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Abstract

Detection of anomalous events in videos is an impor-
tant problem in applications such as surveillance. Video
anomaly detection (VAD) is well-studied in the one-class
classification (OCC) and weakly supervised (WS) settings.
However, fully unsupervised (US) video anomaly detection
methods, which learn a complete system without any an-
notation or human supervision, have not been explored in
depth. This is because the lack of any ground truth annota-
tions significantly increases the magnitude of the VAD chal-
lenge. To address this challenge, we propose a simple-but-
effective two-stage pseudo-label generation framework that
produces segment-level (normal/anomaly) pseudo-labels,
which can be further used to train a segment-level anomaly
detector in a supervised manner. The proposed coarse-
to-fine pseudo-label (C2FPL) generator employs carefully-
designed hierarchical divisive clustering and statistical hy-
pothesis testing to identify anomalous video segments from
a set of completely unlabeled videos. The trained anomaly
detector can be directly applied on segments of an un-
seen test video to obtain segment-level, and subsequently,
frame-level anomaly predictions. Extensive studies on two
large-scale public-domain datasets, UCF-Crime and XD-
Violence, demonstrate that the proposed unsupervised ap-
proach achieves superior performance compared to all ex-
isting OCC and US methods, while yielding comparable
performance to the state-of-the-art WS methods. Code is
available at: https://github.com/AnasEmad11/C2FPL

1. Introduction

Applications such as video surveillance continuously
generate large amounts of video data. While a vast majority
of these videos only contain normal behavior, it is essential
to detect anomalous events (e.g., shooting, road accidents,
fighting, etc.) that deviate from normal behavior and may
occur occasionally in such videos. Hence, video anomaly
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Figure 1. Supervised (right) vs. unsupervised (left) video anomaly
detection pipeline. In a supervised setting, some sort of man-
ual annotation of the recorded videos is required for training an
anomaly detection model. We aim to eliminate this annotation
step by proposing a fully unsupervised approach.

detection (VAD) is a critical problem, especially in surveil-
lance applications [9, 13, 14, 19].

Conventional VAD methods rely heavily on manually
annotated anomaly examples (Figure 1(right)) [2]. How-
ever, given the rare occurrence and short temporal nature
of anomalies in real-world scenarios, obtaining accurate
fine-grained annotations is a laborious task. Recently, sev-
eral VAD methods have been proposed to leverage video-
level labels and perform weakly supervised (WS) train-
ing [5, 15, 19, 25, 35, 39] to reduce the annotation costs.
However, since surveillance datasets are usually a large-
scale collection of videos, it is still cumbersome to obtain
any kind of labels. For example, to obtain even a video-
level binary label, an annotator may still have to watch the
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whole video, which can take a considerable amount of time.
For example, a well-known WS-VAD dataset called XD-
Violence [31] contains videos spanning 217 hours. An alter-
native paradigm for VAD is one-class classification (OCC),
which assumes that only normal videos are available for
training [16, 19, 25, 30, 35]. However, the OCC setting does
not completely alleviate the annotation problem because an
annotator still has to watch all the training videos to ensure
that no anomaly is present within them.

A label-free fully unsupervised approach is a more prac-
tical and useful setting, especially in real-world scenar-
ios where recording video data is easier than annotating it
[36]. An unsupervised video anomaly detection (US-VAD)
method can address the aforementioned disadvantages of
supervised methods by completely eradicating the need for
manual annotations (Figure 1). However, US-VAD meth-
ods are yet to gain much traction within the computer vision
community. Recently, Zaheer et al. [36] introduced an US-
VAD approach in which the model is trained on unlabeled
normal and anomalous videos. Their idea is to utilize sev-
eral properties of the training data to obtain pseudo-labels
via cooperation between a generator and a classifier. While
this method is elegant, its performance is significantly lower
than the state-of-the-art WS and OCC methods [23, 36].

In this work, we attempt to bridge this gap between un-
supervised and supervised methods by taking unlabelled
set of training videos as input and producing segment-level
pseudo-labels without relying on any human supervision.
Towards this end, we make the following key contributions:

• We propose a two-stage coarse-to-fine pseudo-label
(C2FPL) generator that utilizes hierarchical divisive
(top-down) clustering and statistical hypothesis testing
to obtain segment-level (fine-grained) pseudo-labels.

• Based on the C2FPL framework, we propose an US-
VAD system that is trainable without any annotations.
To the best of our knowledge, this is among the first
few works to explore the US-VAD setting in detail.

• We evaluate the proposed approach on two large-scale
VAD datasets, UCF-Crime [19] and XD-Violence
[31], and achieve state-of-the-art performance in the
unsupervised category, while also outperforming all
existing OCC and several WS-VAD methods.

2. Related Work
Early VAD methods mostly relied on supervised learn-

ing, where anomalous frames in a video are explicitly la-
beled in the training data [6, 27]. Since supervised ap-
proaches require large amounts of annotated data and an-
notation of anomalies is a laborious task, WS, OCC, and
US VAD methods are gaining more attention.

