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Abstract—This paper studies physical-layer secure transmis-
sions from a transmitter to a legitimate receiver against an
eavesdropper over slow fading channels, taking into account
the impact of finite blocklength secrecy coding. A compre-
hensive analysis and optimization framework is established
to investigate secrecy throughput for both single- and multi-
antenna transmitter scenarios. Both adaptive and non-adaptive
design schemes are devised, in which the secrecy throughput
is maximized by exploiting the instantaneous and statistical
channel state information of the legitimate receiver, respectively.
Specifically, optimal transmission policy, blocklength, and code
rates are jointly designed to maximize the secrecy throughput.
Additionally, null-space artificial noise is employed to improve
the secrecy throughput for the multi-antenna setup with the
optimal power allocation derived. Various important insights are
developed. In particular, 1) increasing blocklength benefits both
reliability and secrecy under the proposed transmission policy;
2) secrecy throughput monotonically increases with blocklength;
3) secrecy throughput initially increases but then decreases as
secrecy rate increases, and the optimal secrecy rate maximizing
the secrecy throughput should be carefully chosen in order to
strike a good balance between rate and decoding correctness.
Numerical results are eventually presented to verify theoretical
findings.

Index Terms—Physical-layer security, wiretap code, secrecy
throughput, finite blocklength, optimization.

I. INTRODUCTION

In the past decade, pursuing communication security at the

physical layer has received a considerable interest, e.g., [1]-

[7]. In particular, physical-layer security exploits the inherent

randomness of noise and wireless channels to protect wireless

secure transmissions [8]-[12], which can provide an additional

mechanism for security guarantee and can coexist with those

security techniques already employed at the upper layers,

such as key-based encipherment. Most recent progress in

developing physical-layer security is motivated by Wyner’s

pioneering work. Specifically, the concept of secrecy capacity

was first established which is defined as the supremum of
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secrecy rates at which both reliability and secrecy are achieved

over a wiretap channel [13]. Wyner showed that the error

probability and information leakage can be made arbitrarily

low concurrently with an appropriate secrecy coding, provided

that a data rate below the secrecy capacity is chosen and mean-

while the data is mapped to asymptotically long codewords,

i.e., the coding blocklength tends to infinity. However, the

upcoming 5G wireless communication systems are required

to support various novel traffic types adopting short packets

to reduce the end-to-end communication latency, e.g., smart-

traffic safety and machine-to-machine communications [14],

[15]. For the short-packet applications, conventional physical-

layer security schemes originated from infinite blocklength

are generally suboptimal and the impact of finite blocklength

could be destructive for secure communications. Therefore, it

is necessary to rethink the analysis and design of physical-

layer security for the finite blocklength regime.

A. Previous Works and Motivations

Decoding with finite blocklength will inevitably reduce the

secrecy capacity and some preliminary works have been de-

voted to analyzing the impact of finite blocklength on secrecy

for the wiretap channel. For example, the authors in [16]

derived an upper bound for the information leakage probability

for a given target decoding error probability demonstrating the

inherent trade-off between secrecy and reliability. The authors

in [17] provided both upper and lower bounds for the maximal

secrecy rate capturing the impact of finite blocklength, error

probability, and information leakage in both degraded discrete-

memoryless wiretap channels and Gaussian wiretap channels.

The obtained bounds were shown to be tighter than existing

ones from [18], [19]. The work in [17] was further extended by

[20], in which the optimal second-order secrecy rate was de-

rived for a semi-deterministic wiretap channel, and the optimal

tradeoff between secrecy and reliability with finite blocklength

was analytically characterized. It should be noted that, all

the above works were aimed to uncover the fundamental

limits of secrecy performance from the information theory

point of view, whereas the design of practical signaling and

transmission schemes were not investigated.

In practice, due to finite blocklength penalty for practi-

cal coding schemes, even a secrecy rate below the secrecy

capacity cannot guarantee a perfectly successful and secure

communication. In this sense, in addition to exploring and/or

improving the fundamental limits of the maximal secrecy rate,

optimizing secrecy throughput seems more important from the

http://arxiv.org/abs/2002.03106v1
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perspective of transmission efficiency, particularly for fading

channels where the code rates can be adapted to the fading

status. Herein, the secrecy throughput denotes the amount of

successfully delivered secret information subject to certain re-

liability and secrecy constraints. In fact, the secrecy throughput

has extensively been taken as an optimization objective for

the design of secure transmissions in slow fading channels in

the context of infinite blocklength [21]-[25]. Nevertheless, to

optimize the secrecy throughput under the constraint of finite

blocklength is difficult, and the results derived for infinite

blocklength, e.g., [21]-[25], cannot be directly applied. Indeed,

the blocklength itself is an optimization variable, and it couples

with other variables in a sophisticated manner which makes

the optimization problem intractable. For instance, the authors

in a recent work [26] investigated the secrecy throughput of a

relay-aided secure transmission with finite blocklength, where

neither the instantaneous channel state information (CSI) with

respect to (w.r.t.) the legitimate receiver nor the eavesdropper

is available at the transmitter side. Numerical results were

presented therein to show that there exists a critical value of

the blocklength that maximizes the secrecy throughput.

Despite the above endeavors, there are some fundamen-

tal questions regarding the design of physical-layer security

schemes with finite blocklength that have not been thoroughly

addressed. First of all, a theoretical proof of the optimal block-

length and the corresponding secrecy rate for maximizing the

secrecy throughput is of great significance for the practical de-

sign of secure transmissions, which however has not yet been

reported by existing literature. Also, in many applications,

the transmitter is capable to acquire the instantaneous CSI

of the legitimate receiver in slow fading channels via training

or feedback. Yet, the potential of exploiting the instantaneous

CSI to alleviate the negative impact of finite blocklength on the

performance of secure communications has not been exploited.

Furthermore, only the single-antenna transmitter scenario has

been considered, e.g., [16]-[20], [26], and the design of the

optimal signaling and code rates for multi-antenna systems

with finite blocklength is still an open issue. This research

work aims to provide an analytical framework and design

schemes to address the abovementioned problems.

B. Contributions

This paper investigates the security issue between a pair

of legitimate communicating parties in the presence of an

eavesdropper, considering the impact of finite blocklength in

secrecy coding. The secrecy throughput is thoroughly analyzed

and optimized for both single- and multi-antenna transmitter

scenarios. In particular, both adaptive and non-adaptive param-

eter design schemes are proposed for each scenario. The main

contributions of this work are summarized as follows:

• For the single-antenna transmitter scenario, the secrecy

throughput is maximized by jointly optimizing the trans-

mission policy, blocklength, as well as code rates. Closed-

form bounds and approximations for the secrecy rate are

provided to facilitate the practical design of code rates

for achieving a close-to-optimal performance.

• For the multi-antenna transmitter configuration, the op-

timality of the null-space artificial noise (AN) scheme

in terms of secrecy throughput maximization is first

investigated. Afterwards, the optimal transmission policy,

blocklength, code rates, and power allocation between

the information-bearing signal and the AN are derived.

Particularly, the power allocation and the secrecy rate

are designed via the alternating optimization method,

and their impacts on the system performance are further

revealed.

• Numerous useful insights into the design of secure

transmissions are provided with finite blocklength. For

example, 1) increasing the blocklength can improve both

reliability and secrecy, with properly exploiting the in-

stantaneous CSI of the main channel and the statistical

CSI of the wiretap channel, which has not been revealed

by existing literature, e.g., [16]-[20]; 2) using the max-

imal blocklength is profitable for boosting the secrecy

throughput, which is distinguished from the observation

in [26]; 3) due to the finite blocklength penalty, there

is a critical secrecy rate that can maximize the secrecy

throughput even for the adaptive scheme, rather than

always employing the maximal available secrecy rate,

which is fundamentally different from the phenomenon

with infinite blocklength, e.g., [21], [22].

C. Organization and Notations

The remainder of this paper is organized as below. Section II

describes the system model and the underlying optimization

problem. Sections III and IV detail the secrecy throughput

maximization for both single- and multi-antenna transmitter

scenarios. Section V draws a conclusion.

Notations: Bold lowercase letters denote column vectors.

| · |, ‖ · ‖, (·)†, (·)T, ln(·), P{·}, Ev[·] denote the absolute

value, Euclidean norm, conjugate, transpose, natural loga-

rithm, probability, and the expectation over a random variable

v, respectively. fv(·) and Fv(·) denote the probability density

function (PDF) and cumulative distribution function (CDF)

of v, respectively. F−1(·) denotes the inverse function of a

function F (·). CN (µ, σ2) denotes the circularly symmetric

complex Gaussian distribution with mean µ and variance σ2.

II. SYSTEM MODEL AND PROBLEM DESCRIPTION

A. Channel Model

Consider a secure transmission from a transmitter (Alice)

to a legitimate receiver (Bob) coexisting with an eavesdrop-

per (Eve), as depicted in Fig. 1. Alice is equipped with

M ≥ 1 transmit antennas, whereas Bob and Eve are single-

antenna devices. Quasi-static Rayleigh fading channels are

considered, where the channel coherence time is on the order

of the blocklength. More specifically, the fading coefficients

are assumed to remain constant during the transmission of

an entire codeword, but change independently and randomly

between two codewords [1]. Denote the coefficients of the

main and wiretap channels by hb and he, and each entry of

hb and he follow the Gaussian distribution CN (0, σ2
b ) and

CN (0, σ2
e), respectively.1 A common hypothesis is adopted

1The subscripts b and e are used to refer to Bob and Eve, respectively.



