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Abstract—The widespread adoption of Network Address 

Translation (NAT) technology has led to a significant number of 

network end nodes being located in private networks behind NAT 

devices, impeding direct communication between these nodes. To 

solve this problem, a technique known as "hole punching" has 

been devised for NAT traversal to facilitate peer-to-peer commu-

nication among end nodes located in distinct private networks. 

However, as the increasing demands for speed and security in net-

works, TCP-based hole punching schemes gradually show perfor-

mance drawbacks. Therefore, we present a QUIC-based hole 

punching scheme for NAT traversal. Through a comparative anal-

ysis of the hole punching time between QUIC-based and TCP-

based protocols, we find that the QUIC-based scheme effectively 

reduces the hole punching time, exhibiting a pronounced ad-

vantage in weak network environments. Furthermore, in scenar-

ios where the hole punched connection is disrupted due to factors 

such as network transitions or NAT timeouts, this paper evaluates 

two schemes for restoring the connection: QUIC connection mi-

gration and re-punching. Our results show that QUIC connection 

migration for connection restoration saves 2 RTTs compared to 

QUIC re-punching, and 3 RTTs compared to TCP re-punching, 

effectively reducing the computational resources consumption for 

re-punching.  

Keywords—QUIC, TCP, NAT Hole Punching, Connection Mi-

gration  

I. INTRODUCTION 

Network Address Translation (NAT) technology, introduced 
in 1994 by Egevang et al. [1], mitigates the scarcity of IPv4 
addresses by mapping private IP addresses and ports to public 
IP addresses and ports. This enables devices within private 
networks to access the Internet using public addresses. The 
authors of [2] state that approximately 80% of end nodes in the 
Peer-to-Peer (P2P) streaming system PPLive are located within 
private networks behind NAT devices, obstructing direct P2P 
communication. Wang et al. note that a small subset of nodes 
within the Bitcoin network facilitates 89% of transaction 
propagation [3]. This phenomenon arises due to the majority of 
end nodes residing behind NAT devices and firewalls, rendering 
them challenging for other nodes to discover and interact with 
in transactions. Yin et al. point out that the presence of NAT 
devices may impede the effective discovery of some nodes in 

content distribution networks (CDNs), leading to content 
request concentration on a few reachable nodes, which impacts 
the overall performance and stability of the CDN network [4]. 
NAT alleviates the issue of IPv4 address scarcity to some extent, 
but it also increases the complexity of network management and 
limits the development of P2P communication. 

To resolve the issue of P2P communication hindered by 
NAT, scholars have introduced a technique known as "hole 
punching," which utilizes TCP-based schemes to traverse NAT 
and establish reliable connections [5][6]. However, the inherent 
three-way handshake process of TCP introduces latency and 
lacks integrated TLS encryption, rendering TCP-based hole 
punching schemes inadequate for the growing demand for fast 
and secure communication. 

In 2012, Google introduced a QUIC protocol [7], which was 
standardized by the Internet Engineering Task Force (IETF) in 
2021 [8]. QUIC achieves low-latency, reliable, and secure 
network connections [9], showing potential to overcome the 
bottlenecks associated with TCP-based hole punching. However, 
there is a lack of research on the application of the QUIC 
protocol in NAT hole punching scenarios. While studies have 
analyzed the performance [10] and security [11] of the QUIC 
protocol, and compared it with TCP [10],[12] these 
investigations have not focused on performance disparities in 
NAT hole punching scenarios. M. Seemann et al. compared hole 
punching success rates of QUIC and TCP in NAT hole punching 
scenarios, revealing QUIC's superiority in hole punching. 
However, the study did not delve into a comparison of hole 
punching time overheads [13]. 

To fill the aforementioned research gap, we present a hole 
punching scheme for NAT traversal based on the standardized 
QUIC protocol. By configuring various network metrics, we 
compared hole punching time between QUIC-based and TCP-
based protocols, revealing more efficiency of QUIC-based hole 
punching. Additionally, in scenarios where hole punching 
connections are disrupted due to network switching or NAT 
timeouts, this paper further explores a QUIC connection 
migration scheme for restoring connectivity. Our evaluation 
shows that this scheme saves 2 RTTs compared to QUIC re-
punching and 3 RTTs compared to TCP re-punching. The results 
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highlight the advantages of QUIC in adapting to dynamic 
network environments.  

