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Partial Non-Orthogonal Multiple Access (NOMA)

in Downlink Poisson Networks
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Abstract—Non-orthogonal multiple access (NOMA) allows
users sharing a resource-block to efficiently reuse spectrum and
improve cell sum rate Rtot at the expense of increased inter-
ference. Orthogonal multiple access (OMA), on the other hand,
guarantees higher coverage. We introduce partial-NOMA in a
large two-user downlink network to provide both throughput and
reliability. The associated partial overlap controls interference
while still offering spectrum reuse. The nature of the partial
overlap also allows us to employ receive-filtering to further
suppress interference. For signal decoding in our partial-NOMA
setup, we propose a new technique called flexible successive
interference cancellation (FSIC) decoding. We plot the rate region
abstraction and compare with OMA and NOMA. We formulate a
problem to maximize Rtot constrained to a minimum throughput
requirement for each user and propose an algorithm to find
a feasible resource allocation efficiently. Our results show that
partial-NOMA allows greater flexibility in terms of performance.
Partial-NOMA can also serve users that NOMA cannot. We also
show that with appropriate parameter selection and resource
allocation, partial-NOMA can outperform NOMA.

Index Terms—Partial non-orthogonal multiple access (NOMA),
flexible successive interference cancellation, stochastic geometry,
resource allocation

I. INTRODUCTION

Traditionally, users (UEs) avoid interference from other UEs

being served by the same base station (BS) by a multiple

access technique known as orthogonal multiple access (OMA)

which allocates orthogonal resources to these UEs. This is

done by allotting UEs different time slots or different fre-

quency channels; in fact, the the available time and frequency

resources are split into a grid of what are referred to as

time-frequency resource-blocks (also referred to as resource-

blocks from hereon). This way a UE in one resource-block

has orthogonal resources to a UE in any other resource-

block. In contrast to OMA, in non-orthogonal multiple access

(NOMA), multiple UEs share a time-frequency resource-block

for transmissions by superposing their messages in the power

domain, i.e., multiple UEs transmit their messages in the same

time slot over the same frequency channel using different

power levels for their messages. Hence, NOMA UEs improve

spectral reuse by sharing a resource-block with other UEs

but the price paid is the introduction of interference with

UEs being served by the BS on the same resource-block, i.e.,

intracell interference.

† The authors are with the Department of Electrical and Computer En-
gineering, University of Manitoba, Winnipeg, Canada (Email: {konpal.ali,
ekram.hossain}@umanitoba.ca). E. Hossain is the corresponding author.

+ The author is with the School of Engineering, the University of British
Columbia (Okanagan Campus), Canada (Email: jahangir.hossain@ubc.ca).

NOMA employs successive interference cancellation (SIC)

for the decoding of these superposed messages. SIC requires

ordering of NOMA UEs based on some measure of channel

strength. Most of the existing works on NOMA in the literature

order UEs based on the mean signal power received [1]–[6] or

on the quality of the transmission channel such as the fading

coefficient [7]–[10], the fading-to-noise ratio [11], the in-

stantaneous received signal-to-intercell-interference-and-noise

ratio [12], and the instantaneous received signal-to-intercell-

interference ratio [13].1 Such UE ordering and appropriate

resource allocation allows a UE to decode messages of UEs

weaker than itself and treat the messages of UEs stronger

than itself as noise. It has been shown extensively in the

literature that NOMA is superior to OMA in terms of the

sum throughput that can be achieved [2], [4], [5], [9]–[16].

While NOMA allows complete sharing of a resource-block,

thereby resulting in better throughput, the introduction of

intracell interference deteriorates the coverage of NOMA UEs.

OMA, on the other hand, has no intracell interference, and

therefore, provides superior coverage. However, OMA limits

only one UE to a resource-block thereby not making efficient

use of the scarce spectrum which leads to lower throughput.

To cater to better coverage requirements than NOMA as well

as better throughput requirements than OMA, we introduce the

concept of partial-NOMA. In partial-NOMA, UEs share only

a fraction of the resource-block, this way we can reduce the

intracell interference but still allow some spectrum reuse. The

motivation behind this concept is to introduce flexibility into

the system by having control over how much of the resource-

block overlaps and does not overlap for each UE. This way,

partial-NOMA is a general technique which offers flexibility

between the two extremes of traditional OMA and NOMA.

To the best of our knowledge, only the work in [17] studies

a partial-NOMA like setup in a two-user downlink scenario.

Different from our work, the authors study a single-cell setup

where the non-overlapping areas of the resource-block allow

each UE’s message to be given full power while the overlap-

ping regions share power between the two UEs so that it sums

to the full power ( [17, Fig. 1]). Such an analysis is equivalent

to studying the average performance of a system with OMA

in some resource-blocks and NOMA in other resource-blocks.

In our work, we study the performance of shared power in

one resource-block that sums up to the total power, with a

partial area of overlap (c.f. Fig. 1). Additionally, we study a

large network since a single-cell setup does not account for

1Note that UE ordering in NOMA is based on a measure of channel strength
and does not imply that the message of a strong (weak) UE has high (low)
transmission power.
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intercell interference. Accounting for intercell interference is

particularly important for setups where multiple UEs share a

resource-block (such as NOMA and partial-NOMA) as it has

a drastic negative impact on both performance and resource

allocation, as was shown in [18]. Stochastic geometry has

succeeded in providing a unified mathematical paradigm for

modeling large wireless cellular networks and characterizing

their operation while taking into account intercell interference

[19]–[22]. Works on NOMA such as [4]–[6], [13], [16], [23]

use stochastic geometry based modeling for analyzing large

networks. A number of works on NOMA have focused on

resource allocation as well [2], [5], [10]–[12], [15], [24], [25].

We also study resource allocation in this paper for a partial-

NOMA setup.

In this work, we analytically study a large multi-cell

downlink system that employs partial-NOMA for the two-

user setup. Partial sharing of a resource-block in our work

is accomplished by having the two signals overlap only with

a fraction of each other in the frequency domain while having

complete access to the entire time slot. An overlap in the

frequency domain allows us to employ matched filtering at the

receiver side to reduce the impact of the intracell interference2.

Traditional NOMA relies on SIC, which involves a strong UE

decoding and removing the message of the weak UE before

it decodes its own message. In partial-NOMA, however, after

matched filtering at the receiver side, the message of the weak

UE may be too weak for the strong UE to be able to decode.

To combat this issue and improve performance, we propose

a new decoding scheme, which we call flexible-SIC (FSIC)

decoding. Using stochastic geometry tools, we mathematically

analyze the performance of a large network with partial-

NOMA employing FSIC decoding. The rate region for NOMA

and OMA has been studied in the literature. To benchmark

the performance of a partial-NOMA setup, we study the rate

region abstraction for different values of the overlap3. The

partial-NOMA setup introduces two new parameters that can

be varied, the overlap and the amount of non-overlap given

to each UE. Accordingly, the rate region for different values

of the overlap is not enough to quantify performance. A

more practical problem is that of maximizing cell sum rate,

defined as the sum of the throughput of the two UEs sharing

a resource-block, subject to a threshold minimum throughput

(TMT) constraint on the individual UEs. In this context, we

formulate an optimization problem and propose an algorithm

for resource allocation. We show a significant reduction in

complexity between our proposed algorithm and an exhaustive

search.

The contributions of this paper can be summarized as

follows:

• We show that our partial-NOMA setup can result in

lower intercell interference than both traditional OMA

and NOMA thanks to the received filtering.

2Note that the intracell interference is only a fraction of the intracell
interference experienced in the case of traditional NOMA. However, with
matched filtering at the receiver we can further reduce its impact.

3The rate region will be abstracted into two figures to make it easier to
read for different values of the overlap.

• While it is well known that the impact of bandwidth is

more significant on throughput than the impact of interfer-

ence, we show that partial-NOMA is able to outperform

traditional NOMA in terms of the cell sum rate in the rate

region. This superiority is due to the associated received

filtering and proposed FSIC decoding.

• We show that in terms of individual UE throughput,

NOMA that has complete overlap is closer to OMA that

has no overlap, while partial-NOMA allows the individual

rates to stray farther away. This highlights the greater

flexibility in individual UE performance that a partial-

NOMA setup introduces.

• We show that while traditional NOMA cannot support

UEs with high transmission rate requirements, partial-

NOMA can. Thus instead of allocating an entire resource-

block to such UEs, they can be served in a partial-NOMA

fashion to efficiently reuse the spectrum.

