
ρ̄
(m)
sfk

m+ρ̄
(m)
sfk

,

Rnk
=
(

2 +B2
nk
yk

2
)

, andpfk is obtained from (10). Thepdk
’s are obtained from (18) and (20) form = 1 and2,

respectively. Similarly, other likelihood ratios may be obtained by substituting corresponding values ofm in (30)

with associatedp(m)
dk

’s. The LRT statistic form= 1
2 is derived in Appendix F.
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According to this approach, local thresholds are derived, based on the probability of false alarm, and therefore,

CSI is not needed at each SU. However, local probabilities ofdetection and final LRT statistics, i.e.L(.) values,

depend on channel statistics instead of instantaneous CSI.Moreover, system-level thresholds for LRT at FC are

selected based on theL(.) values. Therefore, we can state that, for the overall systemdesign, the proposed fusion

rule requires the knowledge of channel statistics, i.e. average SNRs̄ρ(m)
psk andρ̄(m)

sfk
instead of the instantaneous CSI.

D. Closed-form Analysis

Eqs. (31) and (32) are LR based fusion rules, but, the derivation of closed-form expressions forPD andPF from

them, seems to be a hard task. However, LR based optimum fusion rule can be approximated as Chair-Varshney

one [13], under the assumption of high SNR and identical detectors (i.e.pdk
= pd, pfk = pf ∀k) [16]. It is already

assumed thatyk’s are statisticallyi.i.d. for large number of SUs. To derive the closed-form expressions forPD and

PF , we also define asK1 the number of SUs for whichyk ≥ 0 andK−K1 the number of SUs for whichyk < 0.

Hence, the log-likelihood-ratio (LLR) from (30) can be written in terms ofK1 andK

log(L(yK
1 ))=(K−K1)Log

P (yk<0| − 1)(1−pd)+P (yk<0|1)pd
P (yk<0| − 1)(1−pf)+P (yk<0|1)pf

+K1Log
P (yk ≥ 0| − 1)(1−pd) + P (yk ≥ 0|1)pd
P (yk ≥ 0| − 1)(1−pf ) + P (yk ≥ 0|1)pf

. (33)

Therefore,K1 is binomial (K, p) distributed, where the probability of successp is defined asp = P (yk ≥ 0).

Let us denote,p1 and p0 are the probabilities of success underH1 andH0, respectively. Then, the system-level

detection performance, i.e.PD, PF andPM (= 1−PD) can be computed using the binomial distribution. Associated

closed-form solutions are

PD =
K
∑

j=K1

(

K

j

)

p1
j(1− p1)

K−j
, (34)

PF =
K
∑

j=K1

(

K

j

)

p0
j(1− p0)

K−j
, (35)

whereK1 takes values from0 to K. Form = 1, p1 andp0 can be evaluated as (see Appendix E for the derivation)

p1=
1

2
+
(pd − 1

2
)σvk

√

σ2
vk

+σ2
nk

=
1

2
+

(

p
(m=1)
d − 1

2

)

√
αsfk

p0=
1

2
+
(pf − 1

2
)σvk

√

σ2
vk

+σ2
nk

=
1

2
+

(

pf − 1

2

)

√
αsfk



















, (36)

Similarly, p1 and p0 are obtained for other values ofm with associatedpd (see Appendix E and F). Hence, we

state that N-P test is equivalent to J-out-of-K rule when

• All PU-SU-FC channels are statistically independent.

• All SU’s are employing identical decision rules and transmitting hard local decisions to FC.

The theoretical ROC curve at FC is obtained from (34)-(35).
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E. Optimization of Cooperative Spectrum Sensing

In general, whenPD increases,PF also increases and as a resultPM decreases. However, an effective system

design should always minimize the total error rate,PTOT =PM +PF . An optimal voting rule that minimizes Bayes

risk function has been addressed in [13, (pp. 94)]. Minimization of PTOT over ideal SU-FC channels using some

linear approximation has also been reported in [31]. Next, we investigate the optimal number,lopt, of SUs required

to minimize the total error rate over non-ideal SU-FC channels.