This paper is structured as follows: Section II provides 
background information about NAT mapping rules, hole 
punching process, and a comparison of QUIC-based and TCP-
based hole punching schemes. Section III focuses on the 
experimental deployment scheme and analysis of results. 
Section IV explores the potential advantages of QUIC 
connection migration for NAT hole punching. Finally, Section 
V summarizes our work. 

II. BACKGROUND 

This section introduces NAT mapping rules, the hole 
punching process, and a comparison between QUIC-based and 
TCP-based hole punching schemes. 

A. NAT Mapping Rules 

NAT technology can be classified into two types of mapping 
rules [14]. 

1) Endpoint-Independent Mapping: A private node 𝑃  is 

mapped to a public address 𝑛𝑜𝑑𝑒𝑃 by a NAT device, and the 

mapping remains consistent regardless of connecting to different 

public nodes. When communicating with public nodes 𝑁1 or 

𝑁2, 𝑃 establishes connections using 𝑛𝑜𝑑𝑒𝑃, as shown in Fig. 1a. 

2) Address and Port-Dependent Mapping: A private node 

𝑃 is mapped to a public address 𝑛𝑜𝑑𝑒𝑃 by a NAT device, and 

the mapping is dynamically adjusted with different public nodes. 

When communicating with public node 𝑁1 , 𝑃  is mapped to 

public address 𝑛𝑜𝑑𝑒𝑃1 by the NAT; when communicating with 

𝑁2, 𝑃 is mapped to 𝑛𝑜𝑑𝑒𝑃2 by the NAT, as shown in Fig. 1b. 

 

Fig. 1. NAT mapping rules 

If the Endpoint-Independent Mapping rule is adopted, once 
𝑁1  establishes a connection with 𝑃 , it can forward 𝑛𝑜𝑑𝑒𝑃 
to 𝑁2 or other nodes, facilitating NAT hole punching. If the 
Address and Port-Dependent Mapping rule is adopted, 𝑃 uses 
𝑛𝑜𝑑𝑒𝑃1 to connect with 𝑁1, but is unable to use 𝑛𝑜𝑑𝑒𝑃1 to 
connect with 𝑁2 or other nodes, hindering NAT hole punching. 

B. NAT Hole Punching Process 

This study focuses on the most common NAT hole punching 
scenario, which involves communication between two end 
nodes located behind different NAT devices (shown in Fig. 2). 
In the following, we refer to ClientA, ClientB, and Relay Server 
as A, B, and S, respectively. 

• First, both A  and B  establish a connection with S , 
respectively. 

• Upon successful connection, A  sends a registration 
message to S and opens a listening port. S records A's 

public address (𝐼𝑃𝐴: 𝑃𝑂𝑅𝑇𝐴)  and private address 
(𝑖𝑝𝐴: 𝑝𝑜𝑟𝑡𝐴). Similarly, B sends a registration message 
to S and opens a listening port. S also records B's public 
address (𝐼𝑃𝐵 : 𝑃𝑂𝑅𝑇𝐵)  and private address 
(𝑖𝑝𝐵: 𝑝𝑜𝑟𝑡𝐵). 

• Suppose A wishes to establish a connection with B, A 
requests B's public address from S. S sends B's public 
address to A and A's public address to B. At this point, 
both A and B know each other's public addresses (see 
Fig. 2a). 

• A  initiates a connection request to B . As the request 
passes through NAT-A, a session table entry is created 
on NAT-A, with the source address as (𝑖𝑝𝐴: 𝑝𝑜𝑟𝑡𝐴) and 
the destination address as (𝐼𝑃𝐵: 𝑃𝑂𝑅𝑇𝐵) . Upon 
reaching NAT-B, the request is discarded as an 
unauthorized external connection because NAT-B lacks 
a matching session entry. Subsequently, B  initiates a 
connection request to A , creating a session entry on 
NAT-B with the source address as (𝑖𝑝𝐵 : 𝑝𝑜𝑟𝑡𝐵) and the 
destination address as (𝐼𝑃𝐴: 𝑃𝑂𝑅𝑇𝐴) . Upon reaching 
NAT-A, the request is forwarded to A  due to the 
existing session entry from A-to-B in NAT-A, thus 
opening the "hole" between A and B (see Fig. 2b).  

• A  and B  begin to establish a connection. If the 
connection is successful, A  and B  can communicate 
directly, and subsequent data transmission does not 
require intermediation through S. 