• We show that with careful resource allocation, partial-

NOMA with a range of overlap values outperforms

traditional NOMA, in terms of cell sum rate. We also

show that an optimum overlap exists that maximizes the

cell sum rate given a threshold minimum throughput

constraint.

The rest of the paper is organized as follows. The system

model is described Section II. The SINR analysis, FSIC de-

coding and relevant statistics are in Section III. In Section IV,

the rate region for partial-NOMA is studied, an optimization

problem is formulated, and an algorithm is proposed to solve

the problem. The results are presented in Section V and the

paper is concluded in Section VI.

Notation: Vectors are denoted using bold text, ‖x‖ denotes

the Euclidean norm of the vector x, 1(x, A) denotes a disk

centred at x with radius A. L- (B) = E[4−B- ] denotes the

Laplace transform (LT) of the PDF of the random variable

- . We use the indicator function, denoted as 1�, to have

value 1 when event � occurs and to be 0 otherwise. The

ordinary hypergeometric function is denoted by 2�1. We use

Sinc(x) = sin(cx)/(cx) when G ≠ 0, and Sinc(x) = 1 when

G = 0.

II. SYSTEM MODEL

A. Network Model for Partial-NOMA

We consider a downlink cellular network where each BS

serves two UEs in each time-frequency resource-block. In

traditional NOMA, the two UEs share the entire resource-

block (i.e., each UE has access to the full time slot and

frequency channel associated with the resource-block), having

their messages multiplexed in the power domain. In contrast

to this, in partial-NOMA, the messages of the two UEs only

overlap over a fraction U of the resource-block. This overlap

of the resource-block can be achieved in two ways:

1) Both UEs transmit over the entire time slot but there

is only an overlap of the fraction U of the frequency

channel shared by the two UEs.

2) Both UEs occupy the entire frequency channel but

simultaneous transmission only happens for a fraction

U of the time slot.
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As mentioned in Section I, in this work, we consider the

first approach, i.e., the two UEs only share a fraction U of

the frequency resources while transmitting in the entire time

slot of a resource-block. This allows us to take advantage of

matched filtering explained in Section II-B which would not

have been possible with the second approach. With a slight

abuse of notation, in the remainder of the manuscript, an

overlap of U of the resource-block refers to an overlap of U in

the frequency domain. Since the entire time slot is available

to both UEs, we disregard this aspect when referencing the

partial overlap of the resource-block. Note that we stick to the

notation of resource-block to remain consistent with works on

traditional NOMA.

As shown in Fig. 1, we refer to the fraction of the resource-

block designated to only UE1 by V; consequently, the fraction

designated to only UE2 is 1− U− V. Thus, the effective band-

width of UE1 is BW1 = U+V, and that of UE2 is BW2 = 1−V.

The BSs use fixed-rate transmissions where the transmission

rate of each UE can be different. Such transmissions result in

effective rates, referred to as the throughput of the UEs, that

are lower than the transmission rate because of outage.

Fig. 1: A contrast between resource allocation in traditional NOMA
and partial-NOMA.

The BSs are distributed according to a homogeneous Pois-

son point process (PPP) Φ with intensity _. To the network

we add a BS at the origin o, which under expectation over Φ,

becomes the typical BS serving UEs in the typical cell. We

study the typical cell in the remainder of this work. Note that

as Φ does not include the BS at o, the set of interfering BSs

for the UEs in the typical cell is denoted by Φ. We denote by

d the distance between the typical BS at o and its nearest

neighboring BS. Since Φ is a PPP, the distribution of the

distance d thus follows

5d (G) = 2c_G4−c_G2

, G ≥ 0. (1)

An important challenge associated with NOMA is the

selection of the UEs that share a resource-block, which is

referred to as UE clustering. There is a common misconception

that clustering NOMA UEs with high channel disparity is

beneficial. However, works such as [26] have shown that this

not necessarily the case and in [6], [27] it is explicitly shown

that in fact clustering UEs with lower channel disparity but

overall better channel conditions is superior. Hence, we use the

cell-center model for the selection of NOMA UEs employed

in [12, Model 1]. As such, we consider a disk centred at o

with radius d/2, 1(o, d/2), referred to as the in-disk. The

in-disk is the largest disk centred at the serving BS that fits

inside the Voronoi cell. The rationale behind employing this

model is that UEs outside of this disk are relatively far from

their BS, have weaker channels and thus are better served

in their own resource-block (without sharing) or even using

coordinated multipoint (CoMP) transmission if they are near

the cell edge [28], [29]. These UEs are not discussed further

in this work. We focus on UEs inside the in-disk since they

have good channel conditions, yet enough disparity among

themselves, and thus can effectively be served while (partially)

sharing a resource-block. The two UEs are located uniformly

at random in the in-disk, independent of one another. Note

that this way the UEs form a Poisson cluster process where

two daughter points are placed independently and uniformly

at random on disks of varying random radii. Such a model is

superior to using a Matern cluster process where the radius of

the disks is fixed and thus: 1) risks a disk of one BS going

into the cell of a neighboring BS, 2) risks overlap between

disks.

A BS transmits with a power budget %, where the power for

the signal intended for UE8 is denoted by %8 and % =
∑2

8=1 %8;

without loss of generality we set % = 1. A Rayleigh fading

environment is assumed such that the fading coefficients are

i.i.d. with a unit mean exponential distribution. A power law

path-loss model is considered where the signal power decays

with distance A at the rate A−[ , where [ > 2 denotes the path-

loss exponent.

As has been mentioned, NOMA requires ordering the UEs

based on some measure of channel strength. In this work,

we order the UEs based on the link distance, ', between the

typical BS at o and its UE uniformly distributed in the in-disk

is conditioned on d. Note that ordering based on increasing

link distance is equivalent to ordering based on the decreasing

mean signal power received, i.e., '−[. We thus refer to the

strong UE, with the shorter link distance, as UE1 and the weak

UE as UE2. As the order of the UEs is known at the BS, we use

ordered statistics for the pdf of '8, the ordered link distance

of UE8 , where 8 ∈ {1, 2}. Hence, using the theory of order

statistics [30], in the typical cell

5'8 |d (A | d) = 16A

d2

(
4A2

d2

) 8−1 (
1 − 4A2

d2

)2−8
0 ≤ A ≤ d

2
. (2)

Note that as there is no interfering BS inside 1(o, d), the

nearest interfering BS from UE8 is at least d − '8 away. Thus

the in-disk model allows a larger lower bound on the distance

from the nearest interferer than the usual lower bound of link

distance for UEs in a downlink Poisson network [12].

B. Filtering at the Receiver

Since partial-NOMA is studied in this work, the signal

of interest at a UE only overlaps with a fraction U in the

resource-block with the other UE’s signal. Accordingly, it

is important to consider the impact of matched filtering at

the receiver, along the lines of the works in [31], [32]. The

message of the signal for UE8 is transmitted using the pulse

shape B8 (C) ↔ (8 ( 5 ). The signal is passed through a matched

filter �8 ( 5 ) = (∗
8
( 5 ) at the receiver before decoding, where
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(∗
8
( 5 ) denotes the conjugate of (8 ( 5 ). Accordingly, the impact

of the interference caused at UE8 by a message that has an

U-overlap, is referred to as the effective interference factor

I8 (U, V). Note that I8 (U, V) is a function of both U and V as

both are required to determine the center frequencies of the

signals. In this work, we assume that square pulses are used by

both UEs for transmissions. Because of the choice of �8 ( 5 )
and since the same pulse shape is transmitted by both UEs,

I8 (U, V) = I9 (U, V) when 8 ≠ 9; hence, in the remainder of the

manuscript, we drop the subscript. Along the lines of [31], the

effective interference factor as a function of V and the overlap

U is calculated as follows:

I(U, V) =
©­­
«

V+U∫
V

Sinc
(

2(f−fa)
BW1

)
�1

Sinc
(

2(f−fb)
BW2

)
�2

35
ª®®
¬

2

, (3)

where the center frequency of UE1’s message is 50 =
U+V

2

and UE2’s message is 51 =
1+V

2
. The factors �8 for 8 ∈ {1, 2}

are used to scale the energy to 1 and are calculated as �2
8
=∫ BW8/2

−BW8/2 Sinc2
(

2f
BWi

)
df.

Note that we define I(U, V) scaled to unit power from the

interfering message as this is the fraction of the interference

that actually impacts the received message. The actual inter-

fering power, which is the transmit power of the message

scaled by I(U, V), will be accounted for in the SINR analysis.