Let, l be the number of SUs required to achieve certain values ofPM andPF . From (34) and (35), let us define

a functionD(l) = PF − PD. Therefore,

D(l) = (PM + PF − 1)

=
K
∑

j=l

(

K

j

)

[

p0
j(1−p0)

K−j − p1
j(1−p1)

K−j
]

. (37)

From the properties of ROC curve [15], it is known thatpd ≥ pf . Then, from (36) and (58) form = 1 and

2, respectively, holds thatp1 ≥ p0. Under this condition, it is evident from (37) that minimization of PTOT is

equivalent to the minimization ofD(l). Now, whenl is increased by 1, it holds that

D(l + 1)−D(l)=

(

K

l

)

[

p1
l(1−p1)

K−l−p0
l(1−p0)

K−l
]

. (38)

From (38),D(l + 1) ≥ D(l) if,

p1
l(1−p1)

K−l ≥ p0
l(1−p0)

K−l

or, l × ln
p1

p0
≥ (K − l)× ln

1− p0

1− p1

or, l ≥ K

1 + β
, whereβ=

ln p1
p0

ln 1−p0
1−p1

. (39)

Similarly, whenl is decreased by 1,
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D(l)−D(l − 1)

=

(

K

l − 1

)

[

p1
l−1(1−p1)

K−l+1 − p0
l−1(1−p0)

K−l+1
]

. (40)

From (40),D(l) < D(l − 1) if

p1
l−1(1− p1)

K−l+1
< p0

l−1(1− p0)
K−l+1

or, (l − 1)× ln
p1

p0
< (K − l + 1)× ln

1− p0

1− p1

or, l < 1 +
K

1 + β
, whereβ=

ln p1
p0

ln 1−p0
1−p1

. (41)

Thus, from (39) and (41) the optimal number of SUs, which minimizesPTOT can be written as

lopt =

⌈

K

1 + β

⌉

(42)

where

β=
ln p1

p0

ln 1−p0
1−p1

,

andp1, p0 are given by (36) or (58). Therefore,lopt depends onK, p0, andp1, subject to the constraintp1 ≥ p0.

These probabilities of success underH1 andH0 further depend on the average SNRs of SU-FC channels, local

thresholds (τk), noise variance (σ2
wk

) of individual SUk’s, and average SNRs of PU-SU channels. Hence, it is

observed that the optimal number of SU (lopt) depends onK, τ , and average SNRs̄ρps and ρ̄sf . Moreover, it is

concluded that a fast spectrum sensing algorithm can be executed by considering onlylopt SUs instead of allK in

a CRN, with statistically independent channels.

Fig. 7 plots the number of cooperating SUs vsPTOT for different values ofK and different channel conditions.

The figure shows that, for a fixed average SNR of10 dB over SU-FC channels, the optimal number of cooperating

SUs increases from11 to 14, while the total number of SUs increases from 15 to 20, respectively. It can also

be observed that asK increases,PTOT of correspondinglopt decreases. However, to achieve a givenPTOT (say,

0.63) with fixedK = 20, the required number of cooperating SUs (l) increases from 10 to 12, as the average SNR

decreases from10 dB to 7 dB. It infers that, for a fixed values ofK, the value ofl increases to achieve a given

(bounded)PTOT , as SNR decreases. Hence, we can say that there exist an optimal number of cooperating SUs for

differentK and different SNRs, subject to minimization ofPTOT .

VI. SIMULATIONS AND DISCUSSIONS

In this section, simulation results are presented to evaluate the proposed CCSS scheme. The parameters used

in the simulations are:K = 5, and 10, N = 20 and number of Monte Carlo iterations= 10, 000. Independent,

frequency-flat, Nakagami-m fading with m = 1 and 2, and σ2
wk

=σ2
nk

= 1, are considered. In the following, ED

threshold (τk) at SUk, ∀k, are obtained from (11), to maintain a target local probability of false alarmpfk=0.03.
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Fig. 9. ROC curves over Nakagami-1 fading for different means of
{

ρ̄sf
}

≈ 2 dB, 7 dB with fixed mean of{ρ̄ps} ≈ 4 dB, K =10, and

pf =0.03.