3

1

2

...

2
nRs

X
n
(1,1)

X
n
(1,2)

...

X
n
(1,2

nRe
)

Messages

Bin of codewords 

for message 1

Random 

selection of 

codeword for 

message 1

Alice

Bob

Eve

Wiretap code with binning structure Secure transmission

1

2

...

2
nRs

X
n
(1,1)

X
n
(1,2)

...

X
n
(1,2

nRe
)

Messages

Bin of codewords 

for message 1

Random 

selection of 

codeword for 

message 1

Alice

Bob

Eve

Wiretap code with binning structure Secure transmission

Fig. 1: Secure transmission from Alice (multi-antenna) to Bob (single-antenna)
overheard by Eve (single-antenna). Alice adopts a wiretap code with a
binning structure, where 2nRs messages each are mapped to a bin of 2nRe

codewords with a finite blocklength n. A codeword among a set of codewords
representing the same message is randomly chosen for transmission [13].

[21], [22], i.e., Bob and Eve know perfectly the instantaneous

CSI of their individual channels hb and he, and Alice has the

instantaneous CSI of Bob’s channel hb but does not has the

instantaneous CSI of Eve’s channel he. Besides, the statistics

of both channels hb and he are available at Alice. Assume

that hb, he, and the receiver noise are mutually independent,

where noise variances at Bob and Eve are denoted by w2
b and

w2
e , respectively. Alice adopts a constant transmit power P .

For notational simplicity, define Pb ,
P
w2

b
and Pe ,

P
w2

e
as the

normalized power for Bob and Eve, respectively.

B. Finite Blocklength Secrecy Coding

To safeguard information confidentiality, secrecy coding

should be employed to encode the secret information bits.

Instead of investigating any explicit practical constructions of

secrecy codes, the Wyner’s wiretap code [13], as a generic

code structure, is employed in this paper. A synopsis of the

state-of-the-art coding schemes for wiretap channels can be

found in [27].

It is reported in [1] that the Wyner’s wiretap code possesses

a binning structure, as illustrated in Fig. 1, where 2nRs

messages are encoded to 2nRt codewords, and each message

is mapped to a bin of 2nRe codewords. Here, n denotes

the blocklength (i.e., the codeword length or the number

of channel uses), Rs and Rt (bits/s/Hz/channel) denote the

secrecy rate and codeword rate, respectively. The binning

codeword rate, i.e., the rate redundancyRe = Rt−Rs, reflects

the cost of providing secrecy.

It is well-known that, for an infinite blocklength with

n → ∞, as long as the codeword rate Rt is not larger

than Bob’s channel capacity, Bob can recover messages with

an arbitrarily low decoding error probability. On the other

hand, perfect secrecy cannot always be guaranteed due to the

absence of Eve’s instantaneous CSI: once the rate redundancy

Re falls below Eve’s channel capacity, perfect secrecy is

compromised, and a secrecy outage event is said to have

occurred. Nevertheless, in the finite blocklength regime which

is restricted to a finite number of channel uses, no practical

protocols can achieve perfectly reliable communications [28].

Hence, to capture the impact of finite blocklength, the maximal

channel coding rate for sustaining a desired decoding error

probability ǫ at a finite blocklength n (e.g., n ≥ 100) for a

given signal-to-noise ratio (SNR) γ was studied in [29] and

can be approximated by

R(γ, n, ǫ) ≈ C(γ)−
√

V (γ)

n
Q−1(ǫ), (1)

where C(γ) , log2(1 + γ) denotes the Shannon channel

capacity, V (γ) ,
(

1− (1 + γ)−2
)

log22 e denotes the chan-

nel dispersion [29], and Q(x) is the Q-function defined as

Q(x) , 1√
2π

∫∞
x
e−

t2

2 dt. Equivalently, the decoding error

probability for a given coding rate R can be expressed as

ǫ(γ, n,R) = Q

(

C(γ)−R
√

V (γ)/n

)

. (2)

For ease of notation, let Ci , C(γi) and Vi , V (γi) for i ∈
{b, e}, where γi denotes the corresponding SNR. Define the

successful decoding probability of Bob as the complement of

its decoding error probability with the codeword rate Rt. Then,

the successful decoding probability conditioned on the power

gain of the main channel, i.e., η , ‖hb‖2, can be expressed

as

ps(η) , 1− ǫ(γb, n, Rt) = 1−Q
(

Cb −Rt
√

Vb/n

)

. (3)

The secrecy performance is characterized by the information

leakage probability defined below:

Oe , Eγe [1− ǫ(γe, n, Re)] . (4)

Remark 1: Due to the finite blocklength, the secrecy metric

information leakage probability in (4) appears to be distin-

guished from the widely used secrecy outage probability,

defined as P{Re ≤ Ce} [22], for the infinite blocklength

regime with n→∞.

C. Optimization Problem

Since Alice knows Bob’s instantaneous CSI perfectly, she

is able to adapt the code rates to the instantaneous channel

gain η, which implies that the code rates can be functions of

η. This paper focuses on the metric named secrecy throughput

(bits/s/Hz/channel), which measures the average successfully

transmitted information bits per second per Hertz per channel

use subject to a secrecy constraint Oe ≤ δ, where δ ∈ [0, 1]
is a pre-established threshold for the information leakage

probability. Formally, the secrecy throughput is defined as

T , Eη [Rs(η)ps(η)] s.t. Oe ≤ δ, (5)

which is averaged over η. Note that the introduction of finite

blocklength leads to a different definition of secrecy through-

put compared to the case of infinite blocklength which is

T , Eη [Rs(η)] [21], [22]. In addition, as will be shown later,

in order to meet certain secrecy and reliability requirements

during the transmission period, an on-off transmission policy
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is required;2 i.e., the transmission should take place only when

the channel gain η exceeds some threshold µ > 0. With the

on-off policy, Rs(η) is set to zero for η < µ.

This paper aims to maximize the secrecy throughput by

designing the optimal on-off threshold, signaling, blocklength,

as well as code rates. The following two sections will detail

the optimization for single- and multi-antenna transmitter sce-

narios, respectively. For each scenario, both adaptive and non-

adaptive design schemes are examined, where Alice adjusts

the arguments based on the instantaneous and statistical CSI

of the main channel, respectively.

III. SINGLE-ANTENNA TRANSMITTER SCENARIO

For the single-antenna transmitter scenario, the SNRs of

Bob and Eve are given by γb = Pbη with η = |hb|2
and γe = Pe|he|2, respectively. Clearly, γi is exponentially

distributed with mean Γi = Piσ
2
i for i ∈ {b, e}. The

subsequent two subsections aim to maximize the secrecy

throughput T defined in (5) by jointly designing the on-off

threshold µ(η), the wiretap code rates Rs(η) and Re(η), and

the blocklength n(η), via adaptive and non-adaptive ways,

respectively. For notational convenience, these parameters are

treated as functions of η by default for the adaptive scheme,

with the notation η being dropped, and TA and TN are

used to differentiate the adaptive scheme to its non-adaptive

counterpart. The optimization problem then can be formulated

as below:

max
µ>0,Re>0,Rs>0,n

T = Eη [Rsps] (6a)

s.t. Cb ≥ Rt = Rs +Re, ∀η > µ, (6b)

Oe ≤ δ, (6c)

1 ≤ n ≤ N, n,N ∈ Z
+. (6d)

Note that (6b) is interpreted as a reliability requirement since

otherwise the successful decoding probability ps in (3) falls

below 0.5 and it is no better than random guessing, which is

definitely not acceptable; (6c) describes the secrecy constraint;

(6d) is related to a latency constraint, where the integer

N denotes the maximal available blocklength imposed by a

maximal tolerable delay.

A. Adaptive Optimization Scheme

In the adaptive scheme, the parameters µ, Rs, Re, and n
are designed based on η, i.e., they are adjusted in real time.

A detailed optimization procedure is provided as follows.

1) Solving Re: Since Q-function Q(x) is a monotonically

decreasing function of x, it is known that ps defined in (3)

decreases with Re for a fixed Rs. This suggests that, the

optimal Re maximizing TA should be the minimal Re that

satisfies the secrecy constraint Oe ≤ δ. Now that Oe in (4)

decreases with Re, the optimal Re is given as the inverse of

Oe at δ, i.e.:

R∗
e = O−1

e (δ). (7)

2The on-off policy was initially proposed for ergodic-fading channels
[30], where a codeword experiences many channel realizations. It was later
introduced to slow fading channels and well characterized the condition for
secure transmissions [21].

Obviously, R∗
e is independent of η, but monotonically de-

creases with δ. This is intuitive that a larger rate redundancy

is required to combat the eavesdropper in order to meet a

more rigorous secrecy constraint. Although it is difficult to

derive a closed-form expression for R∗
e due to the complicated

Q-function, the value of R∗
e can be efficiently acquired via

a bisection method with Oe(Re) = δ, requiring only the

computation of Q(x) or a lookup table.

2) Solving µ: The secrecy throughput TA given in (6a) can

be calculated as

TA =

∫ ∞

Pbµ

Rspsfγb
(γ)dγ, (8)

where fγb
(γ) = 1

Γb
e−γ/Γb is the PDF of γb = Pbη. It appears

that choosing µ as small as possible is beneficial for increasing

TA, on the premise of satisfying the reliability constraint (6b).

In addition, constraint (6b) suggests that Cb > R∗
e ⇒ η =

γb

Pb
> 2R

∗
e−1
Pb

must be ensured to achieve a positive Rs. Hence,

the optimal on-off threshold is given by

µ∗ =
2R

∗
e − 1

Pb
. (9)

This result indicates that the transmission condition for the

adaptive scheme is determined by the secrecy constraint.