Additionally, it is important to emphasize that any interfering

message that has an U-overlap with the message of UE8 ,

whether it is from inside the typical cell or outside, will have

its power scaled by I(U, V).
Fig. 2 plots I(U, V) for the case of square pulses used in this

work. It should be noted from Fig. 2a that when the overlap

U is 0 (1), as in the case of OMA (traditional NOMA), the

effective interference factor is 0 (1). Also note that for a given

V, U is restricted to a maximum value of 1 − V; hence, when

V > 0, U ≤ 1−V < 1. Accordingly, I(U, V) in Fig. 2a is plotted

up to the maximum value of the overlap U possible. For a given

U, on the other hand, V can take on values 0 ≤ V ≤ Vmax, where

Vmax = 1 − U. We observe in Fig. 2b that for each value of U,

the curve for I(U, V) vs. V is symmetric about the midpoint

which occurs at V = Vmax/2. Additionally, it is important to

note that for smaller (larger) values of U, I(U, V) decreases

(increases) from V = 0 to (1 − U)/2 (i.e., Vmax/2 the point of

symmetry) and then increases (decreases) from V = (1− U)/2
to 1 − U.

C. Decoding of Partial-NOMA

Traditional NOMA employs successive interference cancel-

lation (SIC) for decoding. Hence, in the downlink, the strong

UE first decodes the weak UE’s message and subtracts it from

the signal before decoding its own message. The weak UE,

on the other hand, only decodes its own message, treating

the signal of the strong UE as noise. Accordingly, the power

allocation and transmission rate are designed so that decoding

the weak UE’s message is easier; this is done by allocating it

higher power than the strong UE and/or low transmission rate.

Unlike traditional NOMA, however, the intracell interference

0 0.2 0.4 0.6 0.8 1
Fraction of overlap of resource block, 

0

0.2

0.4

0.6

0.8

1

=0
=0.2
=0.5

(a) As a function of the overlap U for different values of V.

0 0.2 0.4 0.6 0.8 1
Fraction of resource-block only deisgnated to UE

1
, 

0

0.2

0.4

0.6

0.8

1

=0.1
=0.2
=0.3
=0.4
=0.5
=0.6
=0.7
=0.8

(b) As a function of V for different values of the overlap U.

Fig. 2: Effective interference factor for square pulses.

is scaled by the effective interference factor I(U, V) which

can be much lower than 1. While this is always beneficial

for the weak UE which treats intracell interference as noise,

it can make traditional SIC decoding difficult for the strong

UE which has to decode the weak UE’s message as the

effective power of the weak message at the strong UE could

be significantly lower. In this context, we propose FSIC in the

next section which is a more effective decoding technique for

the partial-NOMA setup.

III. SINR ANALYSIS

A. The SINRs of Interest

In the two-user downlink partial-NOMA setup, we are

interested in the following SINRs associated with decoding:

• the message of UE2 at UE2: SINR2
2,

• the message of UE2 at UE1: SINR1
2,

• the message of UE1 at UE1 after the message of UE2 has

been removed: SINR1
1,

• the message of UE1 at UE1 if the message of UE2 is not

removed: �SINR
1

1.

Accordingly, the SINR of decoding the 9 Cℎ message at UE8 ,

where 9 ≥ 8, assuming that messages of all UEs weaker than
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UE 9 have been removed is

SINR8
9 =

ℎ8'
−[
8

(
% 9I(U, V)18≠ 9 + %818= 9

)
ℎ8'

−[
8

((
1−∑2

:= 9 %:

)
I(U, V)18= 9 + %818≠ 9

)
+ �̃ø

8
+f2

.

(4)

The intercell interference experienced at UE8 is �̃ø
8

=

(%8 + (1 − %8)I(U, V))∑x∈Φ 6y8 ‖y8 ‖−[, where y8 = x − u8 , u8

is the location of UE8 . The fading coefficient from the serving

BS (interfering BS) located at o (x) to UE8 is ℎ8 (6y8
). For

notational convenience, we define the intercell interference

scaled to unit transmission power by each interferer as �ø
8
;

hence, �̃ø
8
= (%8 + (1 − %8)I(U, V)) �ø

8
. The noise power is

denoted by f2. Using these notations, �SINR
1

1 is

�SINR
1

1=
ℎ1'

−[
1

%1

ℎ1'
−[
1

%2I(U, V) + �̃ø
1
+ f2

. (5)

Remark 1: It ought to be mentioned that because of the re-

ceived filtering and associated interference factor I(U, V), the

partial-NOMA setup experiences lower intercell interference

than both OMA and traditional NOMA.

B. FSIC Decoding

FSIC decoding for UE2 is the same as that of SIC decoding,

i.e., UE2 decodes its message while treating the interfer-

ence from the message of UE1 as noise. Accordingly, the

event of successful decoding at UE2 is defined as �2 ={
SINR2

2 > \2

}
, where \2 is the SINR threshold correspond-

ing to the transmission rate of UE2’s message log(1 + \2).
Note that the (intracell) interference in the case of partial-

NOMA is lower than in the case of traditional NOMA as

it is scaled by I(U, V). For UE1, on the other hand, the

message of interest can be decoded successfully if either: 1)

the message of UE2 can be decoded (treating the message

of UE1 as noise) and removed, followed by decoding of the

message of UE1
4, or 2) the message of UE1 can be decoded

while treating the interference from the message of UE2 as

noise. Accordingly, it is defined by the following joint event

�1 =

{ (
SINR1

2 > \2 ∩ SINR1
1 > \1

)
∪ �SINR

1

1 > \1

}
, where \1

is the SINR threshold corresponding to the transmission rate

of UE1’s message log(1 + \1).

C. Coverage Analysis and Throughput

Lemma 1: The event �2 can be rewritten as follows:

�2 = ℎ2 > '
[

2
( �̃ø

2
+ f2)"̄2 (6)

where we have used

%̃2 = %2 − \2%1I(U, V),

such that

"̄2 =
\2

%̃2

. (7)

4We assume perfect SIC in this work. As a result, there is no leakage of
the canceled message of the weak UE which would add as interference when
decoding the message of the strong UE.

Proof: Using (4) and the definition of �2, (6) is obtained

as follows:

�2 =
{
SINR2

2 > \2

}
=

{
ℎ2'

−[
2

%2

ℎ2'
−[
2

%1I(U, V) + �̃ø
2
+ f2

> \2

}

=

{
ℎ2 > '

[

2

(
�̃

ø
2
+ f2

) \2

%2 − \2%1I(U, V)

}
.

Lemma 2: The event �1 can be rewritten as follows:

�1 = ℎ1 > '
[

1
( �̃ø

1
+ f2)"̄1. (8)

where we have used

"0 =
\1

%̃1

,

"1 = max

{
\2

%̃1
2

,
\1

%1

}
,

%̃1 = %1 − \1%2I(U, V),
and %̃1

2 = %2I(U, V) − \2%1,

such that

"̄1 =min {"0, "1} 1%̃1>01%̃1
2
>01%1>0 +

"01%̃1>01%̃1
2
≤0 ∪%1≤0 + "11%̃1≤01%̃1

2
>01%1>0. (9)

Proof: Using (4), (5) and the definition of �1:

�1 =

{(
SINR1

2 > \2 ∩ SINR1
1 > \1

)
∪ �SINR

1

1 > \1

}

=

{ (
ℎ1'

−[
1

%2I(U, V)
ℎ1'

−[
1

%1 + �̃ø
1
+ f2

> \2

⋂ ℎ1'
−[
1

%1

�̃ø
1
+ f2

> \1

) ⋃
ℎ1'

−[
1

%1

ℎ1'
−[
1

%2I(U, V) + �̃ø
1
+ f2

> \1

}

=

{
ℎ1 > '

[

1

(
�̃ø
1
+ f2

)
"1

⋃
ℎ1 > '

[

1

(
�̃ø
1
+ f2

)
"0

}
.

For the event {
(
SINR1

2 > \2 ∩ SINR1
1 > \1

)
}, %̃1

2
> 0 and

%1 > 0 are required. For the event {�SINR
1

1 > \1}, %̃1 > 0

is required. Thus, (8) is obtained by rewriting �1 in terms of

these conditions as follows:

�1 =

{
ℎ1 >'

[

1

(
�̃ø
1
+ f2

) (
min{"0, "1}1%̃1>01%̃1

2
>01%1>0

+ "01%̃1>01%̃1
2
≤0 ∪%1≤0 + "11%̃1≤01%̃1

2
>01%1>0

)}
.

