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Abstract

This paper considers the massive connectivity problem in an asynchronous grant-free random access

system, where a huge number of devices sporadically transmit data to a base station (BS) with imperfect

synchronization. The goal is to design algorithms for joint user activity detection, delay detection,

and channel estimation. By exploiting the sparsity on both user activity and delays, we formulate

a hierarchical sparse signal recovery problem in both the single-antenna and the multiple-antenna

scenarios. While traditional compressed sensing algorithms can be applied to these problems, they

suffer high computational complexity and often require the perfect statistical information of channel

and devices. This paper solves these problems by designing the Learned Approximate Message Passing

(LAMP) network, which belongs to model-driven deep learning approaches and ensures efficient perfor-

mance without tremendous training data. Particularly, in the multiple-antenna scenario, we design three

different LAMP structures, namely, distributed, centralized and hybrid ones, to balance the performance

and complexity. Simulation results demonstrate that the proposed LAMP networks can significantly

outperform the conventional AMP method thanks to their ability of parameter learning. It is also shown

that LAMP has robust performance to the maximal delay spread of the asynchronous users.
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I. INTRODUCTION

The fifth generation (5G) of wireless cellular networks has identified the massive machine-type

communications (mMTC) as one of its core services [2], [3]. The mMTC service is expected to

provide cellular connectivity to a large amount of low-cost machine-type devices for Internet of

Things (IoT) applications. A key feature of IoT traffics is that the uplink transmission is usually

sporadic and has short packet size, so that only a small and random subset of devices are active

and for a short while [4], [5]. The main challenge to support mMTC services is therefore to

design new multiple-access schemes that can facilitate user activity detection, channel estimation

and data detection timely and accurately.

Grant-free (GF) random access is promising to establish sporadic connection between machine-

type devices and their associated base stations (BSs) with minimal control overhead [5]. In the

GF random access, each activated device directly transmits a unique pilot sequence followed by

data packets without asking for permission from the BS. The pilot sequences are pre-designed

for user identification. They are often non-orthogonal due to a large quantity of devices but

limited time-frequency resource. In each time slot, the BS needs to identify all the active users

by detecting which pilots are received, and then estimate their channels for data detection.

Note that many existing works on user activity detection in GF transmission assume that

the transmissions of all the active devices are perfectly synchronized [5]–[14]. In practice, low-

cost IoT devices usually work in a narrow-band system, and they have bursty transmissions

and inconsistent time accuracies. Due to the large overhead, the conventional synchronization

mechanism is hard to be employed among the massive number of low-cost devices. Thus, it

is necessary to also consider a scalable scheme to tackle the imperfect synchronization. If not

appropriately handled, such asynchrony in grant-free random access may severely deteriorate the

performance of user activity detection and channel estimation.

The goal of this paper is to investigate the joint user activity detection, delay detection and

channel estimation in asynchronous massive access systems. By exploiting the sparsity in both

the device activity pattern and transmission delay pattern, this paper formulates a hierarchical

sparse signal recovery problem. We solve the problem by designing the Learned Approximate

Message Passing (LAMP) network [15] with efficient computation and outstanding recoverability.

The LAMP network is obtained by unfolding approximate message passing (AMP) to form a

feedforward network, where the parameters in the AMP framework can be learned to enhance
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the performance with a medium size of training data. Both the single-antenna scenario and the

multiple-antenna scenario are considered.

A. Related Work

The user activity detection and channel estimation in GF random access schemes are often

cast into the sparse signal recovery problems in compressed sensing (CS). The works [6], [7]

propose to jointly detect the active users and estimate their channels without prior knowledge

of the channel state information (CSI) by using orthogonal matching pursuit (OMP) and the

basis pursuit denoising (BPDN). By exploiting the statistical information of the channels and

users, the computationally efficient AMP algorithm [16] is adopted in [8]–[11]. In particular, the

massive MIMO techniques are considered in [9], [10], and their analysis demonstrates that the

user activity detection error can be driven to zero asymptotically when the number of antennas

goes to infinity. Recently, a covariance matching algorithm is proposed in [12] to be capable of

detecting a much larger amount of active users in the massive MIMO scenario. By exploiting

the BS cooperation, the works [13], [14] investigate the sparse activity detection in multi-cell

system based on the AMP-based algorithms to further improve the detection performance. In

some cases, however, the BS is only interested in the transmitted information but not the user

identification, which thereby motivates the unsourced random access [17]. In such scenario, all

users share a common codebook and the BS applies the CS-based algorithm to decode the

transmitted messages without detecting the user activity [17]–[19]. Note that the aforementioned

works all assume that the transmit signals from all devices are perfectly synchronized when

arriving at the receiver.

Several existing works have attempted to investigate the massive random access problem

with imperfect synchronization. In contrast to [20], the uplink transmissions between different

users to the BS are usually considered to be asynchronous in massive access. The work [21]

introduces a blank time interval between the pilot and data whose length is large enough so

that the pilot detection and the data detection of different active users will not interfere with

each other. In [22], a zero-padding approach is adopted to avoid interference between the data

sub-blocks with different indexes from different active users. In both [21], [22], the OMP-

based algorithms are proposed to detect the active users, whose complexity is high when the

number of users is large. The work [23] introduces a simple signal model with no pilot in the

asynchronous systems. Then the user activity and data are jointly detected based on the Turbo
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bilinear generalized approximate message passing (Turbo-BiG-AMP) algorithm, where the exact

statistical information of the system is usually required.

Recently, deep learning (DL) emerges as another powerful approach for user detection and

channel estimation by training a deep neural network (DNN) based on a vast amount of labeled

training data. Previous works [24], [25] have shown that the DL approaches have potential to

offer improvements in both recoverability and complexity. In contrast to the traditional CS-based

algorithm which usually detect the active users based on their estimated channel power, the DL

approaches can directly give a more accurate user activity detection solution and then improve the

channel estimation further. In particular, [24] proposes a block-restrict neural network (BRNN)

for fast multiuser detection and then performs channel estimation. On the other hand, the system

statistics employed in some iterative algorithms, e.g., message passing-based algorithms, may not

be precisely estimated, and the approximation in these algorithms is also likely to be inaccurate in

some cases. Therefore, DL can also be integrated in these algorithms to improve the performance

by taking advantage of its parameter learning ability. In the work [25], a deep neural network-

aided message passing-based block sparse Bayesian learning (DNN-MP-BSBL) algorithm is

proposed, which can achieve better channel estimation accuracy with fewer iterations than MP-

BSBL. These existing DL approaches are all designed for synchronous systems. To our best

knowledge, DL-based approaches have not be applied to asynchronous systems yet.

B. Contributions

This paper considers the joint user activity detection, delay detection and channel estimation

in the asynchronous grant-free massive random access system. We adopt the transmission model

that has a guard time inserted between pilot and data signals to capture both the sporadic

communication pattern and delay pattern of the asynchronous users, which has been also used

before in [21], [26]. Then we formulate a hierarchical sparse signal recovery problem based on the

signal model. Depending on whether the BS has one or multiple antennas, the joint user activity

detection, delay detection and channel estimation can be reformulated as a single measurement

vector (SMV) problem or a multiple measurement vector (MMV) problem. In this work, we

propose to solve these problems based on the LAMP network [15] which leverages the deep

learning technique and the AMP framework to offer improvements in both recoverability and

complexity. Compared with other DL approaches [27], [28], the LAMP network allows feasible

performance analysis and achieves better recoverability with more flexible shrinkage function
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choices. To exploit the common sparsity of channels at all antennas, this paper goes forward

to design the LAMP network for the multiple-antenna scenario. Simulation results show that

LAMP can outperform AMP by benefitting from the deep learning techniques. In the multiple-

antenna scenario, the LAMP network can be further improved by jointly estimating the channel

coefficients on all antennas. It is also observed that the performance of the proposed LAMP

networks is robust to the maximal symbol delay of users.