 

Fig. 2. NAT hole punching process 

C. Comparison of QUIC and TCP Hole Punching 

Despite the similarities in the hole punching process for 
QUIC and TCP protocols, their implementations differ due to 
the inherent characteristics of each protocol. 

1) Port Multiplexing: TCP sockets adhere to a one-to-one 

response mode, meaning that a local port can only be bound to 

one socket [15]. Therefore, TCP hole punching cannot establish 

simultaneous outbound and inbound connections on the same 

port, requiring port multiplexing. In contrast, QUIC permits 

multiple sockets to be bound to the same local port [16], 

eliminating the need to implement port multiplexing. 

2) Hole Punching Time: Assuming negligible latency 

differences in network environments of clients 𝐴, 𝐵, and relay 

server 𝑆, according to the steps described in Section II-B, the 

hole punching time includes 1 RTT for clients to request peer's 

public addresses from 𝑆, at the time for 𝐴 and 𝐵 to establish a 

connection. A QUIC connection requires 1 RTT, a TCP 
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connection requires 1.5 RTTs. Thus the hole punching time for 

QUIC is 2 RTTs, and for TCP, it is 2.5 RTTs. 

3) Connection Security: QUIC, based on UDP and 

operating in user space, integrates with TLS 1.3 (see Fig. 3), 

enabling key negotiation, authentication, and session 

resumption within 1 RTT, thus providing higher security [9]. 

TCP operates in kernel space and cannot directly integrate with 

TLS 1.3. Thus, the connection processes of TCP and TLS 1.3 

are independent, requiring at least 2 RTTs to establish a secure 

connection (The third handshake of a TCP connection can be 

sent simultaneously with the first handshake of a TLS 1.3 

connection). This characteristic disadvantages TCP hole 

punching in terms of time efficiency and security. 

 

Fig. 3. Connection process of QUIC integrated with TLS 1.3 

4) Connection Restoration: If hole punching is successful 

but the connection is disrupted due to network instability, TCP 

hole punching requires re-punching, resulting in additional 

computational resource consumption and latency. While, QUIC 

connection migration provides a rapid restoration mechanism. 

Specifically, QUIC uses a five-tuple (source IP, destination IP, 

source port, destination port, and connection ID) for 

communication [9]. When the network environment of an end 

node changes, connection migration automatically transfer the 

existing connection to a new network path without interruption. 

This ensures the continuity of the connection during network 

switching. Further details will be discussed in Section IV. 

We can summarize the bottlenecks of current TCP hole 
punching and the advantages of QUIC hole punching. 

1) Bottlenecks of TCP hole punching:  

a) Additional implementation of port multiplexing is 

required for coding. 

b) While ensuring connection reliability, the TCP three-

way handshake introduces additional latency. 

c) TCP lacks encryption capabilities, and additional TLS 

connections are required for security. 

d) After the connection is disrupted, besides re-punching, 

there are currently no better solutions available for swift 

connection restoration. 

2) Advantages of QUIC hole punching: 

a) Port multiplexing functionality can be implemented 

directly for coding. 

b) QUIC, based on UDP and integrated with the TLS 1.3 

protocol to enable faster connections and higher security. 

c) The QUIC connection migration mechanism can 

rapidly restore network connectivity. 

III. EXPERIMENTAL STUDY OF QUIC HOLE PUNCHING SCHEME 

Given the limitations of TCP in hole punching scenarios and 
the advantages of QUIC, we propose a QUIC-based hole 
punching scheme for NAT traversal. We conduct experimental 
research to validate its efficiency. 

As described in Section II-A, the Address and Port-
Dependent Mapping rule leads to dynamic changes in NAT 
mappings, complicating hole punching. Testing revealed that 
NAT devices in our current real network follow this rule. 
Therefore, we conduct experiments in a controlled environment 
using the Endpoint-Independent Mapping rule. 

 

Fig. 4. Network environment configuration 

A. Experimental setup 

To simulate a scenario where clients from two different 
LANs are behind different NAT devices, we set up the following 
network environment in a Docker container. ClientA  is in 
subnet 192.168.0.0/24, and ClientB is in subnet 192.168.1.0/24. 
The relay server's address is 123.56.64.101:9999. The public 
addresses after mapping by NAT-A and NAT-B are 
123.56.64.102:8001 and 123.56.64.103:8002, respectively (see 
Fig. 4). Additionally, we use iptables to configure the mapping 
rules of NAT-A and NAT-B, as detailed in TABLE I.  