Apparently, µ∗ is monotonically decreasing with δ since R∗
e

decreases with δ. This implies, a weaker channel is still

allowed for transmission for a looser secrecy constraint.

Once µ is obtained, to maximize TA in (8) only calls for

maximizing TA(η) , Rsps which is conditioned on η. The

subproblem is described as below:

max
Rs,n

TA(η) = Rsps s.t. (6d), 0 ≤ Rs ≤ Cb −R∗
e . (10)

The basic idea to tackle the above problem is first to maximize

ps over n for a fixed Rs and then to design the optimal Rs

that maximizes Rsps with the optimal n.

3) Solving n: For any fixed Rt ≤ Cb, there is no doubt that

ps increases with n. However, as shown in (4), ǫ(γe, n, Re)
decreases with n for Re ≤ Ce but increases with n otherwise.

Then, it remains unclear how Oe defined in (4), as well as R∗
e

in (7), varies with n. More importantly, it is less obvious if the

monotonicity of ps w.r.t. n can still hold, since Rt = Rs+R
∗
e

becomes independent of n. Therefore, in order to derive the

optimal n∗ maximizing TA(η) in (10), the monotonicity of Oe

or R∗
e w.r.t. n should be first identified.

Lemma 1: Oe in (4) and R∗
e in (7) decrease with n.

Proof 1: Please refer to Appendix A.

Lemma 1 shows that increasing the blocklength is beneficial

for decreasing the information leakage probability such that

the required rate redundancy of the wiretap code can be

lowered. This result is perhaps counter-intuitive, which makes

sense when one realizes that a larger blocklength will yield

a larger decoding error probability for Eve if Eve’s channel

capacity falls below the rate redundancy. With Lemma 1, the

monotonicity of TA(η) w.r.t. n is uncovered, followed by the

optimal n∗ that maximizes TA(η).
Theorem 1: TA(η) in (10) increases with n and is maximized

at n∗ = N .
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Proof 2: Please refer to Appendix B.

Theorem 1 reveals that exploiting a larger blocklength is

beneficial for improving the secrecy throughput under given

channel gains. This result is nontrivial in light of [26] where

there exists a critical value of the blocklength, instead of

the maximal one, that can achieve the maximal secrecy

throughput. The main reason behind the two different results

lies in that, Bob’s instantaneous CSI is available here and is

adequately exploited, and the codeword rate will not exceed

Bob’s channel capacity under the on-off policy such that using

a larger blocklength can always lower the decoding error

probability for Bob. Combined with Lemma 1, it can be seen

that increasing the blocklength improves reliability and secrecy

simultaneously, thus making the secrecy throughput higher.

However, this can no longer be promised in [26] where the

instantaneous CSI of the main channel is unknown, and using

a larger blocklength might degrade the reliability once the

codeword rate exceeds Bob’s channel capacity, just as implied

in Lemma 1. Revisiting (8), since µ∗ in the lower limit of the

integral decreases with n (see (9) where R∗
e decreases with n),

it is clear that the global optimal blocklength that maximizes

TA is also n∗ = N .

4) Solving Rs: Substituting the derived optimal R∗
e , µ∗,

and n∗ into (3) yields the maximal ps, and then the optimal

R∗
s can be determined by solving the following problem:

max
Rs

TA(η) = Rs

[

1−Q
(

Cb −Rs −R∗
e

√

Vb/N

)]

(11a)

s.t. 0 < Rs ≤ Cb −R∗
e . (11b)

Theorem 2: TA(η) in (11) is a concave function of Rs, and

its maximal value is achieved at

R∗
s =

{

Cb −R∗
e , η ≤ γ◦

b

Pb
,

R◦
s , otherwise,

(12)

where γ◦b ∈
(

√

1
2 +

√

1
4 + π

2N − 1, e
√

π
2N +R∗

e ln 2 − 1

)

is

the unique root γb > 0 that satisfies Cb −
√

πVb

2N = R∗
e , and

R◦
s is the unique zero-crossing Rs < Cb−R∗

e of the derivative

dTA(η)
dRs

= 1−Q
(

Cb −Rs −R∗
e

√

Vb/N

)

−Rs

√
N√

2πVb
e
− (Cb−Rs−R∗

e)
2

2Vb/N .

(13)

Proof 3: Please refer to Appendix C.

Theorem 2 presents an optimal secrecy rate R∗
s that differs

from the one for infinite blocklength with N → ∞, where

in the latter employing the maximal achievable secrecy rate

R∗
s = Cb − R∗

e is always optimal for secrecy throughput

improvement. The fundamental reason behind such difference

lies in the decoding failure caused by finite blocklength.

Specifically, when the quality of the main channel is poor (i.e.,

a small η) or when a large rate redundancy R∗
e is required,

e.g., due to a high average SNR of Eve or a stringent secrecy

requirement, the successful decoding probability ps is initially

small and decreases slowly with Rs. In this case, the secrecy

throughput improvement is mainly bottlenecked by Rs, and

hence it is necessary to choose the maximal secrecy rate

R∗
s = Cb−R∗

e . Otherwise, ps is initially large but drops rapidly

with Rs, thus dramatically degrading the secrecy throughput.

Therefore, a relatively small Rs is supposed to be chosen to

strike a good balance between the decoding and throughput

performance.

The optimal secrecy rate R∗
s ≤ Cb − R∗

e in (12) can be

obtained efficiently using the Newton’s method, despite its

implicit form. The following corollaries further give a closed-

form asymptotically tight lower bound RL
s on R∗

s and provide

useful insights into the behavior of R∗
s .

Corollary 1: The optimal secrecy rate R∗
s in (12) satisfies

R∗
s ≥ RL

s , Cb −R∗
e −

√

√

√

√

2Vb
N

ln

(

1

2
+

Cb −R∗
e

√

2πVb/N

)

. (14)

Proof 4: The result follows by finding a lower bound on
dTA(η)
dRs

in (13) applying the inequalities Q(x) ≤ 1
2e

−x2/2 and

Rs ≤ Cb − R∗
e and then setting the resultant lower bound to

zero.

The term

√

2Vb

N ln

(

1
2 +

Cb−R∗
e√

2πVb/N

)

in (14) is interpreted as

the secrecy rate loss arisen from finite blocklength. This term

vanishes as N → ∞ or R∗
e → Cb −

√

πVb

2N , and accordingly

R∗
s approaches Ce−R∗

e . In this sense, the lower bound RL
s can

be employed as a computational convenient alternative to the

optimal R∗
s , particularly for the large blocklength scenarios.

Corollary 2: The optimal secrecy rate R∗
s monotonically

increases with the channel gain η.

Proof 5: It is proved that
Cb−Rs−R∗

e√
Vb

in (13) increases with

η such that
dTA(η)
dRs

increases with η. Then, using the derivative

rule for implicit functions with
dTA(η)
dR∗

s
= 0 reaches

dR∗
s

dη > 0.

Fig. 2 depicts secrecy throughput TA(η) versus secrecy

rate Rs for different blocklength N and channel gain η. The

concavity of TA(η) on Rs given by Theorem 2 is well verified.

Specifically, TA(η) first increases and then decreases with Rs,

and there exists an optimal R∗
s that maximizes TA(η). It is also

found that TA(η) almost linearly increases with Rs at first,

since the throughput loss due to decoding error is negligible.

Note that the curves in the figure are cut in different points

which represent different values of the maximal achievable

secrecy rate Rmax
s for different N and η, and it is obvious that

Rmax
s increases with N and η. As η grows, TA(η) improves

significantly and the corresponding optimal R∗
s increases,

which validates Corollary 2. The underlying reason is that,

when the main channel quality improves, choosing a larger

Rs contributes more to improving TA(η) compared with

increasing the successful decoding probability ps (by lowering

Rs). In addition, as proved in Theorem 1, TA(η) increases with

N . It is also proved that the optimal R∗
s increases with N as

η → ∞. However, it is no longer true when η is too small,

e.g., η = 3 dB. This is because, for a low channel quality,

the decoding performance becomes a key restricting factor on

throughput improvement, and hence Rs should be decreased

to ensure a large ps as N increases. Moreover, the secrecy

throughput obtained with the lower bound RL
s in Corollary

1 approaches closely the optimal one particularly when N is
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Fig. 2: TA(η) vs. Rs for different N and η, with Pb = 0 dB, Γe = 0 dB,
and δ = 0.2.

sufficiently large, which demonstrates the usefulness of the

lower bound.

B. Non-Adaptive Optimization Scheme

This section devises a non-adaptive optimization scheme

where the parameters µ, Rs, Re, and n are designed based on

the statistical CSI of the main channel and remain unchanged

during the transmission period. Such a non-adaptive scheme

can be computed off-line, which significantly lowers the

complexity compared with an adaptive one.

Since all the parameters are independent of the channel gain

η, the problem of maximizing the secrecy throughput in (5)

can be recast as follows:

max
µ,Re,Rs,n

TN = Rsp̄s s.t. (6b)− (6d), (15)

where p̄s =
∫∞
Pbµ

psfγb
(γ)dγ denotes the average successful

decoding probability.