The main contributions of this work are summarized as follows:

• We formulate a hierarchical sparse signal recovery problem with two-level sparsity in

the user activity pattern and delay pattern to perform joint user activity detection, delay

detection, and channel estimation.

• We first design a LAMP network for the single-antenna scenario. Two types of learnable

shrinkage functions of the soft thresholding function and the MMSE-optimal denoising

function are designed to improve the recovery performance of LAMP by learning their

shrinkage parameters from the training data. In particular, the learnable MMSE-optimal

denoising function has taken the delay-level sparsity into account, which can further enhance

the performance. As well, the performance degradation caused by the situation where the

measurement matrix has non independent and identically distributed (i.i.d.) elements may

also be overcome by the matched filter learning ability of LAMP.

• We extend to design the LAMP networks for the multiple-antenna scenario. Three network

structures are designed to balance the complexity and recoverability, namely distributed

LAMP, centralized LAMP, and hybrid LAMP. Distributed LAMP is designed for the situ-

ation with complexity limits, and centralized LAMP achieves the best performance among

these three networks and has feasible performance analysis. Hybrid LAMP can balance the

performance and complexity to be employed in more complicated systems.

C. Organizations and Notations

The remaining part of this paper is organized as follows. Section II introduces the system

model of asynchronous massive connectivity system. In section III, we formulate a hierarchical

sparse signal recovery problem and introduce the basics of AMP. In Section IV, we introduce

the LAMP network design in the single-antenna scenario. In Section V, the LAMP networks

for the multiple-antenna scenario are designed. The performance of the proposed approaches is

illustrated in Section VI. Finally, we conclude this paper in Section VII.
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Fig. 1. Frame structure

In this paper, upper-case and lower-case letters denote random variables and their realizations,

respectively. Letters x, X, X denote vector, matrix and set, respectively. Superscripts (·)T denote

transpose. In addition, 1N denotes the all-one vector with length N . Further, E[·] denotes the

expectation operation; | · | denotes the magnitude of a variable or the Cardinality of a set,

depending on the context; || · ||p denotes the lp norm of a vector; || · ||F denotes the Frobenius

norm of a matrix.

II. SYSTEM MODEL

We consider an asynchronous massive access communication system containing one BS with

single or multiple antennas and a very large number N users each with single antenna. In each

transmission frame, each user sporadically transmits data to the BS with a small and fixed

probability pa, and the signals of active users arrive at the BS with different and unknown time

delays. The transmit power is identical for each user. Here, we focus on the system as shown in

Fig. 1 where the user signals are asynchronous at the frame level but synchronous at the symbol

level. Specifically, the whole frame can be divided into many symbol intervals, and each symbol

is exactly at one symbol interval, but the signal sequence may not calibrated at the start of the

frame. Then it means that the delay of each user is an integer number of symbol intervals. The

maximal symbol delays of all users are assumed to be much smaller than the frame length.

We adopt a grant-free random access scheme with two-phase transmission including a pilot

phase and a data phase. The channel is assumed to be block fading so that it remains unchanged in

one frame and varies in different frames. Specifically, the Rayleigh fading channel is considered.

Each user n is assigned with a unique pilot sequence sn = [sn,1, sn,2, . . . , sn,L]T ∈ CL×1 for

identification and channel estimation, where L is the length of the pilot sequence and is much

smaller than the total number of users N , i.e., L � N . We generate the elements in all pilot

sequences from the i.i.d. Gaussian distribution with zero mean and 1/L variance, and then
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normalize each pilot sequence to have unit power. Denote the symbol delay of the signal of

user n by tn when it arrives at the BS. We assume that tn is unknown, discrete, and uniformly

distributed in the set {0, 1, . . . , D} with D being the maximal symbol delay spread. Note that

there is no power transmission in the guard interval. The frame structure containing a guard

time between the pilot and data as shown in Fig. 1 is introduced in this work, where the length

of the guard time, denoted as Tg ∈ Z, is chosen to be equal to or larger than D, i.e., Tg ≥ D.

Based on such Tg, the pilot transmission of each user will not overlap the data transmission

of all other users. Though the maximal delay may not be obtained accurately, we can set Tg a

sufficiently large value. In this paper, we simply set the length of the guard time to be equal

to the known maximal delay, i.e., Tg = D, without affecting the algorithm design. Here, we

assume that the BS does not know the explicit value of the user active probability and the

channel informationm, while we have pre-collected a large data set and these system statistics

can be implicitly exploited. Let λn ∈ {1, 0} denote whether user n is active or not. We take

both the random user activity λn and the unknown symbol delays tn into account in the signal

model. For notation simplicity in the following, we define L̃ = L + Tg and Ñ = N(Tg + 1),

where L̃ can be viewed as the expanded pilot length.

When there is one single antenna equipped at the BS, the received signal at the BS in the

pilot phase can be expressed as

y =
N∑
n=1

s̃n,tn+1λnhn + z, (1)

where s̃n,tn+1 ∈ RL̃×1 is the expanded pilot sequence of user n obtained by adding tn zeros

before sn and (Tg − tn) zeros after sn, i.e., s̃n,tn+1 = [0Ttn , s
T
n ,0

T
Tg−tn ]T ; hn =

√
φngn ∈ R

denotes the channel coefficient between the BS and user n where φn represents the large-scale

fading attenuation and gn is the normalized small-scale fading with zero mean; z ∈ RL̃×1 denotes

the additive Gaussian noise vector with variance σ2
z normalized by the transmit power.

Define λ̃λλn = [λn,1, λn,2, . . . , λn,Tg+1]
T ∈ R(Tg+1)×1 to indicate both the activity state and

symbol delay of user n, where there is at most one non-zero entry. In specific, we has λn,t =

0,∀t ∈ {1, 2, ..., Tg + 1} if user n is inactive, otherwise if user n is active and has a symbol

delay of tn, we have

λn,t =

 1, t = tn + 1,

0, otherwise.
(2)
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The received signal y in (1) can be rewritten in a matrix-vector form as

y = S̃Λ̃h + z = S̃x + z, (3)

where S̃ = [S̃1, S̃2, . . . , S̃N ] ∈ RL̃×Ñ refers to the expanded pilot matrix of all users in the

system with S̃n = [s̃n,1, s̃n,2, . . . , s̃n,Tg+1] ∈ RL̃×(Tg+1) denoting the expanded pilot matrix of

user n; Λ̃ = diag(Λ̃1, Λ̃2, . . . , Λ̃N) ∈ RÑ×Ñ is the indicator matrix with Λ̃n = diag(λ̃λλn) ∈

R(Tg+1)×(Tg+1); h = [h11
T
Tg+1, h21

T
Tg+1, . . . , hN1TTg+1]

T ∈ RÑ×1 is the overall channel vector;

finally, x = Λ̃h ∈ RÑ×1 represents the effective channel vector of all users that contains the

information of user activity pattern, the channel gains and the symbol delays.

Likewise, when there are M antennas at the BS, the received signal Y during the pilot phase

can be written as

Y = S̃Λ̃H + Z = S̃X + Z, (4)

where H = [h11
T
Tg+1,h21

T
Tg+1, . . . ,hN1TTg+1]

T ∈ RÑ×M is the overall channel matrix and hn =
√
φngn ∈ RM×1 is the channel vector between the BS and user n with gn denoting the small-

scale fading vector, and each element in gn is assumed to be i.i.d.; X = Λ̃H ∈ RÑ×M represents

the effective channel matrix of all users; finally, Z ∈ RL̃×M denotes the additive Gaussian noise

matrix normalized by the transmit power.

