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Abstract. We present a finite difference scheme, applicable to general irreg-

ular planar domains, to approximate the biharmonic equation. The irregular
domain is embedded in a Cartesian grid. In order to approximate ∆2Φ at a

grid point we interpolate the data on the (irregular) stencil by a polynomial

of degree six. The finite difference scheme is ∆2QΦ(0, 0), where QΦ is the
interpolation polynomial. The interpolation polynomial is not uniquely deter-

mined. We present a method to construct such an interpolation polynomial

and prove that our construction is second order accurate. For a regular stencil,
[7] shows that the proposed interpolation polynomial is fourth order accurate.

We present some suitable numerical examples.

1. Introduction

In this paper we consider a compact finite difference scheme for the Dirichlet
problem for the biharmonic equation.

Φ(x, y) = g1(x, y)

Φn(x, y) = g2(x, y)

}
(x, y) ∈ ∂Ω,(1)

∆2Φ(x, y) = f(x, y), (x, y) in Ω.

Basically we propose a generalization to an irregular Ω of the well-known nine-
point Stephenson scheme [31]. Such a scheme serves as the main building block
in the approximation of the two dimensional Navier-Stokes system in the pure
streamfunction formulation [5, 6].

Due to the significance of the biharmonic operator a large number of methods for
discretizing (1) have been proposed. It seems that the majority of these methods
are related to the finite elements methodology (see for example [3, 10, 14, 15, 29]
and references therein). However, we concentrate here on finite difference methods.
In this category it seems that most of the works are limited to the case where Ω is
a rectangular domain. In this case our scheme is actually equivalent to [7], where
a fast direct solver is proposed.

1.1. Background. Let us review briefly some of the works which are closer in
spirit to the finite difference approach.
In order to avoid the need to deal with a fourth order differential operator it has
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been proposed [2, 3, 12, 14, 15, 16, 17, 24] to split (1) into two coupled Poisson
equations for Φ and Φ1:

∆Φ(x, y) = Φ1(x, y),

∆Φ1(x, y) = f(x, y).
(2)

The difficulty with this approach is that the boundary conditions for Φ are over-
determined, while being under-determined for the new unknown Φ1. The boundary
conditions for Φ1 need to be approximated from the discrete form of (2). Within
the finite element methodology, many works have used this splitting, sometimes
including the use of multigrid technique as well. There have been also some finite
difference schemes related to (2). Most of them are limited to a rectangular domain
(for example [17, 24]). In [2] this approach was used for non regular meshes inside a
rectangular domain. Recently [12] suggested an algorithm for an irregular domain,
which is based on an immersed interface fast Poisson solver.

A different finite difference approach is to discretize (1) on a uniform grid using
a 13-point (or 25-point) direct approximation of the biharmonic operator. Such
methods were presented in [9, 20], and are only applicable for a rectangular domain.
These approximations must always be modified at grid points near the boundary,
a modification which can reduce the accuracy of the scheme.

We mention other approaches to the biharmonic problem on non-rectangular
domain. These include, methods based on a conformal mapping to a disk [11,
27], integral equations [26], the fast multipole method [19] and orthogonal spline
collocation [4].

Another approach is to use a nine-point compact cell. This approach includes
discretizing (1) using not just the grid values of Φ but also the values of the gradients
Φx and Φy. This method does not require any modifications near the boundary, as
the boundary conditions also include the values of ∇Φ [31]. Some variations and
a multigrid technique were proposed in [1]. So far, all the algorithms based on the
nine-point stencil were only applicable to a rectangular domain.

1.2. Structure of the paper. In this paper we develop the idea of using a nine-
point compact cell utilizing the grid values of Φx and Φy in addition to Φ. However,
it does not require the stencil to be regular, which enables our scheme to discretize
an irregular boundary. The finite difference coefficients are calculated using an
interpolation polynomial of degree six. This technique enables us to handle an
irregular domain without adding unnecessary grid points to the calculation.

The plan of the paper is as follows. In Section 2 we describe the construction
of the grid, the assignment of the ”calculated nodes” and the treatment of the ir-
regular boundary. Section 3 is the core section of this paper. We develop here our
polynomial interpolation over compact irregular stencils and define the discretized
approximation to the biharmonic operator. This approximation is used for all the
calculated nodes, including near-boundary nodes. Our key result, Theorem 3.11,
states that under a reasonable structural assumption on the grid, the discrete ap-
proximation of the biharmonic operator is second-order accurate. The approximate
grid values of Φx,Φy are related to those of Φ by means of a Hermitian form which
guarantees fourth order accuracy even in the irregular case. This construction is de-
scribed in Section 4. Some numerical test cases are presented in Section 5. Finally
we mention in the conclusion the connection of this work with the Shortley-Weller
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scheme for the Poisson problem. For a convergence proof of the new scheme, we
refer to the forthcoming work [8].

2. Embedding a Cartesian grid in an irregular domain

Consider a domain embedded in a large uniform grid of mesh size h. A grid point
is a point (ih, jh) for i, j ∈ Z. Most of the nodes, which are interior to Ω will be
designated as ”calculated nodes” i.e. nodes where the approximate functional values
are actually calculated. These values are Φ,Φx,Φy, which serve as approximate
values to the analytical values of Φ,∇Φ at the nodes. A small number of interior
nodes close to ∂Ω are not calculated nodes and only serve in the construction of
the scheme. There are no approximate values associated with these nodes, and we
label them as ”edge nodes”. In Figure 1 these nodes are marked with an ”x”.

The division of the interior nodes between edge nodes and calculated nodes is a
parameter of the scheme. Some exterior nodes which are close to ∂Ω serve in the
geometric phase of the scheme, as is explained below. They do not take part in the
calculations, i.e. they do not carry approximate values or serve as ghost points. In
Figure 1 they are shown as simple dots ”·”.

The essential step is to determine the nodes which are designated as ”edge
nodes”. They are selected in a way which limits the distortion of irregular poly-
gons. More specifically, only nodes which are sufficiently close to the boundary are
marked as ”edge nodes”, so that all resulting irregular polygons (as constructed in
the following paragraphs) satisfy the requirements imposed in (30) and also ensure
the boundedness of ε in (49). This is achieved in turn by restricting the edge nodes
to those whose distance from the boundary is O(h). In practice, however, we use
even stricter requirements, as in Remark 5.1 below. Furthermore, selecting the edge
nodes in a proper fashion is crucial to carry out the convergence analysis, see [8].
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Figure 1. An Ellipse embedded in the grid. + - calculated nodes,
x - edge nodes, · - exterior nodes. The circles are the 8 neighbors
of the calculated node C

Our scheme is a compact scheme; all approximate values of high order derivatives
use values of Φ,Φx,Φy at immediate neighbors. More specifically, given a node
p0 = (ih, jh) we consider the eight grid points:
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p̃1 = ((i− 1)h, (j + 1)h), p̃2 = (ih, (j + 1)h), p̃3 = ((i+ 1)h, (j + 1)h),
p̃4 = ((i− 1)h, jh), p̃5 = ((i+ 1)h, jh),

p̃6 = ((i− 1)h, (j − 1)h), p̃7 = (ih, (j − 1)h), p̃8 = ((i+ 1)h, (j − 1)h)

Our goal is to construct suitable neighboring points p1, ...,p8, which are either
calculated nodes or boundary points. The values of Φ,Φx,Φy at these points are
all that is needed in order to calculate the various approximate derivatives at p0.