Remark 2: Note that the introduction of intracell inter-

ference impacts the transmit power of the message being

decoded by deteriorating it to what is referred to as the

effective transmit power [12]. The amount of deterioration

is the intracell interference experienced scaled by the SINR

threshold corresponding to the transmission rate of the mes-

sage to be decoded. Thus, %̃2, %̃1, and %̃1
2

are the effective

transmit powers that have experienced a reduction from the

power of the messages to be decoded (%2, %1 and %2I(U, V),
respectively).
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Using [12, Lemma 1], the LT of �ø
8

at the typical UE8

conditioned on '8 and d, where D8 = d − '8, is approximated

as

L� ø
8
|'8 ,d

(B) ≈exp

(
−2c_B

([ − 2)D8 [−2 2�1

(
1, 1−X; 2−X;

−B
D8 [

))
1

1+Bd−[
(10)

[=4
= 4

−c_
√
B tan−1

( √
B

D2
8

)
1

1 + Bd−4
. (11)

Theorem 1: If the effective transmit power is positive, the

coverage probability of the typical UE8 is approximated as

P(�8) ≈
∞∫

0

G/2∫
0

4−A
[f2"̄8L� ø

8
|'8 ,d

(
A[ "̄8 (%8 + (1 − %8)I(U, V))

)
× 5'8 |d (A | G) 3A 5d(G) 3G, (12)

where the LT of �ø
8

conditioned on '8 and d is approximated in

(10). For UE1, the effective transmit power is positive if {%̃1
2
>

0, %1 > 0} and/or %̃1 > 0, while for UE2, it is positive when

%̃2 > 0. If effective transmit power is not positive, P(�8) = 0.

Proof: Using �8 in Lemma 1 or Lemma 2, if the effective

transmit power is positive, we can write

P(�8) = P
(
ℎ8 > '

[

8
( �̃ø

8
+ f2)"̄8

)
(0)
= Ed

[
E'8 |d

[
4−'

[

8
f2"̄8E� ø

8
|'8 ,d

[
4−'

[

8
"̄8 (%8+(1−%8 )I (U,V)) � ø

8

] ]]
≈ Ed

[
E'8 |d

[
4−'

[

8
f2"̄8L�

ø
8
|'8 ,d

(
'
[

8
"̄8 (%8 + (1−%8)I(U, V))

)] ]
,

where (a) follows from ℎ8 ∼ exp(1) and using �̃ø
8

=

(%8 + (1 − %8)I(U, V)) �ø
8
. The coverage probability becomes

an approximation when the approximate LT of �
ø
8

(given

'8 and d), L� ø
8
|'8 ,d

, is used. From this, we obtain (12).

Since ℎ8 ≥ 0, if the effective transmit power is not positive,

P(�8) = 0.

The throughput of UE8 , 8 ∈ {1, 2}, for a given SINR thresh-

old of \8 corresponding to a transmission rate of log(1 + \8)
is given by

R8 = BW8 P(�8) log(1 + \8). (13)

We define the cell sum rate Rtot as the sum of the throughput

of the UEs in the typical cell; thus, Rtot = R1 + R2.

It ought to be mentioned that in a partial-NOMA setup,

the resources to be allocated are the powers, the transmission

rates, and the overlapping as well as non-overlapping fractions

of the resource-block; this means allocating %1 (= 1− %2), \1,

\2, U and V.

IV. RATE REGION AND OPTIMIZATION

A. Rate Region Abstraction

Fig. 3 is an abstraction of the rate region typically plotted

for NOMA and OMA. For NOMA and partial-NOMA, the rate

region plots the throughput of UE1 against the throughput of

UE2 for every %1(= 1 − %2) from 0 to 1. For OMA, on the

other hand, the rates are plotted for every BW1 (= 1 − BW2);
of course OMA transmissions enjoy full power. It should

be noted that, although traditionally OMA is defined as one

0 0.2 0.4 0.6 0.8 1

P
1
=1-P

2
 for NOMA and Partial-NOMA (BW

1
=1-BW

2
 for OMA)

1.2

1.4

1.6

1.8

2

2.2

2.4

OMA
=0
=0.05
=0.1
=0.2
=0.25
=0.35
=0.5
=0.9
=1 (NOMA)

(a) Cell Sum Rate

0 0.2 0.4 0.6 0.8 1
P

1
(=1-P

2
) for NOMA and Partial-NOMA (BW

1
(=1-BW

2
) for OMA)

0

0.5

1

1.5

2

2.5

R
at

es

(b) Individual UE Throughput. Dashed (dotted) lines are used for R1 (R2).

Fig. 3: Rates vs. %1 (= 1 − %2) for different U with corresponding
optimum V, \1, \2 to maximize Rtot.

UE having access to the entire resource-block, in the context

of rate regions for the sake of comparison, two UEs share

non-overlapping fractions of the same resource-block. In our

work, since partial-NOMA UEs have their overlap in the

frequency domain, OMA UEs share non-overlapping fractions

of the frequency channel, i.e., non-overlapping fractions of

the bandwidth BW1; thus, BW2 = 1 − BW1. This way the

rate region compares the performance of the following: 1)

OMA: where two UEs split the bandwidth resource in a non-

overlapping fashion while each utilizing the full power (i.e.,

% = 1) for their transmissions, 2) NOMA: where two UEs fully

share the bandwidth resource while splitting the power among

themselves for the transmission of their messages, i.e., %1 ≤ 1,

%2 ≤ 1 and %1+%2 = 1. Thus, in the literature, rate regions are

used to show the superiority of NOMA due to the full spectrum

reuse despite the lower transmit powers of the individual UE

messages and introduction of intracell interference, over OMA

where there are higher (full) transmit powers of individual UE

messages and no intracell interference but no spectrum reuse.

Here, we aim to shed light on the case of: 3) partial-NOMA:

where two UEs split the power among their messages like

in the case of traditional NOMA; however, they share only

an overlap U of the bandwidth, resulting in both spectrum

reuse and intracell interference lower than traditional NOMA.
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It should be noted that as there is no overlap of bandwidth in

OMA, the OMA case may seem similar to partial-NOMA with

U = 0. However, the two are different as each UE in OMA has

messages with full power, i.e., % = 1 while in partial-NOMA

with U = 0, due to the definition of the setup which is for

general U, %1 ≤ 1, %2 ≤ 1 and %1 + %2 = 1. Additionally, the

rate region curves for OMA are plotted against BW1, while

the rate region curves for partial-NOMA (including U = 0),

similar to those for traditional NOMA, are plotted against %1.

Since the rate region for different values of U can be difficult

to read in the partial-NOMA setup, we abstract the rate region

by plotting the cell sum rate and the individual UE throughput

against increasing %1 for NOMA and partial-NOMA (against

increasing BW1 for OMA) in Figs. 3a and 3b, respectively. It

ought to be mentioned that in addition to using the optimum

\1 and \2 that maximize Rtot, as is typical for obtaining the

boundary of the rate region, the partial-NOMA setup also

involves using the optimum V for each value of U and %1.

We consider BS intensity _ = 10, noise power f2 = −90 dB

and [ = 4.

From Fig. 3a, we observe that partial-NOMA with lower

values of U outperforms traditional NOMA in terms of RC>C .

It is, however, important to mention that partial-NOMA is

able to do so because it has the advantage of modified-SIC

decoding courtesy of the received filtering. We also observe

that all values of U still outperform OMA significantly in terms

of Rtot. Additionally, by increasing U from 0, we observe that

Rtot first increases with U, followed by a decrease in Rtot with

U, and then an increase to U = 1. Note that the value of

U until which Rtot increases initially, grows with %1. This

trend of an increase in Rtot with U at first followed by a

decrease can be attributed to the trade off between spectrum

reuse and interference. In the low U regime, increasing U

does not increase I(U, V) significantly and the impact from

the resulting increase in interference is lower than the impact

of the gains from the increased spectrum reuse with U. This

results in an increase in Rtot with U. After a certain U, the

impact of I(U, V) becomes more significant and the impact

of the increasing interference with U is more dominant than

the impact of the increasing spectrum reuse5. We thus observe

a decrease in Rtot with U. At U = 1, although interference

is maximum, the impact of full spectrum reuse between the

two UEs is more significant, resulting in an increase in Rtot.

These trends shed light on the existence of a range of smaller

values of U which are superior to traditional NOMA in terms

of Rtot because of its spectrum reuse and interference trade

off, followed by a range of larger U values that are inferior.

This also highlights the importance of the careful choice of U

required for different network goals.

