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THE OPTIMIZED SCHWARZ METHOD WITH A COARSE GRID
CORRECTION∗

OLIVIER DUBOIS† , MARTIN J. GANDER‡ , SÉBASTIEN LOISEL§ , AMIK ST-CYR¶, AND

DANIEL B. SZYLD‖

Abstract. Optimized Schwarz methods (OSMs) use Robin transmission conditions across the
subdomain interfaces. The Robin parameter can then be optimized to obtain the fastest convergence.
A new formulation is presented with a coarse grid correction. The optimal parameter is computed
for a model problem on a cylinder, together with the corresponding convergence factor which is
smaller than that of classical Schwarz methods. A new coarse space is presented, suitable for OSM.
Numerical experiments illustrating the effectiveness of OSM with a coarse grid correction, both as
an iteration and as a preconditioner, are reported.
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1. Introduction. A popular and quite effective method for solving large elliptic
problems is to subdivide the domain into many subdomains and solve smaller elliptic
problems on each subdomain in parallel. The Schwarz iteration reconciles these local
solutions by using Dirichlet boundary conditions on the artificial interfaces between
the subdomains and iterating; see, e.g., [40], [45]. These methods are also used as
preconditioners. The idea of optimized Schwarz methods (OSMs) is to use different
boundary conditions on the artificial interfaces, such as Robin conditions, and take
advantage of the fact that the Robin parameter can be optimized to obtain a faster
convergence; see below for references.

It is well known that a coarse grid correction improves the convergence of the
classical Schwarz methods, and in fact it is necessary in order to obtain weak scaling.
An algorithm scales weakly if it can solve a larger problem in reasonable time by
increasing the number of processors.1

In this article, we introduce an optimized Schwarz method with a coarse grid
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1The usual statement is that an algorithm scales weakly if it can solve a problem that is twice
the size using twice the number of processors in the same amount of time. The classical Schwarz
method with a coarse grid correction can be shown to scale weakly in this sense, as long as we neglect
the cost of communication and the cost of calculating the coarse grid correction. See section 5 for
further details.
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correction, which we call coarse grid optimized of Order 0 (CO0 for short). This
is the first time that a coarse grid correction for OSM is analyzed. In fact, this is
the first time that an optimized parameter is calculated for an OSM with multiple
subdomains. We consider a version of the method with overlap (section 3) and one
without overlap (section 4). We analyze these new formulations on a model problem,
namely, the Laplacian on a cylinder, described in detail in section 2. For this model
problem, we are able to study in detail the convergence properties of the method for
any number of subdomains, including the computation of an optimal parameter and
the corresponding convergence factor. We show that for our model problem CO0 has
better weak scaling properties than the classical alternating Schwarz method with
a coarse grid correction (section 5). We describe implementation details for general
domains of the CO0 algorithm using a restricted additive Schwarz iteration, and we
introduce a proposed coarse space (section 6). In sections 7 and 8 we present numerical
experiments illustrating the convergence of the new CO0 methods. We end with some
conclusions in section 9, which is followed by an appendix, which contains some of
the more technical proofs.

We now outline the history of OSMs and refer to [15] and [16] for further details,
as well as a complete derivation for Helmholtz and Laplace problems in the plane.
The optimized Schwarz method was introduced in [6], [36], [37] under various names.
The OSM has one or more free parameters which need to be chosen carefully to obtain
the best possible convergence. Several efforts were undertaken to find, for different
differential equations and/or suitable domains, the best possible parameter choices;
see, e.g., [20], [22], [23], [24], [25].