Suppose we wish to approximate ∆2Φ(x0, y0) at a calculated node p0 = (x0, y0),
such that one of its neighbors p̃i = (xi, yi) is either an edge node or an exterior
node. Imagine the ray that begins at p0 and goes through p̃i. This ray must cross
the boundary of the domain. We define the point where the ray first crosses the
boundary as pi (in the case of a convex domain there is only one point common to
the ray and the boundary). The calculation of the approximate value to ∆2Φ(x0, y0)
relies on the data of pi rather p̃i. This idea is demonstrated in Figure 1. We
have a calculated node designated by C. We construct eight neighboring points
p1, ...,p8, which carry the data needed for the calculation at C. The four neighbors
p̃1, p̃2, p̃3, p̃5 are other calculated nodes so we use them in the calculation, i.e.
p̃i = pi. The other four neighbors p̃4, p̃6, p̃7, p̃8 are either edge or exterior nodes
so they are replaced by points on the boundary as described above. We therefore
obtain pi (the eight circled points), the actual points used in the calculation.

Once the eight points pi are determined and approximate values Φ,Φx,Φy are
assigned to them we can proceed to evaluate an approximate value for ∆2Φ at the
point p0. This is described in the following section.

3. The biharmonic ∆2
~h

Φ operator

In this section we define a scheme for the approximation of the biharmonic
operator. Figure 2 shows the nine point irregular stencil used for the approximation
of ∆2Φ at p0 = (0, 0). Each of the nine grid points pi carries three values: Φ,Φx,Φy.
These are calculated values if pi is a calculated node and given boundary data if
pi is a boundary point.
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Figure 2. The 8 neighbors

In order to approximate ∆2Φ of a given function Φ at p0 we interpolate the data
Φ,Φx,Φy on the stencil p0, ...,p8 by a polynomial of degree six. This construction
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is carried out below. To deal with an irregular stencil we denote,

(3) ~h = (h1, ..., h8)

Definition 3.1. The finite difference scheme ∆2
~h

Φ, for the approximation of ∆2Φ
at p0 = (0, 0) is ∆2QΦ,~h(0, 0), where QΦ,~h is the interpolation polynomial of degree
six mentioned above.

Remark 3.2. The actual connection between the values of Φ,Φx,Φy at all nodes
is described in Section 4. It uses a fourth order Hermitian form.

3.1. Approximating the data using a 6-th order polynomial. Let Pi be the
linear space of polynomials in two variables of degree ≤ i. Let P i be their single
variable counterparts. There are 28 monomials in P6, so that P6 ∼= R28.
Let pi mark the neighboring points as shown in Figure 2: p0 = (0, 0),p1 =
(−h1, h1), . . . ,p8 = (h8,−h8)

Let Dat19 be the linear space of the following 19 data:

Φ(pi) , 0 ≤ i ≤ 8
Φd(pi) , 1 ≤ i ≤ 8

Φx(p0),Φy(p0)
(4)

Where Φd is the directional derivative, with the direction towards the origin (d ∈
±{x, y, x+y√

2
, x−y√

2
}). The above nineteen data are the only data used to define the

interpolation polynomial.

Remark 3.3. The literature devoted to polynomial interpolations based on func-
tional values and their gradients, so called ”Hermite-Birkhoff interpolations”, is
quite extensive (see [18] and references therein). In the one-dimensional case it is
also referred as a “Lagrangian interpolation problem with repeated arguments”. A
general formula for this kind of problem is available, see [22]. However, the unique
character of our scheme (as well as that of [5],[6]) is that it is based solely on func-
tional values. The ”gradient values” are evaluated as ”Hermitian derivatives” and
derived from the functional values alone (see Section 4).

The goal of this section is to find a polynomial in P6 which interpolates the
nineteen data in Dat19.

Let A : P6 → Dat19 be the linear transformation which is the evaluation opera-
tor. That is, given Q ∈ P6:

A(Q) =
{
Q(p0), ..., Q(p8),

∂Q

∂d
(p1), ...,

∂Q

∂d
(p8),

∂Q

∂x
(p0),

∂Q

∂y
(p0)

}
Proposition 3.4. A is surjective. That is, dim(Im(A)) = 19 and dim(ker(A)) =
9.

Proof Let d ∈ Dat19, be a set of data as defined in (4). We will construct a
polynomial Q ∈ P6 such that A(Q) = d.

Let Q1 ∈ P 5 be the unique single-variable fifth order polynomial such that Q1(x)
interpolates the 6 data on the x-axis: Φ(p4),Φ(p0),Φ(p5),Φx(p4),Φx(p0),Φx(p5).
Let Q2 ∈ P 4 be the unique polynomial such that Q1(x)|x=0 + yQ2(y) interpolates
the following 5 data on the y-axis: Φ(p2),Φ(p7),Φy(p2),Φy(p0),Φy(p7).
In a similar fashion, let Q3 ∈ P 3 be the unique polynomials such that xyQ3(x −
y) + yQ2(y) +Q1(x) interpolates the values along the y=-x diagonal:
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Φ(p1),Φ(p8),Φx−y(p1),Φx−y(p8).
Finally, let Q4 ∈ P 3 be the unique polynomials such that xy(x + y)Q4(x + y) +
xyQ3(x − y) + yQ2(y) + Q1(x) interpolates the values along the y=x diagonal:
Φ(p3),Φ(p6),Φx+y(p3),Φx+y(p6).

Let Q = Q1(x)+yQ2(y)+xyQ3(x−y)+xy(x+y)Q4(x+y). At each step in the
construction above, the interpolations already made aren’t modified. Therefore, Q
interpolates all the required 19 data: A(Q) = d.
To show that dim(ker(A)) = 9 we note that dim(ker(A)) = dim(P6)−dim(Im(A)) =
28− 19 = 9 �

Remark 3.5. Note that by restricting Q4 ∈ P 2 in the proof above, we obtain
Q(x, y) ∈ P5 which can interpolate all, but one, of the nineteen data (leaving out at
most one value on the x = y diagonal). This remark will be useful later on, in the
proof of Lemma 3.9.

Proposition 3.4 shows that it is always possible to interpolate the data in Dat19

using a polynomial in P6. However, this interpolation is not unique and therefore
we construct a canonical (unique) interpolation polynomial. To do so, we must first
disregard the polynomials in ker(A) as they are not influenced by the data (even
though they might influence the biharmonic operator). Therefore, we will define a
polynomial space Θ such that:

(5) P6 = ker(A)⊕Θ

The linear transformation A|Θ is one to one onto Dat19. Thus, using (A|Θ)−1, any
set of data will uniquely define an interpolation polynomial in Θ ⊂ P6.

Unfortunately, the equation P6 = ker(A)⊕Θ does not uniquely define Θ. More-
over, a different choice of Θ might produce different results (a different finite differ-
ence scheme ∆2

~h
for the biharmonic operator - see Definition 3.1 and Example 3.12).