Fig. 3b shows that in the case of OMA, the throughput of

UE1 is inferior to any partial-NOMA or NOMA setup while

its throughput for UE2 is superior to any partial-NOMA or

NOMA. As U increases from 0 to 1, the throughput of UE1

(UE2) decreases (increases). This highlights the unexpected

observation that, in terms of the individual UE throughput,

5Note that FSIC plays an important role in this; without it, the impact of
spectrum reuse would always be more significant.

traditional NOMA (U = 1) is closer to OMA than partial-

NOMA with an overlap U < 1. Since the rate region re-

flects the boundaries of achievable throughput, these results

show the ability of partial-NOMA to achieve more disparate

performance than the other two schemes, highlighting the

potential for greater flexibility. Also, note that for values of

U such as {0.1, 0.2, 0.25, 0.35} R1 (R2) does not increase

(decrease) monotonically with %1. A significant change is seen

at these values which corresponds to a switch in the decoding

technique from "̄1 = "1 to "̄1 = "0 (i.e., from using

traditional SIC to when UE1 does not decode the message

of UE2). This is because at higher %1, with these relatively

smaller U values, decoding the message of the weak UE

becomes inefficient so UE1 starts treating the message of UE2

as noise. Note that smaller (larger) U values have "̄1 = "0

("̄1 = "1) for all %1.

It is important to mention that Fig. 3 is plotted to maximize

Rtot; in the case of traditional NOMA, V can only take on

the value 0 and so the rate region can be used to identify the

maximum achievable throughput of a TMT constrained setup.

However, when U < 1, the selected V impacts performance

and so the results in Fig. 3 cannot be used to see the gains

that would be achievable from a TMT constrained setup.

B. Problem Formulation − Constrained Cell Sum Rate Maxi-

mization

As the abstraction of the rate region plotted in the previous

subsection aims to maximize the unconstrained cell sum rate

for a given U, in this subsection we formulate a problem for a

more practical setup where a TMT is required to be achieved

by each UE. Accordingly, we formally state the problem as

follows:

• P1 - Maximum cell sum rate, given U, subject to the

TMT T :

max
(%1, \1 , \2 ,V)

Rtot

subject to:

2∑
8=1

%8 = 1

0 ≤ V ≤ Vmax

R8 ≥ T , 8 ∈ {1, 2},

where Vmax = 1−U. It is evident that the constraints in P1 are

not affine, and therefore, the problem is non-convex. Thus, an

optimal solution, i.e., choice of V, %1 = (1 − %2) and \8 for

8 ∈ {1, 2} that results in the maximum constrained Rtot, can

only be obtained by using an exhaustive search.

C. Efficient Algorithm

As has been mentioned, only an exhaustive search over all

combinations of %1 = (1 − %2), \1, \2 and V can guarantee

the optimum resource allocation for the above problem. In this

subsection, we propose an algorithm based on intuition. While

we cannot guarantee our algorithm to be optimum, it provides

a feasible solution to meet the constraints of the problem.

The following is known:
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1) From the rate region for static channels in traditional

NOMA, a resource allocation (RA) that results in the

weak UE achieving the TMT T , while all of the remain-

ing power being allocated to the strong UE to maximize

its throughput, is the optimum solution for that problem.

An example of this is presented in [15]. Extending this

to our large-scale partial-NOMA setup, for a given U and

V, i.e., fixed bandwidths for the two UEs, the optimum

RA would require achieving TMT for the weak UE and

using the remaining power to maximize R1.

2) The impact of bandwidth is generally more significant

on throughput than the impact of power, as throughput

grows linearly with bandwidth but only as the logarithm

with power.

Remark 3: In regard to 1), for traditional NOMA, achieving

TMT for UE2 and maximizing Rtot would require allocating

the smallest %2 required to achieve R2 = T [5], [18] so that

the largest %1 possible would be left for UE1 to maximize its

throughput with. This is because a strong UE with its superior

channel can obtain more from any power than the weak UE,

and hence the least required power should be spent on the

weak UE. However, in the partial-NOMA setup, the minimum

%2 that achieves TMT for the weak UE may result in UE1

being in outage because of the impact of received filtering

and corresponding I(U, V). While we still want to allocate

least %2, it may need to be increased so that UE1 can be in

coverage as will be explained.

Remark 4: In light of 2), it may be tempting to think that

the largest V, i.e., Vmax (corresponding to the smallest BW2),

with the smallest %2 that can achieve TMT for the weak UE

will result in the optimum solution. However, if U is small, the

largest V may result in insufficient bandwidth for UE2. This

may cause it to either not be able to meet TMT at all or to

compensate for the small BW2 by using a very large %2 to

achieve TMT. The latter would result in very little %1 being

left for UE1 resulting in very low R1 because of low coverage

despite having a large BW1.

Hence, we propose opting for an RA strategy that aims to

find the lowest %2 required to meet TMT for UE2 and obtain

the maximum R1 (and therefore Rtot) for each value of V,

starting from Vmax and decreasing it. Starting from the largest

V, Vmax, this is done until Rtot starts decreasing. At this point

we have found the optimum V because further decreasing V

will only deteriorate Rtot. The optimum RA is then selected

by choosing the V and its corresponding %1(= 1−%2), \1 and

\2 that result in the largest Rtot.

Using the definitions of R1 and R2 based on the developed

analysis in Section III, our algorithm for P1 thus solves the

problem

max
(%1, \1 , \2 ,V)

R1

subject to:

2∑
8=1

%8 = 1, 0 ≤ V ≤ 1 − U, and R2 = T .

Given U and V, we first search for the minimum %2 that

allows UE2 to attain a throughput equal to the TMT; this leaves

the largest possible %1 for UE1. Corresponding to this %2, UE1

can be in the following three states:

• State I (%̃1
2
> 0): If %̃1 ≤ 0, increasing %2 makes %̃1 more

negative and can therefore not impact R1. If %̃1 > 0,

increasing %2 will make %̃1 smaller and consequently

"0 larger which will not result in its selection for a

potentially larger R1. Hence, if %̃1
2
> 0 for the minimum

%2 that can achieve R2 = T , the optimum %2 and \2

have been found, the corresponding optimum \1 that

maximizes R1 should be selected to maximize Rtot.

• State II (%̃1
2
< 0 and %̃1 > 0):

1) Optimize \1 to maximize R1 and store as \1,� � and

R1,� � , respectively. Note that here "0 is selected as

%̃1
2
< 0 and so "1 is not possible.

2) Increase %2 until %̃1
2

> 0 and "1 is selected.

Calculate the corresponding R1 using the optimum

\1 that maximizes it and store as R1,� and \1,� ,

respectively. If "1 is never selected, R1,� = 0.

3) Store the larger of the two throughputs R1,� and

R1,� � , and its corresponding transmission rate as R1

and \1, respectively.

• State III (%̃1
2
< 0, %̃1 ≤ 0): As UE1 is in outage in this

state, increase %2 until state I or II is achieved and follow

the corresponding steps.

We formally state the working in Algorithm 1.

In Algorithm 1, flag1 = 0 denotes that State II has not been

achieved as of yet for the current value of V while flag1 =

1 denotes that State II has been achieved at least once. If

the power budget has been expended but UE2 cannot meet

the TMT, flag2 = 1; otherwise, flag2 = 0. Thus if flag2 = 1,

V needs to be decreased to give UE2 a larger bandwidth to

achieve TMT; if V is decreased to 0 but UE2 can still not

achieve TMT, the TMT is too high to be met by the system and

ought to be decreased. Since the range of possible V changes

with U, we standardize ΔV to be a function of Vmax in line 1 so

that we select from a fixed number of V values irrespective of

U for fairness between different values of U. Similarly, since

the range of transmission rates is \8 ≥ 0 8 ∈ {1, 2}, we make

our search finite by searching in the range \!� ≤ \8 ≤ \*� ,

increasing in steps of Δ\ ; %2 is also increased in steps of Δ%.