However, eachSUk has different probabilities of detection (pdk
) based on the different valuse ofm (e.g. (18), (20)

for m = 1, 2, respectively). The system-level performance is quantified by the ROC. The average SNRs of sensing

and reporting channels are defined asρ̄
(m)
psk (dB)=10log10

mσ2
zk

σ2
wk

and ρ̄(m)
sfk

(dB)=10log10
mσ2

vk

σ2
nk

, ∀k, respectively.

Fig. 8 describes the ROC curves at different LRT threshold levels, for different fusion statistics of the CCSS. It

is assumed that,
{

ρ̄psk
}K

k=1
≈{−4,−2, 0, 2, 3, 5, 10, 8, 7, 11} dB and

{

ρ̄sfk

}K

k=1
≈{−5,−3,−1, 0, 2, 4, 7, 12, 10, 14}

dB, m= 1, 2, andK=10. It can be seen from Fig. 8 that the performance of the LRT based proposed fusion rule

is better than the two suboptimal schemes, e.g. EGC and MRC [16], whenm = 1. Fig. 8 also depicts that the ROC

curve improves asm increases for all channels, since the effect of fading decreases.

A more practical heterogeneous scenario with 10 SUs is also considered in Fig. 8. It is assumed that in the first

six PU-SU-FC channels,m = 1 and for the rest four channels,m = 2. It is shown that ROC performance improves

for the heterogeneous case, when compared with that ofm = 1, because of the SU’s spatial diversity (i.e. different

fading severity parameters).

Fig. 9 represents the ROC curves at FC of the LRT based proposed fusion rule, withm = 1, K = 10, and
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{

ρ̄sf
}

≈10 dB and that of{ρ̄ps} varies from−20 dB to 30

dB. K=10, N=20, pf = 0.03, andPF =0.02.

pf = 0.03. We consider single set of average SNRs for PU-SU links as
{

ρ̄psk
}K

k=1
≈{−4,−2, 0, 2, 3, 5, 10, 8, 7, 11}

dB, where the mean of all the average channel SNRs for the PU-SU links is≈ 4 dB. However, the two sets (low and

high) of average SNRs for SU-FC links have been considered as
{

ρ̄sfk1

}K

k=1
≈{−10,−5,−2,−1, 0, 3, 5, 7, 10, 12}

dB and
{

ρ̄sfk2

}K

k=1
≈ {−3,−1, 0, 4, 6, 8, 10, 12, 14, 20} dB. Here, the means of all the average channel SNRs for

SU-FC links are≈ 2 dB and7 dB, respectively. The system-level analytical results andMonte Carlo simulations

are obtained from (34)-(35) and (31), respectively. As expected, ROC performance increases as average SNRs of

SU-FC channels increase.

For better clarity, in Fig. 10, the local and system-level probabilities of detection are plotted as a function of the

mean of the average SNRs of all the PU-SU channels. The cases of m=1, 2 with K=10, pf =0.03, andPF =0.02,

are considered. Here, SU-FC channels have mean of all the average SNRs≈10 dB and that for PU-SU links are

varying from−20 dB to 30 dB. Note that there are significant variations for average PU-SU channel SNRs. In

Fig. 10, the performances of both cooperative and non-cooperative sensing schemes are presented for differentm

values. It shows that cooperation among SUs significantly improves the probability of detection compared to the

non-cooperative case, over a wide range of SNR. It is also observed that form=1, the coopeative scheme achieves

0.95 probability of detection at5 dB of SNR, whereas non-cooperative sensing reaches to the same at higher SNR

(17 dB). Fig. 10 also shows that the probability of detection increases significantly for all SNRs, asm increases

from 1 to 2, in both the cases.

Fig. 11 plots ROC curves obtained from (34)-(35) for different values ofK=5, 10 andm=1, 2 with pf =0.03.

The case of{ρ̄ps}≈{−4,−2, 0, 2, 3, 5, 10, 8, 7, 11} dB and{ρ̄sf}≈{1, 3, 5, 8, 9, 10, 13, 15, 17, 9, } dB are considered.