2.1. One-Class Classification for VAD

To avoid the capturing of anomalous examples, re-
searchers have widely explored one-class classification
(OCC) methods [7, 12, 29, 32]. In OCC-VAD, only normal
videos are used to train an outlier detector. At the time of
inference, data instances that do not conform to the learned
normal representations are predicted as anomalous. Since
OCC methods are known to fail if normal data contains
some anomaly examples [36], they require careful verifica-
tion of all the videos in the dataset, which does not reduce
the annotation load. Furthermore, video data is often too
diverse to be modeled successfully and new normal scenes
differing from the learned representations may be classified
as anomalous. Therefore, OCC approach has limited appli-
cability in the context of VAD.

2.2. Weakly Supervised VAD

Taking advantage of weakly labeled (i.e., video-level la-
bels) anomalous samples has led to significant improve-
ments over OCC training [19,25]. Multiple Instance Learn-
ing (MIL) is one of the most commonly used methods for
WS-VAD [16, 19, 25, 30], where segments of a video are
grouped into a bag and bag-level labels are assigned. Sul-
tani et al. [19] first introduced the MIL framework with a
ranking loss function, which is computed between the top-
scoring segments of normal and anomaly bags.

One of the key challenges in WS-VAD is that the pos-
itive (anomaly) bags are noisy. Since anomalies are local-
ized temporally, most of the segments in an anomaly bag
are also normal. Therefore, Zhong et al. [39] reformulated
the problem as binary classification in the presence of noisy
labels and used a graph convolution network (GCN) to re-
move label noise. The training of GCN was computation-
ally expensive due to the presence of an action classifier.
Furthermore, MIL-based methods require complete video
inputs at each training iteration. Consequently, the corre-
lation of the input data significantly affects the training of
an anomaly detection network. To minimize this correla-
tion, CLAWS Net [35] proposed a random batch selection
approach in which temporally consistent batches are arbi-
trarily selected for training a binary classifier.

2.3. Unsupervised VAD

Unsupervised video anomaly detection (US-VAD) meth-
ods are learned using unlabeled training data. This problem
is extremely challenging due to the lack of ground truth su-
pervision and the rarity of anomalies. However, it is highly
rewarding because it can completely eradicate the costs as-
sociated with obtaining manual annotations and allow such
systems to be deployed without human intervention. Due
to the difficulty of the problem, it has received little atten-
tion in the literature. Generative Cooperative Learning [36]
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Figure 2. Overall training pipeline of the proposed C2FPL framework for unsupervised video anomaly detection (US-VAD). All training
videos are first partitioned into segments and each segment is represented by a feature vector obtained using a pre-trained feature extrac-
tor. Then, our two-stage coarse-to-fine pseudo-label (C2FPL) generator produces segment-level pseudo-labels, which are used to train
a segment-level anomaly detector. Pseudo-label generation consists of two stages: hierarchical divisive clustering that generates coarse
(video-level) pseudo-labels (CPL) and statistical hypothesis testing that creates fine-grained (segment-level) pseudo-labels (FPL).

is a recent work that presents an US-VAD system to de-
tect anomalies in a given video by first training a generative
model to reconstruct normal video frames and then using
the discrepancy between the reconstructed frames and the
actual frames as a measure of anomaly. It involves training
two models simultaneously: one to reconstruct the normal
frames and the other to generate classification scores.

3. Proposed Methodology
Problem Definition: Let D = {V1, V2,⋯, Vn} be a training
dataset containing n videos without any labels. The goal of
US-VAD is to use D and learn an anomaly detector A(⋅)
that classifies each frame in a given test video V∗ as either
normal (0) or anomalous (1).
Notations: We split each video Vi into a sequence of mi

non-overlapping segments Sij , where each segment is in
turn composed of r frames. Note that i ∈ [1, n] refers to the
video index, and j ∈ [1,mi] is the segment index within
a video. While many WS-VAD methods [16, 19, 25, 30]
compress each video into a fixed number of segments (i.e.,
mi = m,∀i ∈ [1, n]) along the temporal axis, we avoid any
compression and make use of all available non-overlapping
segments. For each segment Sij , a feature vector fij ∈ Rd is
obtained using a pre-trained feature extractor F(⋅).
High-level Overview of the Proposed Solution: Our
coarse-to-fine pseudo-labeling (C2FPL) framework for US-
VAD consists of three main stages during training (see Fig-
ure 2). In the first coarse pseudo-labeling (CPL) stage, we
generate a video-level pseudo-label ŷi ∈ {0,1}, i ∈ [1, n]
for each video in the training set using a hierarchical di-
visive clustering approach. In the second fine pseudo-
labeling (FPL) stage, we generate segment-level pseudo-
labels ỹij ∈ {0,1}, i ∈ [1, n], j ∈ [1,mi] for all the seg-
ments in the training set through statistical hypothesis test-
ing. In the third anomaly detection (AD) stage, we train

a segment-level anomaly detector Ãθ(⋅) ∶ Rd → [0,1] that
assigns an anomaly score between 0 and 1 (higher values in-
dicate higher confidence of being an anomaly) to the given
video segment based on its feature representation fij .