Given U and T , Algorithm 1 starts with Vmax, the largest

value of V, in line 2. For a V, it searches for the smallest %2 and

the corresponding lowest \2 that can attain the TMT. If UE1

can be in State I with the selected %2 and \2, \1 is optimized to

maximize R1 and the optimum parameters that maximize Rtot

have been found for this V. However, if State I is not achieved,

but State II is achieved, we optimize \1 to maximize R1 and

store it as R1,� � . %2 is then increased until State I can be

achieved. If it is achieved before exhausting the power budget,

the corresponding \1 is optimized to maximize R1 and stored

as R1,� ; R1,� and R1,� � are compared to see which is larger

and the corresponding parameters %1 = (1−%2), \1 and \2 are

stored as the optimum for this V. If State I cannot be achieved,

R1,� � and its corresponding parameters are stored. If we are

in State III, %2 is increased until State I or II is achieved and

the corresponding steps are followed. However, if the TMT

cannot be met for UE2 using full power, i.e., we are in State

III even when %2 is increased to 1 in line 57, BW2 is not
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Algorithm 1 RA for a feasible solution to P1

1: Vmax = 1 − U, ΔV = Vmax/10, RV,vec

1
= [ ], \V,vec

1
= [ ],

%
V,vec

1
= [ ], RV,vec

2
= [ ], \V,vec

2
= [ ]

2: for V = Vmax : −ΔV : 0 do

3: flag1 = 0, State=[ ]

4: for %2 = 0 : Δ% : 1 do

5: for \2 = \!� : Δ\ : \*� do

6: Calculate R2 using (13) with (12) and (7)

7: if R2 ≥ T then

8: if %̃1
2
> 0 then

9: State=I

10: end if

11: Go to 22

12: end if

13: end for

14: flag2 = 0

15: if R2 < T then

16: if %2 = 1 then

17: flag2 = 1

18: else

19: Go to 4

20: end if

21: end if

22: if flag2 = 0 then

23: if State=I then

24: for \1 = \!� : Δ\ : \*� do

25: Calculate R1 using (13) with (12) and (9)

26: Update Rvec
1,�

= [Rvec
1,�

;R1]
27: end for

28: Store R1,� = max(Rvec
1,�

) and corresponding \1,� ,

%1,� , R2,� , \2,�

29: else

30: for \1 = \!� : Δ\ : \*� do

31: if %̃1 > 0 then

32: State=II

33: if flag1 = 0 then

34: Calculate R1 using (13) with (12) and

(9)

35: Update Rvec
1,� �

= [Rvec
1,� �

;R1]
36: end if

37: end if

38: end for

39: Store R1,� � = max(Rvec
1,� �

) and corresponding

\1,� � , %1,� � , R2,� � , \2,� �

40: if R1,� � = 0 then

41: State=III

42: Go to 4

43: else

44: flag1 = 1

45: if %2 < 1 then

46: Go to 4

47: end if

48: end if

49: end if

50: end if

51: if flag1 = 1 then

52: Store RV,vec

1
= [max(R1,� ,R1,� � );RV,vec

1
] and cor-

responding \
V,vec

1
, %

V,vec

1
, RV,vec

2
, \

V,vec

2

53: Go to 64

54: else

55: if flag2 = 1 then

56: TMT cannot be met by UE2

57: Go to 2

58: else

59: Store RV,vec

1
= [R1,� ;RV,vec

1
] and corresponding

\
V,vec

1
, %

V,vec

1
, RV,vec

2
, \

V,vec

2

60: Go to 64

61: end if

62: end if

63: end for

64: if V > Vmax then

65: if RV,vec

1
(end) < RV,vec

1
(end − 1) then

66: Store R1 = max(RV,vec

1
) and corresponding \1, %1,

R2, \2, V.

67: if R1 < T then

68: TMT cannot be met by UE1

69: end if

70: V that maximizes Rtot found; exit

71: end if

72: end if

73: end for

sufficient, flag2 = 1, and we go to line 2 to reduce V. If the

TMT is met by UE2 and RV,vec

1
is stored for the iteration of

V, we go to line 64. If this is the first iteration of the V loop,

we go to the next iteration. If it is not the first iteration and if

the throughput of UE1 calculated is larger than that in the last

iteration of the V loop, we again go to the next iteration of the

V loop. However, if it is not the first iteration of the V loop,

and the throughput of UE1 calculated is smaller than that in

the last iteration, the optimum throughput of UE1 has already

been found and we store it as R1 along with its corresponding

R2 and parameters %1 = (1 − %2), \1, \2, and V. We check

to see if UE1 is able to meet the TMT; however, it should

be noted that increasing V will not improve the throughput of

UE1 further irrespective of whether the TMT has been met or

not. We thus exit the algorithm in line 70.

Since the purpose of Algorithm 1 is to provide an efficient

alternative to an exhaustive search in terms of complexity, it

is important to define a measure of complexity to compare

the two. We measure complexity in terms of the sum of

the number of times a UE’s throughput R8 , 8 ∈ {1, 2}, is

calculated. The algorithm iterates over the number of V, power,

and transmission rate combinations. As has been mentioned,

our algorithm searches in \!� ≤ \8 ≤ \*� in steps of Δ\

to make the search finite. Similarly, the algorithm searches
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for 0 ≤ %2 ≤ 1 in steps of Δ% . When U < 1, the algorithm

searches for Vmax ≤ V ≤ 0 in steps of ΔV = Vmax/10; for

U = 1, there is only one choice of V which is 0. For a fair

comparison, we use the same search space for the exhaustive

search. In particular, there are Δ̂\ = (\*�−\!�)/Δ\+1 choices

of \8 , 8 ∈ {1, 2} and Δ̂% = 1/Δ%+1 choices of %2. When U = 1,

there is one choice of V and so Δ̂V = 1. However, when U < 1,

there are Δ̂V = Vmax/ΔV + 1 choices of V. Note that since

we have fixed ΔV to Vmax/10, Δ̂V = 11 when U < 1. While

Algorithm 1 does not go through all combinations of these

choices, an exhaustive search does. Hence, the complexity of

an exhaustive search for this setup is Δ̂VΔ̂%Δ̂
2
\
.

Remark 5: Each value of U requires an exhaustive search over

all combinations of V, %1 = (1 − %2), \1 and \2 to obtain

the contour plots against V and %1 that maximize Rtot. It

is thus not possible to obtain these plots from an exhaustive

search for many U values. However, we would like to mention

that the results obtained from Algorithm 1 matched those of

the exhaustive search for the U values that we did conduct

them for. While we can still not guarantee that our algorithm

finds the optimum solution for all values of U and the TMT

constraint, this highlights the accuracy of the feasible solution

found by our algorithm.

V. RESULTS

We consider BS intensity _ = 10, noise power f2
= −90 dB

and [ = 4. In the results in Section V-A, resource allocation

is fixed and unless stated otherwise, we transmit using %1 =

1−%2 = 1/3 and use identical transmission rates for clarity of

presentation. The SINR thresholds (\1 and \2) corresponding

to the transmission rates are thus represented using \. The

results in Section V-B use resource allocation obtained from

Algorithm 1 for solving the optimization problem P1.

A. Fixed Resource Allocation

Fig. 4 is a plot of coverage probabilities against SINR

threshold. Fig. 4a uses U = 0.25 while Fig. 4b uses U = 0.75;

each plots the probabilities for V = 0 and V = (1 − U)/2.

The figure validates our analysis by using Monte Carlo sim-

ulations to show that the approximation in Theorem 1 is

tight. In addition to the coverage probabilities of the two UEs,

the figure also plots the coverage probability of UE1 using

traditional SIC decoding (cyan curves), i.e., "̄1 = "1, and

when UE1 does not decode the message of UE2 and treats the

intracell interference from UE2 as noise (magenta curves), i.e.,

"̄1 = "0. Since identical transmission rates are used for both

UEs in this figure, the coverage of UE1 for a given U is one or

the other; however, if this was not the case, the coverage could

have been equal to different decoding techniques at different

\ depending on the selected (superior) technique in that case.

We observe that when U is small in Fig. 4a, increasing

V from 0 to (1 − U)/2 increases the coverage probability

as I(U, V) decreases from 0 to Vmax/2 (= (1 − U)/2) as

shown in Fig. 2b. With the larger U used in Fig. 4b, I(U, V)
increases from 0 to Vmax/2. Corresponding to this increase

in interference, the coverage probability of UE2, which treats

the message of UE1 as noise, decreases with V from 0 to

-20 -10 0 10 20
 (dB)

0

0.2

0.4

0.6

0.8

1

C
ov

er
ag

e 
P

ro
ba

bi
lit

y

UE
1

UE
2

UE
1
 using M

1

UE
1
 using M

0

(a) U = 0.25

-20 -10 0 10 20
 (dB)

0

0.2

0.4

0.6

0.8

1

C
ov

er
ag

e 
P

ro
ba

bi
lit

y

UE
1

UE
2

UE
1
 using M

1

UE
1
 using M

0

(b) U = 0.75

Fig. 4: Coverage probabilities vs. \. Solid (dashed) lines represent
V = 0 (V = (1 − U)/2). Markers represent Monte Carlo simulations.