The above problem can be handled via similar steps for its

adaptive counterpart in Sec. III-A. To begin with, in order

to increase ps for a given Rs, a minimal rate redundancy

Re should be chosen while satisfying the secrecy constraint

Oe ≤ δ. Hence, the optimal R∗
e is given in (7). It can be

inferred from (15) that a smaller transmission threshold µ can

produce a larger TN. Nonetheless, Cb ≥ log2(1 + Pbµ) ≥
Rs+R

∗
e must be ensured, since otherwise there would always

exist a transmission initiated when η > µ while violating the

reliability constraint (6b). Consequently, the optimal µ∗ for a

fixed Rs is given by

µ∗ =
2Rs+R∗

e − 1

Pb
. (16)

Note that in order to support a constant secrecy rate Rs, the

optimal on-off threshold µ∗ for the non-adaptive scheme is

generally larger than that of the adaptive one as given in (9).

On the other hand, the optimal µ∗ monotonically decreases

with δ and n, which is similar to the adaptive case. That is to

say, the transmission condition can be relaxed when facing a

looser secrecy requirement or using a larger blocklength.

Substituting R∗
e and µ∗ into p̄s and invoking the approxi-

mation of Q-function in (49) yields

p̄s =

∫ ∞

Pbµ∗

[1− Ξ(γb, n, Rs +R∗
e)] fγb

(γ)dγ

(a)
= 1−Fγb

(θ2b )

∫ τu
b

θ2
b

(

1

2
− β

θb
(γ − θ2b )

)

fγb
(γ)dγ

(b)
= 1− 1

2
Fγb

(θ2b )−
β

θb

∫ τu
b

θ2
b

Fγb
(γ)dγ, (17)

where (a) is due to θb =
√
Pbµ∗ =

√
2Rs+R∗

e − 1, β =
√
n

2π ,

and τub = θ2b + θb
2β , and (b) stems from the use of partial

integration. With (17), the problem of maximizing TN over n
and Rs can be equivalently transformed as below:

max
β,θb

TN =
[

log2(1 + θ2b )−R∗
e

]

p̄s (18a)

s.t.
1

2π
≤ β ≤

√
N

2π
, θb >

√

2R
∗
e − 1. (18b)

Theorem 3: TN in (18) is a monotonically increasing func-

tion of β or n.

Proof 6: The result follows by proving that

dTN
dβ

= −dR
∗
e

dβ
p̄s +

[

log2(1 + θ2b )−R∗
e

] dp̄s
dβ

(a)
>
[

log2(1 + θ2b )−R∗
e

] dp̄s
dβ

(b)
> 0, (19)

where (a) is due to
dR∗

e

dn < 0 from (51), and (b) follows from
dp̄s

dβ = 1
θb

∫ τu
b

θ2
b
[Fγb

(τub )−Fγb
(γ)] dγ > 0 as Fγb

(γ) is an

increasing function of γ.

Theorem 3 suggests that Alice should use the maximal

blocklength to maximize the secrecy throughput for the non-

adaptive scheme, regardless of other parameters, i.e., the

globally optimal blocklength is n∗ = N . More importantly,

this conclusion holds for any distribution of γb.
Substituting the CDF Fγb

(γ) = 1− e−γ/Γb into (17) yields

TN =
1

2

[

log2(1 + θ2b )−R∗
e

]

[1 + Y (θb)] e
− θ2

b
Γb , (20)

where Y (θb) = 2βΓb

θb
(1 − e−

θb
2βΓb ) > 0. The optimal θ∗b that

maximizes TN is provided below.

Theorem 4: TN in (20) is first-increasing-then-decreasing

w.r.t. θb; the optimal θ∗b maximizing TN is the unique root

θb >
√
2R

∗
e − 1 of G(θb) = 0, where G(θb) is a decreasing

function of θb:

G(θb) =
1 + Y (θb)

ln 2
−
[

log2(1 + θ2b )−R∗
e

] 1 + θ2b
θb

g(θb),

(21)

with g(θb) =
(

1
2θb

+ 1
4βΓb

+ θb
Γb

)

Y (θb) +
θb
Γb
− 1

2θb
.

Proof 7: Please refer to Appendix D.

Based on Theorem 4, the optimal θ∗b or secrecy rate R∗
s =

log2(1 + (θ∗b )
2) − R∗

e can be efficiently calculated using a

bisection search with G(θb) = 0, and thus the maximal T ∗
N can

be obtained from (18). The following corollaries demonstrate
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the behavior of R∗
s w.r.t. to the average channel power gain

σ2
b = Γb

Pb
and provide a closed-form approximation of R∗

s at

the large σ2
b regime.

Corollary 3: The optimal R∗
s monotonically increases with

σ2
b .

Proof 8: Following similar steps as the proof of Theorem

4, it can be verified that G(θb) in (21) increases with σ2
b such

that
dR∗

s

dσ2
b
= − ∂G(θb)/∂σ

2
b

∂G(θb)/∂R∗
s
> 0, which completes the proof.

Corollary 3 suggests that a larger secrecy rate should be

employed to boost the secrecy throughput when the quality

of the main channel improves, despite the fact that it might

deteriorate the decoding correctness at Bob.

Corollary 4: At the regime of σ2
b →∞, the optimal secrecy

rate R∗
s is approximated by

R∗
s ≈ RA

s = log2(e)W0

(

σ2
b2

−R∗
e

)

≈ log2(σ
2
b )−R∗

e − log2
[

ln(σ2
b )−R∗

e ln 2
]

, (22)

whereW0(x) is the Lambert’s W function [38, Sec. 4.13] that

satisfies x =W0(x)e
W0(x).

Proof 9: It is clear that Y (θb) → 1 and g(θb) → 2θb
Γb

as σ2
b → ∞. Substituting the results into (21) with θ2b =

2Rs+R∗
e − 1 and letting G(θb) = 0 produce the first approxi-

mation. The second approximation comes from the expansion

of W0(x) as x→∞ that W0(x) ≈ lnx− ln(lnx).

Fig. 3 plots the secrecy throughput TN versus the secrecy

rate Rs for different values of the blocklength N and the

average channel gain σ2
b . It can be seen that TN first increases

and then decreases with Rs, which validates Theorem 4. The

optimal R∗
s maximizing TN increases with σ2

b , which verifies

Corollary 3 well, and the reason behind is similar to that for

Corollary 2. It can also be observed that the optimal R∗
s is

almost impervious to different N . This is because, the optimal

secrecy rate for the non-adaptive scheme only depends on

the average successful decoding probability, and the averaging

process softens the impact of the blocklength. Theorem 3 is

also confirmed, where it is found that TN increases with N .

In addition, the secrecy throughput with the approximate RA
s

obtained in Corollary 4 is almost coincided with that of the

optimal R∗
s , which demonstrates the practicability of the low-

complexity approximation.

Fig. 4 compares the secrecy throughput for adaptive and

non-adaptive schemes with different blocklength N . The left-

hand-side figure depicts the maximal secrecy throughput T ∗,

where T ∗
A for the adaptive case improves as N increases

whereas T ∗
N for the non-adaptive case almost remains un-

changed. When the average channel gain σ2
b increases or

the secrecy constraint becomes relaxed (i.e., a larger δ), the

maximal T ∗ for both schemes improves significantly, and the

gap T ∗
A − T ∗

N increases. The right-hand-side figure illustrates

the relative throughput gain ∆T ,
T ∗
A−T ∗

N

T ∗
N

which reflects

the superiority of the adaptive scheme over its non-adaptive

counterpart. It is shown that ∆T grows dramatically with N
but decreases with σ2

b and δ. This suggests that the adaptive

scheme is more preferred for some unfavorable scenarios,

e.g., with a large blocklengh (large delay), a poor channel

quality, or a stringent secrecy requirement; otherwise, the non-
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Fig. 3: TN vs. Rs for different N and σ2
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adaptive scheme could be an alternative choice owing to its

low implementation complexity.

IV. MULTI-ANTENNA TRANSMITTER SCENARIO

When Alice is equipped with multiple antennas, she can in-

tentionally transmit AN together with the information-bearing

signal to degrade Eve’s channel quality. Generally, the null-

space AN scheme, in which the AN is injected uniformly

in directions orthogonal to the main channel, is heuristically

employed in the context of infinite blocklength [33]. The near-

optimality of AN in terms of improving secrecy capacity for

the multi-input single-output wiretap channel was first proved

in [34] from a rigorous information-theoretic perspective, and

its degraded performance was later observed for the multi-

input multi-output wiretap channel [35]. On the other hand, it

was argued in [36] that distributing a certain proportion of AN

in the direction of main channel can surprisingly gain a larger

ergodic secrecy rate. When it comes to finite blocklength, since



8

decoding failure might occur even when the codeword rate lies

below the channel capacity, which is quite different from the

infinite blocklength case, it is still unclear whether the null-

space AN is optimal and how the optimal power allocation

of the AN scheme should be determined for maximizing the

secrecy throughput. To this end, this section focuses on the

optimization of secrecy throughput with finite blocklength for

the multi-antenna scenario, where the optimality of the null-

space AN scheme will be identified first.

Considering a general scenario where the AN is not re-

stricted to be orthogonal to the main channel, Alice’s trans-

mitted signal can be constructed in the form of

x =
√

φPw
(√
αs+

√
1− αv

)

+

√

(1 − φ)P
M − 1

W⊥z, (23)

where w =
h

†

b

‖hb‖ denotes the beamforming vector for the main

channel, W⊥ denotes the M×(M−1) projection matrix onto

the null space of hb such that hT
b W⊥ = 0, and the columns of

[w W⊥] constitute an orthogonal basis; s, v, and z denote the

information signal, the AN in the direction of w, and the AN

in the null space W⊥, with each element obeying CN (0, 1);
φ ∈ [0, 1] represents the fraction of the total transmit power

P allocated to the direction of w, and α ∈ [0, 1] represents

the power allocation ratio of the information signal to φP .