3.1. Coarse (Video-Level) Pseudo-Label Generator

Since the training dataset does not contain any labels, we
first generate pseudo-labels for the videos in the training set
by recursively clustering them into two groups: normal and
anomalous (see Alg. 1). The idea of using iterative clus-
tering to generate pseudo-labels has been considered earlier
in other application domains [1, 4, 38]. However, direct ap-
plication of these methods to the US-VAD problem fails to
provide satisfactory solutions due to two reasons. Firstly,
directly clustering multivariate features fij leads to a curse
of dimensionality (features are high-dimensional but the
sample size is small). Secondly, the clusters in our context
are not permutation-invariant (normal and anomalous clus-
ter labels cannot be interchanged). To overcome these prob-
lems, we propose a method that relies on a low-dimensional
feature summary and divisive hierarchical clustering.

Previous works in WS-VAD have shown that normal
video segments have lower temporal feature magnitude
compared to anomalous segments [26]. Furthermore, we
also observed that the variations in feature magnitude across
different segments are lower for normal videos. Based on
this intuition, we represent each video Vi using a statistical
summary xi = [µi, σi] of its features as follows:

µi =
1

mi

mi

∑
j=1
∣∣fij ∣∣2, (1)

σi =
¿
ÁÁÀ 1

(mi − 1)
mi

∑
j=1
(∣∣fij ∣∣2 − µi)2, (2)
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where ∣∣ ⋅ ∣∣2 represents the ℓ2 norm of a vector. Thus, each
video Vi is represented using a 2D vector xi, corresponding
to the mean and standard deviation of the feature magnitude
of its segments. This ensures a uniform representation of all
videos despite their varying temporal length.

Videos in the training set are iteratively divided into two
clusters (Ct0 and Ct1) based on the above representation xi.
Here, t denotes the step index and C0 and C1 represent the
normal and anomaly clusters, respectively. Since no data la-
bels are available, assigning normal and anomaly labels to
the clusters is not trivial. Intuitively, easy anomalies (con-
sidered as easy outliers) may be separated into a smaller
cluster. On the other hand, the larger cluster is likely to
contain more normal videos as well as some hard anoma-
lies that need further refinement. Therefore, initially, all the
videos in the training set are assigned to the normal clus-
ter and the anomaly cluster is initialized to an empty set,
i.e., C00 = {xi}i∈[1,n] and C01 = ∅. At each step t (t ≥ 1),
the cluster Ct−10 is re-clustered to obtain two new child clus-
ters, say Cl and Cs with ∣Cl∣ and ∣Cs∣ samples, respectively.
Without loss of generality, let ∣Cs∣ < ∣Cl∣. The smaller clus-
ter Cs is merged with the previous anomaly cluster, i.e.,
Ct1 = (Ct−11 ∪ Cs), while the larger cluster is labeled as
normal, i.e., Ct0 = Cl. This process is repeated until the ratio
of the number of videos in the anomaly cluster (∣Ct1∣) to the
number of videos in the normal cluster (∣Ct0∣) is larger than a
threshold, i.e., ∣C

t
1∣
∣Ct0∣
> η. At the end of the CPL stage, all the

videos in the training set are assigned a pseudo-label based
on their corresponding cluster index, i.e., ŷi = k, if xi ∈ Cτk ,
where k ∈ {0,1} and τ denotes the final clustering iteration.

3.2. Fine (Segment-Level) Pseudo-Label Generator

All the segments from videos that are “pseudo-labeled”
as normal (ŷi = 0) by the previous stage can be considered
as normal. However, most of the segments in an anoma-
lous video are also normal due to temporal localization of
anomalies. Hence, further refinement of the coarse (video-
level) labels is required to generate segment-level labels for
anomalous videos. To achieve this goal, we treat the de-
tection of anomalous segments as a statistical hypothesis
testing problem. Specifically, the null hypothesis is that
a given video segment is normal. By modeling the distri-
bution of features under the null hypothesis as a Gaussian
distribution, we identify the anomalous segments by esti-
mating their p-value and rejecting the null hypothesis if the
p-value is less than the significance level α.

To model the distribution of features under the null
hypothesis, we consider only the segments from videos
that are pseudo-labeled as normal by the CPL stage. Let
zij ∈ Rd̃ be a low-dimensional representation of a segment
Sij . We assume that zij follows a Gaussian distribution
N (Γ,Σ) under the null hypothesis and estimate the param-
eters Γ and Σ as follows:

Algorithm 1 Coarse-to-Fine Pseudo-Label Generation

Input: Training dataset D = {V1,⋯, Vn}, pre-trained
feature extractor F(⋅), parameters η, β
Output: Segment-level pseudo-labels {ỹij},where i ∈
[1, n] and j ∈ [1,mi]

1: for i = 1 to n do
2: Partition Vi into mi segments [Si1,⋯, Simi]
3: Extract segment features [fi1,⋯, fimi] using F(⋅)
4: Compute xi = [µi, σi] using Eqs. 1 & 2
5: end for
6: CPL: t = 0, Ct0 = {x1,⋯,xn}, Ct1 = ∅
7: while ∣Ct1∣ / ∣Ct0∣ ≤ η do
8: (Cs,Cl)← Clustering(Ct0), where ∣Cs∣ < ∣Cl∣
9: Ct+11 ← Ct1 ∪ Cs, Ct0 ← Cl