TABLE I.  NAT MAPPING RULES 

NAT devices Mapping Rules 

NAT-A  

iptables --append FORWARD --jump ACCEPT 
iptables --append INPUT --jump DROP 

iptables --append OUTPUT --jump DROP 

iptables --table nat --append POSTROUTING --source 
192.168.0.0/24 --jump SNAT --to-source 123.56.64.102 

NAT-B  

iptables --append FORWARD --jump ACCEPT 

iptables --append INPUT --jump DROP 
iptables --append OUTPUT --jump DROP 

iptables --table nat --append POSTROUTING --source 

192.168.1.0/24 --jump SNAT --to-source 123.56.64.103 

B. Selection of Network Metrics 

 We first assess the impact of the following metrics on hole 
punching time, and then select appropriate combinations of net-
work metrics. 
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1) Round-Trip Time (RTT): RTT is the time taken for a 

network request to travel from source to destination and back. 

The higher the RTT, the longer the hole punching time. Thus, 

RTT serves as a metric to measure hole punching performance. 

Based on literature [17], we selected three different RTT values 

of 20ms, 100ms, and 200ms for testing. 

2) Packet Loss Rate: To assess the impact of packet loss 

rate on the experiment, we implemented a 1% packet loss rates 

within the Docker network. We observed that the hole punching 

time for both QUIC and TCP is significantly affected by packet 

loss, as shown in Fig. 5. Therefore, packet loss rate is a key 

performance metric. 

 

Fig. 5. QUIC and TCP hole punching time at 1% packet loss rates 

In Fig. 5, we observe that the packet retransmission time for 

QUIC exceeds 200ms, while for TCP, it exceeds 1000ms. This 

discrepancy is due to their distinct retransmission mechanisms. 

According to draft-ietf-quic-recovery [18], QUIC's retransmis-

sion time is set to 200ms. Therefore, a packet loss on a QUIC 

connection results in a 200ms retransmission time. Similarly, 

RFC6289 [19] defines standard retransmission algorithms for 

TCP, as in (1). 

𝑅𝑇𝑂 = {
1𝑠,             𝑅𝑇𝑂 < 1𝑠
𝑅𝑇𝑂, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1) 

Where 𝑅𝑇𝑂  is the retransmission timeout and the detailed 
calculation process can refer to RFC6289 [19]. The RTO is 
rounded up to 1s if it is less than 1s; otherwise, it remains 
unchanged. In our experiment, with a maximum RTT of 200ms,  
the 𝑅𝑇𝑂  does not exceed 1s. Consequently, TCP's 
retransmission timeout is calculated as 1s. 

Based on literature [17], the Internet packet loss rate ranges 
between 1% and 2%. Thus, we set four different packet loss rates 
for testing: 0%, 1%, 1.5%, and 2%. 

3) Bandwidth: Bandwidth determines the volume of data 

that can be transmitted in network communication. Although it 

is crucial in network evaluation, QUIC and TCP hole punching 

do not involve transmitting large amounts of data. Thus, 

bandwidth has little impact on the experimental results. To 

verify this, we conducted experiments in the Docker 

environment under four bandwidth conditions: unlimited, 

10Gbps, 100Mbps, and 1Mbps. For each condition, we 

conducted 100 hole punching experiments and recorded the 

average time. Fig. 6 shows that there is minimal variation in 

hole punching time for QUIC and TCP across different 

bandwidths. Therefore, bandwidth is not considered a 

significant factor in our study. 

 

Fig. 6. The average hole punching time for QUIC and TCP under different 

bandwidths. 

In summary, after analyzing the impact of various perfor-
mance metrics on our experiment, we selected RTT and packet 
loss rate as the primary indicators. We tested 12 combinations, 
as detailed in TABLE II.  

TABLE II.  COMBINATION OF NETWORK SETTINGS FOR RTT AND 

PACKET LOSS RATE 

Experimental Combination RTT（ms） Packet Loss Rate 

1 20 0 % 

2 20 1 % 

3 20 1.5 % 

4 20 2 % 

5 100 0 % 

6 100 1 % 

7 100 1.5 % 

8 100 2 % 

9 200 0 % 

10 200 1 % 

11 200 1.5 % 
12 200 2 % 

C. Experimental Testing 

This section outlines the process of experimental testing 
aimed at evaluating the hole punching time of QUIC and TCP. 