In order to construct Θ we first characterize ker(A) using the notion of indifferent
polynomials.

Definition 3.6.
(i) A null-biharmonic polynomial Q ∈ P6 is a polynomial such that ∆2Q(0, 0) =

0
(ii) An indifferent polynomial is a null-biharmonic polynomial in ker(A) ⊂ P6.
(iii) An indifferent (resp. null-biharmonic) subspace L is a linear space such

that ∀Q ∈ L, Q is indifferent (resp. null-biharmonic).

The biharmonic operator is simply a linear functional operating on P6. The
kernel of this linear functional is the maximal null-biharmonic subspace. The im-
portance of indifferent polynomials is demonstrated by the following proposition
which shows that Θ needs to be defined up to an indifferent subspace.

Proposition 3.7. The finite difference scheme is identical for different Θ’s (satis-
fying (5)) which are equivalent up to an indifferent subspace. To be precise, assume
P6 = ker(A) ⊕ Θ1, P6 = ker(A) ⊕ Θ2, Θ2 ⊂ Θ1 ⊕ L, where L is an indifferent
subspace, then the finite difference schemes using either Θ1 or Θ2 are identical.

Proof Let d ∈ Dat19, be a set of data.
Define Q1 = A|−1

Θ1
(d), Q2 = A|−1

Θ2
(d), and their difference by Q = Q1 −Q2.

Notice that A(Q1) = A(Q2), hence Q ∈ ker(A).
Since Q ∈ Θ1 ⊕ L, and L ⊂ ker(A), where L is an indifferent subspace, one has
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Q ∈ L, and therefore Q is an indifferent polynomial.
This shows that ∆2Q(0, 0) = 0 and therefore ∆2Q1(0, 0) = ∆2Q2(0, 0), proving
that the scheme is equivalent for Θ1, Θ2. �

If ker(A) were an indifferent subspace then the proposition shows that any Θ sat-
isfying (5) would yield an equivalent scheme for the biharmonic operator. However,
this is not the case in general.

Example 3.8. In the regular grid (i.e. hi = h, 0 ≤ i ≤ 8) the following two
polynomials are in ker(A) and are not indifferent (not null-biharmonic):

G1(x, y) = x2(x− h)2(x+ h)2,

G2(x, y) = y2(y − h)2(y + h)2.
(6)

3.2. Choice of Θ. The construction of Θ begins with the polynomials of degree
≤ 5. We note that P5 ∼= R21. Let Ã : P5 → Dat19 be the evaluation operator. That
is, Ã ∼= A|P5

Let

(7) ker(A) = Lind ⊕ Lres,

where Lind is the maximal indifferent subspace and Lres is a residual subspace
satisfying (7). Let B be the principal ideal in P6 generated by xy(x− y)(x+ y):

(8) B =
{
Q ∈ P6 | Q = xy(x− y)(x+ y)R , R ∈ P2

}
.

Lemma 3.9.
(i) B is a six dimensional indifferent subspace of ker(A) which is independent

of ~h (see Eq. (3)).
(ii) ker(Ã) = B ∩ P5, is an indifferent subspace of dimension 3 which is inde-

pendent of ~h.

Proof (i) It is easy to see that B ⊂ ker(A), and that ∀Q ∈ B, ∆2Q(0, 0) = 0.
Since dim(P2) = 6, we have dim(B) = 6.
(ii) Using (8), let

B̃ = B ∩ P5 =
{
Q ∈ P5 | Q = xy(x− y)(x+ y)R , R ∈ P1

}
.(9)

Note that B̃ ⊆ ker(Ã), dim(B̃) = 3, thus dim(ker(Ã)) ≥ 3 and dim(Im(Ã)) ≤ 18.
We show that dim(Im(Ã)) ≥ 18, and hence ker(Ã) = B̃, which concludes our proof.
Refer to the proof of Proposition 3.4 and Remark 3.5. Using a polynomial Q ∈ P5

we can interpolate at least 18 of the data. Thus, we know that the image of the
polynomials of degree 5 creates a subspace of dimension ≥ 18.
Altogether we have dim(Im(Ã)) = 18 and dim(ker(Ã)) = 3, as required. �

Notice that in the regular case B 6= Lind, as xy(x2 + y2 − 2h2)2 ∈ ker(A) is an
indifferent polynomial.

Let

(10) Θ̃ = sp{1, x, x2, x3, x4, x5, y, y2, y3, y4, y5, xy, xy(x+ y),

xy(x+ y)2, xy(x+ y)3, xy(x− y), xy(x− y)2, xy(x− y)3},

Θ̃ is spanned by 18 polynomials. Note that ker(Ã) ∩ Θ̃ = 0. Indeed, if Q(x, y) ∈
ker(Ã) ∩ Θ̃ ⊂ P5 it should be divisible by xy(x+ y)(x− y). It is readily seen, from
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the definition of Θ̃ (10) that no non-trivial Q in Θ̃ is divisible by xy(x+ y)(x− y).
Therefore, we can conclude:

P5 = ker(Ã)⊕ Θ̃ = B̃ ⊕ Θ̃.(11)

We construct Θ by adding one more polynomial of degree six to Θ̃. This yields
the desired nineteen dimensional space. The choice of Θ determines the finite
difference scheme (as presented in Definition 3.1).

We note that Proposition 3.7 and Lemma 3.9 show that any choice of Θ̃ satisfying
(11) would result in an equivalent scheme.

The polynomial that should be added to Θ̃ must not be in Θ̃ ⊕ ker(A). In the
regular case: hi = h, 0 ≤ i ≤ 8, we have,

Lind = sp{B, xy(x2 + y2 − 2h2)2},(12)

Lres = sp{G1, G2},(13)

where Lind, Lreswere defined (7) and G1, G2 were defined in (6). It can then be
easily verified,

(14) {x6, x5y, x3y3, xy5, y6} ⊂ Θ̃⊕ Lind ⊕ Lres,

This leaves just 2 monomials of degree six: x4y2, x2y4. Note that x4y2− x2y4 =
x2y2(x− y)(x+ y) ∈ B is an indifferent polynomial. Thus, Proposition 3.7 tells us
that adding x2y4 or x4y2 to Θ̃ yields an equivalent scheme. Therefore, the scheme
is essentially determined for the regular case. For the sake of symmetry we define:

(15) Θ = sp{Θ̃, x2y2(x2 + y2)}.

Proposition 3.10. The subspace Θ as defined in (15) satisfies our requirement in
(5), namely the direct sum Θ⊕ ker(A) = P6.

Proof For the regular case the claim follows from the preceding discussion.
One must show that x2y2(x2 +y2) /∈ sp{Θ̃, ker(A)}. The comment after (14) shows
it is equivalent to show that x4y2 /∈ sp{Θ̃, ker(A)}.
Assume the contrary:

(16) x4y2 = Q1 +Q2, Q1 ∈ Θ̃, Q2 ∈ ker(A).