The usual approach for optimizing the free parameters is to take a Fourier trans-
form of the partial differential equation, obtaining an explicit recurrence relation for
the iteration. This works only in special cases, for example, if the domain is a rectangle
and the differential operator is the Laplacian with homogeneous Dirichlet conditions.
In addition to the Laplace and Helmholtz problems, the method can be used for vari-
ous other canonical problems; see [3], [12], [18], [19], [31], [33] for convection-diffusion
problems; [17], [21] for the wave equation; [1], [9] for Maxwell’s equations; [10] for
fluid dynamics; and [34], [39] for the shallow water equation. As mentioned in these
references and others, one could only consider relatively simple domains. For certain
nonoverlapping nonconvex polygonal subdomains, see [7]. Proofs of convergence for
more general situations have been recently obtained [26], [29], but the techniques used
are not amenable to finding the optimal parameters. A proof of convergence for the
nonoverlapping algorithm was provided in [27], using energy estimates; see also [30].
We mention in passing that one way of obtaining convergence of the nonoverlapping
algorithm is to define a relaxation of the method [8].

In the analysis of our CO0 method, we take an approach similar to that in the
rest of the literature in this field and consider a model problem. We choose the
Laplacian on a cylinder, where the subdomains are overlapping vertical strips. By
making this choice, we can analyze the methods by taking a Fourier transform in
the vertical direction and estimating the eigenvalues of the iteration matrix. As we
shall see, this allows us to bound the convergence of the method with the coarse grid
correction as well as to compute the optimal Robin parameter. Numerical experiments
for this model problem illustrate the theoretical results. Experiments with other
configurations, including meshes with cross points, are also presented, in which the
form of the optimal parameters computed for the model problems are shown to be
useful as well in more general situations. The experiments also show that the coarse
grids developed in the paper work well.
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The major innovation of our paper is the addition of a coarse grid to OSMs. This
is essential for such methods to make them scalable, and our paper contains to the
best of our knowledge the first convergence analysis of an OSM with a coarse grid
correction.

The analysis of OSMs is much harder than the analysis of classical Schwarz meth-
ods, because the iterates are discontinuous, and thus none of the abstract Schwarz
theory developed for the additive Schwarz method can be used. We develop rigorous
convergence estimates for a very specially chosen model decomposition. The tools used
in this analysis unfortunately do not carry over to more general decompositions. While
the analysis is valid only for our model decomposition, we test numerically the OSM
with coarse grid correction for the fully general case, including cross points, for various
finite difference, finite element, and spectral element discretizations in sections 7 and 8.
In each case, the method performs as predicted by our analysis for the model situation.

We denote by A∗ the conjugate-transpose of matrix A and by �z and �z the
real and imaginary parts of z ∈ C, respectively. As usual, O(g) stands for a function
whose magnitude is bounded above by a constant times g, while Ω(g) stands for a
function whose magnitude is bounded below by a constant times g. In section 5, we
neglect polylogarithmic terms, hence O(g) stands for a function whose magnitude is
bounded by a polylogarithm times g.

2. The model problem and the CO0 method. The model problem we con-
sider is to solve the Laplacian on a cylinder, i.e., on the domain Ω = (R/JHR)×(0, a)
with periodic boundary conditions at x = 0 and JH and with homogeneous Dirichlet
data at y = 0 and a. Thus, the goal is to solve the elliptic boundary value problem⎧⎪⎪⎨

⎪⎪⎩
Δu = f in Ω,

u(x, 0) = u(x, a) = 0 for all x ∈ R/JHR,
u(0, y) = u(JH, y) for all y ∈ (0, a),
ux(0, y) = ux(JH, y) for all y ∈ (0, a)

(2.1)

with data f and unknown u. We emphasize now that we are looking for solutions
which are periodic in x, which is why we use the notation x ∈ R/JHR in (2.1).

We consider J overlapping subdomains consisting of vertical strips given by

Ωj =

((
j − 1

2

)
H − L

2
,

(
j +

1

2

)
H +

L

2

)
× (0, a), j ∈ Z/JZ.

Therefore, there are J subdomains, and the overlap is of width L. We have again
emphasized the periodicity in x by using j ∈ Z/JZ. In particular, we have that
Ω0 = ΩJ , and we can speak of the neighbors Ωj+1 and Ωj−1 to the subdomain Ωj ,
for each j = 1, . . . , J .

