

Implementing NAT Hole Punching with QUIC

Jinyu Liang

College of Electronics

and Information Engineering

Shenzhen University

Shenzhen, China

2210434004@email.szu.edu.cn

Qing Yang

College of Electronics

and Information Engineering

Shenzhen University

Shenzhen, China

yang.qing@szu.edu.cn

Wei Xu

Computer Science Department

New York University

New York, USA

wx317@nyu.edu

Shengli Zhang

College of Electronics

and Information Engineering

Shenzhen University

Shenzhen, China

zsl@szu.edu.cn

Taotao Wang

College of Electronics

and Information Engineering

Shenzhen University

Shenzhen, China

ttwang@szu.edu.cn

Abstract—The widespread adoption of Network Address

Translation (NAT) technology has led to a significant number of

network end nodes being located in private networks behind NAT

devices, impeding direct communication between these nodes. To

solve this problem, a technique known as "hole punching" has

been devised for NAT traversal to facilitate peer-to-peer commu-

nication among end nodes located in distinct private networks.

However, as the increasing demands for speed and security in net-

works, TCP-based hole punching schemes gradually show perfor-

mance drawbacks. Therefore, we present a QUIC-based hole

punching scheme for NAT traversal. Through a comparative anal-

ysis of the hole punching time between QUIC-based and TCP-

based protocols, we find that the QUIC-based scheme effectively

reduces the hole punching time, exhibiting a pronounced ad-

vantage in weak network environments. Furthermore, in scenar-

ios where the hole punched connection is disrupted due to factors

such as network transitions or NAT timeouts, this paper evaluates

two schemes for restoring the connection: QUIC connection mi-

gration and re-punching. Our results show that QUIC connection

migration for connection restoration saves 2 RTTs compared to

QUIC re-punching, and 3 RTTs compared to TCP re-punching,

effectively reducing the computational resources consumption for

re-punching.

Keywords—QUIC, TCP, NAT Hole Punching, Connection Mi-

gration

I. INTRODUCTION

Network Address Translation (NAT) technology, introduced
in 1994 by Egevang et al. [1], mitigates the scarcity of IPv4
addresses by mapping private IP addresses and ports to public
IP addresses and ports. This enables devices within private
networks to access the Internet using public addresses. The
authors of [2] state that approximately 80% of end nodes in the
Peer-to-Peer (P2P) streaming system PPLive are located within
private networks behind NAT devices, obstructing direct P2P
communication. Wang et al. note that a small subset of nodes
within the Bitcoin network facilitates 89% of transaction
propagation [3]. This phenomenon arises due to the majority of
end nodes residing behind NAT devices and firewalls, rendering
them challenging for other nodes to discover and interact with
in transactions. Yin et al. point out that the presence of NAT
devices may impede the effective discovery of some nodes in

content distribution networks (CDNs), leading to content
request concentration on a few reachable nodes, which impacts
the overall performance and stability of the CDN network [4].
NAT alleviates the issue of IPv4 address scarcity to some extent,
but it also increases the complexity of network management and
limits the development of P2P communication.

To resolve the issue of P2P communication hindered by
NAT, scholars have introduced a technique known as "hole
punching," which utilizes TCP-based schemes to traverse NAT
and establish reliable connections [5][6]. However, the inherent
three-way handshake process of TCP introduces latency and
lacks integrated TLS encryption, rendering TCP-based hole
punching schemes inadequate for the growing demand for fast
and secure communication.

In 2012, Google introduced a QUIC protocol [7], which was
standardized by the Internet Engineering Task Force (IETF) in
2021 [8]. QUIC achieves low-latency, reliable, and secure
network connections [9], showing potential to overcome the
bottlenecks associated with TCP-based hole punching. However,
there is a lack of research on the application of the QUIC
protocol in NAT hole punching scenarios. While studies have
analyzed the performance [10] and security [11] of the QUIC
protocol, and compared it with TCP [10],[12] these
investigations have not focused on performance disparities in
NAT hole punching scenarios. M. Seemann et al. compared hole
punching success rates of QUIC and TCP in NAT hole punching
scenarios, revealing QUIC's superiority in hole punching.
However, the study did not delve into a comparison of hole
punching time overheads [13].