We have, A(x4y2) = A(Q1). Consider the restrictions of these polynomials on the
x = y diagonal. The six data on the x = y diagonal:
Φ(p0),Φ(p3),Φ(p6),Φx+y(p0),Φx+y(p3),Φx+y(p6), are identical. Therefore, the
polynomial x6 −Q1(x, x) has three double zeros and must be of the form Cx2(x−
h3)2(x + h6)2, where C is an arbitrary constant. By comparing the x6 coefficient
one has C = 1:

(17) x6 −Q1(x, x) = x2(x− h3)2(x+ h6)2.

A similar argument on the x = −y diagonal gives us,

(18) x6 −Q1(x,−x) = x2(x− h8)2(x+ h1)2.

Consider the restriction of (16) to the x axis. Applying A to both sides we have
A(Q1(x, 0)) = 0. There are six data on the x axis and therefore Q1(x, 0) has three
double zeros . Since Q1(x, 0) is a polynomial of degree five we have Q1(x, 0) = 0. A
similar argument shows that Q1(0, y) = 0. In particular, there are no pure powers
of x or y in Q1(x, y). Thus, the only second order term in Q1(x, y) is αxy. However,
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equation (17) (resp. (18)), shows that α is positive (resp. negative), hence 0. This
is a contradiction to equations (17) and (18), which contain a non-zero coefficient
of xy in Q1. �

In the regular case hi = h, 0 ≤ i ≤ 8, the coefficients of the finite difference
scheme for ∆2Φ are equivalent to the fourth order scheme presented in [7]:

∆2
~h

Φ(0, 0) = ∆2QΦ,~h(0, 0) =

6
h4
{12Φ(0, 0) + Φ(−h, h)− 4Φ(0, h) + Φ(h, h)− 4Φ(−h, 0)

− 4Φ(h, 0) + Φ(−h,−h)− 4Φ(0,−h) + Φ(h,−h)}+
1
h3
{Φx(−h, h)− Φx(h, h)− 8Φx(−h, 0) + 8Φx(h, 0) + Φx(−h,−h)

− Φx(h,−h)− Φy(−h, h) + 8Φy(0, h)− Φy(h, h) + Φy(−h,−h)

− 8Φy(0,−h) + Φy(h,−h)}.

(19)

In the irregular case we are still left with a degree of freedom in the definition
of Θ. However, we proceed to show that taking Θ as presented in (15) also for
the irregular case yields second order accuracy. Proposition 3.10 assures that the
requirement (5) is conserved.

3.3. Accuracy of the finite difference scheme. For the accuracy analysis of
the finite difference scheme ∆2

~h
(Definition 3.1), we assume Φ is a regular function,

differentiable as much as needed. Using the seventh degree Taylor formula around
(0, 0):

(20) Φ(x, y) =
∑

0≤|α|≤6

DαΦ(0, 0)
α!

xα1yα2 +O(h7)E(x, y), α = (α1, α2)

where
|E(x, y)| ≤ C sup |Φ(7)|.

Combining (5) and (7),

(21) P6 = Θ⊕ Lind ⊕ Lres.

We assume all the derivatives of Φ of degree ≤ 7 are bounded with a universal
bound. Decomposing the polynomial part of (20) by the direct sum (21):

(22) Φ(x, y) = Φ̃ +O(h7)E(x, y), Φ̃ ∈ P6

where

(23) Φ̃ = ΦΘ + Φind + Φres, ΦΘ ∈ Θ, Φind ∈ Lind, Φres ∈ Lres

Let QΦ,~h ∈ Θ be the interpolating polynomial of Φ using the nineteen data in

Dat19 on the ~h stencil (see (3),(4)). Recall (Definition 3.1), that ∆2QΦ,~h(0, 0) is
the finite difference scheme for the biharmonic operator. Note that ΦΘ − QΦ,~h is
not identical to zero since it is the polynomial interpolating the nineteen data of
the term O(h7)E(x, y).

Let K~h be the approximation (truncation) error for the biharmonic operator:

(24) K~h(Φ) = ∆2Φ(0, 0)−∆2QΦ,~h(0, 0).
9



We note that

S ∈ Θ⇒ K~h(S) = 0,(25)

R ∈ Lind ⇒ K~h(R) = 0.(26)

Indeed, if S ∈ Θ, then S = QS,~h by definition. If R ∈ Lind then R ∈ ker(A) is
an indifferent polynomial and therefore QR,~h = 0 and ∆2R(0, 0) = 0.

Thus we are left with,

(27) K~h(Φ) = K~h(Φres) +O(h7)K~h(E).

This equation shows us something we already suspected: the error of the scheme
results from polynomials which are in ker(A) and are not indifferent (in addition to
the negligible error resulting from the Taylor remainder term of degree ≥ 7 – see
(20)).

For the irregular mesh analysis we continue to use a grid parameter h > 0 (see
Section 2) and define the ratios,

ci =
hi
h
, 0 < ci,(28)

~c = {c1, ..., c8}.(29)

Notice that ci can be greater than, less than, or equal to 1. This can be seen in
Figure 1 where the boundary points used in the calculation of the scheme can be
closer or farther apart then the neighboring grid point in the same direction.

Assume that there exists a constant M ≥ 1 such that,

(30)
1
M
≤ ci ≤M, 1 ≤ i ≤ 8.

Our fundamental result is the following:

Theorem 3.11. The finite difference scheme ∆2
~h

for the biharmonic operator, using
(15) is second order accurate.

Proof The proof is given in several steps.
Step I We claim that the coefficients of the Φ terms in ∆2

~h
Φ are O( 1

h4 ), while
the coefficients of the Φx, Φy terms in ∆2

~h
are O( 1

h3 ).
This claim is obvious in the regular case - see (19). For an irregular stencil the

proof is obtained by a scaling argument. The details are given in the Appendix.
Step II We claim that:

(31) K~h(Φ) = ∆2Φres(0, 0) +O(h3).

Calculating the error:

K~h(E) = ∆2E(0, 0)−∆2QE,~h(0, 0).

Using Step I:

∆2QE,~h(0, 0) =
∑
i

O

(
1
h4

)
E(pi) +

∑
i

O

(
1
h3

)
Ex(pi) +

∑
i

O

(
1
h3

)
Ey(pi)

= O

(
1
h4

)
.

10



Since ∆2E(0, 0) is a constant, altogether we have:

K~h(E) = O

(
1
h4

)
.

Equation (31) now follows from (27).
Step III We construct a smooth, with respect to ~h, basis

{
G1(~h;x, y), ..., G9(~h;x, y)

}
of ker(A~h).
Note: We add the ~h subscript to A to clarify the stencil in which the calculation is
done.

To this end we let,

Θc = B̃ ⊕ sp{x6, x5y, x4y2 − x2y4, x3y3, xy5, y6}
= sp{x3y − xy3, x4y − x2y3, x3y2 − xy4, x6, x5y, x4y2 − x2y4, x3y3, xy5, y6}.

(32)

In view of (15),

(33) P6 = Θ⊕Θc.

Indeed, P5 = Θ̃ ⊕ B̃, see Eq. (11), Θ includes only one polynomial of degree six,
while the six others are in Θc.