The problem is to recover x or X from the received signal y in (3) or Y in (4), respectively,

given the measurement matrix S̃. This is a classic underdetermined linear inverse problem in the

SMV form or the MMV form. Due to the sporadic communication pattern and only one single

symbol delay of each asynchronous user, the effective channel x or X has a hierarchical sparse

representation. As shown in Fig. 2, the hierarchical sparsity consists of two levels of sparsity

including the user-level sparsity and the delay-level sparsity. The user-level sparsity means that

most xn = [xn,1, . . . , xn,Tg+1]
T = [λn,1hn, . . . , λn,Tg+1hn]T in (3) or Xn = [xn,1, . . . ,xn,Tg+1]

T =

[λn,1hn, . . . , λn,Tg+1hn]T in (4) are zeros, and the delay-level sparsity enforces that there is only

one non-zero element in the non-zero xn or only one non-zero row in the non-zero Xn. Therefore,

the underdetermined problem can be possibly solved based on the CS algorithms.1

III. PROBLEM FORMULATION AND AMP ALGORITHM

In this section, we formulate our problem of joint user activity detection, delay detection and

channel estimation in both the SMV and MMV forms. Then we introduce the AMP algorithm

1Though the measurement matrix S̃ may not satisfy the restricted isometry property (RIP), simulation results show that the

problem can be well solved by CS-based algorithms.
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Fig. 2. Two-level sparse structure of the effective channel.

to solve the formulated problems.

A. SMV problem for single antenna

We first consider the problem in the single-antenna scenario, which is an SMV problem. By

considering the user-level sparsity and the delay-level sparsity in the effective channel vector,

the problem is formulated as

min
x

||y − S̃x||22 (5a)

s.t. ||x||0 ≤ C, (5b)

||xn||0 ≤ 1, n = 1, 2, . . . , N, (5c)

where the constant C � N denotes the maximal number of active users in one frame. The

constraint (5b) comes from the user-level sparsity with ||x||0 =
∑N

n=1 ||xn||0 and ||xn||0 indicates

whether user n is active or not. The constraint (5c) implies the delay-level sparsity that ensures

that each active user has only one single symbol delay.

The problem (5) is very difficult to solve due to the non-smooth constraints. Then we refor-

mulate the problem as

min
x
β||x||0 +

1

2
||y − S̃x||22. (6)

Note that the problem (6) can give a sparse channels x close to the optimal solution of (5),

though the constraint (5c) cannot surely guaranteed. To refine the solution of (6), we introduce

an common element selection operation to enforce all the elements except the one with the

largest magnitude in each group to be zeros after obtaining the solutions to the problem. Then

user activity detection can be performed by comparing the channel power with a predefined

decision threshold qth. The trade-off between the sparsity of the solution and the mean square
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error (MSE) ||y − S̃x||22 is adjusted by the value of the tuning parameter β. We then adopt the

common strategy to relax the objective function into a convex function by using the l1 norm as

min
x

β||x||1 +
1

2
||y − S̃x||22. (7)

The problem (7) is a LASSO problem and can be directly solved by BPDN using interior

point method with computation complexity O(Ñ3.5). The OMP-based greedy methods can be

used as well, but they involve the matrix inverse operation in each iteration. The computation

complexity is O(K3) in each iteration with K being the expected number of active users,

which is still high in a large-scale system. The recently proposed AMP-based algorithms have

much lower complexity in the large-scale system while approaches the performance of LASSO

asymptotically, given by O(L̃Ñ) in each iterations. Thus, we propose to employ the AMP-based

algorithms in our problem.

The AMP algorithm for our considered problem in the single-antenna scenario is described

as follows. It starts with x̂0 = 0 and v0 = y and performs the following computations in the

ith iteration [16]

r̂i = x̂i−1 + S̃Tvi−1, (8a)

x̂i = η(r̂i;σi−1,ϑϑϑ), (8b)

vi = y − S̃x̂i +
1

L̃
bivi−1, (8c)

where σi−1 = 1√
L̃
||vi−1||2 is the estimated standard deviation of the corrupted noise in r̂i;

the variable bi =
∑N

n=1

∑Tg+1
t=1

∂[η(r;σi−1,ϑϑϑ)]n,t
∂rn,t

∣∣∣
r=r̂i

is calculated to obtain “Onsager correction”

term 1
L̃
bivi−1; and the shrinkage function η(·) is usually a non-linear component-wise function

operating on each element of r̂i individually with ϑϑϑ being the parameter set. Note that any

Lipschitz-continuous shrinkage function can be used [15], which enables the usage of more

well-performed shrinkage functions if we have more prior knowledge of the channels and users.

For example, the shrinkage function based on MMSE-optimal criterion can be designed to achieve

better recoverability when the system statistics are perfectly known. Since there exists the delay-

level sparsity in the effective channel vector xn, which means that the common component-wise

function may not be able to achieve the optimal performance of AMP. In the following, we

have designed a non-separable shrinkage function based on the MMSE-optimal criterion to also

exploit the delay-level sparsity in the effective channel x. In AMP, the “Onsager correction”

term enables the algorithm to be analyzable by state evolution in the asymptotic regime, i.e., L̃,

Ñ → ∞ with their ratio and pa fixed when S̃ has i.i.d. sub-Gaussian elements [16]. The state
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evolution is given by

δ2i =
1

L̃
Ed[||ηηηϑϑϑ,δi−1

(x0 + δi−1d)− x0||22] + σ2
z , (9)

where d are the random variables with distribution N (0, IÑ). The input to the shrinkage function

in the ith iteration can be modeled as an AWGN-corrupted version of the true vector x0 plus

noise with estimated variance σ2
i−1, i.e., r̂i = x0 + δi−1d. The variable δi−1 is usually estimated

by the empirical result σi−1, i.e., δ̂i−1 = σi−1.

B. MMV problem for multiple antennas

When the BS has multiple antennas, the considered problem becomes an MMV problem,

which is formulated as

min
X

||Y − S̃X||2F (10a)

s.t.
N∑
n=1

Tg+1∑
t=1

I(xn,t) ≤ C, (10b)

Tg+1∑
t=1

I(xn,t) ≤ 1, n = 1, 2, . . . , N. (10c)

where I(·) is the indicator function with boolean output defined as

I(x) =

 1, if x has non-zero elements,

0, otherwise.
(11)

The problem (10) is also difficult to solve directly. By following the similar operations in the

SMV problem, we can reformulate the problem as

min
X

β
N∑
n=1

Tg+1∑
t=1

||xn,t||2 +
1

2
||Y − S̃X||2F . (12)

We replace the indicator function using the l2 norm and the problem is relaxed as a l2,1-norm

RLS problem [29]. To solve the relaxed problem, the conventional convex problem solver and

greedy algorithm still suffer high computation complexity. Two recently proposed AMP-based

algorithms can be applied to solve the MMV problem (12) with affordable complexity.

1) Parallel AMP-MMV: The parallel AMP-MMV algorithm proposed in [30] solves the MMV

problem in the distributed way. In each iteration, the parallel AMP-MMV algorithm first estimates

the channel coefficients on the M antennas separately and then exchanges the soft information of

user activity among different antennas. In specific, each iteration in parallel AMP consists of four

distinct phases, which can be labeled using the mnemonics (into), (within), (out), and (across).