An equivalent formulation of the model problem (2.1) taking into account the
overlapping subdomains and imposing Robin boundary conditions on the artificial
interfaces is the following augmented system:⎧⎪⎪⎨

⎪⎪⎩
Δvj = f in Ωj ,

vj(x, 0) = vj(x, a) = 0 for all x ∈ R/JHR,
(p+Dx)vj |x=(j+1/2)H+L/2 = (p+Dx)(vj+1)|x=(j+1/2)H+L/2,
(p−Dx)vj |x=(j−1/2)H−L/2 = (p−Dx)(vj−1)|x=(j−1/2)H−L/2

(2.2)

for j = 1, . . . , J , where the coefficient p > 0 is a Robin parameter, which we may
choose in any way we prefer, provided the subdomain problems are well posed, and
where vJ+1 is understood to be v1.
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Lemma 2.1. The system (2.2) has a unique solution {vj}. This unique solution
has the property that vj = vj+1 on Ωj ∩ Ωj+1, j = 1, . . . , J . By gluing the local
solutions vj together, we obtain v ∈ H1

0 (Ω) with v = u being the unique solution of
(2.1).

Proof. Assume that we have a solution {vj} of (2.2). Let j ∈ {1, . . . , J} and
consider the “overlap problem”⎧⎪⎪⎨

⎪⎪⎩
Δw = f in Ωj ∩ Ωj+1,

w(x, 0) = w(x, a) = 0 for all x ∈ R/JHR,
(p+Dx)w|x=(j+1/2)H+L/2 = (p+Dx)(vj+1)|x=(j+1/2)H+L/2,
(p−Dx)w|x=(j+1/2)H−L/2 = (p−Dx)(vj)|x=(j+1/2)H−L/2,

(2.3)

where w is the unknown. Observe that (2.3) has a unique solution w.2 Furthermore,
we note from (2.2) that both w = vj and w = vj+1 solve (2.3). Because the solution
of (2.3) is unique, we conclude that vj = vj+1 on Ωj ∩ Ωj+1. Therefore, we may glue
together the solutions {vj} obtaining v = u, the unique solution u ∈ H1

0 (Ω) to (2.1).
Conversely, if u is the unique solution to (2.1), then setting vj = u|Ωj for every j

yields a solution to (2.2).
A one-level optimized Schwarz iteration with Robin conditions (OO0) is obtained

from (2.2) by iteratively enforcing the interface conditions. In order to introduce the
coarse grid correction, our starting point is the augmented system (2.2). The “coarse
space” is defined as a suitable subspace of H1

0 (Ω) of small dimension. The coarse grid
correction z is defined as the solution to some approximate Laplacian on the coarse
space, and it is incorporated in the Robin conditions across the artificial interfaces.
Given initial approximations v0j to the solution of (2.2), j = 1, . . . , J , and an initial

approximation to the coarse grid correction z0 (which can be chosen as z0 = 0), the
iterative CO0 method can be described as follows:⎧⎪⎪⎨

⎪⎪⎩
Δvnj = f in Ωj ,

vnj (x, 0) = vnj (x, a) = 0 for all x ∈ R/JHR,

(p+Dx)v
n
j |x=(j+1/2)H+L/2 = (p+Dx)(v

n−1
j+1 − zn−1)|x=(j+1/2)H+L/2,

(p−Dx)v
n
j |x=(j−1/2)H−L/2 = (p−Dx)(v

n−1
j−1 − zn−1)|x=(j−1/2)H−L/2

(2.4)

for j ∈ Z/JZ and n = 1, 2, . . . , and with the coarse grid correction{
ΔHz

n = (Δvn − f)H in Ω,
zn = 0 on ∂Ω.

(2.5)

Here, we have used the notation ΔH for some approximate Laplacian and the notation
(·)H for some suitable projection of a function to the coarse space. The function vn

must be constructed by gluing the local solutions vn1 , . . . , v
n
J in some suitable way.