Let

F : R8
+ ×Θc ×Θ→ Dat19

H : R8
+ ×Θc → Θ,

be defined as follows:

F (~h, T1, T2) = A~h(T1 + T2), ~h ∈ R8
+, T1 ∈ Θc, T2 ∈ Θ,(34)

H(~h, T1) = −QT1,~h
, ~h ∈ R8

+, T1 ∈ Θc,(35)

where QT1,~h
∈ Θ is the interpolation polynomial of T1 with respect to the ~h stencil.

Recalling Proposition 3.10, we know that this interpolation polynomial is uniquely
determined in Θ. Moreover, ∀ ~h ∈ R8

+, T1 ∈ Θc, T2 ∈ Θ,

(36) H(~h, T1) = T2 ⇔ F (~h, T1, T2) = 0.

Using the implicit function theorem it is readily seen that H(~h, T ) is continuously
differentiable with respect to all its variables.

From (36) it follows that,

(37) ker(A~h) = {T1 +H(~h, T1) | T1 ∈ Θc}.

Thus, denoting by ei(x, y) 1 ≤ i ≤ 9, the nine homogeneous polynomials spanning
Θc and defining

Gi(~h;x, y) = ei(x, y) +H(~h, ei(x, y))

= ei(x, y)−Qei,~h(x, y), 1 ≤ i ≤ 9
(38)

we obtain the desired smooth basis of ker(A~h). Note that the linear independence
of the Gi’s follows from the fact that the ei’s form a basis for Θc while Qei,~h ∈ Θ
is the complementary subspace.

Step IV We can now conclude the proof of the theorem.
11



Combining (5) and (20),

Φ(x, y) = ΦΘ +
9∑
i=1

biGi(~h) +O(h7)E(x, y), ΦΘ ∈ Θ, Gi(~h) ∈ ker(A~h)

= ΦΘ +
9∑
i=1

biH(~h, ei) +
9∑
i=1

biei +O(h7)E(x, y).

Notice that ΦΘ +
∑9
i=1 biH(~h, ei) ∈ Θ. In terms of the decomposition (33), the

Θc component of Φ(x, y) is
∑9
i=1 biei. Since {ei, 1 ≤ i ≤ 9} are fixed polynomials

(independent of ~h), the coefficients {bi, 1 ≤ i ≤ 9} are constants which only depend
on the derivatives of Φ of degree ≤ 6.

Using (31),

(39) K~h(Φ) =
9∑
i=1

bi ∆2Gi(~h;x, y)
∣∣∣
x=0,y=0

+O(h3).

Recalling the assumption (30), we now show that,

(40)
∣∣∣∣∆2Gi(~h;x, y)

∣∣∣
(0,0)

∣∣∣∣ ≤ h2J, ~h ∈ R8
+, 1 ≤ i ≤ 9,

where,

(41) J = sup
1≤i≤9

∣∣∣∆2Gi(~c;x, y)
∣∣
(0,0)

∣∣∣ , ~c ∈ [ 1
M
,M

]8

⊂ R8.

Since ∆2Gi(~h;x, y)
∣∣∣
(0,0)

is a continuous function of ~h it attains a maximum in

the compact cube
[

1
M ,M

]8 ⊂ R8.
Using the definition (32) of Θc,

Θc ∩ P5 = B̃.

Let 1 ≤ i ≤ 9. If ei ∈ Θc ∩ P5 then ei ∈ B̃ ⊂ ker(A~h). Hence, H(~h, ei) = 0 and

Gi(~h;x, y) = ei. It follows that ∆2Gi(~h;x, y)
∣∣∣
(0,0)

= 0 (since B̃ is an indifferent

subspace). Otherwise, ei is one of the six homogeneous polynomial of degree six in
(32). Consider the decomposition (33), of the polynomial R(x, y) = h6Gi(~c; xh ,

y
h ) =

h6
(
ei(xh ,

y
h ) +H(~c, ei(xh ,

y
h ))
)
. Its Θc component is h6

(
ei(xh ,

y
h )
)

= ei(x, y). Also,
notice that R is 0 on all the data on the ~h stencil. Hence, R ∈ ker(A~h) and
R = ei −Qei,~h = Gi(~h), using (38). Altogether,

Gi(~h;x, y) = h6Gi(~c;
x

h
,
y

h
).

Hence, ∣∣∣∣∆2Gi(~h;x, y)
∣∣∣
(0,0)

∣∣∣∣ =
∣∣∣∣h6

h4
∆2Gi(~c;x, y)

∣∣
(0,0)

∣∣∣∣ ≤ h2J.

It now follows from Eq. (39) and the last estimate that,

|K~h(Φ)| ≤
9∑
i=1

|bi|h2J +O(h3)(42)

= O(h2).(43)

12
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Example 3.12. We calculate ∆2Φres(0, 0) for a regular grid.
Using G1, G2 as in Eq. (6), we have Lres = sp{G1, G2} (see (13)). Using our

choice (15) of Θ, there are no polynomials containing the x6 or y6 monomials in
Θ. Also, there are no polynomials containing these monomials in Lind (see (12)).
Comparing the coefficients of x6 and y6 in Lres and in (20), we have:

Φres =
1
6!

(
∂6Φ
∂x6

(0, 0)G1 +
∂6Φ
∂y6

(0, 0)G2

)
,

and therefore:

|∆2Φres(0, 0)| ≤ 1
6!

(
48 sup |Φ(6)|h2 + 48 sup |Φ(6)|h2

)
.

= O(h2).

A different choice of Θ, could give us different results.
Let Θ = Θ\{y4} ∪ {y6}. Using G2 ∈ ker(A), we know that

y4 ≡ker(A)
y6

2h2 + h2y2

2 . Therefore, Θ satisfies (5). We rewrite (23), using Θ,

Φ̃ = ΦΘ + Φind + Φres, ΦΘ ∈ Θ, Φind ∈ Lind, Φres ∈ Lres

In this case, we must compare the coefficients of x6 and y4 in Lres and in (20):

Φres =
1
6!
∂6Φ
∂x6

(0, 0)G1 −
1
4!
∂4Φ
∂y4

(0, 0)
G2

2h2

|∆2Φres(0, 0)| ≤ 48
6!

sup |Φ(6)|h2 +
24
4!

sup |Φ(4)|

= O(h2) +O(1)

= O(1)

Summary: Our goal is to approximate the biharmonic operator at (0, 0) given
the data from our 9 point irregular stencil (Figure 2). We use 19 data from the sten-
cil, as defined in (4). We first approximate the data by a polynomial in Θ ⊂ P 6,
which is defined in (10),(15). Proposition 3.10 shows that there exists a unique
polynomial, Q ∈ Θ, which interpolates our 19 data. ∆2Q(0, 0) is the finite differ-
ence approximation of the biharmonic operator at (0, 0). The discussion preceding
Proposition 3.10 explains the logic in the construction of Θ. Theorem 3.11, shows
the resulting scheme yields the optimal, second order accuracy.