As analyzed in Section II-C2, the ideal hole punching time 
is 2 RTTs for QUIC and 2.5 RTTs for TCP. However, we also 
need to consider the scenarios described in Steps 4 and 5 of 
Section II-B. With the presence of NAT devices, the first 
connection initiated by either client A or B will be discarded; 
only the second connection can pass through. It is necessary to 
analyze the time taken for the first connection to reach the peer's 
NAT device and the second connection to reach the local NAT 
device. Assuming the first connection initiated by A is ConnA, 
and the second connection initiated by B is ConnB. 

1) Scenario 1: If 𝐶𝑜𝑛𝑛𝐴  reaches NAT-B simultaneously 

with 𝐶𝑜𝑛𝑛𝐵, ConnA can directly traverse NAT-B, establishing 

the first handshake. In this scenario, the hole punching time is 

2 RTTs for QUIC and 2.5 RTTs for TCP (see Fig. 7a). 

2) Scenario 2: If 𝐶𝑜𝑛𝑛𝐴 reaches NAT-B before 𝐶𝑜𝑛𝑛𝐵 , 

NAT-B will discard 𝐶𝑜𝑛𝑛𝐴, causing an additional delay of 0.5 

RTTs. When 𝐶𝑜𝑛𝑛𝐵  arrives at NAT-A, it becomes the first 

handshake connection as NAT-A has a session entry for 𝐶𝑜𝑛𝑛𝐵. 

In this scenario, the hole punching time is 2.5 RTTs for QUIC 

and 3 RTTs for TCP (see Fig. 7b). 



 

Fig. 7. Two extreme situations that occur during the hole punching process 

In summary, we estimate the hole punching time to be 
between 2 and 2.5 RTTs for QUIC, and between 2.5 and 3 RTTs 
for TCP. 

To validate the accuracy of our evaluation, we define the 
start time of the experiment as the moment when A initiates a 
request to S. The end time is when the connection between A 
and B is established. The hole punching time is calculated as the 
difference between these two timestamps. To ensure reliable 
results, we conduct 100 tests for each of the 12 combinations 
listed in TABLE II. We utilize the network simulation tool 
(𝑁𝑒𝑡𝑒𝑚) on a Linux system and apply Traffic Control (TC) 
commands to mimic different RTTs and packet loss rates. 

D. Experimental Results 

This section analyzes the experimental results to validate our 
evaluation. Fig. 8 illustrates the hole punching time for QUIC 
and TCP under various network conditions. 

 

Fig. 8. Summary of QUIC and TCP hole punching time 

Firstly, verifying under conditions without packet loss. With 
an RTT of 20ms, the hole punching time for QUIC is 
approximately 55ms, slightly higher than the expected 2 to 2.5 
RTTs. This is because QUIC operates in user space, leading to 
some processing overhead even in a low-latency environment. 
Therefore, the observed hole punching time of approximately 
55ms for QUIC still falls within the expected range. The hole 
punching time for TCP is approximately 56ms, within the 
expected 2.5 to 3 RTTs. When the RTTs are 100ms and 200ms, 
the hole punching time for QUIC is approximately 213ms and 
416ms, respectively, within the expected range. The hole 
punching time for TCP is approximately 256ms and 505ms, 
respectively, also within the expected range. 

Secondly, in the presence of packet loss, the fluctuation 
range of hole punching time for QUIC and TCP is similar to that 
without packet loss, indicating that they still perform as expected 
in such conditions. 

The experimental results demonstrate that the QUIC-based 
hole punching scheme outperforms the TCP-based scheme in 
terms of hole punching time, especially in weak network 
environments. We believe that as the QUIC protocol becomes 
more widespread and adopted, its advantages in NAT hole 
punching scenarios will be further highlighted. 

IV. DISCUSSION 

After completing NAT hole punching, connection 
maintenance remains a concern. In practical applications, public 
IP addresses of end nodes may change due to NAT session 
timeouts, NAT device reboots, or network transitions, disrupting 
the hole punched connection. Currently, the most common 
solution is re-punching [5], but this consumes additional 
computational resources. Therefore, finding a more effective 
method to maintain peer connections is crucial. 

We evaluate a scheme to restore hole punched connections 
by utilizing the QUIC connection migration mechanism, and 
discussing its benefits in resolving disruptions in hole punched 
connections. 