With (23), the received signal-to-interference-plus-noise ratios

(SINRs) at Bob and Eve are respectively

γb =
αφPbη

(1 − α)φPbη + 1
, (24)

γe =
αφPe|hT

e w|2

(1 − α)φPe|hT
e w|2 + (1−φ)Pe‖hT

e W⊥‖2

M−1 + 1
, (25)

where η = ‖hb‖2. The successful decoding probability ps
and the information leakage probability Oe for the multi-

antenna case are still given by (2) and (4), respectively. The

corresponding secrecy throughput optimization problem can

be formulated as below:

max
µ,Re,Rs,n,α,φ

T = Eη [Rsps] s.t. (6b)− (6d), 0 ≤ α, φ ≤ 1.

(26)

The following subsections will first detail the optimization

procedure for both adaptive and non-adaptive schemes, and

then briefly discuss the scenario of a multi-antenna Eve.

A. Adaptive Optimization Scheme

This subsection optimizes the secrecy throughput TA by

designing the parameters involved in problem (26) adaptively

according to the instantaneous channel realization hb.

1) Solving Re: Similar to the single-antenna case, the

optimal rate redundancy is given by R∗
e = O−1

e (δ) with Oe

in (4). Note that R∗
e herein is a function of φ and α.

2) Solving α: Resort to a function κ(x, α) , xα
x(1−α)+1

defined in [37], which increases with x for α > 0. Then,

the SINRs γb in (24) and γe in (25) can be reformulated

as γb(φ, α) = κ (γb(φ, 1), α) and γe(φ, α) = κ (γe(φ, 1), α).
Define Φe(φ, α) , 2R

∗
e−1 as the SINR threshold for γe(φ, α)

such that R∗
e = log2(1 + Φe(φ, α)). Recalling the secrecy

constraint Oe(Φe; θ, α) = δ, Φe(φ, α) is the δ-upper quantile

of γe(φ, α) such that it also follows the form Φe(φ, α) =
κ(Φe(φ, 1), α) [37]. Hence, the condition for guaranteeing a

positive secrecy rate is described as

γb(φ, α) > Φe(φ, α)⇒ κ(γb(φ, 1), α) > κ(Φe(φ, 1), α)

⇒ γb(φ, 1) > Φe(φ, 1)

(a)⇒ ρb > ρe(φ), (27)

where ρb , Pbη, ρe(φ) ,
Φe(φ,1)

φ , and (a) is due to γb(φ, 1) =
φPη. Then, the threshold µ can be simply set as µ(φ) =
ρe(φ)
Pb

for any fixed φ. Revisiting (8), since µ(φ) is independent

of α, the optimal α∗ that maximizes TA can be obtained by

maximizing TA(η) = Rsps, where ps is defined in (3) and

can be rewritten as

ps = 1−Q
(

√
nλb

lnλb − lnλe −Rs ln 2
√

λ2b − 1

)

, (28)

with λb , 1 + κ(γb(φ, 1), α) > λe , 1 + κ(Φe(φ, 1), α) > 1.

Although it is difficult to see how ps varies with α for a fixed

Rs < log2
λb

λe
as both λb and λe increase with α, the following

theorem provides the optimal α∗ that maximizes TA.

Theorem 5: α∗ = 1 is optimal for maximizing the secrecy

throughput TA.

Proof 10: Please refer to Appendix E.

Theorem 5 suggests that there is no need to inject the

AN in the main channel direction for secrecy throughput

improvement with finite blocklength. The reason is that, once

the main channel quality suffices to guarantee λb > λe, a

larger α can improve the term lnλb−lnλe√
1−λ−2

b

in (28) which reflects

the channel superiority of the main channel over the wiretap

channel.

Define ξ , φ−1−1
M−1 . Substituting α∗ = 1 into (24) and (25)

yields the CDFs of γb and γe:

Fγb
(γ) = 1− e−

γ
φΓb

M−1
∑

k=0

1

k!

(

γ

φΓb

)k

, (29)

Fγe(γ) = 1− e− γ
φΓe (1 + ξγ)

1−M
, (30)

3) Solving µ: The threshold µ(φ) = ρe(φ)
Pb

mentioned in

the last step is related to φ. This step further determines the

optimal µ∗ which is independent of φ and η. For tractability,

consider an asymptotically large blocklength and exploit the

tail property of the Q-function, then the information leakage

probability Oe is approximated as [32]

Oe(Φe) ≈ e−
Φe
φΓe (1 + ξΦe)

1−M
. (31)

Fig. 5 shows that the approximate Oe(Φe) is extremely close

to the exact value for quite a wide range of φ, M , n, and

Γe, and it then can be adopted to facilitate the subsequent

analysis and optimization. Revisiting ρe(φ) = Φe(φ)
φ with

Oe(Φe(φ)) = δ, the following lemma is obtained.

Lemma 2 ([37]): ρe(φ) > 0,
dρe(φ)

dφ =

ρe(φ)
[1+φρe(φ)ξ]/Γe+1−φ > 0, and

d2ρe(φ)
dφ2 > 2

ρe(φ)

[

dρe(φ)
dφ

]2

> 0.

Lemma 2 indicates that ρe(φ) increases with φ. It is

observed from (27) that no positive Rs can be achieved if
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Pbη ≤ ρe(0). To avoid this, the optimal on-off threshold

should be chosen as

µ∗ =
ρe(0)

Pb
. (32)

4) Solving n: This step gives the optimal blocklength n∗

that maximizes secrecy throughput.

Theorem 6: n∗ = N is optimal for maximizing TA in (26).

Proof 11: The proof is similar to that of Theorem 1. Accord-

ing to (53), one only needs to prove that fγe(τ
l
e) > fγe(τ

u
e ).

The PDF of γe is calculated from (30) and is given by

fγe(γ) =

(

1

φΓe (1 + ξγ)
M−1

+
ξ(M − 1)

(1 + ξγ)
M

)

e−
γ

φΓe . (33)

Apparently, fγe(γ) decreases with γ such that fγe(τ
l
e) >

fγe(τ
u
e ), which completes the proof.

Theorem 6 suggests that a multi-antenna transmitter also

should adopt the maximal blocklength to maximize the secrecy

throughput, regardless of the power allocation and code rates.

This is validated by Fig. 6, and the reason behind is similar

to that of the single-antenna case.

5) Solving φ: By now, the secrecy throughput TA(η) con-

ditioned on η is given by

TA(η) = Rs

(

1−Q
[

√
Nλb

ln λb

λe
−Rs ln 2

√

λ2b − 1

])

, (34)

where λb = 1 + φρb and λe = 1 + φρe with ρb > ρe.

For notational simplicity, φ has been dropped from ρe(φ).
Obviously, maximizing TA(η) is equivalent to maximizing the

following function:

L(φ) =
λb

√

λ2b − 1

(

ln
λb
λe
−Rs ln 2

)

. (35)

Theorem 7: L(φ) in (35) is a concave function of φ, and

the optimal φ∗ maximizing L(φ) is

φ∗ =

{

1, η ≥ ρ◦
b

Pb
and ρe(1)

1+ρe(1)
< 1

1+Γe
,

φ◦, otherwise.
f (36)

Here φ◦ is the unique zero-crossing φ ∈ [0, 1) of the following

derivative:

dL(φ)

dφ
=

(1−Aφ)λb − 1

φ
√

λ2b − 1
− (λb − 1) (lnλb −Bφ)

φ (λ2b − 1)
3/2

, (37)

where Aφ ,
φ
λe

(

ρe + φdρe

dφ

)

and Bφ , lnλe + Rs ln 2 with
dρe

dφ given in Lemma 2, and ρ◦b is the unique root ρb of the

equation X(ρb) = 0 with X(ρb) given below:

X(ρb) = (1−A1)(1 + ρb)− 1− ln(1 + ρb)−B1

2 + ρb
. (38)

Proof 12: Please refer to Appendix F.

Theorem 7 shows that, the naive beamforming scheme

without injecting any AN is optimal for maximizing the

secrecy throughput only when the quality of the main channel

is good enough and meanwhile the quality of the wiretap

channel is poor or a high information leakage probability is

acceptable. Using the derivative rule for implicit functions with

(37) proves that dφ∗

dRs
> 0, which suggests that in order to

support a higher secrecy rate, a larger fraction of power should

be allocated to the information signal although at the cost of

a larger required rate redundancy.

For a robust design perspective, a worst-case scenario is

considered by ignoring Eve’s thermal noise, i.e., Γe → ∞ in

(31), such that ρe = Λ
1−φ with Λ = (M − 1)(δ

1
1−M − 1). It

is seen from (37) that φ∗ is a function of η and δ, and the

monotonicity of φ∗ is revealed as below.

Corollary 5: For the worst case Γe → ∞, the optimal

power allocation φ∗ is non-decreasing w.r.t. η and δ. Moreover,

limη→∞ φ∗ = 1√
Λ+1

and limδ→1 φ
∗ = 1.

Proof 13: Please refer to Appendix G.

Corollary 5 suggests that when the quality of the main

channel improves (i.e., a larger η) or the secrecy requirement

is relaxed (i.e., a larger δ), it would be more appealing to

use a higher signal power to promote the main channel than

to increase the AN power to degrade the wiretap channel.