In phase (into), the current beliefs about the user activity are calculated and conveyed into

each AMP-SMV solver. In phase (within), Each of the M AMP-SMV solvers with the current
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beliefs follows (8) to solve the SMV problem of estimating the effective channel coefficients

on the corresponding antenna in parallel. In phase (out), the solution is utilized to refine the

beliefs of the user activity in each AMP-SMV solver. Finally, in phase (across), the beliefs

are conveyed across different AMP-SMV solvers. The algorithm will terminate after several

iterations. Interested readers may refer to [8], [30] for more details.

2) AMP with vector shrinkage function: The AMP algorithm equipped with the vector shrink-

age functions proposed in [31] solves the MMV problem in the centralized way. Similar to the

iterative procedure in (8), this algorithm starts with X̂0 = 0 and V0 = Y, then computes in the

ith iteration

R̂i = X̂i−1 + S̃TVi−1, (13a)

X̂i = η(R̂i;σi−1,ϑϑϑ), (13b)

Vi = Y − S̃X̂i +
1

L̃
Vi−1Bi, (13c)

where R = [RT
1 , . . . ,R

T
N ]T with Rn = [rTn,1, . . . , r

T
n,Tg+1]

T is the input to the vector shrinkage

function; σi−1 = 1√
L̃M
||Vi−1||F is the estimated standard deviation of the corrupted noise;

and Bi =
∑N

n=1

∑Tg+1
t=1

∂[η(R;σi−1,ϑϑϑ)]n,t
∂rn,t

∣∣∣
R=R̂i

is calculated for the “Onsager correction” matrix
1
L̃
Vi−1Bi. This algorithm in the asymptotic region can also be analyzed by the state evolution

expressed as ΣΣΣi = δ2i I with δ2i determined by

δ2i =
1

L̃M
ED[||ηηηϑϑϑ,δi−1

(X0 + δi−1D)−X0||2F ] + σ2
z , (14)

where each element in the random matrix D ∈ RÑ×M satisfies i.i.d. Gaussian distribution

N (0, 1). The input to the vector shrinkage function in the ith iteration can also be modeled as

an AWGN-corrupted signal, i.e., R̂i = X0 + δi−1D. As well, δi−1 can be estimated by σi−1.

IV. DEEP-LEARNED AMP IN THE SINGLE-ANTENNA SCENARIO

Deep learning is also a powerful approach to accurately estimate the sparse vector x from

the received signal y, where the network parameters of the DNN are trained to minimize the

reconstruction MSE by utilizing a large amount of training data {(ydT ,xdT )}DTd=1 regarded as

(feature, label) pairs. Once the training process is completed, the DNN can predict the unknown

channels xNew with the newly received signal yNew. In this section, we introduce the LAMP

network that combines the DL techniques with the AMP framework to solve our problem in the

single-antenna scenario.
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Fig. 3. The network structure and the ith layer of the LAMP network in the single-antenna scenario

A. Network structure

The LAMP network is built by unfolding the iterations of AMP from (8) as a feedforward

neural network. The structure of the LAMP network and the details of the ith layer are shown

in Fig. 3, which is different from the traditional deep neural networks containing multiple layers

of perceptions. The signal flow graph of the LAMP network is the same as that of the AMP

algorithm, where Wi can be regarded as the matched filter matrix and ϑϑϑi is the shrinkage

parameter set. In the LAMP network, {Wi,ϑϑϑi}Ii=1 are considered as the network parameters,

which will be learned from the training data. In the training process, the MSE loss function,

defined as L(x̂) = ||x̂−x0||22, is used and the values of the learnable parameters will be updated

by following the back-propagation rule [32]. The back-propagation rule calculates the gradients
∂L(Wi,ϑϑϑi)

∂Wi
and ∂L(Wi,ϑϑϑi)

∂ϑϑϑi
under the chain rule with the input data batch, and then updates the

learnable parameters based on the gradient descending methods.

In LAMP, the shrinkage function also plays an important role. Apart from the commonly used

soft thresholding shrinkage (ST) function and the MMSE-optimal denoising function, many other

functions, such as the piecewise linear function and the spline function, can be employed as well

in LAMP. It is mentioned that the learnable shrinkage parameters in different layers of LAMP

can have different values, which can improve the denoising ability of each layer. In this paper,

both the ST function and the MMSE-optimal denoising function are considered. We omit the

iteration index i in the following for simplicity. The ST function is given by

[ηηη(r̂)]n,t =
(
r̂n,t − θn,tσ

r̂n,t
|r̂n,t|

)
· I(|r̂n,t| > θn,tσ), (15)

where θn,t is a learnable tuning parameter and σ is the estimated variance of the corrupted noise

in r̂. The learnable shrinkage parameter set is obtained as ϑϑϑ = {θn,t}N,Tg+1
n=1,t=1. Note that in AMP,
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the value of θn,t is usually obtained empirically and hence may not be optimal, while the optimal

value of θn,t can be learned in LAMP. Usually, all the tuning parameters share the same value,

i.e., θn,t = θ, ∀n, t. Since the symbol delay of each user is assumed to be uniformly distributed

in {0, 1, . . . , Tg}, the active probability for each user with delay tn is obtained as pa,T = pa
Tg+1

.

Then the effective channel xn of user n can be modeled as a joint distribution as

p(xn) = (1− pa)
Tg+1∏
t=1

δ(xn,t) + pa,T

Tg+1∑
t=1

(
CN (xn,t; 0, φn)

∏
t′ 6=t

δ(xn,t′)

)
. (16)

So that the MMSE-optimal denoising function is designed to recover all elements xn,t in each xn

altogether but not treats them independently as the ST function does. In this way, the delay-level

sparsity has been considered in the LAMP network. Based on the joint probability (16), the

MMSE-optimal denoising function is given as

x̂n,t = E[xn,t |̂rn]

=

CN (r̂n,t;0,φn+σ2)

CN (r̂n,t;0,σ2)
r̂n,t

(1 + σ2

φn
)
(∑Tg+1

t′=1

CN (r̂n,t′ ;0,σ
2+φn)

CN (r̂n,t′ ;0,σ
2)

+ 1−pa
pa,T

)

=

exp

(
|r̂n,t|2

σ2(1+ σ2

φn
)

)
r̂n,t

(1 + σ2

θn
)

[
exp

(
||r̂n||22

σ2(1+ σ2

φn
)

)
+ (1 + φn

σ2 )1−pa
pa,T

] . (17)

After obtain equation (17), the learnable MMSE-optimal denoising function can then be

defined as

[ηηη(r̂)]n,t = θ3

exp

(
|r̂n,t|2

σ2(1+ σ2

θ1,n
)

)
r̂n,t

(1 + σ2

θn
)

[
exp

(
||r̂n||22

σ2(1+ σ2

θ1,n
)

)
+
(
1 + θ1,n

σ2

)
θ2

] − θ4r̂n,t, (18)

where the learnable shrinkage parameter set is defined as ϑϑϑ = {{θ1,n}Nn=1, θ2, θ3, θ4} and we set

θ1,n = φn and θ2 = 1−pa
pa,T

. The parameters θ3 and θ4 are regarded as the tuning parameters to mix

the linear and non-linear shrinkage functions, which is promising to improve the performance of

(17). When applying the MMSE-optimal denoising function in the traditional AMP algorithm,

we usually set θ3 = 1, θ4 = 0 and determine the value of {{θ1,n}Nn=1, θ2} based on the perfectly

known system statistical parameters {{φn}Nn=1, pa}. In the LAMP network, these parameters are

all learned from the training data. If all users have the same large-scale channel attenuation,

we can set θ1,n = θ1,∀n = 1, . . . , N . Thus, the number of the learnable parameters can be

significantly reduced, given that N , the total number of users, is very large. The calculation of

the Onsager term in the neural network needs the derivative of the shrinkage function, which is
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Algorithm 1 Parameter training of the tied LAMP network via layer-by-layer and denoiser-by-

denoiser learning strategy
1: Initialize: W = S̃H and ϑϑϑi = ϑϑϑ0, i = 1, . . . , I .