To fill the aforementioned research gap, we present a hole
punching scheme for NAT traversal based on the standardized
QUIC protocol. By configuring various network metrics, we
compared hole punching time between QUIC-based and TCP-
based protocols, revealing more efficiency of QUIC-based hole
punching. Additionally, in scenarios where hole punching
connections are disrupted due to network switching or NAT
timeouts, this paper further explores a QUIC connection
migration scheme for restoring connectivity. Our evaluation
shows that this scheme saves 2 RTTs compared to QUIC re-
punching and 3 RTTs compared to TCP re-punching. The results

This work is supported in part by the Guangdong Basic and Applied Basic

Research Foundation (2024A1515012407), and in part by the Shenzhen Sci-
ence and Technology Program (JCYJ20210324094609027).

mailto:2210434004@email.szu.edu.cn
mailto:yang.qing@szu.edu.cn
mailto:wx317@nyu.edu
mailto:zsl@szu.edu.cn
mailto:ttwang@szu.edu.cn

highlight the advantages of QUIC in adapting to dynamic
network environments.

This paper is structured as follows: Section II provides
background information about NAT mapping rules, hole
punching process, and a comparison of QUIC-based and TCP-
based hole punching schemes. Section III focuses on the
experimental deployment scheme and analysis of results.
Section IV explores the potential advantages of QUIC
connection migration for NAT hole punching. Finally, Section
V summarizes our work.

II. BACKGROUND

This section introduces NAT mapping rules, the hole
punching process, and a comparison between QUIC-based and
TCP-based hole punching schemes.

A. NAT Mapping Rules

NAT technology can be classified into two types of mapping
rules [14].

1) Endpoint-Independent Mapping: A private node 𝑃 is

mapped to a public address 𝑛𝑜𝑑𝑒𝑃 by a NAT device, and the

mapping remains consistent regardless of connecting to different

public nodes. When communicating with public nodes 𝑁1 or

𝑁2, 𝑃 establishes connections using 𝑛𝑜𝑑𝑒𝑃, as shown in Fig. 1a.

2) Address and Port-Dependent Mapping: A private node

𝑃 is mapped to a public address 𝑛𝑜𝑑𝑒𝑃 by a NAT device, and

the mapping is dynamically adjusted with different public nodes.

When communicating with public node 𝑁1 , 𝑃 is mapped to

public address 𝑛𝑜𝑑𝑒𝑃1 by the NAT; when communicating with

𝑁2, 𝑃 is mapped to 𝑛𝑜𝑑𝑒𝑃2 by the NAT, as shown in Fig. 1b.

Fig. 1. NAT mapping rules

If the Endpoint-Independent Mapping rule is adopted, once
𝑁1 establishes a connection with 𝑃 , it can forward 𝑛𝑜𝑑𝑒𝑃
to 𝑁2 or other nodes, facilitating NAT hole punching. If the
Address and Port-Dependent Mapping rule is adopted, 𝑃 uses
𝑛𝑜𝑑𝑒𝑃1 to connect with 𝑁1, but is unable to use 𝑛𝑜𝑑𝑒𝑃1 to
connect with 𝑁2 or other nodes, hindering NAT hole punching.

B. NAT Hole Punching Process

This study focuses on the most common NAT hole punching
scenario, which involves communication between two end
nodes located behind different NAT devices (shown in Fig. 2).
In the following, we refer to ClientA, ClientB, and Relay Server
as A, B, and S, respectively.

• First, both A and B establish a connection with S ,
respectively.

• Upon successful connection, A sends a registration
message to S and opens a listening port. S records A's

public address (𝐼𝑃𝐴: 𝑃𝑂𝑅𝑇𝐴) and private address
(𝑖𝑝𝐴: 𝑝𝑜𝑟𝑡𝐴). Similarly, B sends a registration message
to S and opens a listening port. S also records B's public
address (𝐼𝑃𝐵 : 𝑃𝑂𝑅𝑇𝐵) and private address
(𝑖𝑝𝐵: 𝑝𝑜𝑟𝑡𝐵).

• Suppose A wishes to establish a connection with B, A
requests B's public address from S. S sends B's public
address to A and A's public address to B. At this point,
both A and B know each other's public addresses (see
Fig. 2a).