This is because that the main channel becomes the dominate

factor to the improvement of secrecy throughput. Different

from Theorem 7 where φ∗ = 1 can be achieved, the optimal φ∗

here only can be increased up to 1√
Λ+1

as η →∞ due to Eve’s

background noise being ignored. Besides, it is unsurprising

that φ∗ = 1 for δ = 1 since there is no secrecy requirement.

6) Solving Rs: For any given power allocation φ∗, it can be

proved that the secrecy throughput TA(η) is a concave function

of the secrecy rate Rs as done in Theorem 2. Hence, the

optimal R∗
s maximizing TA(η) is given by (12) and a closed-

form lower bound on R∗
s can be found in (14). Eventually,

problem (26) can be addressed via an alternating optimization

(AO) method, which is summarized in Algorithm 1. In addi-

tion, at the high η regime, the optimal φ∗ is independent of

Rs, and hence a global optimal pair (φ∗, R∗
s) is obtained for

maximizing TA(η).
Fig. 6 illustrates the optimal power allocation φ∗ and the

corresponding maximal secrecy throughput TA(η) for varying

secrecy rate Rs. The maximal TA(η) is concave on Rs,

which guarantees the global optimality of the solution and

the convergence of the proposed AO algorithm. The optimal



10

Algorithm 1 AO Algorithm for Solving Problem (26)

1: Initialize k = 1, φ(0) ∈ [0, 1], R
(0)
s ≥ 0, and assign ǫ a

sufficiently small positive value, e.g., ǫ = 10−10;

2: Input δ ∈ [0, 1], N ≥ 1, and Pb,Γe, η = ‖hb‖2 > 0;

3: Calculate µ from (32) and T (0)
A (η) = R

(0)
s p

(0)
s ;

4: if η < µ then

5: T (k)
A (η)← 0;

6: else

7: Update φ(k) ← φ(k−1), R
(k)
s ← R

(k−1)
s ;

8: Calculate ρ◦b from (38);

9: if Pbη ≥ ρ◦b then

10: φ(k) ← 1;

11: else

12: Calculate φ(k) from (37);

13: end if

14: Calculate R
(k)
s from (12);

15: Update T (k)
A (η)← R

(k)
s p

(k)
s ;

16: while

∣

∣

∣

[

T (k)
A (η) − T (k−1)

A (η)
]

/T (k−1)
A (η)

∣

∣

∣
≥ ǫ do

17: Update k ← k + 1;

18: Repeat step 7 to step 15;

19: end while

20: end if

21: Output T (k)
A (η)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0
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Fig. 6: Optimal φ∗ and TA(η) vs. Rs for different N and η, with M = 4,
Pb = 0 dB, Γe = 0 dB, and δ = 0.2.

φ∗ increases with η and Rs, which verifies Corollary 5. In

addition, the curves of φ∗ and TA(η) are truncated after Rs

exceeds some critical values. This can be explained similarly

as that of Fig. 2. It is shown that φ∗ increases with the

blocklength N , although slightly. This is because, increasing

N will mildly decrease the information leakage probability

Oe, thus allowing a larger portion of power to be devoted to

transmitting the information-bearing signal.

B. Non-Adaptive Optimization Scheme

This subsection examines the secrecy throughput maximiza-

tion through a non-adaptive design manner for the multi-

antenna transmitter case. The problem can be formulated as

max
µ,Re,Rs,n,α,φ

TN = Rsp̄s (39a)

s.t. (6b)− (6d), 0 ≤ α, φ ≤ 1, (39b)

where p̄s is the average successful decoding probability.

The basic idea to solve problem (39) is similar to that of

problem (15). Again, the optimal rate redundancy is R∗
e =

O−1
e (δ) withOe given in (4). For the adaptive case, it is known

from (27) that κ(γb(φ, 1), α) > κ(Φe(φ, 1), α)⇒ η > µ(φ) =
ρe(φ)
Pb

suffices to guarantee a positive secrecy rate Rs with

the threshold µ(φ) independent of α, and then α∗ = 1 is

optimal for secrecy throughput maximization. As for the non-

adaptive one, supporting a certain secrecy rate Rs requires that

1+κ(γb(φ, 1), α) > 2Rs(1+κ(Φe(φ, 1), α)) which is further

transformed to

η > µ(φ) =
1

φPb

1
α

2Rs (1+κ(Φ∗
e(φ,1),α))−1 − 1 + α

. (40)

Although µ(φ) herein depends on α, it is proved that µ(φ)
monotonically decreases with α. Hence, α∗ = 1 is still

throughput-optimal for the non-adaptive case. Accordingly, the

optimal threshold is µ∗ = 2Rs (1+φρe)
φPb

. Similar to the proof

of Theorem 3, using the maximal blocklength is optimal for

maximizing secrecy throughput, regardless of the distribution

of γb. Hence, the optimal blocklength is n∗ = N . Afterwards,

the secrecy throughput is calculated from (17):

TN = Rsp̄s = Rs

[

1− 1

2
Fγb

(θ2b )−
β

θb

∫ τu
b

θ2
b

Fγb
(γ)dγ

]

(a)
= Rs

[

Γ̄(M,̺1)

2
+
φΓbβ

θb
∆Γ

]

, (41)

where (a) holds by invoking the CDF Fγb
(γ) of

γb in (29) and computing the integral, with ∆Γ ,
∑M−1

k=0

[

Γ̄(k + 1, ̺1)− Γ̄(k + 1, ̺2
]

) and Γ̄(m + 1, x) ,
∑m

k=0
xke−x

k! being the regularized upper incomplete gamma

function, with ̺1 =
θ2
b

φΓb
, ̺2 =

θ2
b

φΓb
+ θb

2βφΓb
, θb =√

2Rs+R∗
e − 1, and β =

√
N

2π . Differentiating TN w.r.t. φ yields

dTN
dφ

=Rs

[

̟1̺
M
1 e

−̺1

2(M − 1)!
+
φΓbβ̟2∆Γ

θb
+ βθb̟1Γ(M,̺1)

−
(

βθb̟1 +
̟2

2

)

Γ̄(M,̺2)

]

, (42)

where ̟1 = 1
φ− 2Rs

θ2
b

dλe

dφ and ̟2 = 1
φ− 2Rs

2θ2
b

dλe

dφ with λe given

in (34). It is verified that the derivative dTN

dφ is monotonically

decreasing with φ. In other words, for a fixed Rs, the optimal

φ∗ that maximizes TN is unique, which is φ∗ = 1 if dTN

dφ |φ=1 >

0 or otherwise satisfies dTN

dφ = 0. Likewise, it is confirmed that

the derivative

dTN
dRs

=
Γ̄(M,̺1)

2
+
φΓbβ

θb
∆Γ− λeRs2

Rs ln 2

θb

[

βΓ̄(M,̺1)

+
φΓbβ∆Γ

2θ2b
+

̺M1 e
−̺1

2θb(M − 1)!
−
(

β +
1

4θb

)

Γ̄(M,̺2)

]

(43)
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Fig. 7: Above: R∗

s and TN vs. φ; Bottom: φ∗ and TN vs. Rs; for different
N and δ, with M = 4, Γb = 3 dB and Γe = 0 dB.

is first positive and then negative with increasing Rs, and the

unique optimal R∗
s maximizing TN can be calculated via a

bisection method with the equation dTN

dRs
= 0.

The monotonicity of TN w.r.t. φ and Rs is verified in Fig.

7, where, similar to Fig. 6, TN is given with the optimal φ∗

or R∗
s . This implies that the global maximal TN is practically

achieved even by alternatively solving the optimal φ and Rs.

As expected, TN improves with a larger blocklength N and a

looser secrecy constraint (a larger δ). It is found that R∗
s first

increases and then might decrease with φ, which means that a

moderateRs is desired to balance the decoding and throughput

performance. On the other hand, a larger φ∗ is required to

support an increasing Rs. It is also shown that R∗
s for a fixed

φ increases with N , since a larger N improves the decoding

performance which then affords a larger Rs. Nevertheless, φ∗

decreases with N in the low Rs regime whereas increases with

N in the high Rs regime. It can be explained as follows: for

a low Rs, the rate redundancy Re has a great impact on the

decoding performance, and hence the AN power should be

increased as N increases to better combat the eavesdropper;

in contrast, for a large Rs, the decoding correctness is more

affected by the main channel quality, which requires a larger

signal power to maintain a high decoding probability.

Proposition 1: For the high average channel gain Γb →∞,

TN in (41) is approximated as

lim
Γb→∞

TN = Rs

(

1− ̺M1
2M !

)

. (44)

Proof 14: Please refer to Appendix H.

Proposition 1 shows that for a high average channel gain, the

secrecy throughput becomes independent of the blocklength.

In consequence, the optimal φ∗ and R∗
s maximizing TN in

(44) admit the following closed-form approximations [21, (19),
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Fig. 8: T ∗ and ∆T vs. M for different N and δ, with Γb = 3 dB and
Γe = 0 dB.

(20)]

lim
Γb→∞

φ∗ =
1√

Λ + 1
, (45)

lim
Γb→∞

R∗
s =

1

M ln 2

[

W0

(

2 exp(1)M !ΓM
b

(
√
Λ + 1)2M

)

− 1

]

. (46)

Fig. 8 illustrates the influence of the number of transmit

antennas M on the maximal secrecy throughput T ∗ for both

adaptive and non-adaptive schemes and the relative secrecy

throughput gain ∆T =
T ∗
A−T ∗

N

T ∗
N

. It is not surprising that

deploying more transmit antennas can significantly improve

the secrecy throughput for both schemes. Similar to the

observation in Fig. 4, both T ∗
A and T ∗

N increase with δ and N ,

but the benefit to T ∗
N brought by a largerN is nearly negligible.