2: for i = 1 to I do

3: Learn {ϑϑϑi} with fixed {W, {ϑϑϑl}i−1l=1} with the loss function L(x̂i) = ||x̂i − x0||22.

4: Re-learn {{ϑϑϑl}il=1} with the loss function L(x̂i) = ||x̂i − x0||22.

5: end for

6: Re-learn {W, {ϑϑϑl}Il=1} for refinement with the loss function L(x̂I) = ||x̂I − x0||22.

7: Return {W, {ϑϑϑi}Ii=1}.

given by
∂[ηηη(r̂)]n,t
∂r̂n,t

= θ3
[q(r̂n)]t + θ1,n

σ2(θ1,n+σ2)
([q(r̂n)]t − 1)|r̂n,t|2(

1 + σ2

θ1,n

)
[q(r̂n)]2t

− θ4, (19)

where the vector function q(r̂n) = [[q(r̂n)]1, [q(r̂n)]2, . . . , [q(r̂n)]Tg+1]
T ∈ C(Tg+1)×1 is defined

to simplify the expression of (19). The function [q(r̂n)]t is defined as

[q(r̂n)]t =

exp
(

||r̂n||22
σ2(1+ σ2

θ1,n
)

)
+
(
1 + θ1,n

σ2

)
θ2

exp
(

|r̂n,t|2

σ2(1+ σ2

θ1,n
)

) . (20)

B. Parameter training

In the learnable parameter set of the LAMP network, the matched filter matrices Wi can be

fixed for all layers, i.e., Wi = W, or vary at each layer i. Accordingly, the LAMP network

can be referred to as “tied” and “untied”, respectively. Intuitively, the tied LAMP network is a

special case of the untied LAMP network, and the untied LAMP network is superior to the tied

LAMP network if there is sufficient training data. However, in our simulation trials, we find

that the untied neural network brings little performance improvement, and may even make the

network prone to overfitting if the training data size is not large enough. Thus, we employ the

tied LAMP network in this work.

Apart from the network structure and the parameter set, the training strategy also determines

the performance of the neural network. The standard training strategy is the end-to-end training

where all the parameters are updated simultaneously by following the back-propagation rule.

However, it is found that the LAMP network with end-to-end training can easily converge to a
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bad local optimal solution due to overfitting. The work [33] proposes the layer-by-layer training

and the denoiser-by-denoiser training methods to avoid overfitting. In the layer-by-layer training,

there are totally I epoches. We first train the learnable parameters of the first layer in the first

epoch, then we train the 2-layer sub-network including the first two layers in the second epoch.

In the ith epoch, the parameters of the i-layer sub-network consisting of the first i layers are all

trained. The training process repeats until the Ith epoch is finished. In specific, at the start of the

training process, we initialize the network parameters as stated in line 1 of Algorithm 1. Then

in each of the following epoches, we firstly decouple the shrinkage functions which recovers

x0 from r̂ from the target subnetwork to learn its shrinkage parameters ϑϑϑi as stated in line 3,

which is referred as the denoiser-by-denoiser training. And then all the shrinkage parameters

{ϑϑϑl}il=1 of the target subnetwork in the current epoch are updated simultaneously as stated in line

4. Finally, all the network parameters {W, {ϑϑϑi}Ii=1} are all updated for refinement. The whole

training process based on the training strategy that integrates the denoiser-by-denoiser training

into the layer-by-layer training approach for the tied LAMP network is outlined in Algorithm

1. It should be mentioned that the number of the training iterations is not predetermined in each

epoch. The ith epoch finishes until the performance of the updating subnetwork keeps being

worse than its best performance achieved in this epoch for a certain number of iterations Tw.

It is proven in [33] that this training strategy can enable such Learned denoising-based AMP

(LDAMP) network to achieve MMSE optimality in theory by state evolution when the following

conditions hold:

• The measurement matrix S̃ has i.i.d. sub-Gaussian elements.

• The noise z is i.i.d Gaussian.

• The shrinkage functions ηηη(·) are Lipschitz-continuous.

Though the elements of the measurement matrix S̃ are not i.i.d sub-Gaussian, we observe that

LAMP can still approach the optimal performance closely from the numerical results.

C. Discussion

The LAMP network is classified as the model-driven deep learning category that mixes hand-

designed and data-driven methods [34]. Compared with traditional data-driven deep learning

methods which use conventional multi-layer perceptions or convolution networks, there are two

main advantages of the neural network LAMP. First, it does not require a very large volume of

training data due to its well-designed structure, meaning that the cost in collecting the training
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Fig. 4. The proposed three LAMP network structures in the multiple-antenna scenario

data can be reduced. Second, there is no need to re-train the neural network when only the noise

variance σz changes since the noise variance is not used in the AMP algorithm. However, it is

mentioned that the LAMP network still needs to be re-trained when the other channel statistics

change.

V. DEEP-LEARNED AMP IN THE MULTIPLE-ANTENNA SCENARIO

In this section, we design the LAMP network for the multiple-antenna scenario. Inspired

by the AMP algorithms for the MMV problem reviewed in Section III-B, we propose three

LAMP network structures, namely, distributed structure, centralized structure and hybrid structure

as shown in Fig. 4. The distributed LAMP network (LAMP-D) allows taking advantage of

distributed computation units to reduce the running time cost, and the centralized LAMP network

(LAMP-C) achieves better recoverability and allows the theoretical performance analysis by using

the state evolution. The hybrid LAMP network (LAMP-H) combines the advantages of both the

distributed network and the centralized network. The details are presented in the following

subsections. In the rest of paper, to avoid confusion, we denote the LAMP network designed in

the previous section for the single-antenna case as LAMP-SMV.
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A. Distributed LAMP Network

The structure of the LAMP-D network is shown in Fig. 4(a), which is comprised by M parallel

LAMP-SMV subnetworks. The parallel AMP-MMV algorithm adds the extra operations of belief

refinement and exchanges to improve the recoverability after solving the M separate SMV

problems by AMP in (8). However, the channel statistics are still needed in the AMP estimation

for each SMV problem. By employing M independent AMP-SMV solvers with known channel

distributions and user active probability, we find the MMV problem can also be well solved.

Thus, we propose to construct the LAMP-D network by using M independent LAMP-SMV

subnetworks to estimate the channel coefficients on their corresponding antennas in parallel.

In the construction of the LAMP-D network, whether the M LAMP-SMV networks share

the same parameter value or have different parameter values needs to be studied firstly. When

the fading coefficient on each antenna at the BS is i.i.d., all the LAMP-SMV subnetworks can

share the same parameters value. Therefore, only one LAMP-SMV network is trained in practice

and then the learned parameter values are shared by all LAMP-SMV subnetworks. The received

signal and the effective channel are denoted as Y = [y1,y2, . . . ,yM ] and X = [x1,x2, . . . ,xM ],

and each (ym,xm) is considered to be one sample for training. So that the quantity of the training

data for the neural network becomes MDT , where DT is the number of received signals Y in

the training data set. When the fading coefficient on each antenna is not i.i.d., there are M

independent LAMP-SMV subnetworks to be trained. Each subnetwork needs to be trained based

on the received signals on the corresponding antenna, and then the size of training data set for

each subnetwork is only D. In this paper, the neural network with all LAMP-SMV subnetworks

sharing the same parameter value is adopted, since the i.i.d. channel distribution on each antenna

is assumed and the LAMP-SMV subnetwork can be trained by more training data samples to

achieve better recovery performance. The LAMP-SMV subnetworks in the LAMP-D network

are trained by following Algorithm 1. It is concluded that the LAMP-D network concentrates on

improving the recoverability on each single antenna and the distributed setup of subnetworks can

reduce running time cost by parallel computation. While the optimal performance of the AMP

framework may not be achieved, since the common sparsity in the estimated channel matrix is

not fully exploited.
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Fig. 5. The network structure and ith layer of the LAMP network with vector shrinkage function

B. Centralized LAMP Network

The centralized LAMP network contains only one single LAMP network with vector shrinkage

function which “unfolds” the iterations of the AMP algorithm with vector shrinkage function.