The scalar p ∈ R will be chosen in such a way that the method has fast convergence.
When two subdomains Ωj and Ω� intersect, then there are multiple function

values (one for vnj and one for vn� ) that must be stored on Ωj ∩ Ω�. (This explains
the terminology augmented system.) In a computer program, one can implement
an iteration using the augmented system, but there is a remarkable correspondence
between the iteration on the augmented system and the restricted additive Schwarz
(RAS) iterations [42] (see also [35]), and thus the RAS approach is a good alternative
to gluing the functions vnj . This is further discussed in section 6.3

2This follows either from the variational theory or, since the overlap is a rectangle, from Fourier
sine series.

3There are also relationships with the multiplicative Schwarz and restricted multiplicative
Schwarz iterations, as well as weighted variants.

□ 
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In the next section, we analyze the CO0 method (2.4)–(2.5), proving its geometric
convergence with convergence factor ρ = 1−Cε1/3, where C is a constant and ε = L/H
is the ratio between the overlap and the coarse grid parameter. Later, in section 4,
we consider a nonoverlapping version of the CO0 method and we show convergence
with a convergence factor ρ = 1−Cε1/2 (for some other constant C), where the small
parameter is ε = h/H in that case. By comparison, a classical Schwarz algorithm
with a coarse grid correction, when used as a preconditioner, has a condition number
κ ≤ C(1+H

L ); see, for example, [45, section 3.6]. For an iterative Schwarz method with
Dirichlet interface conditions and coarse grid correction, although there are no results
regarding the convergence factor, we expect (and observe in numerical experiments)
the asymptotic behavior ρ = 1− C(L/H).

3. Convergence of the overlapping CO0 algorithm. For a function v(x, y)
on Ωj or Ω, define the Fourier transform v̂(x, k) by

v̂(x, k) =
1√
a

∫ a

0

v(x, y) sin (ky) dy.

This choice of the definition of the Fourier transform ensures the simple formula

(̂vyy)(x, k) = −k2v̂(x, k), independently of a. The frequency variable k takes values
in the discrete domain (π/a)N ⊂ (0,∞). A function of the form∑

k∈(π/a)N, k≤d

αk sinky

is called a sine polynomial of degree d.
Let u be the solution of the boundary value problem (2.1). Then, the error iterates

vnj − u also satisfy (2.4), but with f = 0. Therefore, to analyze the convergence of
the CO0 method and compute its convergence factor, the simplifying assumption that
f = 0 is made.

Since Δvnj = 0 in each subdomain, we can “solve” the iteration (2.4) by taking a
Fourier transform in y. Indeed, for n = 1, 2, . . . , and for j ∈ Z/JZ, we obtain

v̂nj (x, k) = αn
j (k)e

k(x−jH) + βn
j (k)e

−k(x−jH).(3.1)

This particular choice of basis and translation will result in an iteration matrix which
is easier to analyze. Indeed, the subdomains are all similar to each other.

For our analysis of the CO0 method (2.4)–(2.5) we use a coarse grid which is
“semispectral,” with J nodes along the x axis and with a/H − 1 frequencies (we
assume that a/H is an integer) along the y axis (the y = 0 and y = a points being
taken care of by the Dirichlet conditions). The nodes along the x axis are located at
xj = jH , j ∈ Z/JZ, and consequently each subdomain contains one coarse grid point
in the x direction, and there is a total of J coarse grid points in the x direction.

We exploit the geometric structure of our particular domain decomposition and
choose the basis functions of the coarse space to be piecewise linear in x and sine
polynomials in y. The basis functions are of the form 	(x) sin ky, where 	(x) is
a piecewise linear function of x with nodes at x = 0, H, . . . , (J − 1)H and k ∈
{π/a, 2π/a, . . . , (a−H)π/aH}.

Since the coarse grid correction is a sine polynomial in y, it is more natural to
express it by giving the Fourier coefficients. Since there are a/H − 1 points in the y
directions, there should be a/H − 1 frequencies in the y direction. Since the grid is
semispectral,4 we analyze it separately for the frequencies k ≥ π/H and k < π/H .