10: t← t + 1
11: end while
12: ∀i ∈ [1, n], ŷi ← 0 if xi ∈ Ct0, else ŷi ← 1
13: FPL: ∀i ∈ [1, n], j ∈ [1,mi], ỹij ← 0, Compute zij
14: Compute (Γ,Σ) using Eqs. 3 & 4
15: for i = 1 to n do
16: if ŷi = 1 then
17: Compute pij using Eq. 5, ∀j ∈ [1,mi]
18: wi ← ⌈βmi⌉
19: li = argminl { 1

wi
∑(l+wi)

j=(l+1) pij , ∀ l ∈ [0,mi −wi]}
20: ỹij ← 1, ∀ j ∈ [li + 1, li +w]
21: end if
22: end for

Γ = 1

M0

n

∑
i=1,ŷi=0

mi

∑
j=1

zij , (3)

Σ = 1

(M0 − 1)
n

∑
i=1,ŷi=0

mi

∑
j=1
(zij −Γ)(zij −Γ)T , (4)

where M0 = ∑n
i=1,ŷi=0mi. Subsequently, for all the seg-

ments in videos that are pseudo-labeled as anomalous, the
p-value is computed as:

pij =
1

(2π)(d̃/2)
√
∣Σ∣

exp(−1
2
(zij −Γ)TΣ−1(zij −Γ)) ,

(5)

∀j ∈ [1,mi], i ∈ [1, n] such that ŷi = 1. If pij < α, the seg-
ment can be potentially assigned a pseudo-label of 1. Figure
3 shows an illustration of this approach, which clearly indi-
cates strong agreement between the estimated p-values and
the ground truth anomaly labels of the validation set.

One unresolved question in the above formulation is how
to obtain the low-dimensional representation zij for a seg-
ment Sij . In this work, we simply set zij = ∣∣fij ∣∣2 and hence

4



G
T 

A
no

m
al

y 
La

be
l

Es
tim

at
ed

 p
-v

al
ue

s

Segment Index

arson011

Significance level 

Figure 3. Statistical hypothesis testing approach applied to
pseudo-label an anomalous video arson011 from the validation
set. The top row shows the segment-level p-values for all the seg-
ments in the video, where a lower p-value means less likelihood of
being normal. A possible pseudo-labeling strategy is to mark all
segments with a p-value lower than the significance level (denoted
by the horizontal orange line) as anomalous. Strong agreement can
be observed between the estimated p-values and the ground-truth
(GT) anomaly label for the given video shown in the bottom row.

d̃ = 1. Note that other statistics could also be employed in
addition to (or in lieu of) the ℓ2 feature magnitude.

Directly assigning a pseudo-label to a segment based on
its p-value ignores the reality that anomalous segments in a
video tend to be temporally contiguous. One way to over-
come this limitation is to mark a contiguous sequence of
wi = ⌈βmi⌉ segments, 0 < β < 1 and ⌈⋅⌉ represents the
ceil function, as the anomalous region within each video
that is pseudo-labeled as an anomaly. The anomalous re-
gion is determined by sliding a window of size wi across the
video and selecting the window that has the lowest average
p-values (i.e., minl { 1

wi
∑(l+wi)

j=(l+1) pij , ∀ l ∈ [0,mi −wi]}).
Each segment present in this anomalous region is assigned
a pseudo-label of 1, while all the remaining segments are
pseudo-labeled as normal (value of 0). At the end of this
FPL stage, a pseudo-label ỹij ∈ {0,1} is assigned to all the
segments in the training set.

3.3. Anomaly Detector

The coarse and fine pseudo-label generators together
provide a pseudo-label for every video segment in the train-
ing dataset. This results in a pseudo-labeled training set
D̃ = {(fij , ỹij)} containing M samples, where i ∈ [1, n],
j ∈ [1,mi], and M = ∑n

i=1mi. This labeled training set D̃
can be used to train the anomaly detector Ãθ(⋅) in a super-
vised fashion by minimizing the following objective:

min
θ

n

∑
i=1

mi

∑
j=1
L(Aθ(fij), ỹij), (6)

where L is an appropriate loss function and θ denotes the
parameters of the anomaly detector Ã(⋅).

Following recent state-of-the-art methods [19,25,35,36],
two basic neural network architectures are considered for
our anomaly detector. In particular, we employ a shallow
neural network (Figure 2) with two fully connected (FC)
hidden layers and one output layer mapped to a binary class.
A dropout layer and a ReLU activation function are ap-
plied after each FC layer. Additionally, following Zaheer et
al. [35], we add two self-attention layers (detailed architec-
ture is provided in the Supplementary material). A softmax
activation function follows each of the self-attention layers,
each of which has the same dimensions as the correspond-
ing FC layer in the backbone network. Final anomaly score
prediction is produced by the output sigmoid function.

Unlike many existing methods (e.g., [19]) that require
having a complete video in one training batch, our approach
allows random segment selection for training. Recently, Za-
heer et al. [35] demonstrated the benefits of feature vec-
tor randomization for training. However, based on its de-
sign, their method was limited to randomizing consecutive
batches while maintaining the temporal order of segments
within a batch. In our case, since we have obtained pseudo-
labels for each segment, we can apply training with com-
plete randomization to reap maximum benefits. Therefore,
feature vectors are obtained across the dataset to form the
training batches. Formally, each training batch B contains
B randomly selected samples from the set D̃ without any
order constraints between the samples.