• A initiates a connection request to B . As the request
passes through NAT-A, a session table entry is created
on NAT-A, with the source address as (𝑖𝑝𝐴: 𝑝𝑜𝑟𝑡𝐴) and
the destination address as (𝐼𝑃𝐵: 𝑃𝑂𝑅𝑇𝐵) . Upon
reaching NAT-B, the request is discarded as an
unauthorized external connection because NAT-B lacks
a matching session entry. Subsequently, B initiates a
connection request to A , creating a session entry on
NAT-B with the source address as (𝑖𝑝𝐵 : 𝑝𝑜𝑟𝑡𝐵) and the
destination address as (𝐼𝑃𝐴: 𝑃𝑂𝑅𝑇𝐴) . Upon reaching
NAT-A, the request is forwarded to A due to the
existing session entry from A-to-B in NAT-A, thus
opening the "hole" between A and B (see Fig. 2b).

• A and B begin to establish a connection. If the
connection is successful, A and B can communicate
directly, and subsequent data transmission does not
require intermediation through S.

Fig. 2. NAT hole punching process

C. Comparison of QUIC and TCP Hole Punching

Despite the similarities in the hole punching process for
QUIC and TCP protocols, their implementations differ due to
the inherent characteristics of each protocol.

1) Port Multiplexing: TCP sockets adhere to a one-to-one

response mode, meaning that a local port can only be bound to

one socket [15]. Therefore, TCP hole punching cannot establish

simultaneous outbound and inbound connections on the same

port, requiring port multiplexing. In contrast, QUIC permits

multiple sockets to be bound to the same local port [16],

eliminating the need to implement port multiplexing.

2) Hole Punching Time: Assuming negligible latency

differences in network environments of clients 𝐴, 𝐵, and relay

server 𝑆, according to the steps described in Section II-B, the

hole punching time includes 1 RTT for clients to request peer's

public addresses from 𝑆, at the time for 𝐴 and 𝐵 to establish a

connection. A QUIC connection requires 1 RTT, a TCP

 :)

 :)

 :)

 :)

 : :

 :)

 :)

 :)

 :)

connection requires 1.5 RTTs. Thus the hole punching time for

QUIC is 2 RTTs, and for TCP, it is 2.5 RTTs.

3) Connection Security: QUIC, based on UDP and

operating in user space, integrates with TLS 1.3 (see Fig. 3),

enabling key negotiation, authentication, and session

resumption within 1 RTT, thus providing higher security [9].

TCP operates in kernel space and cannot directly integrate with

TLS 1.3. Thus, the connection processes of TCP and TLS 1.3

are independent, requiring at least 2 RTTs to establish a secure

connection (The third handshake of a TCP connection can be

sent simultaneously with the first handshake of a TLS 1.3

connection). This characteristic disadvantages TCP hole

punching in terms of time efficiency and security.

Fig. 3. Connection process of QUIC integrated with TLS 1.3

4) Connection Restoration: If hole punching is successful

but the connection is disrupted due to network instability, TCP

hole punching requires re-punching, resulting in additional

computational resource consumption and latency. While, QUIC

connection migration provides a rapid restoration mechanism.

Specifically, QUIC uses a five-tuple (source IP, destination IP,

source port, destination port, and connection ID) for

communication [9]. When the network environment of an end

node changes, connection migration automatically transfer the

existing connection to a new network path without interruption.

This ensures the continuity of the connection during network

switching. Further details will be discussed in Section IV.

We can summarize the bottlenecks of current TCP hole
punching and the advantages of QUIC hole punching.

1) Bottlenecks of TCP hole punching:

a) Additional implementation of port multiplexing is

required for coding.

b) While ensuring connection reliability, the TCP three-

way handshake introduces additional latency.

c) TCP lacks encryption capabilities, and additional TLS

connections are required for security.

d) After the connection is disrupted, besides re-punching,

there are currently no better solutions available for swift

connection restoration.

2) Advantages of QUIC hole punching:

a) Port multiplexing functionality can be implemented

directly for coding.

b) QUIC, based on UDP and integrated with the TLS 1.3

protocol to enable faster connections and higher security.

c) The QUIC connection migration mechanism can

rapidly restore network connectivity.