Vmax/2. UE1, on the other hand, decodes the message of UE2

as "̄1 = "1 in the case of Fig. 4b; thus, as I(U, V) increases

from 0 to Vmax/2 decoding the message of UE2 becomes easier

for UE1 and the coverage of UE1 improves. Note that the case

of UE1 using "0 follows a similar trend to UE2 as it treats the

message of the other UE as noise. It should also be noted that

the coverage probability for the UEs given an U is the same

when V = 0 and when V = (1−U). This is due to the symmetry

of I(U, V) about Vmax/2 which results in identical coverage

for V values of the form (1 − U)G and (1 − U) (1 − G), where

G ∈ [0, 1], due to identical values of I(U, V) for such values

of V. It is important to note that the throughput of the UEs will

not be the same for such pairs of V values. This is because, the

V value directly impacts bandwidth and therefore throughput;

this will be observed in Figs. 9 and 10 where different rates

are observed for V = 0 and V = 1 − U which have identical

coverage.

Fig. 5 plots the coverage probability of the UEs with

increasing %1 (= 1−%2) using \ = 0 dB and different V values

for U = 0.35 and U = 0.75. As anticipated, the coverage

of UE2 decreases with %1 because of deteriorating SINR

for UE2 as %1 increases (i.e., %2 decreases). Additionally,

the coverage of UE2 decreases with U due to the higher

interference encountered as I(U, V) increases with U. In Fig.
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Fig. 5: Coverage probabilities vs. %1 (= 1−%2) using \ = 0 dB. Solid
(dashed) lines represent V = 0 (V = (1 − U)/2).

5a, we observe that the coverage of UE2 increases with V,

while in Fig. 5b, we observe a slight decrease in coverage

with V. This occurs because for lower (higher) values of U,

I(U, V) decreases (increases) from V = 0 to V = (1 − U)/2,

thereby decreasing (increasing) interference. The coverage for

UE1 is more complex as the coverage first increases at low %1

as the message of UE2 is easily decoded due to high %2 and

then decreases as increasing %1 makes decoding the message

of UE2 hard; "̄1 = "1 in this regime. After this, we observe a

sharp increase in the coverage of UE1 as the message of UE2

is treated as noise with growing %1 (and therefore, decreasing

%2) since "̄1 = "0. Note that in the region where UE2’s

message is being decoded by UE1 (i.e., "̄1 = "1), when

U = 0.35, having small I(U, V) is a disadvantage as it reduces

the power of the message of UE2 being decoded; hence, we

observe that V = 0 outperforms V = (1 − U)/2 in this region.

At a higher %1, where the message of UE2 is treated as noise,

V = (1−U)/2, with the smaller I(U, V), outperforms V = 0 as

it experiences lower interference. The opposite trends hold in

Fig. 5b with the higher U value of 0.75; this is because here

V = (1 − U)/2 has a higher interference factor I(U, V) than

V = 0.

Fig. 6 is a plot of the coverage probabilities of the UEs vs. \

using V = (1−U)/2 for different values of U. We observe that
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Fig. 6: Coverage probabilities vs. \ using V = (1 − U)/2. Black
(red) lines represent UE1 (UE2).
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Fig. 7: Coverage probabilities vs. U using V = (1 − U)/2. Solid
lines represent \ = −1 dB, dotted represent \ = 0 dB and dashed
represent \=1 dB.

the coverage of UE2 for any \ decreases as U increases. This

is anticipated because I(U, V) increases with U; consequently,

both intracell and intercell interference increase with U thereby

reducing coverage. A different trend is observed for UE1,

on the other hand, where the coverage does not decrease

monotonously with U.

Fig. 7, a plot of coverage probability vs. U, explains the

above phenomenon better. Different \ values and V = (1−U)/2
are used. As before, the coverage probability of UE2 decreases

monotonically with U. For UE1, however, because of the

employed modified-SIC decoding, there is a switch between

not decoding the message of UE2 (the curves corresponding

to using "̄1 = "0) and employing traditional SIC decoding

(the curves corresponding to "̄1 = "1). This results in a non-

monotonic decrease in the coverage as U increases because

the impact of increasing I(U, V) is not as trivial as in the

case of UE2. We also observe that for larger values of \

(see \ = 1 dB), for some choices of power and transmission

rate allocation, certain values of U will result in guaranteed

outage (0.54 ≤ U ≤ 0.64 for \ = 1 dB). This highlights the

importance of careful resource allocation as well as parameter

selection in a partial-NOMA setup to avoid guaranteed outage.

It should also be mentioned that with appropriate resource
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allocation, partial-NOMA can result in better coverage than

traditional NOMA (U = 1) for both UEs. Additionally,

the curves for UE1 using "1 highlight the traditional SIC

decoding scheme’s inadequacy in the low U regime where,

due to small I(U, V), decoding the message of the weak UE

becomes the bottleneck for coverage. Similarly, the curves for

UE1 using "0 show that for higher values of U the intracell

interference becomes significant and treating it as noise results

in outage.

Fig. 8 is a plot of the cell sum rate against \ using

V = (1 − U)/2. The figure highlights that reducing U from

the traditional NOMA setup (U = 1) increases the tolerance

of the system to outage for high transmission rates. While

traditional NOMA cannot support UEs that have messages

with high transmission rates, instead of opting for such UEs

to be designated an entire resource-block for the transmission

of their messages, a more efficient approach is to use partial-

NOMA where multiple UEs still share a resource-block and

can transmit a message with high transmission rate. Essen-

tially, the partial-NOMA setup is less restrictive in terms of

the transmission rates that can be supported. We also observe

that the peak Rtot first increases from U = 0, followed by a

decrease and then an increase again to U = 1. Additionally,

the peaks of the lower U values outperform that of traditional

NOMA. This trend again highlights the existence of a range

of U values which provide superior performance compared to

traditional NOMA in terms of Rtot followed by another range

inferior to it.

Fig. 9 is a plot of the cell sum rate against U. Corresponding

to the outage regions for UE1 in Fig. 7, we observe dips in

the cell sum rate. It is interesting to observe that \ values

that support larger rates overall, such as \ = 1 dB have larger

dips than lower \. This occurs because while the transmission

rates being used make both "1 and "0 result in superior

coverage conditions, since they are identical, they put a larger

gap between the two conditions resulting in a larger region

of outage for UE1. This gap, and the consequent dip in rate,

reduces as \ increases but the price paid is lower overall rate.

Other than the dip caused by the outage region of UE1, we

observe that cell sum rate increases roughly linearly with U.

Fig. 10 is plotted to gain better insight of why this occurs

Fig. 10 is a plot of rates with increasing U using \ = 0

dB. For a given U, the throughput of UE2 (UE1) decreases

(increases) as V increases because its bandwidth decreases

(increases). For V = 0 we observe that UE2’s throughput

decreases with U. This is because, it has a fixed bandwidth

of 1 in this case and its throughput is only impacted by

coverage which decreases as I(U, V) increases with U. For

the other two V values, the throughput of UE2 increases with

U as the impact of the increasing bandwidth is greater than

the increased interference resulting from higher I(U, V). For

the lower V values, we observe that the throughput of UE1

increases with U (other than the dips occurring from the outage

region) as the impact of increasing bandwidth is larger than

the increasing interference. When V = 1 − U, however, the

bandwidth is 1 and the throughput decreases with U because

of the impact of increased interference occurring from I(U, V).
It should be noted that the rate of this decrease is much lower
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than the rate of increase from bandwidth gains for the other

curves which is anticipated. This explains why an optimum U,

which is not 1, that maximizes cell sum rate is not observed

in Fig. 9 or 10.

B. Resource Allocation Using Algorithm 1

Fig. 11 plots the impact of increasing U on different

elements when the cell sum rate is maximized subject to a

TMT constraint, i.e., P1. We consider two different values

of TMT, T = 0.05 and T = 0.25. Fig. 11a plots the

individual UE and cell sum rates. As has been mentioned,

Algorithm 1 is used to obtain the resource allocation; hence

R2 attains the TMT. For a given T , we observe in Fig. 11b

that upto U = 0.3 for T = 0.25 (U = 0.35 for T = 0.05),

%2 slowly increases because of the increasing I(U, V) and

consequent intracell interference requiring higher power by

UE2 to achieve TMT. Corresponding to this range of U, there

is first an increase and then a decrease in R1 (and therefore

Rtot) although %1 decreases slowly. The initial increase in rate

is attributed to the more significant impact of BW1 at first;

however, after the local optimum, the impact of lower %1 and

higher I(U, V), contributing to lower power of the message of

interest and higher intracell interference, takes over and causes

a degradation in rate as U increases.