3.4. Inference

During inference, a given test video V∗ is partitioned into
m∗ non-overlapping segments S∗j , j ∈ [1,m∗]. Feature
vectors f∗j are extracted from each segment using F(⋅),
which are directly passed to the trained detector Ãθ(⋅) to
obtain segment-level anomaly score predictions. Since the
eventual goal is frame-level anomaly prediction, all the
frames within a segment of the test video are marked as
anomalous if the predicted anomaly score for that corre-
sponding segment exceeds a threshold.

4. Experimental Results
4.1. Experimental Setup

Datasets: Two large-scale VAD datasets are used to evalu-
ate our approach: UCF-Crime [19] and XD-Violence [31].
UCF-Crime consists of 1610 (290) training (test) videos
collected from real-world surveillance camera feeds, total-
ing 128 hours in length. XD-Violence is a multi-modal
VAD dataset that is collected from sports streaming videos,
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Supervision Method Features FNS AUC(%)

OCC

SVM [19] I3D - 50
Hasan et al. [7] - - 50.60

SSV [18] - - 58.50
BODS [29] I3D - 68.26
GODS [29] I3D - 70.46
SACR [20] - - 72.70

Zaheer et al. [36] ResNext ✗ 74.20

WS

Sultani et al.† [19] I3D ✓ 77.92
Zaheer et al. [36] ResNext ✗ 79.84

RTFM [25] I3D ✓ 84.30
MSL [11] I3D ✓ 85.30
S3R [30] I3D ✓ 85.99

C2FPL* (Ours) I3D ✗ 85.5

US

Kim et al. [10] ResNext - 52.00
Zaheer et al. [36] ResNext ✗ 71.04

DyAnNet [24] I3D ✓ 79.76
C2FPL (Ours) I3D ✗ 80.65

Table 1. Frame-level AUC performance comparison on UCF-
Crime dataset. Wherever available, RGB results are reported. Our
unsupervised C2FPL method is compared against both unsuper-
vised and supervised (WS and OCC) methods. The column FNS
indicates whether the method uses a fixed number of segments m
(m = 32 when FNS is true) and ‘-’ indicates this information is
not available. The top two results under each supervision setting
are shown in blue and red in that order. † indicates that results are
reported from [25], where the method in [19] was retrained using
I3D features.

movies, web videos, and surveillance cameras. It consists
of 3954 (800) training (test) videos that span around 217
hours. We utilize only the visual modality of the XD-
Violence dataset for our experiments. Both these datasets
originally contain video-level ground-truth labels for the
training set and frame-level labels for the test set. Hence,
they are primarily meant for the WS-VAD task. In this
work, we ignore the training labels and only use test labels
to evaluate our US-VAD model.
Evaluation Metric: We adopt the commonly used frame-
level area under the receiver operating characteristic curve
(AUC) as the evaluation metric for all our experiments
[19, 23, 25, 33–35]. Note that the ROC curve is obtained
by varying the threshold on the anomaly score during infer-
ence and higher AUC values indicate better results.
Implementation Details: Each video is partitioned into
multiple segments, with each segment containing r = 16
frames. The well-known I3D [3] method is used as the pre-
trained feature extractor F(⋅) to extract RGB features with
dimensionality d = 2048. Following [22], we also apply
10-crop augmentation to the I3D features. The CPL gen-
erator uses Gaussian Mixture Model (GMM)-based cluster-
ing [17] and the threshold η is set to 1.0. The parameter β
used in the FPL generator is set to 0.2. The anomaly detec-

Supervision Method Features FNS AUC(%)

OCC

Hasan et al. [7] AE - 50.32
Lu et al. [12] I3D - 53.56
BODS [29] I3D - 57.32
GODS [29] I3D - 61.56

WS
S3R [30] I3D ✓ 53.52

RTFM† [25] I3D ✓ 89.34
C2FPL* (Ours) I3D ✗ 90.4

US
RareAnom [23] I3D ✓ 68.33
C2FPL (Ours) I3D ✗ 80.09

Table 2. Frame-level AUC performance comparison on XD-
Violence dataset. The column FNS indicates whether the method
uses a fixed number of segments m (m = 32 when FNS is true)
and “-” indicates this information is not available. The top two
results under each supervision setting are shown in blue and red
in that order. † indicates that we re-compute the AUC of method
in [25] using I3D features.

tor Ãθ(⋅) is trained using a binary cross-entropy loss func-
tion along with ℓ2 regularization. The detector is trained for
100 epochs using a stochastic gradient descent optimizer
with a learning rate of 0.01. The batch size B is set to 128.