III. EXPERIMENTAL STUDY OF QUIC HOLE PUNCHING SCHEME

Given the limitations of TCP in hole punching scenarios and
the advantages of QUIC, we propose a QUIC-based hole
punching scheme for NAT traversal. We conduct experimental
research to validate its efficiency.

As described in Section II-A, the Address and Port-
Dependent Mapping rule leads to dynamic changes in NAT
mappings, complicating hole punching. Testing revealed that
NAT devices in our current real network follow this rule.
Therefore, we conduct experiments in a controlled environment
using the Endpoint-Independent Mapping rule.

Fig. 4. Network environment configuration

A. Experimental setup

To simulate a scenario where clients from two different
LANs are behind different NAT devices, we set up the following
network environment in a Docker container. ClientA is in
subnet 192.168.0.0/24, and ClientB is in subnet 192.168.1.0/24.
The relay server's address is 123.56.64.101:9999. The public
addresses after mapping by NAT-A and NAT-B are
123.56.64.102:8001 and 123.56.64.103:8002, respectively (see
Fig. 4). Additionally, we use iptables to configure the mapping
rules of NAT-A and NAT-B, as detailed in TABLE I.

TABLE I. NAT MAPPING RULES

NAT devices Mapping Rules

NAT-A

iptables --append FORWARD --jump ACCEPT
iptables --append INPUT --jump DROP

iptables --append OUTPUT --jump DROP

iptables --table nat --append POSTROUTING --source
192.168.0.0/24 --jump SNAT --to-source 123.56.64.102

NAT-B

iptables --append FORWARD --jump ACCEPT

iptables --append INPUT --jump DROP
iptables --append OUTPUT --jump DROP

iptables --table nat --append POSTROUTING --source

192.168.1.0/24 --jump SNAT --to-source 123.56.64.103

B. Selection of Network Metrics

 We first assess the impact of the following metrics on hole
punching time, and then select appropriate combinations of net-
work metrics.

 12 1 2: 1)

 1 2 1 1 1: 1 1 2 1 1 1 1: 2

 12 1 1 :

 1 2 1 1 2) 1 2 1 1 1)

 12 1 : 2)

1) Round-Trip Time (RTT): RTT is the time taken for a

network request to travel from source to destination and back.

The higher the RTT, the longer the hole punching time. Thus,

RTT serves as a metric to measure hole punching performance.

Based on literature [17], we selected three different RTT values

of 20ms, 100ms, and 200ms for testing.

2) Packet Loss Rate: To assess the impact of packet loss

rate on the experiment, we implemented a 1% packet loss rates

within the Docker network. We observed that the hole punching

time for both QUIC and TCP is significantly affected by packet

loss, as shown in Fig. 5. Therefore, packet loss rate is a key

performance metric.

Fig. 5. QUIC and TCP hole punching time at 1% packet loss rates

In Fig. 5, we observe that the packet retransmission time for

QUIC exceeds 200ms, while for TCP, it exceeds 1000ms. This

discrepancy is due to their distinct retransmission mechanisms.

According to draft-ietf-quic-recovery [18], QUIC's retransmis-

sion time is set to 200ms. Therefore, a packet loss on a QUIC

connection results in a 200ms retransmission time. Similarly,

RFC6289 [19] defines standard retransmission algorithms for

TCP, as in (1).

𝑅𝑇𝑂 = {
1𝑠, 𝑅𝑇𝑂 < 1𝑠
𝑅𝑇𝑂, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1)

Where 𝑅𝑇𝑂 is the retransmission timeout and the detailed
calculation process can refer to RFC6289 [19]. The RTO is
rounded up to 1s if it is less than 1s; otherwise, it remains
unchanged. In our experiment, with a maximum RTT of 200ms,
the 𝑅𝑇𝑂 does not exceed 1s. Consequently, TCP's
retransmission timeout is calculated as 1s.

Based on literature [17], the Internet packet loss rate ranges
between 1% and 2%. Thus, we set four different packet loss rates
for testing: 0%, 1%, 1.5%, and 2%.