The vector shrinkage function usually recovers each row x0
n,t in the true signal X0 individually

to exploit the common sparsity in the columns of X0, so that the LAMP-C network can obtain a

more accurate estimate of X0 than the LAMP-D network. The network structure and the details

of the ith layer in the LAMP network with vector shrinkage function is similar to LAMP-

SMV from Fig. 5. In the neural network, the input and output are usually limited to be in

the form of a vector, while the received signal and the estimated channel are both in the form

of a matrix. Thus, a simple form transformation operation is needed at the input and output

of the network which is eliminated in Fig. 5. In particular, this transformation operation also

needs to be added both in the input and the output of each layer, since the layer-by-layer

and denoiser-by-denoiser training strategy is also adopted to train the LAMP-C network. In

addition, we also select the MSE function as the loss function of the LAMP-C network, i.e.,

L(X̂) = ||vec(X̂) − vec(X0)||22 = ||X̂ − X||2F . We can also represent the learnable parameter

set as {Wi,ϑϑϑi}Ii=1, where Wi is regarded as the matched filter matrix and ϑϑϑi is the learnable

parameters set of the vector shrinkage functions in the ith layer. We drop the index i to simplify

the expression in the following part. In the LAMP network with vector shrinkage function, the

ST function and the MMSE-optimal denoising function are also adopted. The ST function can

be presented as

[ηηη(R̂)]n,t =

(
r̂n,t − θ

√
Mσ

r̂n,t
||̂rn,t||2

)
· I(||̂rn,t||2 > θ

√
Mσ), (21)
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where θ is the learnable tuning parameter and the learnable parameter set is ϑϑϑ = {θ}. By ex-

ploiting the system statistics, the MMSE-optimal denoising function can achieve better recovery

performance. The joint distribution of the effective channel Xn of user n is given as

p(Xn) = (1− pa)
Tg+1∏
t=1

δ(xn,t) + pa,T

Tg+1∑
t=1

(
CN (xn,t; 0, φnIM)

∏
t′ 6=t

δ(xn,t′)
)
. (22)

Based on the MMSE-optimal criteria, the vector shrinkage function can be obtained, which

estimates each effective channel matrix Xn rather than treat each xn,t independently. The covari-

ance matrix of the corrupted noise in rn,t is a diagonal matrix with identical diagonal elements,

then the MMSE-optimal vector shrinkage function can be simplified. Since the Section IV has

illustrated how to obtain the learnable shrinkage function based on the MMSE-optimal shrinkage

function, we here directly give the learnable MMSE-optimal denoising function as

[ηηη(R̂)]n,t = θ3

exp

(
||r̂n,t||22

σ2(1+ σ2

θ1,n
)

)
r̂n,t

(1 + σ2

θn
)

[
exp

(
||R̂n||2F

σ2(1+ σ2

θ1,n
)

)
+
(
1 + θ1,n

σ2

)M
θ2

] − θ4r̂n,t, (23)

where the learnable parameter set is also defined as ϑϑϑ = {{θ1,n}Nn=1, θ2, θ3, θ4} with θ1,n = φn

and θ2 = 1−pa
pa,T

. Also, we can set θ1,n = θ1,∀n = 1, . . . , N when all users suffer the same

large-scale channel attenuation. In each layer of the LAMP-C network, the Jacobi matrix of the

vector shrinkage function also needs to be calculated to obtain the Onsager term, which can be

written as
∂[ηηη(R̂)]n,t
∂r̂n,t

= θ3
[Q(R̂n)]tIM + θ1,n

σ2(θ1,n+σ2)
([Q(R̂n)]t − 1)r̂Hn,tr̂n,t(

1 + σ2

θ1,n

)
[Q(R̂n)]2t

− θ4IM , (24)

where Q(Rn) = [[Q(Rn)]1, [Q(Rn)]2, . . . , [Q(Rn)]Tg+1]
T ∈ C(Tg+1)×1 is defined for simplifying

the expression of (24) and [Q(Rn)]t is given as

[Q(R̂n)]t =

exp
(
||R̂n||2F

σ2(1+ σ2

θ1,n
)

)
+
(
1 + θ1,n

σ2

)
θ2

exp
(

|r̂n,t|2

σ2(1+ σ2

θ1,n
)

) . (25)

The signal flow graph of the LAMP-C network is the same as the AMP algorithm with matrix

shrinkage function. Thus, the denoising performance of each layer in the LAMP-C network can

also be described by state evolution ΣΣΣi in the asymptotic region. Since the layer-by-layer and

denoiser-by-denoiser training strategy is proven to enable the LDAMP network [33] for the

SMV problem to achieve MMSE optimality under the conditions mentioned in Section IV, it is

reasonable to speculate that the strategy can also ensure the MMSE-optimality of the LAMP-C

network under the same conditions. To prove the property, we first follow [33] to define a set
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Algorithm 2 Parameter training of the tied LAMP network with vector shrinkage function via

layer-by-layer and denoiser-by-denoiser learning strategy
1: Initialize: W = S̃H and ϑϑϑi = ϑϑϑ0, = 1, . . . , I .

2: for i = 1 to I do

3: Learn {ϑϑϑi} with fixed {W, {ϑϑϑl}i−1l=1} based on the loss function L(X̂i) = ||X̂i −X0||2F .

4: Re-learn {{ϑϑϑl}il=1} based on the loss function L(X̂i) = ||X̂i −X0||2F .

5: end for

6: Re-learn {W, {ϑϑϑi}Ii=1} for refinement based on the loss function L(X̂I) = ||X̂I −X0||2F .

7: Return {W, {ϑϑϑi}Ii=1}.

of variables {τi}Ii=1 as

τi =
1

ÑM
ED[||ηηηiϑϑϑi,δi(X

0 + δi−1D)−X0||22]. (26)

In addition, we also give the definition of the monotone denoising function that infϑϑϑ ED||ηηηϑϑϑ,δ(X0+

δD) −X0||2F is a non-decreasing function of δ for any X0. With the above definition, we are

ready to present the following lemma.

Lemma 1: Suppose that the shrinkage functions ηηηiϑϑϑi(·), i = 1, . . . , I , are the monotone

denoising functions. By following the greedy selection strategy in [35], the parameters ϑϑϑ1 are

updated as ϑϑϑ∗1 to minimize EX0 [τ1] and fixed; then the parameters ϑϑϑ2 are updated as ϑϑϑ∗2 to

minimize EX0 [τ2] and fixed, ..., and the parameters ϑϑϑI are updated as ϑϑϑ∗I to minimize EX0 [τI ].

The LAMP network with all the updated learnable parameters {ϑ∗i }Ii=1 finally minimizes EX0 [τI ].

Proof: This lemma can be proved by replacing τi with EX0 [τi] in the proof for Lemma 3

in [35].

If the conditions in Lemma 1 and Section IV are all satisfied, the LAMP-C network under

layer-by-layer and denoiser-by-denoiser training strategy achieves MMSE optimality. However,

the measurement matrix S̃ has non i.i.d elements, which makes no optimality guarantee in theory.