4.2. Comparison with state-of-the-art

In this section, we provide performance comparison
of our proposed unsupervised C2FPL method with recent
state-of-the-art (SOTA) supervised and unsupervised VAD
methods [7, 18, 19, 21, 29, 36, 37].
UCF-Crime. The AUC results on the UCF-Crime dataset
are shown in Table 1. Wherever possible, results based on
I3D RGB features are reported to ensure a fair compari-
son. The proposed C2FPL method achieves an AUC perfor-
mance of 80.65%, outperforming the existing US and OCC
methods while performing comparably to existing SOTA
WS methods. Note that OCC methods assume that the
training data contains only normal videos, while we do not
make any such assumption. Furthermore, our unsupervised
C2FPL framework even outperforms some methods in the
WS setting [19, 36, 37], thus bridging the gap between un-
supervised and supervised approaches. However, compared
to the top performing WS method S3R [30] using the same
I3D features, our approach yields 5.34% lower AUC. While
this is impressive considering that our method does not re-
quire any supervision, it highlights the need for further im-
provement in the accuracy of the CPL stage.
XD-Violence. Our C2FPL framework is also evaluated on
XD-Violence dataset and the results are reported in Table
2. The proposed method has an AUC of 80.09%, which is
significantly better than the unsupervised RareAnom [23]
method. Additionally, our framework achieves good results
even in comparison to other OCC and WS methods.
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Figure 4. Qualitative results of our method on different test videos of the UCF-Crime dataset. The blue color shadow shows the ground
truth anomalous frames.

Stage 1
(CPL)

Stage 2
(FPL)

Stage 3
(AD)

Scenario AUC
(%)

✓ ✓ ✓ US C2FPL framework 80.6
✗ ✓ ✓ Ground-truth video-level

labels (WS)
85.5

✗ ✓ ✓ Random video-level labels 69.4
✓ ✗ ✓ CPL pseudo-labels assigned

to segments
64.1

✗ ✗ ✓ Ground-truth video-level
labels assigned to segments

72.7

✗ ✗ ✓ Random segment-level labels 38.7
✓ ✓ ✗ (1 – p-value) as anomaly

score
57.0

Table 3. Ablation studies analyzing the impact of each component
of the proposed approach on the UCF-Crime dataset.

Qualitative Results: We also provide some qualitative
results in Figure 4, where anomaly scores predicted by
our C2FPL approach are visualized for several videos
from the UCF-Crime dataset. It can be observed that the
predicted anomaly scores generally correlate well to the
anomaly ground truth in many cases, demonstrating the
good anomaly detection capability of our approach despite
being trained without any supervision. A failure case,
shooting008 video (UCF-Crime), is also visualized in Fig-
ure 4(d). Our detector predicts several frames after the ac-
tual shooting event as anomalous. Careful inspection of this
video shows a person with a gun entering the scene after the
actual event, which our method marks as anomalous, but the
ground-truth frame label is normal. Such discrepancies af-
fect the frame-level AUC.

4.3. Ablation Study

Next, we conduct a detailed ablation study to analyze the
impact of each component of the proposed C2FPL frame-
work for US-VAD using the UCF-Crime dataset.

Impact of CPL: The objective of CPL is to generate coarse
video-level labels for all videos in the training dataset. To
evaluate the impact of this component, we carry out two
experiments and report the results in Table 3. In the first
experiment, the CPL stage is removed and the video-level
pseudo-labels are assigned randomly. In this case, the per-
formance drops significantly to 69.4% indicating that the
coarse pseudo-labels generated by CPL are indeed very use-
ful in guiding the subsequent stages of the proposed sys-
tem. On the other extreme, we also experimented with using
the ground-truth video-level labels instead of the generated
coarse pseudo-labels. Note that this setting is equivalent
to WS training used widely in the literature. As expected,
the performance improves to 85.5%, which is almost on par
with the best WS method S3R [30] using the same I3D fea-
tures (see Table 1). On the XD-Violence dataset, the C2FPL
method adapted for the WS setting achieves an AUC of
90.4%, which is better than existing WS methods on the
same dataset. These results highlight the potential improve-
ment that can be achieved by improving the accuracy of the
CPL stage. It also demonstrates the ability of our proposed
approach to learn without labels, but at the same time ex-
ploit the ground-truth WS labels when they are available.

Impact of FPL: Since the goal of FPL is to obtain segment-
level labels, we consider the following three scenarios.
Firstly, when C2FPL framework is completely ignored and
the segment-level pseudo-labels are assigned randomly, the
performance of the trained anomaly detector collapses to a
very low AUC of 38.72%. This experiment proves that the
generated segment-level pseudo-labels are indeed very in-
formative and aid the training of an accurate anomaly detec-
tor. Secondly, we ignore only the FPL stage and assign the
coarse video-level labels obtained from CPL to all the seg-
ments in the corresponding video. There is still a substan-
tial performance drop to 64.1% (from 80.65% when FPL
is used). Finally, we again consider the WS setting and as-
sign the ground-truth video-level labels to all the segments

7



in a video. Even in this case, the performance improves
only to 72.7% (compared to 85.5% when FPL is used in the
WS setting). The last two results clearly prove that the use
of FPL reduces segment-level label noise to a large extent,
thereby facilitating better training of the anomaly detector.
Impact of Anomaly Detector: To understand the impact of
the segment-level anomaly detector, we excluded the detec-
tor and directly used (1–p-value) obtained during the FPL
stage as the anomaly score. This results in a significant drop
in AUC to 57.0%, which indicates that while the C2FPL
framework can generate informative pseudo-labels, these
labels are still quite noisy and cannot be directly used for
frame-level anomaly prediction. The anomaly detector is
critical to learn from these noisy pseudo-labels and make
more accurate fine-grained predictions.