3) Bandwidth: Bandwidth determines the volume of data

that can be transmitted in network communication. Although it

is crucial in network evaluation, QUIC and TCP hole punching

do not involve transmitting large amounts of data. Thus,

bandwidth has little impact on the experimental results. To

verify this, we conducted experiments in the Docker

environment under four bandwidth conditions: unlimited,

10Gbps, 100Mbps, and 1Mbps. For each condition, we

conducted 100 hole punching experiments and recorded the

average time. Fig. 6 shows that there is minimal variation in

hole punching time for QUIC and TCP across different

bandwidths. Therefore, bandwidth is not considered a

significant factor in our study.

Fig. 6. The average hole punching time for QUIC and TCP under different

bandwidths.

In summary, after analyzing the impact of various perfor-
mance metrics on our experiment, we selected RTT and packet
loss rate as the primary indicators. We tested 12 combinations,
as detailed in TABLE II.

TABLE II. COMBINATION OF NETWORK SETTINGS FOR RTT AND

PACKET LOSS RATE

Experimental Combination RTT（ms） Packet Loss Rate

1 20 0 %

2 20 1 %

3 20 1.5 %

4 20 2 %

5 100 0 %

6 100 1 %

7 100 1.5 %

8 100 2 %

9 200 0 %

10 200 1 %

11 200 1.5 %
12 200 2 %

C. Experimental Testing

This section outlines the process of experimental testing
aimed at evaluating the hole punching time of QUIC and TCP.

As analyzed in Section II-C2, the ideal hole punching time
is 2 RTTs for QUIC and 2.5 RTTs for TCP. However, we also
need to consider the scenarios described in Steps 4 and 5 of
Section II-B. With the presence of NAT devices, the first
connection initiated by either client A or B will be discarded;
only the second connection can pass through. It is necessary to
analyze the time taken for the first connection to reach the peer's
NAT device and the second connection to reach the local NAT
device. Assuming the first connection initiated by A is ConnA,
and the second connection initiated by B is ConnB.

1) Scenario 1: If 𝐶𝑜𝑛𝑛𝐴 reaches NAT-B simultaneously

with 𝐶𝑜𝑛𝑛𝐵, ConnA can directly traverse NAT-B, establishing

the first handshake. In this scenario, the hole punching time is

2 RTTs for QUIC and 2.5 RTTs for TCP (see Fig. 7a).

2) Scenario 2: If 𝐶𝑜𝑛𝑛𝐴 reaches NAT-B before 𝐶𝑜𝑛𝑛𝐵 ,

NAT-B will discard 𝐶𝑜𝑛𝑛𝐴, causing an additional delay of 0.5

RTTs. When 𝐶𝑜𝑛𝑛𝐵 arrives at NAT-A, it becomes the first

handshake connection as NAT-A has a session entry for 𝐶𝑜𝑛𝑛𝐵.

In this scenario, the hole punching time is 2.5 RTTs for QUIC

and 3 RTTs for TCP (see Fig. 7b).

Fig. 7. Two extreme situations that occur during the hole punching process

In summary, we estimate the hole punching time to be
between 2 and 2.5 RTTs for QUIC, and between 2.5 and 3 RTTs
for TCP.

To validate the accuracy of our evaluation, we define the
start time of the experiment as the moment when A initiates a
request to S. The end time is when the connection between A
and B is established. The hole punching time is calculated as the
difference between these two timestamps. To ensure reliable
results, we conduct 100 tests for each of the 12 combinations
listed in TABLE II. We utilize the network simulation tool
(𝑁𝑒𝑡𝑒𝑚) on a Linux system and apply Traffic Control (TC)
commands to mimic different RTTs and packet loss rates.

D. Experimental Results

This section analyzes the experimental results to validate our
evaluation. Fig. 8 illustrates the hole punching time for QUIC
and TCP under various network conditions.

Fig. 8. Summary of QUIC and TCP hole punching time

Firstly, verifying under conditions without packet loss. With
an RTT of 20ms, the hole punching time for QUIC is
approximately 55ms, slightly higher than the expected 2 to 2.5
RTTs. This is because QUIC operates in user space, leading to
some processing overhead even in a low-latency environment.
Therefore, the observed hole punching time of approximately
55ms for QUIC still falls within the expected range. The hole
punching time for TCP is approximately 56ms, within the
expected 2.5 to 3 RTTs. When the RTTs are 100ms and 200ms,
the hole punching time for QUIC is approximately 213ms and
416ms, respectively, within the expected range. The hole
punching time for TCP is approximately 256ms and 505ms,
respectively, also within the expected range.