Here, the mean of the SNRs for PU-SU and SU-FC channels are4 dB and9 dB, respectively. ForK=5, SNRs

are drawn from index 3 to 7 of the above sets (to maintain the same mean for bothK). It shows that detection

performance increases significantly as the number of cooperating users increases from 5 to 10 form = 1 and 2

both. The reason is the accumulation of information from more number of SUs.
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VII. C OMPLEXITY ANALYSIS AND ADVANTAGE OF NFG-SPA BASED APPROACH FOR THESENSING PROBLEM

The usefulness of the NFG-SPA based approach to cooperativespectrum sensing problem can be analyzed via

the computational cost to find the marginal likelihoods. A function may be factorized in several ways, resulting in

respective FGs. As long as the graphs are acyclic, the same marginals will be computed. The physical meaning

of acyclic is that all PU-SU-FC channels are statistically independent. However, in correlated cases it may lead to

more complex SPA, due to the presence of cycles in the graph [25].

The complexity of an algorithm is usually measured in terms of its performance as a function of the size of the

input. Here, it depends on the number of functions (nodes) and variables (edges) [26]. Let us consider a function with

M variables that may be factorized (acyclic) inF factors. We assume that each variable is defined over the same

X discrete-sampled values from a continuous domain or domainX for discrete RVs. The function is represented

by an NFG ofF nodes. Suppose, amongF nodes,d1 have degree 1,d2 have degree 2,...,dD have degreeD,

whereD is the maximum degree of a node in the graph. For simplicity, we assume that 1 CPU cycle is required for

computing message at any node and that time is negligible at any edge. Then the total complexity (in CPU cycles)

in the graphical method can be written as [26],CFG=
∑D

i=1 idi|X|i, where|X| is the cardinality of the domain

of RVs. Following the conventional (explicit) method, it isrequired to integrate out all other variables which has

a complexity equal toCCN =M |X|M . Thus, the NFG-SPA based approach (O(|X|D)) is computationally more

efficient than the explicit method (O(|X|M ). In generalD << M , henceCFG<<CCN .

Example: Consider the graph of Fig. 6 withK=1, i.e. the case ofM = 6 and assume|X|=2. Therefore, the total

complexity to find the marginals using the graphical method is

CFG= [1×2×21+2×1×22+3×2×23] = 60 cycles. (43)

In comparison, the complexity in the numerical method is

CCN = 6× 26 = 384 cycles. (44)

It is interesting to note that NFG is computationally more efficient by 384
60 ≈6.4 times than the conventional method.
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Fig. 12. Computation complexity vs. number of RVs involved in computations over Nakagami-1 faded PU-SU and SU-FC channels.

To understand the advantage of the factor graph for the distributed detection problem addressed in this paper, Fig.

12 plots the computation complexity as a function of the number of RVs involved. The desired likelihoodP (yk|Hi)

is obtained by marginalizingP (zk, tk, uk, vk, yk|Hi) in (23). Each variable of interest of the function is defined

over the sameX discrete-sampled values from a continuous domain (i.e. uniformly quantized withQ= |X|= 4

levels). We consider two cases as|X|=2, and |X|=4 for K =10. From the previous discussions and Fig. 6, in

this caseM = 4, D = 2. The total complexities to find likelihoods in both conventional ((23)) and graphical ((24))

methods are computed as

C
2
FG=

D
∑

i=1

idi|X|i=
[

1×2×21+2×3×22
]

×10=280 cycles

C
2
CN =M |X|M =

[

4× 24
]

× 10=640 cycles















,

for |X|=2, and

C
4
FG=

D
∑

i=1

idi|X|i=
[

1×2×41+2×3×42
]

×10=1040 cycles

C
4
CN =M |X|M =

[

4× 44
]

× 10=10240 cycles















,

for |X| = 4, respectively. Fig. 12 shows that the complexity monotonically increases with the number of RVs

involved (i.e. as the system becomes more complex) in both methods. It also shows that complexity increases as the

quantization levelQ increases. However, it is interesting to note that the rate of increment in NFG-SPA setting is

considerably less than that of the explicit method. It implies that NFG-SPA setting is computationally more efficient

(e.g. 640
280 ≈2.4 times for |X|=2) than the conventional method (for acyclic FG). Therefore,we can state that for

a large network and higher quantization level, graphical method is more effective from an implementation point

of view, even for statistically independent channels. Moreover, collaborative spectrum sensing is very effective,

when collaborating CRs observe independent fading [5], which results in acyclic FG. Hence, NFG-SPA settings are

suitable from implementation perspective.
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VIII. C ONCLUSIONS