Finally, note that we can interpret Stephenson’s scheme on a regular stencil
[5, 31] using our polynomial approach. Let Â : P4 → Dat13, where Dat13 is
the 13 dimensional linear space spanned by the 13 data used in the Stephenson
scheme. It is easy to show that ker(Â) = sp{xy(x − y)(x + y), xy(x − h)(x + h)}
showing that ker(Â) is an indifferent subspace (we are limiting the investigation to
a regular stencil). Using Proposition 3.7 we know that any space Θ13, such that
P4 = ker(A)⊕Θ13 yields an equivalent scheme e.g. one can define Θ13 by omitting
the following two polynomials from P4: x3y and xy, obtaining an equivalent scheme
to the one presented in the paper [31] (where x3y and xy3 were omitted).

4. The Hermitian connection between Φ and Φx, Φy

Given a smooth function Φ in Ω, we described in Section 3 our finite difference
approximation of ∆2Φ at grid points. This approximation is based on the knowledge
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of the values of Φ, Φx and Φy at these points. The grid values for Φ are those coming
from the function Φ evaluated at the grid points or suitable approximation given
to these values. The values of Φx, Φy are supposed to approximate values of the
gradient of Φ. However, they are not obtained independently. Instead, they are
obtained by an interpolation procedure from the values of the grid function Φ itself.

In this section, we describe an Hermitian interpolation procedure, which connects
these values to the values of Φ in a linear non-local connection. The values Φx
aligned parallel to the x axis will only be connected to values of Φ along this
line. A similar treatment is granted to the values of Φy aligned parallel to the y
axis. This is in agreement with the classical Hermitian methods and serves as a
generalization of the method presented in [5, 6]. Other generalizations related to
high order connections of discretized values of a function and its derivative can be
found in [18, 30]

Assume a one-dimensional function f : [0, 1] → R, differentiable as much as
needed. Fix n + 1 points 0 = x0 < x1 < ... < xn = 1. We are given the following
data:

(44)
{

Φi = f(xi), 0 ≤ i ≤ n,
q0 = f ′(x0), qn = f ′(xn).

Using these data to find values {qi, 1 ≤ i ≤ n−1} , approximating the derivative
values {f ′(xi), 1 ≤ i ≤ n − 1} is in fact a classical problem tractable for example
by spline theory [28]. Here, we describe how it can be handled by a finite difference
analysis, using a so-called Hermitian approach.

We consider for each three-point stencil xi−1, xi, xi+1 the fourth order interpo-
lation polynomial,

gi(x) = a4,i(x− xi)4 + a3,i(x− xi)3 + a2,i(x− xi)2 + a1,i(x− xi) + a0,i,

defined by the following five interpolation conditions
(45)
gi(xi−1) = Φi−1, gi(xi) = Φi, gi(xi+1) = Φi+1, g

′
i(xi−1) = qi−1, g

′
i(xi+1) = qi+1.

See Remark 3.3 concerning the class of such interpolation problems.
The unknown value qi is then obtained as g′(xi) = a1,i. Using a suitable Her-

mitian integration formula we obtain the following tridiagonal linear system for the
collection of unknowns {qi, 1 ≤ i ≤ n− 1},

(46) α1,iqi−1 + qi + α2,iqi+1 = β1,iΦi−1 + β2,iΦi + β3,iΦi+1, 1 ≤ i ≤ n− 1.

The five coefficients α1,i, α2,i, β1,i, β2,i, β3,i are

(47)


α1,i = h2

i+1
(hi+1+hi)2

α2,i = h2
i

(hi+1+hi)2

β1,i = − 2h4
i+1+4h3

i+1hi
hi+1(hi+1+hi)3hi

β2,i = 2h4
i+1+4h3

i+1hi−4hi+1h
3
i−2h4

i

hi+1(hi+1+hi)3hi

β3,i = 2h4
i+4hi+1h

3
i

hi+1(hi+1+hi)3hi
.

To analyze the accuracy of the scheme, we use the parameters h̄, ε, defined by

h̄ = max
1≤i≤n−1

{hi},(48)

ε = min
1≤i≤n−1

{
hi+1

hi
,
hi
hi+1

}
.(49)

14



Lemma 4.1. Assume f to be a regular function on [0, 1]. Then the truncation
error

(50) Ri = α1,if
′(xi−1) + f ′(xi) + α2,if

′(xi+1)− β1,iΦi−1 − β2,iΦi − β3,iΦi+1

satifies

(51) |Ri| ≤ C1h̄
4
∥∥∥f (5)

∥∥∥
∞,[0,1]

Proof Fix 1 ≤ i ≤ n−1. Let H(x) be the fourth order Taylor polynomial for f(x)
around x = xi. The following five identities hold:
(52)

Φi−1 = f(xi−1) = H(xi−1)− h5
i

5! f
(5)(ξi,1) Φi+1 = f(xi+1) = H(xi+1) + h5

i+1
5! f

(5)(ξi,2),
Φi = f(xi) = H(xi),

f ′(xi−1) = H ′(xi−1)− h4
i

4! f
(5)(ξi,3), f ′(xi+1) = H ′(xi+1) + h4

i+1
4! f

(5)(ξi,4),

where ξi,j ∈ [xi−1, xi+1], 1 ≤ j ≤ 4. Replacing f(xi−1), f(xi), f(xi+1), f ′(xi−1),
f ′(xi+1), by their values in (50) and observing that Ri = 0 for any fourth-order
polynomial (in particular H(x)) yields the estimate (51). �

So far we showed that f satisfies the equation up to fourth order accuracy.
Following a routine procedure we show that solving the tridiagonal system (46)
does not amplify this error.

Lemma 4.2. The system (46) has a unique solution. Assuming f is a regular
function, the solution is ”almost” fourth order accurate:

max
1≤i≤n−1

|f ′(xi)− qi| ≤ C
h̄4

ε

∥∥∥f (5)
∥∥∥
∞,[0,1]

,

where h̄, ε are as defined in (48,49).

Proof Writing the system (46) in matrix notation one has:

(53) Pv = w

Where

P =



1 α2,1 0 · · · 0

α1,2 1 α2,2 0
...

0
. . . . . . . . . 0

... 0 α1,n−2 1 α2,n−2

0 · · · 0 α1,n−1 1


, v =


q1

q2

...
qn−2

qn−1

 ,

w =


−α1,1q0 + β1,1Φ0 + β2,1Φ1 + β3,1Φ2

β1,2Φ1 + β2,2Φ2 + β3,2Φ3

...
β1,n−2Φn−3 + β2,n−2Φn−2 + β3,n−2Φn−1

−α2,1qn + β1,n−1Φn−2 + β2,n−1Φn−1 + β3,n−1Φn

 .

(54)

Notice that α1,i + α2,i < 1, hence P is diagonally dominant, therefore invertible.
This proves that our system has a unique solution.
Lemma 4.1 shows that

(55) Pf ′ = w + h̄4K,
15



where

(56) f ′ =

 f ′(x1)
...

f ′(xn−1)

 ,K =

 −K1

...
−Kn−1

 .

Using finally the principle of the proof of Lemma 3.1 in [6], we obtain that

(57) max
1≤i≤n−1

|f ′(xi)− qi| ≤ C
h̄4

ε

∥∥∥f (5)
∥∥∥
∞,[0,1]

.