Secondly, in the presence of packet loss, the fluctuation
range of hole punching time for QUIC and TCP is similar to that
without packet loss, indicating that they still perform as expected
in such conditions.

The experimental results demonstrate that the QUIC-based
hole punching scheme outperforms the TCP-based scheme in
terms of hole punching time, especially in weak network
environments. We believe that as the QUIC protocol becomes
more widespread and adopted, its advantages in NAT hole
punching scenarios will be further highlighted.

IV. DISCUSSION

After completing NAT hole punching, connection
maintenance remains a concern. In practical applications, public
IP addresses of end nodes may change due to NAT session
timeouts, NAT device reboots, or network transitions, disrupting
the hole punched connection. Currently, the most common
solution is re-punching [5], but this consumes additional
computational resources. Therefore, finding a more effective
method to maintain peer connections is crucial.

We evaluate a scheme to restore hole punched connections
by utilizing the QUIC connection migration mechanism, and
discussing its benefits in resolving disruptions in hole punched
connections.

A. QUIC Connection Migration Mechanism

Connection migration implementation relies on the Connec-
tion ID (CID) in the QUIC protocol [8]. QUIC identifies a con-
nection using a unique set of CIDs , binding the connection's
state information to the CID rather than the underlying network
address. As long as the CID remains unchanged, the connection
persists even if the network address changes, and the upper-layer
business logic remains unaware, eliminating the need for recon-
nection. This CID-based connection identification mechanism
provides flexibility and portability to the QUIC protocol, allow-
ing seamless migration of connections and maintaining commu-
nication continuity in changing network environments.

The process of connection migration is shown in Fig. 9:

Fig. 9. Connection migration process

• When a client's address (IP and port) changes, it sends
data to a server using a new address.

• The server receives the data and detects the change in the
client's address. It then selects a new Connection ID
(Destination Connection ID, DCID) from the previously
maintained CID pool and sends a 𝑃𝐴𝑇𝐻𝐶𝐻𝐴𝐿𝐿𝐸𝑁𝐺𝐸
frame (𝑃𝐶 frame) to verify the reachability of the new
address.

• If the new address is reachable, the client immediately
responds with a 𝑃𝐴𝑇𝐻𝑅𝐸𝑆𝑃𝑂𝑁𝑆𝐸 frame (𝑃𝑅 frame),
confirming the reachability of the current path, and
communication continues uninterrupted.

B. Schemes for Restoring Connectivity

This section analyzes and compares the processes and time
overheads of two schemes for restoring connectivity: QUIC
connection migration and re-punching. In the following
discussion, we illustrate the case of client 𝐴′s private IP address
changing.

1) QUIC Connection Migration: When the IP address of

client 𝐴 changes, its public address also changes, disrupting the

established punched connection. If A directly initiates a

connection migration request to B, NAT-B will discard the

request, preventing it from reaching B. To restore

communication, the relay server S must be used for information

exchange, as shown in Fig. 10a.

• A initiates a connection migration request to S, updating
its own information, and requests S to send A 's new
public address to B. At the same time, A requests B to
send data to trigger session establishment on NAT-B.

• S processes A 's request and forwards A 's new public
address to B.

• Upon receiving S's message, B sends data to A. Since
there is no corresponding session entry on NAT-A yet,
this data is discarded. However, NAT-B records the
session entry for data transmission from B to A ,
preparing for subsequent connection establishment.

• Because B 's IP address and public address have not
changed, A can directly send a connection migration
request to B. Since there is already a session entry on
NAT-B for data transmission from B to A , A 's
connection migration request can successfully pass
through NAT-B and reach B , achieving connection
migration and data transmission. Meanwhile, this
connection request already has the capability to send
data.

The total time for the above steps can be expressed as in:

𝑇𝑚𝑖𝑔𝑟𝑎𝑡𝑒 = 𝑇𝐴2𝑆 + 𝑇𝑆2𝐵 + 𝑇𝐵2𝐴 + 𝑇𝐴2𝐵 (2)

Where 𝑇𝑚𝑖𝑔𝑟𝑎𝑡𝑒 is the time to restore connectivity, 𝑇𝐴2𝑆 is the

time for A to initiate connection migration and updates

information to S, 𝑇𝑆2𝐵 is the time for S processes the request and

forwards it to B, 𝑇𝐵2𝐴 is the time for B sends data to A, 𝑇𝐴2𝐵 is
the time for A sends a connection migration request to B.