In this paper the problem of centralized cooperative spectrum sensing over Nakagami-m fading in a CRN, was

addressed. We have presented a new fusion rule based on LRT, which requires only the statistical characteristics of

the wireless channels between PU-SU-FC. It was compared with other suboptimal rules e.g. EGC, MRC and better

performance has been observed. Furthermore, we derived a novel expression for the local probability of detection

for ED over Nakagami-m fading. It is shown that the proposed models perform better,over a wide range of SNR

for different values ofm, compared to the approximate complex signal representations. Closed-form solutions for

the system-level probabilities of detection (PD) and false alarm (PF ) were derived. Furthermore, an expression

for the optimal number of cooperative SUs, needed to minimize the total error rate, is also obtained. It leads to a

fast spectrum sensing algorithm, by considering only the optimal number (lopt) of cooperative SUs instead of the

total one. Furthermore, decision fusion based on SPA over representative factor graphs was used. It was shown that

a considerable amount of gain in computational complexity can be achieved through NFG-SPA settings, even if

PU-SU-FC channels are assumed to be statistically independent. More complex channel conditions, e.g. correlated

PU-SU-FC channels, and design of fusion rules for soft decisions can be investigated as future works.

APPENDIX A

MESSAGEPASSING ONFACTOR GRAPH OFFIG. 6

(i)Myk→P (yk|uk) = 1 ; (ii)MP (vk)→vk
= P (vk)

(iii)Mvk→P (yk|uk,vk) = P (vk); (v)Muk→P (uk|tk)=P (yk|uk)

(iv)MP (yk|uk,vk)→uk
=

∫

vk

P (yk|uk, vk)P (vk) dvk = P (yk|uk)

(vi)MP (uk|tk)→tk
=P (yk| − 1)I(tk<τk)+P (yk|1)I(tk>τk)

(vii)Mtk→P (tk|Hi,zk)=P (yk| − 1)I(tk<τk)+P (yk|1)I(tk>τk)

(viii)MP (zk)→zk
= P (zk)

(ix)Mzk→P (tk|Hi,zk) = P (zk) and (x)MHi→P (tk|Hi,zk) = 1

(xi)MP (tk|Hi,zk)→Hi
=

∫

tk

∫

zk

P (tk|Hi, zk)dzkdtk × (ix)× (vii)

=

∫

tk

∫

zk

P (zk)P (tk|Hi, zk) [P (yk|uk = −1)I(tk < τk)

+ P (yk|uk = 1)I(tk > τk)] dzkdtk (45)

APPENDIX B

STEPS FROM(14) TO (15)

Integrating (14) using Laguerre polynomials [43, (6.9.2.36)], [42], thecdf of tk is obtained as

FNak(tk|H1)= M

∞
∑

i=0

(αpsk)
i(m)i

i! (N + i)!
γ

(

N+1+i,
τk

2σ2
wk

)

(46)
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In (46), (G)i =
Γ(G+i)
Γ(G) for i=0, 1, 2, ..∞ is the Pochhammer symbol [41]. Using [41, (6.5.12)] in (46) and then

[41, (13.1.2)], we get

FNak(tk|H1)=

M

∞
∑

i=0

(αpsk)
i(m)i

i! (N + i)!
×

(

τk
2σ2

wk

)(N+1+i)

1F1

(

1;N+1+i+1; τk
2σ2

wk

)

(N + 1 + i) e

τk
2σ2

wk

=

M

(

τk
2σ2

wk

)(N+1)

N ! e

τk
2σ2

wk

Φ2

(

m, 1;N+1;
αpskτk

2σ2
wk

,
τk

2σ2
wk

)

. (47)

whereM=

(

m

m+ρ̄
(m)
psk

)m

and (a)! (a+1)j=N ! (N + 1)i+j , whena = N + 1 + i.