�

Remark 4.3. In [6] the scheme presented here is shown to be fourth order accurate
on the regular grid. On the irregular grid, Lemma 4.2 shows us that the result is
almost as good, as long as the grid isn’t very ”irregular” (1

ε is bounded).

5. Numerical results

For the biharmonic operator in a rectangular domain our results are identical to
the fourth order scheme in [7], and therefore we mainly focus on irregular domains.
In all the following examples we try to recover the values of a certain function Φ
inside a domain Ω from the knowledge of ∆2Φ inside Ω and Φ,∇Φ on the boundary
∂Ω. That is, we try to solve (1) for given f, g1, g2 and unknown Φ. The given values
are those of an exact solution which we try to recover. We observed an average
fourth order accuracy throughout the numerical tests.

Remark 5.1. In irregular domains we chose an interior node as a calculated node
(see Section 2) if the distance from the boundary of the ellipse ≥ 2h

3
2 . This constant

gave us good numerical results throughout our tests.

Example 5.2.

We try to recover the values of the function

(58) Φ(x, y) = x3ln(1 + y) +
y

1 + x
, (x, y) ∈ Ω,

from the knowledge of ∆2Φ. The domain is the unit square: Ω = [0, 1] × [0, 1].
Table 1 shows the L∞ error at each level (maximal difference between the computed
solution and the exact one). We compare our results with [1]. It seems that in this

Table 1. Recovering Φ(x, y) = x3ln(1 + y) + y
1+x from ∆2Φ in

the unit square

16× 16 rate 32× 32 rate 64× 64
Our scheme 4.9 · 10−7 4.0 3.1 · 10−8 4.1 1.8 · 10−9

Fourth order Stephenson scheme [1] 8.9 · 10−8 3.9 5.8 · 10−9 3.8 4.1 · 10−10

case the truncation error is slightly smaller in the fourth order Stephenson scheme
than in ours. However, the convergence rate is just as good (even slightly better).
The fourth order Stephenson scheme requires five values of the source term for each
grid point (equation (9) in [1]). This poses a difficulty when using the scheme for
the Navier-Stokes system as done in [5].

Example 5.3.
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We recover the same function Φ (58), from the knowledge of ∆2Φ inside the
skinny ellipse suggested in [12]: Ω = {(x, y) | x2

0.52 + y2

0.152 ≤ 1}. Table 2 shows
the resulting errors. We chose the grid size to be multiples of h = 1.2 to match
the calculated domain from [12], which is [−0.6, 0.6] × [−0.3, 0.3]. The immersed

Table 2. Recovering Φ(x, y) = x3ln(1 + y) + y
1+x from ∆2Φ in

the ellipse x2

0.52 + y2

0.152 ≤ 1

Our scheme
h = 1.2

16 rate h = 1.2
32 rate h = 1.2

64

Error 3.0 · 10−6 4.8 1.1 · 10−7 6.2 1.5 · 10−9

IIM [12]
h = 1.2

64 rate h = 1.2
128 rate h = 1.2

256 rate h = 1.2
512

Error 3.7 · 10−4 1.9 9.5 · 10−5 2.2 2.1 · 10−5 2.1 5.0 · 10−6

interface method presented in [12] is fast and they calculate using a much larger
mesh than ours. However, even under a large mesh, with h = 1.2

512 , the error in [12]
is 5.0 ·10−6 which is comparable to a mesh with h = 1.2

16 using the proposed scheme.
Our scheme performs well; the more than expected rate of convergence (4.8, 6.2) is
attributed to two reasons:

• The small amount of calculated nodes means the asymptotic behavior is
not reached.

• When the mesh size is decreased the amount of calculated points increases
beyond the expected amount. This is because the boundary layer, in which
interior nodes are not calculated nodes, is also decreased (Remark 5.1) i.e.
when the grid size is halved the amount of calculated nodes is more than
quadrupled.

Example 5.4.

We compare our scheme to a numerical example given in [23]. In this case we
try to recover the function,

Φ(x, y) = ex+y, (x, y) ∈ Ω,

from ∆2Φ in the unit disk, Ω = {(x, y) | x2 + y2 ≤ 1}. Table 3 shows the resulting
errors. To compare the results with the polar grid used in [23] we denote by GP the
number of grid points used in the calculation. The assignment of grid points in [23]
is based on an algorithm which sets the points on a certain amount of concentric
circles. As in the previous example, our scheme is slower, but compares favorably
for much smaller mesh sizes.

Example 5.5.

We try to recover the function

Φ(x, y) = (1− x2)2(1− y2)2, (x, y) ∈ Ω,

from ∆2Φ in the ellipse: Ω = {(x, y) | x
2

12 + y2

22 ≤ 1}. Table 4 shows the numerical
results for this example. The scheme maintains a high numerical convergence rate.
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Table 3. Recovering Φ(x, y) = ex+y from ∆2Φ in the unit disk
x2 + y2 ≤ 1

Our Scheme
h = 1

4 rate h = 1
8 rate h = 1

16 rate h = 1
32

GP = 29 GP = 177 GP = 749 GP = 3149
Error 3.7 · 10−4 5.5 8.4 · 10−6 2.6 1.4 · 10−6 6.6 1.4 · 10−8

Scheme of [23]
GP = 1024 rate GP = 2048 rate GP = 4096 rate

Error 1.2 · 10−3 1.92 3.2 · 10−4 1.98 8.1 · 10−5 1.99
GP = 8192 rate GP = 16384

Error 2.0 · 10−5 1.99 5.1 · 10−6

Table 4. Recovering Φ(x, y) = (1 − x2)2(1 − y2)2 from ∆2Φ in
the ellipse x2

12 + y2

22 ≤ 1

h = 1
4 rate h = 1

8 rate h = 1
16 rate h = 1

32

Our scheme 3.49 · 10−3 4.7 1.33 · 10−4 5.0 4.28 · 10−6 4.1 2.43 · 10−7

6. Conclusion

The problem solved in this paper consists of a natural generalization of the com-
pact scheme of Stephenson, [31], to irregular geometries. Contrary to the classical
Finite Element Method which uses a weak form of the biharmonic problem, we stick
here to the design of compactly supported finite difference operators using high or-
der interpolating polynomials. This work can as well be seen as an extension of
the Shortley–Weller scheme for the Laplacian [25] to the biharmonic problem. As
observed in Section 3, a significant difficulty in our approach consisted of the fact
that we used nineteen ”natural” data (over a stencil of nine points) to be interpo-
lated by a sixth order polynomial. This generated a non-trivial kernel. It was a
delicate matter to ”optimize” the direct compliment to this kernel so as to get good
accuracy for the approximation of the biharmonic operator.