2) Re-punching with QUIC and TCP: In the absence of

connection migration functionality in QUIC or TCP, when the

IP address of 𝐴 changes, the connections between 𝐴 and 𝐵, and

between 𝐴 and 𝑆 , are disrupted. If 𝐴 directly initiates a

connection to 𝐵, this message will be discarded by NAT-B and

cannot reach 𝐵 . An effective solution is re-punching, as

illustrated in Fig. 10b.

• A reestablishes QUIC/TCP connection with S.

• After establishing the connection, A sends a data
request to S, asking S to send A's new public address to
B and requesting B to send data to A.

• S processes A 's request and forwards A 's new public
address to B.

• Upon receiving the message from S, B sends data to A.
Since there is no corresponding session entry on NAT-
A yet, the data sent by S to A is discarded. However,
NAT-B records the session entry for data transmission
from B to A.

• Since B 's IP address and public address remain
unchanged, A 's request to establish a connection can
successfully pass through NAT-B to reach B.

• Once the connections are successfully established, data
transmission can occur.

The total time for the above steps can be expressed as in:

𝑇𝑟𝑒−𝑝𝑢𝑛𝑐ℎ𝑖𝑛𝑔 = 𝑇`𝐴𝑆 +𝑇`𝐴2𝑆 +𝑇`𝑆2𝐵+𝑇`𝐵2𝐴 +𝑇`𝐴𝐵 +𝑇`𝐴2𝐵 ()

Where 𝑇𝑟𝑒−𝑝𝑢𝑛𝑐ℎ𝑖𝑛𝑔 is the time for re-punching; 𝑇`𝐴𝑆 is the

time for A and S to establish a new QUIC/TCP connection;
T`𝑆2𝐵 is the time for A sends data to S; T`𝑆2𝐵 is the time for S
processes the message and communicates it to B; T`𝐵2𝐴 is the
time for B sends a message to A's new public address; 𝑇`𝐴𝐵 is the

time for A initiates the re-establishment of the QUIC/TCP
connection to B; T`𝐴2𝐵 is the time for A receives the message
from the peer after successful establishment.

3) Comparative Analysis: We can observe similarities

between Section IV-B1 and IV-B2 , assuming that the network

environments for both schemes are the same. The main

difference lies in whether it is necessary to re-establish the

QUIC/TCP connections between 𝐴 and 𝑆 , and 𝐴 and 𝐵 .

TABLE III. compares the steps and time of the two schemes.

TABLE III. COMPARES THE STEPS AND TIME OF THE TWO SCHEMES

Processes

QUIC

connection migration

(steps : time)

QUIC/TCP

Re-punching

(steps : time)

Information exchange
Steps 1-3 :

𝑇𝐴2𝑆 + 𝑇𝑆2𝐵 + 𝑇𝐵2𝐴

Steps 2-4 :

T`𝐴2𝑆 + T`𝑆2𝐵+ T`𝐵2𝐴

Data interaction

between 𝐴 and 𝐵
Step 4 : 𝑇𝐴2𝐵 Step 6 : T`𝐴2𝐵

Establish connections

between 𝐴 and 𝑆, and

𝐴 and 𝐵

Steps 1, 5 :

 T`𝐴𝑆 + T`𝐴𝐵

Combining equations (2) and (3), we have:

∆𝑡 = 𝑇𝑟𝑒−𝑝𝑢𝑛𝑐ℎ𝑖𝑛𝑔 − 𝑇𝑚𝑖𝑔𝑟𝑎𝑡𝑒 = 𝑇`𝐴𝑆 + 𝑇`𝐴𝐵 ()

Where ∆𝑡 represents the time difference between re-
punching and connection migration. It can be concluded that the
time for connection migration to restore connectivity is reduced
by 2 RTTs compared to QUIC re-punching and by 3 RTTs
compared to TCP re-punching, further highlighting the
advantage of QUIC in NAT hole punching scenarios.