After U = 0.3 for T = 0.25 (U = 0.35 for T = 0.05), we

observe from Fig. 11b that, there is a switch in the decoding

technique from "̄1 = "0 to "̄1 = "1, i.e., from UE1 treating

the message of UE2 as noise to decoding it. This switch

also corresponds to a sudden increase in %2 leaving behind

less power for UE1’s message. However, we still observe an

increase in R1 because decoding and removing UE2’s message

before decoding its own improves UE1’s performance. This

need for UE1 to decode UE2’s message scaled by I(U, V) is

also why there is a spike in %2 when the decoding technique

switches. As U grows, %2 decreases as I(U, V) grows so it is

easier for UE1 to decode the weak UE’s message and because

lower %2 is required by UE2 which also has larger bandwidth

as the overlap U grows. Hence, as U grows after the switch in

"̄1, Rtot grows with U.

We also observe that lower T corresponds to higher Rtot

as there are more resources available for UE1 to maximize

its throughput with. Additionally, we observe a range of U

that outperforms traditional NOMA in terms of Rtot and thus

there exists an optimum U ≠ 1 that maximizes cell sum rate

subject to a TMT constraint. Note that this is in line with

partial-NOMA outperforming traditional NOMA in the rate

region abstraction as unconstrained cell sum rate maximization

is equivalent to P1 with T = 0. It ought to be noted that

the values of U (including the optimum) that outperform

traditional NOMA in terms of Rtot occur in the region where

"̄1 = "0 (i.e., the message of the weak UE is treated as noise

by the strong UE). This highlights the important role that FSIC

plays in the superiority of partial-NOMA.

In Fig. 11c, we plot the number of iterations of V required

by the algorithm. Note that the algorithm actually goes through

one more iteration than the iteration at which the optimum V

is found for U < 1 as we terminate the algorithm once Rtot
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Fig. 11: Using Algorithm 1 to solve P1 with increasing U. Red
curves are for T = 0.25 and black curves are for T = 0.05.
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starts decreasing with decreasing V. For U = 1, there is only

one possible value of V, and therefore, only one iteration. We

observe that a higher T naturally requires more iterations since

a lower BW2 may not be sufficient to meet the TMT or may be

consuming too much %2, thereby requiring us to increase BW2

by reducing V. Note that the number of iterations required

decreases monotonically with U for a given T . This is because,

as U increases, BW2 increases and so the need to decrease V

is less.

As mentioned in Section IV, it is impractical to carry out

an exhaustive search for each value of U due to the high

complexity involved. However, since we have data from the

exhaustive searches in Fig. 3 for U values of {0, 0.05, 0.1,

0.2, 0.25, 0.35, 0.5, 0.9, 1}, we use these to benchmark the

performance of the results in Fig. 11a. For these values of

U with both TMT values used in Fig. 11 we find matches

with the data from the exhaustive searches. As mentioned in

Remark 5, we would like to emphasize that while this is not

proof for the optimality of our algorithm, it sheds light on the

accuracy of our feasible solution.

In Fig. 11, we search for the transmission rates in −20 dB ≤
\8 ≤ 21 dB and use step size Δ\ = 0.5. As a result, there are

Δ̂\ = 83 choices of \8 , 8 ∈ {1, 2}. For %2, we use step size

Δ% = 0.01; hence, there are Δ̂% = 101 choices of %2. ΔV is

already defined in Section IV-C so that there are Δ̂V = 11

choices of V when U < 1 and there is only Δ̂V = 1 choice of V

when U = 1. While we do not carry out an exhaustive search

in Fig. 11, we still compare the complexity of our algorithm

with that of an exhaustive search as it is constant for the latter.

As has been mentioned, for a fair comparison, the same search

space is considered for the exhaustive search.

Fig. 11d shows that the proposed Algorithm 1 requires

significantly lower complexity than an exhaustive search.

Additionally, the complexity of Algorithm 1 increases as T
increases due to the larger number of iterations of both %2

and V required to achieve TMT and find the optimum. We

also observe that overall as U increases, the complexity of

Algorithm 1 decreases6. This is in line with the fact that a

higher value of U requires a fewer number of iterations of V

for the algorithm to find the optimum solution. It should also

be noted that for both the exhaustive search and Algorithm

1, there is a decrease in complexity at U = 1 because there is

only one value of V possible making the search space smaller.

C. Summary of Main Results

We summarize the main results as follows:

• The coverage of UE2 decreases monotonically with the

overlap U. The coverage of UE1, on the other hand, does

not. This is because the impact of increasing I(U, V) is

not as trivial due to FSIC decoding.

6Our complexity curves for Algorithm 1 are not very smooth as the grid for
\8 is not very fine. This sometimes results in a longer search for the resources
that allow UE2 to attain TMT and therefore the decrease in complexity with U

is not monotonic (by small amounts). A finer \8 grid would result in smoother
curves but the price paid would be much higher complexity. As the difference
in resource allocation and performance would be marginal, we do not do this
to avoid longer computation times.

• Some choices of resource allocation will result in guar-

anteed outage for certain U, emphasizing the importance

of careful resource allocation.

• With appropriate resource allocation, partial-NOMA re-

sults in better coverage than traditional NOMA for both

UEs.

• Traditional SIC is inadequate in the low U regime, while

treating the message of the weak UE as noise at the strong

UE is inadequate when U is higher.

• Reducing the overlap U allows the system to support UEs

with higher transmission rate requirements. This allows

partial-NOMA to serve UEs that traditional NOMA can-

not, thereby preventing inefficient spectrum reuse.

• As anticipated, for a given power and transmission rate

allocation, the impact of increased interference with U is

lower than that of increased bandwidth.

• Using Algorithm 1, when "̄1 = "0, we observe a local

optimum for R1 although %1 is decreasing in this range

because of the trade off between increasing bandwidth

and decreasing SINR (due to lower signal power and

higher intracell interference).

• Using Algorithm 1, after the switch from "̄1 = "0 to

"̄1 = "1, R1 increases with U.

• We observe partial-NOMA to outperform traditional

NOMA in terms of Rtot both in the rate region and using

Algorithm 1. This occurs in the low U regime where

"̄1 = "0 highlighting the important role that FSIC plays

in the superiority of partial-NOMA.

• An optimum U < 1 exists given a TMT constraint that

maximizes Rtot.

• Algorithm 1 is shown to have much lower complexity

than an exhaustive search. Its complexity grows with

TMT and decreases with U.

VI. CONCLUSION

Partial-NOMA is proposed as a technique to strike a balance

between the high interference associated with NOMA resulting

in low coverage and no spectrum reuse in OMA resulting

in low rates. A large downlink two-user network employing

partial-NOMA is studied. The nature of the partial overlap

allows us to employ receive-filtering to further suppress the

interference in a partial-NOMA setup. The received filtering

not only suppresses intracell interference but also results in

a suppression of intercell interference allowing our setup to

have lower intercell interference than both NOMA and OMA.

A technique called FSIC decoding is proposed for decoding

the partial-NOMA setup. An abstraction of the rate region

is studied and compared to that of NOMA and OMA. It is

observed that for some values of the overlap U, partial-NOMA

can outperform NOMA. It is also shown that partial-NOMA

allows more flexibility in terms of the achievable individual

UE throughput. A problem of maximizing cell sum rate subject

to a TMT constraint is formulated. Since the problem is

non-convex, the only known solution requires an exhaustive

search. An efficient algorithm that finds a feasible solution to

the problem is proposed. The complexity of the algorithm is

shown to be much lower than an exhaustive search. It is shown
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that the partial-NOMA setup outperforms NOMA in terms of

cell sum rate for a range of values of U. Additionally, in this

range, there exists an optimum value of U that maximizes

the cell sum rate for a given TMT constraint. Furthermore,

it is observed that the range of U which results in superior

cell sum rate to traditional NOMA corresponds to "̄1 = "0,

highlighting the role of FSIC in the superiority of partial-

NOMA. It is also shown that while NOMA cannot support

UEs with high transmission rate requirements, partial-NOMA

can. Instead of allocating an entire resource-block to such UEs

via OMA, these UEs ought to be served via partial-NOMA to

reuse the spectrum efficiently. The work in this paper studies

a two-user setup. An important direction for future work is to

study partial-NOMA in an #-user setup, where # is general.

In this paper, we have considered downlink transmissions;

investigating partial-NOMA in the uplink is also an important

and interesting direction.
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