A. QUIC Connection Migration Mechanism 

Connection migration implementation relies on the Connec-
tion ID (CID) in the QUIC protocol [8]. QUIC identifies a con-
nection using a unique set of CIDs , binding the connection's 
state information to the CID rather than the underlying network 
address. As long as the CID remains unchanged, the connection 
persists even if the network address changes, and the upper-layer 
business logic remains unaware, eliminating the need for recon-
nection. This CID-based connection identification mechanism 
provides flexibility and portability to the QUIC protocol, allow-
ing seamless migration of connections and maintaining commu-
nication continuity in changing network environments. 

The process of connection migration is shown in Fig. 9: 

 

Fig. 9. Connection migration process 

• When a client's address (IP and port) changes, it sends 
data to a server using a new address. 

• The server receives the data and detects the change in the 
client's address. It then selects a new Connection ID 
(Destination Connection ID, DCID) from the previously 
maintained CID pool and sends a 𝑃𝐴𝑇𝐻𝐶𝐻𝐴𝐿𝐿𝐸𝑁𝐺𝐸 
frame (𝑃𝐶 frame) to verify the reachability of the new 
address. 

          

              

 

                             

     

     

          

              

                 

     

     

 

            

       

           

         

        

                 

           

           

                                 

                                    

         

               

         

              

             

                         



• If the new address is reachable, the client immediately 
responds with a 𝑃𝐴𝑇𝐻𝑅𝐸𝑆𝑃𝑂𝑁𝑆𝐸  frame (𝑃𝑅 frame), 
confirming the reachability of the current path, and 
communication continues uninterrupted. 

B. Schemes for Restoring Connectivity 

This section analyzes and compares the processes and time 
overheads of two schemes for restoring connectivity: QUIC 
connection migration and re-punching. In the following 
discussion, we illustrate the case of client 𝐴′s private IP address 
changing. 

1) QUIC Connection Migration: When the IP address of 

client 𝐴 changes, its public address also changes, disrupting the 

established punched connection. If A directly initiates a 

connection migration request to B, NAT-B will discard the 

request, preventing it from reaching B. To restore 

communication, the relay server S must be used for information 

exchange, as shown in Fig. 10a. 

• A initiates a connection migration request to S, updating 
its own information, and requests S  to send A 's new 
public address to B. At the same time, A requests B to 
send data to trigger session establishment on NAT-B. 

• S  processes A 's request and forwards A 's new public 
address to B. 

• Upon receiving S's message, B sends data to A. Since 
there is no corresponding session entry on NAT-A yet, 
this data is discarded. However, NAT-B records the 
session entry for data transmission from B  to A , 
preparing for subsequent connection establishment. 

• Because B 's IP address and public address have not 
changed, A  can directly send a connection migration 
request to B. Since there is already a session entry on 
NAT-B for data transmission from B  to A , A 's 
connection migration request can successfully pass 
through NAT-B and reach B , achieving connection 
migration and data transmission. Meanwhile, this 
connection request already has the capability to send 
data. 

The total time for the above steps can be expressed as in: 

𝑇𝑚𝑖𝑔𝑟𝑎𝑡𝑒 = 𝑇𝐴2𝑆 + 𝑇𝑆2𝐵 + 𝑇𝐵2𝐴 + 𝑇𝐴2𝐵 (2) 

Where 𝑇𝑚𝑖𝑔𝑟𝑎𝑡𝑒 is the time to restore connectivity, 𝑇𝐴2𝑆 is the 

time for A  to initiate connection migration and updates 

information to S, 𝑇𝑆2𝐵 is the time for S processes the request and 

forwards it to B, 𝑇𝐵2𝐴 is the time for B sends data to A, 𝑇𝐴2𝐵 is 
the time for A sends a connection migration request to B. 

2) Re-punching with QUIC and TCP: In the absence of 

connection migration functionality in QUIC or TCP, when the 

IP address of 𝐴 changes, the connections between 𝐴 and 𝐵, and 

between 𝐴  and 𝑆 , are disrupted. If 𝐴  directly initiates a 

connection to 𝐵, this message will be discarded by NAT-B and 

cannot reach 𝐵 . An effective solution is re-punching, as 

illustrated in Fig. 10b. 

• A reestablishes QUIC/TCP connection with S. 

• After establishing the connection, A  sends a data 
request to S, asking S to send A's new public address to 
B and requesting B to send data to A. 