Fig. 10. Two options for restoring connectivity

V. CONCLUSION

This paper presents and evaluates a QUIC-based hole
punching scheme for NAT traversal, contrasting it with a TCP-
based hole punching scheme. Our experiments show that QUIC
hole punching reduces connection time by optimizing the
connection process and performs better in weak network
environments. Additionally, we further explore the application
of the QUIC connection migration mechanism in handling
changes in end node addresses. Our evaluation results indicate
restoring connectivity through QUIC connection migration
saves 2 RTTs compared to QUIC re-punching and 3 RTTs
compared to TCP re-punching, thus reducing the computational
resources required for reconnecting.

In summary, the QUIC-based hole punching scheme for
NAT traversal exhibits certain advantages in efficiency and
security. This scheme provides a new direction for NAT hole
punching technology and is expected to play an important role
in future network communication.

REFERENCES

[1] K F , “ ,”
Tech. Rep., 1994.

[2] Y. Huang, T. Z. Fu, D.- , J , , “ ,
design and analysis of a large-scale p2p- ,” ACM SIGCOMM
computer communication review, vol. 38, no. 4, pp. 375–388, 2008.

[3] W , “
 ,” arXiv preprint arXiv:1709.06837, 2017.

[4] H. Yin, X. Liu, T. Zhan, V. Sekar, F. Qiu, C. Lin, H. Zhang, and B. Li,
“ : ,” ACM Transactions on Multimedia
Computing, Communications, and Applications (TOMM), vol. 6, no. 3,
pp. 1–19, 2010.

[5] F , , K , “ -to-peer communication across
 ” USENIX Annual Technical Conference,
General Track, 2005, pp. 179–192.

[6] A. Biggadike, D. Ferullo, G. Wilson, and A.- , “ :
 ,” ACM
SIGCOMM Asia Workshop, vol. 5. Citeseer, 2005, p. 25.

[7] J , “Q : ”
[Online]. Available: https://docs.google.com/document/d/1RNHkx
VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34/edit#

[8] J , “QU : U -Based Multiplexed
 ,” F 9000, 0 [] :
https://www.rfc-editor.org/info/rfc9000

[9] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F Y , F K , , J , “ q
protocol: Design and internet- ,” Proceedings of the
conference of the ACM special interest group on data communication,
2017, pp. 183–196.

[10] , , , “ :
 x q ,” Proceedings of the 30th Annual
ACM Symposium on Applied Computing, 2015, pp. 609–614.

[11] R. Lychev, S. Jero, A. Boldyreva, and C. Nita- , “
q q ? ,” 0 5
IEEE Symposium on Security and Privacy. IEEE, 2015, pp. 214–231.

[12] K. Nepomuceno, I. N. de Oliveira, R. R. Aschoff, D. Bezerra,
M. S. Ito, W. Melo, D. Sadok, and G. Szab ́, “Q :
performance evaluation,” in 2018 IEEE Symposium on Computers and
Communications (ISCC). IEEE, 2018, pp. 00 045–00 051.

[13] , , z , “ z
 ,” 2022 IEEE 42nd International Conference on Distributed
Computing Systems Workshops (ICDCSW). IEEE, 2022, pp. 96–98.

[14] F J , “
 q ,” , 007

[15] , F , W , , “ :
 ,” ACM
SIGCOMM Asia Workshop, vol. 5. Citeseer, 2005, p. 25.

[16] , “ q ” [] :
https://github.com/quic-go/quic-go

[17] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall,
“ {SPDY}?” 11th usenix symposium on networked
systems design and implementation (nsdi 14), 2014, pp. 387–399.

[18] J. Iyengar and I. , “QU
 ,” F , -Draft draft-
ietf-quic-recovery-16, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/draft-ietf-quic-recovery/16/

[19] J.-F , , , “ U
 U ,” F 6 89, J 0
[Online]. Available: https://www.rfc-editor.org/info/rfc6289

 :

 :)

 :)

 :)

 ` : `)

 :

 :)

 :)

 :)

 ` : `)

https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34/edit%23
https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34/edit%23
https://www.rfc-editor.org/info/rfc9000
https://github.com/quic-go/quic-go
https://datatracker.ietf.org/doc/draft-ietf-quic-recovery/16/
https://www.rfc-editor.org/info/rfc6289