From the numerical results, we can see that the LAMP-C network based on the layer-by-layer

and denoiser-by-denoiser training strategy can still approach the optimal performance.

Compared with the LAMP-SMV network, the learnable parameters set {Wi,ϑϑϑi}Ii=1 of the

proposed LAMP-C network has no difference. And the LAMP-C network can be similarly

divided by the tied version and the untied version depending on whether the matched filter

matrix Wi for i = 1, . . . , I , share the same values in all layers or have different values across
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different layers. Therefore, the training process of the LAMP-C network will also keep nearly

unchanged. We outline the training procedure of the tied LAMP-C network in Algorithm 2.

C. Hybrid LAMP Network

The neural networks proposed in the above two subsections solve the MMV problem in either

purely distributed way or centralized way, which concentrates only on reducing the running

time cost or improving the recovery accuracy in the multiple-antenna scenario. Intuitively, we

can construct the LAMP network in a hybrid way, which has combined the structures of both

the LAMP-D network and the LAMP-C network to save the running time and improve the

recoverability simultaneously. The structure of the LAMP-H network is shown in Fig. 4(c)

that consists of U parallel LAMP networks with vector shrinkage function, and each LAMP

subnetwork only recovers the channel on its corresponding subset of antennas. When the channel

coefficient on each antenna is assumed to satisfy i.i.d. distribution, we can divide all antennas into

U non-overlap subsets with the same size by sequence. Thus, the effective channel matrix can be

represented by Y = [Ỹ1, . . . , ỸU ] where Ỹu ∈ RL×M
U and we assume that M

U
is an integer here.

Then the input vector of the ust LAMP subnetwork can be denoted as ỹu, where ỹu = vec(Ỹu).

And the output estimated channel matrix X̂ can also be obtained by concatenating the estimated

sub-channels {X̂u}Uu=1, i.e., X̂ = [X̂1, . . . , X̂U ]. Similar to the LAMP-D network, the learnable

parameters of different subnetworks in LAMP-H can also have different value setting according

to the considered system. On the other hand, it is also implied that the antennas can be divided

into different subsets in various ways, and the number of antennas in different subsets can even be

various in some cases. However, the best dividing method is unknown which usually needs many

trials before the neural network deployment. In this work, the LAMP-H network is designed to

have the same parameter value in each LAMP subnetwork with vector shrinkage function. Each

LAMP subnetwork estimates the channel coefficients on the corresponding M
U

antennas, and the

size of the training data for the subnetwork training is MD
U

.

D. Discussion

Since the AMP algorithm with vector shrinkage function has saturated recovery performance

when M exceeds a certain value, the performance the LAMP-C network will be also limited in

such case, which has been validated by the numerical results. Therefore, the LAMP-H network

usually can be a better choice which can approach the optimal performance and make use of
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TABLE I

COMPUTATIONAL COMPLEXITY OF DIFFERENT ALGORITHMS IN THE SINGLE-ANTENNA SCENARIO

Algorithm BPDN OMP AMP LAMP

Complexity O(Ñ3.5) O(IK3) O(IL̃Ñ) O(IL̃Ñ)

TABLE II

COMPUTATIONAL COMPLEXITY OF THE PROPOSED LAMP NETWORKS IN THE MULTIPLE-ANTENNA SCENARIO

Network LAMP-D LAMP-C LAMP-H

Complexity O(IL̃(ÑM +M)) O(IL̃(ÑM + L̃M2)) O(IL̃(ÑM + M2

U
))

the distributed computing units to save the running time simultaneously when the number of

antennas is very large.

E. Computational Complexity Analysis

To implement the proposed algorithms, the computational complexity also has a great influence

to the hardware usage and power consumption. Here, we analyze the computational complexity

of our proposed algorithm and compare them with the conventional CS algorithms. Table I

gives the complexities of the proposed LAMP network as well as that of the conventional CS

algorithm BPDN, OMP, and the AMP algorithm in the single-antenna scenario. And Table II

lists the complexities of the three LAMP networks in the multiple-antenna scenario. The number

of iterations or the layers of network is denoted as I in these two tables. By comparison, the

complexity of the AMP algorithm and the LAMP networks increases linearly with L, N , since

no matrix inversion is needed. In Table II, the complexity of LAMP-C and LAMP-H networks

increase linearly with M2, while LAMP-D network increase linearly with M . Additionally, when

perfect system statistics are unavailable, more well-performed shrinkage functions can be utilized

in LAMP, which can also speed up the convergence of the AMP framework to reduce the needed

iterations. Thus, the LAMP network is more computationally efficient in massive access.

VI. SIMULATION RESULTS

In this section, we present the simulation results of the proposed algorithms in asynchronous

grant-free random access systems.

We consider a system with N = 100 users for illustration purpose, although the AMP-based

algorithms can be used for a much larger-scale problem. Each user has a probability of pa = 0.1

to be active. To simplify the demonstration, all users are placed at the edge of the cell centered by
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Fig. 6. The user activity detection performance comparison in the single-antenna scenario with Tg = 3.
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Fig. 7. The channel estimation performance comparison in the single-antenna scenario with Tg = 3.

the BS. Thus, the large-scale channel attenuation φn of all users are equal, i.e., φn = φ,∀n and

the signal-to-noise ratio is defined by SNR = φ
σ2
z
. We consider SNR = 0dB in the simulations if

not specified otherwise. We set the pilot length L = 40, and the maximal symbol delay of users

and the length of guide time are set to be 3, i.e., Tg = D = 3. The small-scale fading coefficient

of each user at each antenna is generated according to the i.i.d. Gaussian distribution with zero

mean and unit variance, i.e., gn,m ∼ CN (0, 1), ∀n,m. We generate 105 independent samples

with SNR = 0dB for training and 5 × 103 independent samples with the same distribution for

validation in both the single-antenna scenario and the multiple-antenna scenario. Then another

5 × 103 independent samples are generated for each SNR(dB) ∈ {0, 4, 8, 12, 16}, which leads

to totally 2.5 × 104 testing samples. In the training process, the training data is divided into

minibatches of size 100. The performance of the neural network on the test set is also evaluated

by MSE of all the samples in this set, which is computed as MSE = 1
B

∑B
b=1 ||x̂b−xb||22 with B
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Fig. 8. The delay detection performance comparison in the single-antenna scenario with Tg = 3 under fixed false alarm ratio

ε = 0.1.

being the number of samples. The number of layers in the LAMP networks for both the single-

antenna scenario and multiple-antenna scenario is set to be I = 10.2 The neural networks are all

trained and tested by using the deep neural network library TensorFlow. The Adam optimizer is

adopted with a training rate 7×10−4. The AMP algorithm and the OMP algorithm are employed

as the benchmarks which are also evaluated on the same test data set.

In Fig. 6, we first evaluate the active user detection performance of the LAMP network in

terms of the missed detection ratio versus the false alarm ratio by varying the decision threshold

value qth. The missed detection ratio is defined as the ratio of the number of undetected users

over the number of active users, and the false alarm ratio is defined as the ratio of the number

of the inactive users falsely detected to be active over the number of the inactive users. Here,

user n is detected to be active with symbol delay tmax if the element with maximal magnitude,

denoted as x̂n,tmax+1, in x̂n is larger than qth. AMP-ST and LAMP-ST denote the schemes with

the ST function being used, while AMP-MMSE and LAMP-MMSE employ the MMSE-optimal

denoising function. When the MMSE-optimal denoising function is selected, the exact value of

the parameters is unknown and will be learned in LAMP while it is perfectly known in AMP.