• S  processes A 's request and forwards A 's new public 
address to B. 

• Upon receiving the message from S, B sends data to A. 
Since there is no corresponding session entry on NAT-
A yet, the data sent by S to A is discarded. However, 
NAT-B records the session entry for data transmission 
from B to A. 

• Since B 's IP address and public address remain 
unchanged, A 's request to establish a connection can 
successfully pass through NAT-B to reach B. 

• Once the connections are successfully established, data 
transmission can occur. 

The total time for the above steps can be expressed as in: 

𝑇𝑟𝑒−𝑝𝑢𝑛𝑐ℎ𝑖𝑛𝑔 = 𝑇`𝐴𝑆 +𝑇`𝐴2𝑆 +𝑇`𝑆2𝐵+𝑇`𝐵2𝐴 +𝑇`𝐴𝐵 +𝑇`𝐴2𝐵 ( ) 

Where 𝑇𝑟𝑒−𝑝𝑢𝑛𝑐ℎ𝑖𝑛𝑔  is the time for re-punching; 𝑇`𝐴𝑆  is the 

time for A  and S  to establish a new QUIC/TCP connection; 
T`𝑆2𝐵  is the time for A sends data to S; T`𝑆2𝐵  is the time for S 
processes the message and communicates it to B; T`𝐵2𝐴  is the 
time for B sends a message to A's new public address; 𝑇`𝐴𝐵 is the 

time for A  initiates the re-establishment of the QUIC/TCP 
connection to B; T`𝐴2𝐵  is the time for A receives the message 
from the peer after successful establishment. 

3) Comparative Analysis: We can observe similarities 

between Section IV-B1 and IV-B2 , assuming that the network 

environments for both schemes are the same. The main 

difference lies in whether it is necessary to re-establish the 

QUIC/TCP connections between 𝐴  and 𝑆 , and 𝐴  and 𝐵 . 

TABLE III. compares the steps and time of the two schemes. 

TABLE III.  COMPARES THE STEPS AND TIME OF THE TWO SCHEMES 

Processes 

QUIC  

connection migration 

(steps : time) 

QUIC/TCP  

Re-punching 

(steps : time)  

Information exchange 
Steps 1-3 : 

𝑇𝐴2𝑆 + 𝑇𝑆2𝐵 + 𝑇𝐵2𝐴 

Steps 2-4 : 

T`𝐴2𝑆 + T`𝑆2𝐵+ T`𝐵2𝐴 

Data interaction 

between 𝐴 and 𝐵 
Step 4 : 𝑇𝐴2𝐵 Step 6 : T`𝐴2𝐵 

Establish connections 

between 𝐴 and 𝑆, and 

𝐴 and 𝐵 
--- 

Steps 1, 5 :  

 T`𝐴𝑆 + T`𝐴𝐵 

Combining equations (2) and (3), we have: 

∆𝑡 = 𝑇𝑟𝑒−𝑝𝑢𝑛𝑐ℎ𝑖𝑛𝑔 − 𝑇𝑚𝑖𝑔𝑟𝑎𝑡𝑒 = 𝑇`𝐴𝑆 + 𝑇`𝐴𝐵 ( ) 

Where ∆𝑡  represents the time difference between re-
punching and connection migration. It can be concluded that the 
time for connection migration to restore connectivity is reduced 
by 2 RTTs compared to QUIC re-punching and by 3 RTTs 
compared to TCP re-punching, further highlighting the 
advantage of QUIC in NAT hole punching scenarios. 



 

Fig. 10. Two options for restoring connectivity 

V. CONCLUSION 

This paper presents and evaluates a QUIC-based hole 
punching scheme for NAT traversal, contrasting it with a TCP-
based hole punching scheme. Our experiments show that QUIC 
hole punching reduces connection time by optimizing the 
connection process and performs better in weak network 
environments. Additionally, we further explore the application 
of the QUIC connection migration mechanism in handling 
changes in end node addresses. Our evaluation results indicate 
restoring connectivity through QUIC connection migration 
saves 2 RTTs compared to QUIC re-punching and 3 RTTs 
compared to TCP re-punching, thus reducing the computational 
resources required for reconnecting. 

In summary, the QUIC-based hole punching scheme for 
NAT traversal exhibits certain advantages in efficiency and 
security. This scheme provides a new direction for NAT hole 
punching technology and is expected to play an important role 
in future network communication. 
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