4Spectral methods truncate the information beyond a certain frequency.
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We note that the coarse space is designed to reduce the error in the low frequencies.
Therefore, the first requirement for the coarse grid correction is that ẑn(x, k) = 0 for
all k ≥ π/H and all x. This means that for every x, zn(x, y) is a sine polynomial in y
of degree less than π/H . For frequencies k < π/H , in the x direction, we assume that
for each (discrete) frequency k, the function ẑn(x, k) is piecewise linear with vertices
at the grid points 	H , 	 = 1, 2, . . . , J . At each grid point 	H and each frequency
k < π/H , k ∈ (π/a)N, we define

ẑn(	H, k) = v̂n� (	H, k).(3.2)

That is, this particular coarse grid correction computes the exact solution û (the
Fourier transform of the exact solution u) at the vertices of the coarse grid for fre-
quencies k < π/H . Equation (3.2) formally defines the approximation used for the
Laplacian in the coarse space.

We are now ready to state our main result.
Theorem 3.1. Consider the solution of (2.1) using the CO0 method defined by

(2.4) with a coarse grid correction defined as in (3.2). Let L > 0 be the thickness of
the overlap, and let H > L be the coarse grid parameter with each subdomain having
a width of (H + L), counting the overlap. Let J ∈ N be the number of subdomains.
When L/H is small, for any c > 0, the choice of parameter

p∗c = cH−2/3L−1/3(3.3)

leads to a convergence factor

ρ(L,H) = 1−min{2/c,
√
8c}(L/H)1/3 +O((L/H)2/3).(3.4)

Furthermore, if the number of subdomains J is either even or large, and for sufficiently
large a, the algorithm diverges if

p <
2

2H − L
.(3.5)

The proof of this theorem is rather technical, and it is developed over the next
three subsections. Because we also want to show divergence when the parameter p is
too small, we must ensure that our estimates are sharp. For that reason, in the proof
of Lemma 3.7 and elsewhere, we will keep track of the sharpness of our estimates.

In the rest of this subsection, we make several remarks on this result.
Remark 3.2. We emphasize that the upper bound (3.4) for the convergence

factor estimate depends only on ε = L/H and not on the separate values L and
H . This is important, because a standard method to increase the parallelism of the
solver is to increase the number of subdomains, as the fine grid parameter h becomes
finer. In this situation, if the overlap L is exactly h, and if we keep h/H constant by
increasing the number J of subdomains, then the convergence factor estimate (3.4)
will not deteriorate as h tends to zero. This is called “weak scaling.” Another good
scaling property of our estimate is that it does not directly depend on the number J
of subdomains, the height a of the cylinder, or the circumference JH of the cylinder
(except indirectly inasmuch these variables may be related to L and H in a particular
problem).

Remark 3.3. If p is too small, then Theorem 3.1 indicates that the algorithm
diverges. In order to guarantee p∗c >

2
2H−L regardless of the values of L,H, ε, p, a, one

should choose c > 2.
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Remark 3.4. The important statement in Theorem 3.1 is that the optimized
parameter for small ε is p∗c = O(ε2/3L−1). Equation (3.4) suggests that c = 2−1/3 ≈
0.7937 is the best possible, but this is true only when ε is very small and for the
specific implementation of the Laplace solver on the cylinder analyzed here, where the
subdomains are overlapping strips. In practice, when solving on a general domain with
general subdomains, any coefficient c will lead to a convergence factor of 1−O(ε1/3).
The best possible c can be determined numerically.

Remark 3.5. Although the spectrum (π/a)N is discrete, we will often replace
it with a continuum such as (0,∞) for estimating convergence. Using a discrete
spectrum has previously been studied in detail in [28] for the spherical Laplacian
and was found to significantly complicate the analysis. It was found that using a
continuous spectrum instead of a discrete spectrum did not affect the asymptotic
behavior of the methods.