The right-hand-side subgraph shows that ∆T drops sharply as

M increases but grows for a larger N and a smaller δ. This

indicates that the superiority of the adaptive scheme over its

non-adaptive counterpart is more pronounced for the scenarios

requiring a large blocklengh, having few transmit antennas,

suffering from a stringent secrecy constraint, etc; otherwise,

the non-adaptive scheme might be appealing because of the

low-complexity off-line design.

C. A Note on Multi-Antenna Eve

This subsection examines the secure transmission in the

presence of an Eve with Me antennas. Assume that Eve

employs the minimum mean-squared error (MMSE) receiver,

and then the CDF of Eve’s SINR under the null-space AN

scheme can be given as [23]:

Fγe(x) = 1− e− x
φPe

Me
∑

n=1

An(x)

(n− 1)!

(

x

φPe

)n−1

, (47)

where

An(x) =

{

1, Me ≥M − 1 + n,
∑Me−n

m=0 (M−1
m )(ξx)m

(1+ξx)M−1 , Me < M − 1 + n.
(48)
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The information leakage probability Oe is obtained by sub-

stituting (47) into (50), and the secrecy throughput can be

optimized similarly as described in the above two subsections.

By ignoring the receiver noise at Eve, i.e., considering Eve’s

transmit power Pe →∞, one can obtain Fγe(x) = 1−A1(x).
Furthermore, if Eve has more antennas than Alice, i.e., Me ≥
M , one have A1(x) = 1, Fγe(x) = 0, and accordingly

Oe = 1. This means, when Pe → ∞, Eve with enough

antennas can completely eliminate all the AN signals with an

MMSE receiver such that her SNR will approach infinity. As

a consequence, the SOP constraint can no longer be satisfied

for any chosen rate redundancy, and no positive secrecy rate

can be achieved from the perspective of secrecy outage. In

other words, the null-space AN scheme can safeguard secure

transmissions well for the finite blocklength regime only when

the eavesdropper has fewer antennas than the transmitter, and

this conclusion is the same as that for the infinite blocklength

case.

V. CONCLUSIONS

This paper investigated the design of secure transmissions

in slow fading channels, where secrecy encoding with finite

blocklength was employed to confront the eavesdropper. Both

adaptive and non-adaptive schemes were devised to maximize

the secrecy throughput, providing the optimal threshold of the

on-off transmission policy, blocklength, code rates, and power

allocation of the AN scheme. Theoretical and numerical

results showed that, under the on-off policy, increasing the

blocklength can simultaneously enhance the reliability and

secrecy, and thus the secrecy throughput is maximized when

using the maximal blocklength. In addition, since an overly

large secrecy rate will significantly decrease the successful

decoding probability thus lowering the secrecy throughput,

there exists a critical secrecy rate, but not as large as possible,

that can achieve the maximal secrecy throughput.

APPENDIX

A. Proof of Lemma 1

For tractability, a piece-wise linear approximation approach

is leveraged to approximate the Q-function given in (2), i.e.,

Q

(

Ci−Ri√
Vi/n

)

≈ Ξ(γi, n, Ri) for i ∈ {b, e} [31], [32],3 with

Ξ(γi, n, Ri) =











0, γi > τui ,
1
2 −

β
θi
(γi − θ2i ), τ li ≤ γi ≤ τui ,

1, γi < τ li ,

(49)

where β ,
√
n

2π , θi ,
√
2Ri − 1, τui , θ2i + θi

2β , and τ li ,

θ2i − θi
2β .4 With (49), the information leakage probability Oe

defined in (4) is calculated as

Oe = 1− Eγe [Ξ(γe, n, Re)] = 1− β

θe

∫ τu
e

τ l
e

Fγe(γ)dγ, (50)

3 This approximation has been extensively applied to the finite-blocklength
scenarios, and its accuracy has been well validated.

4Generally, θi > 1

2β
or Ri > log2

(

1 + π2/n
)

should be satisfied to

ensure a positive τ li .

where Fγi(γ) = 1 − e−γ/Γ2
i is the CDF of γi for i ∈ {b, e},

and the last equality in (50) follows from invoking (49) and

using partial integration. Next, treat n as a continuous variable.

As R∗
e satisfies Oe(R

∗
e) = δ, the derivative

dR∗
e

dn is obtained

by using the derivative rule for implicit functions [22] with

Oe(R
∗
e) = δ, i.e.:

dR∗
e

dn
= − ∂Oe/∂n

∂Oe/∂R∗
e

. (51)

First, it can be proved that ∂Oe

∂R∗
e
= ∂Oe

∂θe
∂θe
∂R∗

e
< 0 by noting that

∂θe
∂R∗

e
> 0 and

∂Oe

∂θe
=

β

θ2e

∫ τu
e

τ l
e

Fγe(γ)dγ −
β

θe

[

dτue
dθe
Fγe(τ

u
e )−

dτ le
dθe
Fγe(τ

l
e)

]

(a)

≤ β

θ2e
[γFγe(γ)] |

τu
e

τ l
e
− 4βθe + 1

2θe
Fγe(τ

u
e ) +

4βθe − 1

2θe
Fγe(τ

l
e)

= β
[

Fγe(τ
l
e)−Fγe(τ

u
e )
]

< 0,

where (a) follows from the partial integration. The next step is

to determine the sign of ∂Oe

∂n = ∂Oe

∂β
∂β
∂n . The first and second

derivatives of Oe w.r.t. β are respectively given by

∂Oe

∂β
=

1

2β

[

Fγe(τ
u
e ) + Fγe(τ

l
e)
]

− 1

θe

∫ τu
e

τ l
e

Fγe(γ)dγ,

(52)

∂2Oe

∂β2
=

θe
4β3

[

fγe(τ
l
e)− fγe(τ

u
e )
]

. (53)

It is easy to see ∂2Oe

∂β2 > 0 as fγe(γ) =
1
Γe
e−γ/Γe decreases

with γ and τue > τ le. This indicates that ∂Oe

∂β increases with

β such that ∂Oe

∂β < ∂Oe

∂β |β→∞ = 0. Combining ∂Oe

∂β < 0 and
∂β
∂n > 0 yields ∂Oe

∂n < 0. With ∂Oe

∂R∗
e
< 0 and ∂Oe

∂n < 0 in (51),
dR∗

e

dn < 0 is obtained, which completes the proof.

B. Proof of Theorem 1

The derivative of ps w.r.t. n is given by

dps
dn

=
1√
2π
e
−n(Cb−Rt)

2

2Vb

[

Cb −Rt

2
√
nVb

−
√

n

Vb

dR∗
e

dn

]

, (54)

which follows from the derivative
dQ(x)
dx = −1√

2π
e−

x2

2 . Plug-

ging
dR∗

e

dn < 0, as shown in Lemma 1, into (54) yields dps

dn > 0.

For a fixed Rs in (10), it is directly concluded that
dTA(η)

dn > 0,

which means that TA(η) monotonically increases with n. Since

n is an integer, TA(η) is maximized at the maximal integer of

n, i.e., n = N , which completes the proof.

C. Proof of Theorem 2

From (13), it is easy to prove that
d2TA(η)

dR2
s

< 0, i.e.,

TA(η) is concave on Rs. It is verified that
dTA(η)
dRs

|Rs=0 =

1 − Q

(

Cb−R∗
e√

Vb/N

)

> 0. As a result, TA(η) is maximized

at the boundary Rs = Cb − R∗
e if

dTA(η)
dRs

|Rs=Cb−R∗
e

=

1
2 −

Cb−R∗
e√

2πVb/N
≥ 0 ⇒ R∗

e ≥ Cb −
√

πVb

2N or otherwise at the

unique zero-crossing of
dTA(η)
dRs

, i.e., R◦
s . Next, the condition
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R∗
e ≥ Cb −

√

πVb

2N is equivalently transformed to that γb does

not exceed a critical value γ◦b . Let ψ(γb) = Cb −
√

πVb

2N . It

can be readily confirmed that ψ(γb) < 0, and ψ(γb) decreases

with γb if 0 < γb < γLb ,

√

1
2 +

√

1
4 + π

2N − 1 or otherwise

increases with γb. This leads to R∗
e ≥ ψ(γb) ⇒ γb ≤ γ◦b ,

ψ−1(R∗
e). An upper bound for γ◦b is further provided by

realizing that ψ(γ◦b ) = R∗
e > log2(1 + γ◦b ) −

√

π
2N log2 e ⇒

γ◦b < γUb , e
√

π
2N +R∗

e ln 2 − 1. Then, γ◦b can be quickly

calculated using the bisection method with ψ(γb) = R∗
e in

the range (γLb , γ
U
b ). This completes the proof.

D. Proof of Theorem 4

First, display the derivative
dY (θb)
dθb

in a recursive form
dY (θb)
dθb

= 1
θb
−
(

1
θb

+ 1
2βΓb

)

Y (θb) with Y (θb) in (20). Then,

the derivative dTN

dθb
is given by dTN

dθb
= θb

1+θ2
b
e
− θ2b

Γb G(θb), with

G(θb) presented in (21). It is easily proved that G(θb) > 0
when θb =

√
2R

∗
e − 1 and G(θb) < 0 as θb → ∞. The

key step of the proof is to argue that G(θb) monotonically

decreases with θb, which guarantees a unique zero-crossing of

G(θb) within θb ∈ (
√
2R

∗
e − 1,∞). In other words, TN initially

increases and then decreases with θb and reaches the maximum

when θb arrives at the unique zero-crossing of G(θb). To this

end, it is necessary to calculate the derivative
dG(θb)
dθb

:

dG(θb)

dθb
=

dY (θb)
dθb

− 2g(θb)

ln 2
−
[

log2(1 + θ2b )−R∗
e

]

h(θb),

(55)

where h(θb) =
(

1− 1
θ2
b

)

g(θb) +
1+θ2

b

θb

dg(θb)
dθb

. To proceed, the

following lemma is introduced.