M
et

ho
d

Su
lta

ni
[1

9]

Za
he

er
[3

6]

RT
FM

[2
5]

S3
R

[3
0]

O
ur

s

Params 1.07M 6.5M 24.72M 73.5M 2.13M

Table 4. Number of trainable parameters of the proposed ap-
proach in comparison with some existing methods. Our approach
achieves good performance with significantly fewer parameters.

4.4. Parameter Sensitivity Analysis

Sensitivity to η: The sensitivity of the proposed method to
the value of η is studied on the UCF-Crime dataset. The
best results are achieved when η = 1, which corresponds
to having a roughly equal number of videos in the nor-
mal and anomaly clusters. When η = 0.5 or η = 1.5, the
AUC drops to 75.64% and 71.22%, respectively. It is im-
portant to emphasize that though the number of normal seg-
ments in a dataset is usually much larger than the number of
anomalous segments, the number of normal and anomalous
videos in the available datasets are roughly equal. For ex-
ample, UCF-Crime has 800 normal videos and 810 anoma-
lous videos, while XD-Violence has 2049 normal videos
and 1905 anomalous videos. Therefore, the choice of η = 1
is appropriate for these two datasets. In real-world unsuper-
vised settings, the ratio of anomalous to normal videos in a
given dataset may not be known in advance because there
are no labels. When η is mis-specified, there is some per-
formance degradation, which is a limitation of the proposed
C2FPL approach.
Sensitivity to β: In the FPL stage, a window of size ⌈βmi⌉
is used to loosely incorporate the temporal contiguity con-
straint. In the earlier experiments, β was set to 0.2 (20%
of the video length). However, in practice, the number of
anomalous segments in a video may vary widely and would
not be known in advance. The sensitivity of the proposed
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Figure 5. Sensitivity of C2FPL framework to parameter β.

method to the value of β is shown in Figure 5. These results
indicate that our method is quite robust to changes in β.
Fixed number of segments: We hypothesize that not com-
pressing the videos at test/train time, as commonly done in
the existing literature [19, 26], is beneficial for the overall
anomaly detection performance. To validate this hypothe-
sis, we experiment with compressing each video into to a
fixed number of segments m = 32 before applying the pro-
posed method. With such compression, the performance of
our method drops to 77.70% and 78.08% for UCF-Crime
and XD-Violence datasets, respectively. This justifies our
choice of not using any compression.

4.5. Computational Complexity Analysis

Apart from feature extraction, the proposed C2FPL
training method requires a few invocations of the GMM
clustering subroutine, a single round of Gaussian distribu-
tion fitting, and training of the segment-level anomaly de-
tector Ãθ. Since GMM clustering is performed at the video
level on 2D data, the computational cost of the two-stage
pseudo-label generator is insignificant (0.6 seconds) com-
pared to that of the anomaly detector training (60 seconds
per epoch). As seen in Figure 2, the architecture of Ãθ

is fairly simple with only 2.13M parameters, which is sig-
nificantly lower than all SOTA methods except Sultani et
al. [19], as shown in Table 4. It may be noted that, despite
having fewer parameters, the WS variant of our approach
outperforms almost all the other methods on both datasets
(Table 1 & 2). The only exception is S3R, which has 0.5%
higher AUC compared to our approach, while having over
71M extra parameters than our method. During inference,
our method achieves 70 frames per second (fps) on NVIDIA
RTX A6000 which is almost double the rate of real-time ap-
plications. This indicates that our system can achieve good
real-time detection in real-world scenarios.

5. Conclusion
Unsupervised video anomaly detection (US-VAD) meth-

ods are highly useful in real-world applications as a com-
plete system can be trained without any annotation or hu-
man intervention. In this work, we propose a US-VAD
approach based on a two-stage pseudo-label generator that
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facilitates the training of a segment-level anomaly detec-
tor. Extensive experiments conducted on two large-scale
datasets, XD-Violence and UCF-Crime, demonstrate that
the proposed approach can successfully reduce the gap be-
tween unsupervised and supervised approaches.
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Appendices
A. Self Attention

Figure 6 shows the detailed architecture of our proposed
C2FPL network. The FC layers described in manuscript:
Section 3.3 have 512 and 32 neurons where each is followed
by a ReLU activation function and a dropout layer with a
dropout rate of 0.6. In addition, we add two self-attention
layers. In this section, we will discuss the choice design as
well as the aim of using this layer.

The aim of self-attention (SA) in our proposed C2FPL
framework is to highlight parts of feature vectors critical
in detecting anomalies. Our configuration applies self-
attention over each feature vector (feature dimension) inde-
pendently without requiring temporal order. This is unlike
a compareable existing architecture by Zaheer et al. [35]
where the Normalcy Suppression Module (NSM) aims to
learn attention based on the temporally consistent feature
vectors in the input batch (Figure 8(a)) and the attention is
calculated along the batch dimension (temporal axis).

To study this in details, we define several possible con-
figurations of the self-attention used in our C2FPL and re-
port their performances in this section. Through thorough
analysis, we verify the effectiveness of our design choices
within the framework.