APPENDIX C

DERIVATION OF EQ. (16)

For m=1, using the values of1F1

(

3
2 ,

3
2 , a

)

, 1F1

(

1, 1
2 , a

)

, Γ
(

3
2

)

[41] , and after some algebra, (13) may be

simplified as (without loss of generality, indexk is dropped from variablesA,B,D)

P
(1)

|xk|
(a|H1)=

σwk
e
− a2

2σ2
wk

Aw

√
2π

[

ae
a2Dw

√
πDwQ

(

− σzka

σwk

√
Aw

)

+1

]

=
σwk

Aw

√
2π

e
− a2

2σ2
wk +

σwk
Bwa

Aw

e
− a2

2Aw Q (−Bwa) . (48)

Similarly, for m=2, using the values ofΓ
(

5
2

)

, 1F1

(

5
2 ,

3
2 , a

)

, and1F1

(

2, 1
2 , a

)

[41] , and after some algebra, (13)

becomes

P
(2)

|xk|
(a|H1)

=
σ3
wBwa

2Aw
2







aBwe
− a2

2σ2
wk√

2π
+
(

2+B
2
wa

2)
e
− a2

2Aw Q (−Bwa)






, (49)

whereBw=
σzk

σwk

√
Aw

andAw=
(

σ2
zk

+ σ2
wk

)

.

APPENDIX D

DERIVATION OF EQ. (20)

As γ (N, a)=N−1aNe−a
1F1 (1;N + 1; a) [41, (6.5.12)], and using [41, (13.4.3), (6.5.12)], we can write

1F1 (2;N + 1; a)=(1−N)1F1 (1;N + 1; a)+N1F1 (1;N ; a)

=
N(N − 1)

aN
e
a {aγ (N − 1, a)−γ (N, a)} . (50)

Therefore, (19) can be simplified as

P(m=2)(tk|H1)=

(1−αpsk)
2
e
−
(1−αpsk)tk

2σ2
wk

2σ2
wk

Γ(N − 1) (αpsk)
N

[

αpsk tk

2σ2
wk

γ

(

N−1,
tkαpsk

2σ2
wk

)

−γ

(

N,
tkαpsk

2σ2
wk

)]

. (51)

Itegrating (51) overtk by parts, then, using
∫

γ (N, a) da=aγ (N, a)+Γ (N + 1, a) and [45, (1.2.2.1)] we get the

local probability of detection form = 2 in (20).
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APPENDIX E

DERIVATION OF EQ. (35)

Consider, for all SUspdk
’s andpfk ’s are same i.e.pdk

=pd andpfk =pf ∀k. As uk∈{−1, 1}, P (yk|uk) follows

(13). Thus, form= 1 P (yk|uk) follows (16), by replacingxk, σ
2
zk

and σ2
wk

with yk, σ
2
vk

and σ2
nk

, respectively.

Then,

P (yk|uk)=
σnk

e
−

yk
2

2σ2
nk

An

√
2π

+
ukσnk

Bnyk

An

e
−

yk
2

2An Q(−ukBnyk). (52)

Therefore, likelihood underH1 is written as

P(m=1)(yk|H1)= P (yk|uk = −1)(1− pd) + P (yk|uk = 1)pd

=
σnk

An

√
2π



e
−

yk
2

2σ2
nk +{pd−Q(Bnyk)}

√
2πBnyke

−
yk

2

2An



 , (53)

whereAn=
(

σ2
vk
+σ2

nk

)

andBn=
σvk

σnk

√
An

. We further compute

p1=P (yk ≥ 0|H1)=

∫ ∞

0

P (yk|H1) dyk

=
σnk

An

√
2π

[
√

π

2
σnk

+pd
√
2πBnAn−

√
2πBn

2

(

An − σvk

√
An

)

]

=
1

2
+
(p

(m=1)
d − 1

2
)σvk

√

σ2
vk

+σ2
nk

. (54)

For m = 1, by replacingpd with pf in (53) and (54) we getP(m=1)(yk|H0) andp0, respectively as

p0 = P (yk ≥ 0|H0) =
1

2
+
(pf − 1

2
)σvk

√

σ2
vk

+σ2
nk

. (55)