Since the tuning parameter θ of ST function is fixed in the AMP-ST and LAMP-ST, many

elements in the output vector of the ST function are zeros. This means that the corresponding

users will never be detected to be active, thus the false alarm ratio of the curves of AMP-

ST and LAMP-ST cannot approach one. In this paper, only the 2paN users which are most

2Based on our simulation trials, the AMP algorithm will converge in 10 iterations in our system setting, so that we also set

the number of the layers in the LAMP network as I = 10.



26

10-4 10-3 10-2 10-1 100

False alarm ratio

10-4

10-3

10-2

10-1

100

M
is

se
d 

de
te

ct
io

n 
ra

tio

AMP-ST
LAMP-ST
AMP-MMSE
LAMP-D-MMSE
LAMP-C-MMSE
LAMP-H-MMSE

M=2

M=4

Fig. 9. The user activity detection performance in the multiple-antenna scenario with Tg = 3.

likely to be active are detected by the OMP algorithm, so that its false alarm ratio also never

approaches one. We observe that LAMP-ST significantly outperforms AMP-ST by learning the

optimal tuning parameter value and the matched filter matrix. It achieves similar performance to

the OMP algorithm, since LAMP-ST implicitly solves the LASSO problem and approaches the

performance of LASSO in the asymptotic regime. And the learnable MMSE-optimal shrinkage

function can enable LAMP to outperform both LAMP-ST and OMP by exploiting the statistical

information of the system. It is observed that the LAMP-MMSE network can slightly outperform

the AMP-MMSE algorithm, which benefits from the deep learning techniques to learn the optimal

network parameters.

Fig. 7 shows the channel estimation performance in terms of the normalized mean square

error (NMSE) versus SNR, where the metric is defined as NMSE =
||ĥ−h0||22
||h0||22

. Similar to the

user activity performance, the DL techniques enable the LAMP network with ST function to

achieve lower channel estimation error than AMP-ST. The LAMP-ST network is observed to

outperform the OMP algorithm at SNR = 0dB, but the OMP algorithm can achieve much lower

NMSE than the LAMP-ST network with SNR increasing, which implies that the least square

estimation can offer better recoverability in high SNR regime. Compared with the ST function,

the MMSE-optimal denoising function can provide significant performance improvement for the

AMP framework when SNR is larger, since the system statistics are exploited.

The delay detection performance is shown in Fig. 8. Here, the error detection ratio is defined

by the ratio of the number of the active users with wrongly detected delay to the number of

active users. The error detection ratios are obtained under a fixed false alarm ratio ε = 0.1.

Since the delays of the active users are detected based on the estimated channel x̂ or X̂, the
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Fig. 10. The channel estimation performance in the multiple-antenna scenario with Tg = 3.

delay detection performance is heavily influenced by the channel estimation performance. Thus,

we can find that the delays are usually detected more accurately when more precise channel

estimation is achieved. In particular, the LAMP-MMSE network can achieve slightly larger

error detection ratio reduction than the AMP-MMSE algorithm with SNR increasing, which also

inversely implies that LAMP-MMSE can enable slightly better channel estimation of the active

users in the large SNR scenario.

In the following, we consider the scenario where the BS has multiple antennas. The ST function

is only employed in the LAMP-C networks, and the MMSE-optimal denoising function is adopted

in all three kinds of LAMP networks. The LAMP-H network evaluated here consists of two

LAMP networks with vector shrinkage function that estimate the channels at two antennas when

M = 4. We first evaluate the user activity detection performance shown in Fig. 9. It is observed

that increasing M can dramatically improve the user activity detection performance of the LAMP

networks. It is shown that the centralized network always outperforms decentralized network

and the hybrid network when the type of the shrinkage function and M are constant, which

indicates that exploiting the common sparsity at all antennas can provide significant performance

improvement in user activity detection. In particular, though the statistical information is not fully

exploited in the LAMP-ST network, it can outperform LAMP-D-MMSE when M = 4. This

result implies that centralized structure is potential to provide more performance improvement

than the well-designed shrinkage function by increasing the number of antennas at the BS. The

performance of LAMP-H-MMSE lies between that of LAMP-D-MMSE and LAMP-C-MMSE,

since it balances the computational complexity and the recoverability.
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(c) The LAMP-C network with M = 4
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(d) The LAMP-H network with M = 4

Fig. 11. The impact of the maximal symbol delay on the performance of the proposed LAMP networks in both the single-antenna

scenario and multiple-antenna scenario.

Fig. 10 shows the channel estimation performance of the LAMP networks in the multiple-

antenna scenario. The metric is defined as NMSE =
ˆ||H−H0||2F
||H0||2F

. We can see that the channel

estimation performance of the LAMP-D network keeps almost unchanged when the M increases.

This implies that the size of our training data is large enough to enable the LAMP network work

well, which is usually unable to train a traditional deep neural network well. It is also show that

the performance gap between LAMP-C-MMSE and the other LAMP networks including LAMP-

D-MMSE and LAMP-H-MMSE will become smaller with SNR increasing. And the NMSE of

LAMP-H-MMSE will approach that of LAMP-C-MMSE in the high SNR regime. These results

all imply that the LAMP-C-MMSE may have saturated performance when M or SNR is large

enough due to the limit of the AMP framework. Thus, the LAMP-H network is more suitable to

be employed in the practical scenario since it can approach the optimal performance and reduce

the computation complexity simultaneously.
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Finally, Fig. 11 evaluates the impact of the maximal delay spread on the user activity detection

performance of the LAMP network with MMSE-optimal shrinkage function. For comparison

purpose, the synchronous system is also included, which is a special case of the asynchronous

system (i.e., Tg = D = 0). Therefore, its performance serves as a lower bound. Both the

single-antenna and multiple-antenna scenarios are considered. In the single-antenna scenario,

the performance of the AMP algorithm with known statistical information is also evaluated. We

can find that LAMP has similar performance to AMP when Tg = 0, and the performance of the

LAMP network is only slightly worse when Tg increases, which indicates that the performance of

the LAMP network is robust to the maximal symbol delay. In the multiple-antenna scenario, the

proposed networks also perform insensitively to the maximal symbol delay as well. In particular,

the gap between two systems with different maximal symbol delays are much smaller in LAMP-

C and LAMP-H compared with LAMP-D. Thus, the LAMP network with vector shrinkage

function is more robust to the maximal symbol delay, which leads to less performance loss for

the asynchronous massive access system. Additionally, when the accurate maximal symbol delay

is unknown in advance, we can set Tg to be a larger value in the signal model without causing

much performance degradation.

VII. CONCLUSION

This work shows that combining deep learning techniques with compressed sensing is effective

for asynchronous grant-free massive connectivity with the signal model inserted into a guard time.

Specifically, we propose to design the neural networks based on the AMP framework to jointly

detect active users, detect their delays and estimate their channels with unknown system statistics

of the channels and the users. Both the scenarios where the BS has single antenna and multiple

antennas are considered. We first design the LAMP network for the single-antenna scenario to

exploit the potential of AMP by learning the parameters from the training data, and the neural

network can slightly outperform the AMP algorithm with perfectly known system statistics.

Furthermore, three LAMP network structures are proposed for the multiple-antenna scenario. In

specific, the LAMP-D network can take advantage of distributed computation units to save the

running time consumption, the LAMP-C network can improve the recoverability by exploit the

common sparsity in the channel matrix and allow feasible performance analysis, and the LAMP-

H network has balanced complexity and recoverability, which is suitable to more complicated

systems. Simulation results show that the significant performance improvement is achieved by
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the proposed LAMP networks when perfect system statistics are unavailable. Additionally, the

performance of proposed LAMP networks is also shown to be robust to the maximal delay

spread of the asynchronous users.
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