A.1. Residual vs Multiplicative Self-Attention (SA)

Zaheer et al. [35], in CLAWS Net, formulate the prob-
lem of self-attention in terms of suppressing certain features
which are achieved by multiplicative attention. To provide a
comparison, we discuss two different SA configurations as
shown in Figure 7. First, following Zaheer et al. [35], given
an input batch b we calculate the output H(b) by perform-
ing an element-wise multiplication ⊗ between SA output
S(b) and backbone output FC(b) as:

H(b) = S(b)⊗ FC(B)

Although such multiplication has been helpful in
CLAWS Net, generally it has been shown to have the unfa-
vorable result of dissipating model representations [8, 28].
It’s because attention generates probabilities that, when

Framework SA configuration AUC (%)

CPL→ FPL→ AD
Multiplicative 63.5

Residual (Ours) 80.6

Table 5. Area under the curve (AUC) comparison of two SA con-
figurations configurations on the UCF-Crime dataset. (The frame-
work configuration is the same as shown in manuscript: Table 3).

Framework SA Dimension AUC (%)

CPL→ FPL→ AD
Batch Dimension 76.5

Feature Dimension (Ours) 80.6

Table 6. Area under the curve (AUC) comparison of two SA types
on UCF-Crime dataset. (The framework is the same as shown in
manuscript: Table 3).
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Figure 6. Detailed architecture of our proposed learning network:
The training batch containing pseudo-labeled feature vectors is the
input to the FC backbone network (lower). In addition to the back-
bone network, we add two self-attention layers (upper).

multiplied by the features directly, can drastically lower the
values.

In our framework, we utilize residual SA in which
attention-applied features are added back to the original fea-
tures. Therefore, The output H(b) is calculated as:

H(b) = (FC(b)⊗ S(b))⊕ FC(b)

where ⊕ is an addition operation.
Table 5 shows the performance difference between mul-

tiplication and residual attention approaches. We can ob-
serve that the use of multiplication negatively affects our
model’s AUC performance (63.5%). We attribute this to the
suppression nature of multiplication [8,28]. The specifically
designed NSM of CLAWS Net [35] aims to dissipate nor-
mal portions of the temporally consistent input batches that
help the backbone network produce low anomaly scores.
However, the nature of our training is not suitable for this
formulation. Therefore, using residual attention, which
only highlights individual parts of each feature vector in
a given batch, the performance of our model increases to
80.6% on the UCF-crime dataset.

A.2. Types of self-attention

In conjunction with Zaheer et al. [35], We discuss two
different types of self-attentions depending on the dimen-
sions along which Softmax probabilities are computed in
an element-wise fashion.
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Softmax probabilities over the batch dimension (BD).
As mentioned, Zaheer et al. [35] calculates the probabilities
temporally to make use of the temporal information pre-
served within a batch (Figure 8 (a)). However, we have ar-
gued and demonstrated in our presented C2FPL framework
that preserving temporal information is not necessary for
improved anomaly detection performance. Therefore, us-
ing temporal attention along the batch dimension may not
be as effective in our framework as it has been proven in
CLAWS Net by Zaheer et al. [35]. Nevertheless, we utilize

their proposed self-attention and compare it with our design
of self-attention.

Softmax probabilities over the feature dimension
(FD). This self-attention over feature dimension (FD) is the
configuration used in our C2FPL framework, as explained
in manuscript: Section 3.3 (lines 494-500). Since we as-
sume no temporal consistency among batches, the proba-
bilities are computed over the feature dimension (Figure 8
(b)).

Table 6 summarizes the frame-level AUC performance
of the two types. It can be seen that the FD type (ours)
outperforms the BD type attention by a margin of 4.1%.
This verifies the importance of using self-attention along
the feature vector dimension, achieving significant perfor-
mance gains.

B. Qualitative Results
We also provide additional qualitative results in Fig-

ure 9, where anomaly scores predicted by our C2FPL ap-
proach are visualized for other classes of anomalous videos
from the UCF-Crime dataset. In some cases, the anoma-
lous frames in certain videos might exceed the annotated
ones because the annotations only cover a portion of the
event. For instance, the abnormal event in the RoadAcci-
dents004 video begins at about frame 145 and lasts signifi-
cantly longer than the annotated window, which only shows
the accident impact event.

An additional failure case, shooting034 video (UCF-
Crime), is also visualized in Figure 9(h). Our proposed
model correctly predicts the ground-truth anomalous win-
dow. However, later frames (1200) of the video show one
of the occupants involved in the shooting quickly entering
his car before speeding off, which our detector marks as an
anomalous event while that event is annotated as a normal
event.

C. Convergence Analysis
As our approach is an unsupervised anomaly detection

method, we empirically analyze its convergence using 10
random seed runs as shown in Figure 10. For all ex-
periments, our C2FPL model attains an average AUC of
80.14% ± 0.31%. This demonstrate that our proposed
framework not only achieves excellent anomaly detection
but also demonstrates good convergence.
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Figure 9. Anomaly scores of the proposed C2FPL framework on different videos from the UCF-Crime Dataset.

Figure 10. Convergence of our proposed model using multiple
random seed experiments.
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