Lemma 3: Y (θb) decreases with θb and satisfies

2βΓb

θb + 2βΓb
< Y (θb) < min

{

1,
2βΓb

θb

}

. (56)

Proof 15: Define x , θb
2βΓb

such that Y (θb) = 1−e−x

x .

The monotonicity of Y (θb) w.r.t. θb is due to
dY (θb)
dθb

=
(1+x)e−x−1

x < 0. The lower bound of Y (θb) is obtained from
dY (θb)
dθb

= 1
θb
−
(

1
θb

+ 1
2βΓb

)

Y (θb) < 0 and the upper bound

follows from Y (θb) <
1
x and 1− e−x < x.

With the lower bound of Y (θb) given in (56), it can be read-

ily proved that g(θb) > 0 such that the term
dY (θb)
dθb

− 2g(θb)
in (55) is negative. Besides, since h(θb) ≥ 0 directly yields
dG(θb)
dθb

< 0, one only needs to discuss the situation h(θb) < 0
and prove that

dG(θb)

dθb
ln 2 ≤ dY (θb)

dθb
− 2g(θb)− h(θb) ln(1 + θ2b )

(a)
<
dY (θb)

dθb
− 2g(θb)− θ2bh(θb)

(b)

≤ − 1

θb + 2βΓb

(

θ2b
Γb

+
θ4b
Γb

+ 8βθb + 8βθ3b − θ2b
)

(c)
< 0, (57)

where (a) is due to ln(1 + x) ≤ x, (b) holds by invoking

Lemma 3 along with algebraic manipulations, and (c) derives

from 8βθb + 8βθ3b ≥ 16βθ2b > θ2b as β =
√
N

2π > 1
8 .

E. Proof of Theorem 5

First fix Rs, and it is clear that the term −λbRs√
λ2
b−1

in (28)

increases with α as λb increases with α. It is also verified that

the term Z(α) ,
λb(lnλb−lnλe)√

λ2
b−1

in (28) increases with α by

computing the derivative of Z(α) w.r.t. α:

dZ(α)

dα
=

dλb

dα

(

λ2b − 1− ln λb

λe

)

− λb(λ
2
b−1)

λe

dλe

dα

(λ2b − 1)3/2

(a)
=
λb(λb − 1)

[

(λb − λe)(λb + 1)− ln λb

λe

]

α(λ2b − 1)3/2

(b)

≥
λb(λb − 1)(λb − λe)

(

λb + 1− 1
λe

)

α(λ2b − 1)3/2
(c)
> 0, (58)

where (a) holds by substituting dλi

dα = λi(λi−1)
α for i ∈ {b, e},

(b) follows from the inequality ln λb

λe
≤ λb−λe

λe
with λb >

λe > 0, and (c) is due to λb > λe > 1. Hence, ps in (28)

increases with α as Q(x) decreases with x. This indicates,

α∗ = 1 is optimal for maximizing TA(η) = Rsps for any

given Rs and η and is also optimal for maximizing TA.

F. Proof of Theorem 7

Let L(φ) = L1L2, where L1 = λb√
λ2
b−1

and L2 =

ln λb

λe
−Rs ln 2 such that dL1

dφ = −ρb(L2
1 − 1)3/2 and dL2

dφ =

ρb

λb
− ρe+φ dρe

dφ

λe
. Rewrite the second derivative as

d2L(φ)
dφ2 =

L1(L
2
1 − 1)2I(φ) with I(φ) given by (59) at the top of this

page, where (a) holds by recalling the definition L2 ≤ ln λb

λe

and invoking the result d2ρe

dφ2 > 2
ρe

(

dρe

dφ

)2

> 0 from Lemma 2,

(b) follows from plugging L1 =
λb√
λ2
b
−1

, using the inequality

ln λb

λe
≤ λb−λe

λe
, and omitting the term (φ2 + 2φ

ρe
)(dρe

dφ )2,

(c) holds by substituting dL2

dφ into (b), and (d) is estab-

lished after some manipulation operations and by discarding

the negative term
2(λ2

b−1)
λbλ2

e

[

φρbλe − λb
(

λ2b − 1
)]

noting that

λb = 1 + φρb > λe. As indicated by (59) that L(φ) is

concave on φ, L(φ) is maximized at φ = 1 if
dL(φ)
dφ |φ=1 ≥ 0

or otherwise at the unique zero-crossing of
dL(φ)
dφ . Besides,

dL(φ)
dφ |φ=1 ≥ 0 is equivalent to X(ρb) ≥ 0 in (38). Clearly,

A1 = (1+Γe)ρe(1)
1+ρe(1)

< 1 must be ensured to yield a positive

X(ρb), with which it can be verified that X(ρb) increases with

ρb. As a consequence,
dL(φ)
dφ |φ=1 ≥ 0 can be transformed to

an explicit form with relation to ρb, namely, ρb ≥ ρ◦b . This

completes the proof.

G. Proof of Corollary 5

Let K(φ) denote
dL(φ)
dφ in (37). It is verified that dφ∗

dη =

− ∂K(φ)/∂η
∂K(φ)/∂φ |φ=φ∗ > 0 by recalling that

∂K(φ)
∂φ |φ=φ∗ < 0 from
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I(φ) = 3ρ2bL2 −
2ρb

dL2

dφ

L1(L2
1 − 1)1/2

− 1

(L2
1 − 1)2





ρ2b
λ2b

+
2 dρe

dφ + (φ+ φ2ρe)
d2ρe

dφ2 − ρ2e − φ2(dρe

dφ )2

λ2e





(a)

≤ 3ρ2b ln
λb
λe
− 2ρb

L1

√

L2
1 − 1

dL2

dφ
− 1

(L2
1 − 1)2

[

ρ2b
λ2b

+
2 dρe

dφ + (φ2 + 2φ
ρe
)(dρe

dφ )2 − ρ2e
λ2e

]

(b)

≤
[

3ρ2b
λb − λe
λe

− 2ρb
λ2b − 1

λb

dL2

dφ
−
(

λ2b − 1
)2

(

ρ2b
λ2b

+
2 dρe

dφ − ρ2e
λ2e

)]

(c)
=
ρ2b
[

3λ2b(λb − λe) + λe(1− λ4b)
]

λ2bλe
+

2ρb(λ
2
b − 1)

λbλe

(

ρe + φ
dρe
dφ

)

+
(λ2b − 1)2

λ2e

(

ρ2e − 2
dρe
dφ

)

(d)

≤ −φρ
2
b(ρb − ρe)
λ2bλ

2
e

[

2φ4ρ3bρe + φ3ρ2b(ρb + 6ρe) + φ2ρb(ρb + 8ρe) + 5φρe + 1
]

< 0, (59)

Theorem 7 and proving that

∂K(φ)

∂ρb
|φ=φ∗ =

λ2
b−λb+1

λb
− (1−Aφ∗) +

(2λb−1)(lnλb−Bφ∗ )

λb+1

φ∗(λ2b − 1)5/2/Pb

(a)
=

1
λb
− λb + (2λ2b − λb − 1)(1−Aφ∗)

φ∗(λ2b − 1)5/2/Pb

(b)

≥ λb − 1

φ∗(λ2b − 1)5/2/Pb
> 0, (60)

where (a) is due to
lnλb−Bφ∗

λb+1 = (1−Aφ∗)λb − 1 from

K(φ∗) = 0, and (b) is because (1 − Aφ∗)λb − 1 > 0.

Moreover, limη→∞K(φ∗) =
1−Aφ∗

φ∗ . Solving K(φ∗) = 0

with Aφ∗ = φ∗Λ
(1−φ∗)(1−φ∗+φ∗Λ) yields φ∗ = 1√

Λ+1
. Similarly,

one can prove that dφ∗

dΛ < 0⇒ dφ∗

dδ > 0 and limδ→1 φ
∗ = 1.

H. Proof of Proposition 1

Note that ̺1, ̺2 → 0 as Γb → ∞. Resorting to [21, Eqn.

(44)] yields

Γ̄(M,̺i) = e−̺i

M−1
∑

k=0

̺ki
k!
≈ 1− ̺Mi

M !
, i ∈ {1, 2}, (61)

and the term ∆Γ in (41) is approximated as

∆Γ =

M−1
∑

k=0

[

Γ̄(k + 1, ̺1)− Γ̄(k + 1, ̺2)
]

=
M−1
∑

k=0

(

e−̺1

k
∑

m=0

̺m1
m!
− e−̺2

k
∑

m=0

̺m2
m!

)

=

M−1
∑

k=0

M − k
k!

(

e−̺1̺k1 − e−̺2̺k2
)

=M∆Γ(M − 1, ̺1, ̺2)− ̺1Γ̄(M − 1, ̺1) + ̺2Γ̄(M − 1, ̺2)

≈M
(

̺M1
M !
− ̺M2
M !

)

−
[

̺1 −
̺M1

(M − 1)!

]

+

[

̺2 −
̺M2

(M − 1)!

]

= ̺2 − ̺1 =
θb

2βφΓb
. (62)

Substituting (61) and (62) into (41) completes the proof.
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