Similarly, for m=2, P (yk|uk) follows (49). Thus, we get

P (yk|uk) =
σ3
nk

Bnyk

2A2
n

×





Bnyk√
2π

e
−

yk
2

2σ2
nk +uk

(

2 +B
2
ny

2
k

)

e
−

yk
2

2An Q (−ukBnyk)



 , (56)

and the likelihood underH1 as

P(m=2)(yk|H1) =
σ3
nBnyk

2
√
2πA2

n

×



Bnyke
−

y2
k

2σ2
nk+{pdk−Q(Bnyk)}

√
2π
(

2+B
2
ny

2
k

)

e
−

y2
k

2An



 . (57)

Then,p1 is computed from (57), using [45, (1.5.3.1,8)], as

p1=
σ2
vk

(

σ2
vk

+σ2
nk

)2

(

σ2
vk

2σnk

+ σnk

)

+
(p

(m=2)
d − 1

2
)σvk

σnk

√

σ2
vk

+σ2
nk

. (58)

Similarly, for m = 2, by replacingpd with pf in (57) and (58), we getP(m=2)(yk|H0) andp0, respectively.
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L(yK
1 )=

K
∏

k=1

(

1− p
(m= 1

2
)

dk

)[

1−
√

σ2
nk

2
erf

(

yk
√

2σ4
nk

(1+2ρ̄sfk
)

)]

+p
(m= 1

2
)

dk

[

1+

√

σ2
nk

2
erf

(

yk
√

2σ4
nk

(1+2ρ̄sfk
)

)]

(1− pfk )

[

1−
√

σ2
nk

2
erf

(

yk
√

2σ4
nk

(1+2ρ̄sfk
)

)]

+ pfk

[

1+

√

σ2
nk

2
erf

(

yk
√

2σ4
nk

(1+2ρ̄sfk
)

)] . (62)

APPENDIX F

DERIVATION OF p
(m= 1

2 )

dk
AND THE LR FORm = 1

2 .

As discussed earlier,E[|zk|2]=2mσ2
zk

andE[|vk|2]=2mσ2
vk

. Settingm = 1
2 in (14), we get

P(m= 1
2
)(tk|H1)=

tk
Ne

−
tk

2σ2
wk

(

1
2

1
2
+ρ̄

( 1
2
)

psk

) 1
2

(N)!
(

2σ2
wk

)N+1

×1F1

(

1

2
, N + 1, tkDwk

)

, (59)

whereρ̄
( 1
2 )

psk =
σ2
zk

2σ2
wk

is the average SNR ofPU − SUk link. Now, integrating (59) overtk and using [41, (6.5.12)],

the probability of detection form = 1
2 may be computed as

p
(m= 1

2
)

dk
=1−(2Aw)

N
γ
(

N,
τk

2Aw

)

Γ(N)
. (60)

As, uk∈{−1, 1}, P (yk|uk) is obtained by replacingxk, σ2
wk

, andσ2
zk

with yk, σ2
nk

, andσ2
vk

, respectively in (13)

as

P (yk|uk) =
1

√

2πσ2
nk

(

σ2
nk

σ2
vk

+ σ2
nk

) 1
2

e
−

yk
2

2(σ2
vk

+σ2
nk

)

[

1 +

√

σ2
nk

2
erf

(

ykuk
√

2σ2
nk

(σ2
vk

+ σ2
nk

)

)]

, (61)

whereAn=(σ2
vk

+ σ2
nk
)=σ2

nk
(1+ 2ρ̄

( 1
2 )

sfk
) and average SNR ofSUk −FC link is defined as̄ρ

(m=1
2 )

sfk
=

σ2
vk

2σ2
nk

. Now,

LRT statistic may be written as (62). For bothm= 1
2 and 2, LRT thresholds (λ) are obtained by (numerically)

solving
∫∞
λ

P (L|H0) dL=PF , for given probabilities of false alarm.

APPENDIX G

DERIVATION OF EQ. (21) AND EQ. (22)

Case-I: 1
2 ≤ m < 1: In this case, the complex Nakagami-m envelope are expressed as Hoyt approximation

[46, (61)]. The real and imaginary parts areN
(

0,
Ωzk

(1+b)

2

)

andN
(

0,
Ωzk

(1−b)

2

)

, respectively, whereb=
√

1−m
m

.