Another approach consists of providing sufficiently many points for a given order
of the class of polynomials considered. The interpolation problem is then uniquely
solved and the error estimates for the approximation of a given differential operation
are then based on suitable norms (such as Sobolev norms) of the interpolating
polynomial. We refer the reader to [13] for more details. The final setup of the
scheme makes use of a Hermitian connection between the primary data Φ and the
gradient data Φx,Φy presented in Section 4. The efficiency of the resulting scheme
is clearly demonstrated in Section 5. While the scheme presented here is shown to
be second-order accurate, the problem concerning its convergence is considerably
more delicate, and is treated in a forthcoming paper [8]. Contrary to the variational
approach of the Finite Element Method, it relies on a careful examination of each
kind of point present in the domain, in the spirit of the proofs of the Shortley-Weller
scheme for the Poisson problem, see [21, 25] and references therein.
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7. Appendix

We proove Step I of Theorem 3.11.
Let

QΦ,~h = Q0
Φ,~h

+Qd
Φ,~h

,

where Q0
Φ,~h

interpolates the Φ data, while substituting 0 for all the Φx,Φy data. In

a similar fashion, Qd
Φ,~h

satifies the following (as in (4) after substituting 0 for all
the Φ data):

Qd
Φ,~h

(pi) = 0, 0 ≤ i ≤ 8

∂Qd
Φ,~h

∂d
(pi) = Φd(pi), 1 ≤ i ≤ 8

∂Qd
Φ,~h

∂x
(p0) = Φx(p0),

∂Qd
Φ,~h

∂y
(p0) = Φy(p0).

First, we show that the coefficients of Q0
Φ,~h

are O( 1
h4 ).

Let Sα(x, y) be a basis of Θ consisting of homogeneous polynomials of degree
n(α). Let

Q0
Φ,~h

(x, y) =
∑
α,i a

0
α,i

(
~h
)

Φ(pi)Sα(x, y),
where the sum is on i = 0, 1, ..., 8.

(59)

Proposition 3.10 assures us that there is always a unique representation as pre-
sented in (59). Clearly, the a0

α,i

(
~h
)

are continuous functions of ~h ∈ R8. Since the

cube
[

1
M ,M

]8 ⊂ R8 is compact we have a uniform bound:

(60) N = max
~c∈[ 1

M ,M]8
∣∣a0
α,i (~c)

∣∣ .
We proceed by a homogeneity argument to prove that a0

α,i

(
~h
)

, the coefficients

of Q0
Φ,~h

(x, y), are O
(

1
h4

)
. Let

(61) Φλ = Φ(λx, λy), λ > 0.

Evaluate the polynomial R(x, y) = Q0

Φλ,
~h
λ

(xλ ,
y
λ ) at pi. Since Q0

Φλ,
~h
λ

is the inter-

polation polynomial of Φλ on the ~h
λ stencil we have:

(62) R(pi) = Q0

Φλ,
~h
λ

(pi

λ

)
= Φλ

(pi

λ

)
= Φ(pi).

Notice also that all the derivative data is 0:

(63)
∂R

∂d
(pi) = 0, 0 ≤ i ≤ 8, including both derivatives at p0.

Combining (62) and (63) and using the uniqueness of the interpolation polyno-
mial:

R(x, y) = Q0
Φ,~h

(x, y).
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Expanding the above using (59):∑
α,i

a0
α,i

(
~h
λ

)
Φλ(

pi

λ
)Sα(

x

λ
,
y

λ
) =

∑
α,i

a0
α,i

(
~h
)

Φ(pi)Sα(x, y)

∑
α,i

(
1
λ

)n(α)

a0
α,i

(
~h
λ

)
Φ(pi)Sα(x, y) =

∑
α,i

a0
α,i

(
~h
)

Φ(pi)Sα(x, y).

(64)

Thus, we have:

(65) a0
α,i

(
~h
)

=
1

λn(α)
a0
α,i

(
~h
λ

)
.

Choosing λ = h and noting (30), (60):∣∣∣a0
α,i

(
~h
)∣∣∣ =

1
hn(α)

∣∣∣∣∣a0
α,i

(
~h
h

)∣∣∣∣∣
≤ 1
hn(α)

N

= O

(
1

hn(α)

)
.

Not all the a0
α,i

(
~h
)

are significant in the calculation of ∆2
~h

:

∆2Q0
Φ,~h

(0, 0) = ∆2

∑
α,i

a0
α,i

(
~h
)

Φ(pi)Sα(x, y)

∣∣∣∣∣∣
x=0,y=0

=
∑
α,i

a0
α,i

(
~h
)

Φ(pi) ∆2Sα(x, y)
∣∣
x=0,y=0

=
∑

n(α)=4,i

bαa
0
α,i

(
~h
)

Φ(pi) =
∑
i

O

(
1
h4

)
Φ(pi),

(66)

where bα = ∆2Sα(x, y)
∣∣
x=0,y=0

.
We proceed to show that the coefficients of Qd

Φ,~h
are O( 1

h3 ). Let

Qd
Φ,~h

(x, y) =
∑
α,i a

d
α,i

(
~h
)

Φd(pi)Sα(x, y),
where the sum includes both derivatives at p0

(67)

and assume that the approximate values of the derivatives satisfy

(68) (Φλ)d = (Φ(λx, λy))x = λΦd(λx, λy).

This equation is a natural requirement on the connection between Φ and Φx,Φy.
Eq. (68) follows from the following equation

(69) (Φλ)x = λΦx(λx).

To verify this relation we must first describe the interval on which Φλ is defined.
This interval is [0, 1

λ ] where the spaces between the grid points are hi
λ . Let xλi = xi

λ
mark the new grid points. We show that (Φλ)x = λΦx(λx) is a solution to the
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system described in (46). Recalling (45) and defining the function gi,λ(x) = gi(λx)
we obtain

gi,λ(xλi−1) = (Φλ)i−1, gi,λ(xλi ) = (Φλ)i, gi(λxλi+1) = (Φλ)i+1,

g′i,λ(xλi−1) = ri−1, g
′
i,λ(xλi+1) = ri+1,

where rj = λqj . Thus, (Φλ)x = λΦx(λx) is a solution to the equation. Lemma 4.2
tells us that the solution is unique and therefore we can conclude,

(Φλ)x = λΦx(λx).

Returning to the estimate of the coefficients adα,i in Eq. (67), we evaluate the
polynomial Rd(x, y) = Qd

Φλ,
~h
λ

(xλ ,
y
λ ) at pi. In a similar fashion to (62):

∂Rd

∂d
(pi) =

∂Qd
Φλ,

~h
λ

(
pi

λ

)
∂d

=
1
λ

∂Qd
Φλ,

~h
λ

∂d

(pi

λ

)
=

1
λ

(Φλ)d
(pi

λ

)
= Φd(pi),

where the last equality follows from (68). Notice also that:

Rd(pi) = 0,

and therefore, by uniqueness,

Rd(x, y) = Qd
Φ,~h

(x, y).

We expand the equality above using (67),∑
α,i

adα,i

(
~h
λ

)
(Φλ)d (

pi

λ
)Sα(

d

λ
,
y

λ
) =

∑
α,i

adα,i

(
~h
)

Φd(pi)Sα(x, y)

∑
α,i

(
1
λ

)n(α)−1

adα,i

(
~h
λ

)
Φd(pi)Sα(x, y) =

∑
α,i

adα,i

(
~h
)

Φd(pi)Sα(x, y).

Repeating calculations (65)-(66) using the above:

∆2Qd
Φ,~h

(0, 0) =
∑
i

O

(
1
h3

)
Φd(pi),

which completes the required proof.
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