Therefore,zk(n) ∼ CN
(

0,
Ωzk

(1+b)

2
+

Ωzk
(1−b)

2

)

. Now, aswk(n) ∼ CN
(

0, 2σ2
wk

)

, we may write

xk(n) ∼ CN
(

0,
(

Ωzk
(1+b)

2
+

Ωzk
(1−b)

2
+ 2σ2

wk

))

. The test statistictk is the sum ofN squares ofi.i.d. N
(

0,
[

Ωzk
(1+b)

2
+σ2

wk

])

and anotherN squares ofi.i.d. N
(

0,
[

Ωzk
(1−b)

2
+σ2

wk

])

real Gaussian RVs with each having zero mean. Thus, the

pdf of tk underH1 is the sum of two central Chi-square distributions with eachhavingN degrees of freedom

(DOF) and written asP( 1
2≤m<1)(tk|H1)=

tk
N
2
−1e

−
tk

(

Ωzk
(1+b)+2σ2

wk

)

Γ
(

N
2

)(

Ωzk (1 + b) + 2σ2
wk

)N
2

+
tk

N
2
−1e

−
tk

(

Ωzk
(1−b)+2σ2

wk

)

Γ
(

N
2

)(

Ωzk (1− b) + 2σ2
wk

)N
2

. (63)
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Hence, for12 ≤ m < 1, the corresponding probability of detection at eachSUk is obtained by integrating (63) as

p
( 1
2
≤m<1)

dk
=1−

γ

(

N
2
,

τk
(

Ωzk
(1+b)+2σ2

wk

)

)

Γ
(

N
2

) −
γ

(

N
2
,

τk
(

Ωzk
(1−b)+2σ2

wk

)

)

Γ
(

N
2

) . (64)

Case-II: m = 1: This is the case of Rayleigh distribution wherezk(n) ∼ CN
(

0, 2σ2
zk

)

[28]. Then, the signal is

written asxk(n) ∼ CN
(

0, 2
(

σ2
zk

+ σ2
wk

))

. Therefore, thepdf of test statistictk underH1 follows central Chi-square

distribution with2N DOF. The probability of detection atSUk is computed by integratingP(m=1)(tk|H1) as [19]

p
(m=1)
dk

=1−
γ

(

N,
τk

2
(

σ2
zk

+σ2
wk

)

)

Γ (N)
. (65)

Case-III: m > 1: In this case, the complex Nakagami-m envelope are expressed as Rician approximation [46,

(59)]. Here, the real and imaginary parts areN
(

µIzk
,
Ωsk

2

)

andN
(

µQzk
,
Ωsk

2

)

distributed, respectively. Therefore,

zk(n) ∼ CN
(

µIzk
+jµQzk

,Ωsk

)

. Now, aswk(n) ∼ CN
(

0, 2σ2
wk

)

, we may writexk(n) ∼ CN
(

µIzk
+ jµQzk

,
(

Ωsk + 2σ2
wk

)

)

.

Then, the test statistic (tk) is a sum of2N squares of independent and non-identically ditributed Gaussian RVs with

each having non-zero mean. Therefore, thepdf of tk underH1 follows non-central Chi-square distribution with

2N degrees of freedom and non-centrality parameterµzk =
∑N

n=1

[

µ2
Izk

(

Ωsk
2

+σ2
wk

) +
µ2
Qzk

(

Ωsk
2

+σ2
wk

)

]

=
2Nρ̄psk

√

m−1
m

ρ̄psk

(

1−
√

m−1
m

)

+1
.

With help of [41], it may be written as

P(m>1)(tk|H1)=

(

2tk
Ωxk

)
N−1

2

(Ωxk
)
N−1

2 e
1
2

(

2tk
Ωxk

+µzk

) IN−1

(√

µzk2tk
Ωxk

)

, (66)

where0≤ tk ≤∞, Ωxk
=Ωsk + 2σ2

wk
, andIν(.) is the modified Bessel function of the first kind of orderν. The

probability of detection atSUk is given as [28, (2.13)]

p
(m>1)
dk

=QN

(

√
µzk ,

√

2τk
Ωsk + 2σ2

wk

)

. (67)
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