Remark 3.6. In [15], an analysis of the OSM for two subdomains is performed
under the assumption that the overlap L is equal to h, the fine grid parameter. In that
paper, the optimized parameter p = p∗ is given as a function of h and kmin, the lowest

frequency in the vertical direction. The formula obtained is p∗ = 2−1/3k
2/3
minh

−1/3.
There is a relationship between p∗ and p∗c . In our case, the lowest frequency repre-
sented on the domain is kmin = π/a. However, the lowest frequency which is not
coarse grid corrected is kcgc = π/H � kmin. If we set kmin = kcgc = π/H in the
formula for p∗, we obtain our parameter p∗c with the constant c = (2π)2/3/2 ≈ 1.7.
Thus, our analysis seems to validate the heuristic of analyzing a two-subdomain model
problem and using the resulting parameter estimate with J subdomains and a coarse
grid correction, by assuming that the OSM must be optimized for the high frequencies
that are not coarse grid corrected, i.e., by using kcgc as the lowest resolvable frequency
in the two-domain analysis, instead of the usual kmin.

However, this two-subdomain heuristic does not reveal the divergence behavior.
The divergence behavior is revealed only by our analysis of the interplay between the
coarse grid correction and the OSM in the low frequencies.

3.1. The eigenvalues of a block-circulant matrix. We begin with an aux-
iliary result which gives a formula for the eigenvalue of a block circulant matrix. In
short, we will see that our iteration can be rephrased as a power iteration for a 2× 2
block matrix T , whose blocks are all “tridiagonal” complex circulant matrices.

Lemma 3.7. Let A and B be J×J “tridiagonal” complex circulant matrices, i.e.,
of the form

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 a1 0 . . . 0 a−1

a−1 a0 a1 0 . . . 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0
. . .

. . . a1
a1 0 . . . 0 a−1 a0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0 b1 0 . . . 0 b−1

b−1 b0 b1 0 . . . 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0
. . .

. . . b1
b1 0 . . . 0 b−1 b0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Further let

T =

[
A B
B∗ A∗

]
,

where X∗ stands for the conjugate-transpose of X. Then, the eigenvalues of T are

λj,± = �μj ±
√
|νj |2 − |�μj |2 ∈ C,(3.6)
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where

(3.7) μj = a0 + a1e
2πij
J + a−1e

− 2πij
J , νj = b0 + b1e

2πij
J + b−1e

− 2πij
J , j = 1, . . . , J.

Proof. The circulant matrices A and B have the Fourier basis as eigenvectors.

Indeed, let ej be the vector with entries ej� = e
2πi�j

J , where 1 ≤ 	 ≤ J is fixed. Then,

(Aej)� = a0e
2πi�j

J + a1e
2πi(�+1)j

J + a−1e
2πi(�−1)j

J

= e
2πi�j

J

(
a0 + a1e

2πij
J + a−1e

−2πij
J

)
,

and a similar argument holds for B. Hence, Aej = ejμj and Bej = ejνj . Let F be the

discrete Fourier transform matrix with entries F�j = 1√
J
e

2πi�j
J for 	, j = 1, 2, . . . , J .

Then consider the matrix

U =

[
F 0
0 F

]−1

T

[
F 0
0 F

]
.

Then, U and T have the same spectrum, and

U =

[
M N
N∗ M∗

]
,

where M = diag(μ1, . . . , μJ) and N = diag(ν1, . . . , νJ ) are diagonal matrices and μj ,
νj are given in (3.7).

The 2J × 2J matrix T operates on 2J dimensional vectors, say, of the form
(α1, . . . , αJ , β1, . . . , βJ )

T . Now consider the permutation matrix P defined by

P

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1

...
αJ

β1
...
βJ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1

β1
α2

β2
...
αJ

βJ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then, V = PUP−1 is block diagonal and

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ1 ν1 0 0 . . . 0
ν̄1 μ̄1 0 0 . . . 0
0 0 μ2 ν2 . . . 0
0 0 ν̄2 μ̄2 . . . 0
...

. . .
. . .

0 . . . 0 μJ νJ
0 . . . 0 ν̄J μ̄J

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The eigenvalues of the diagonal blocks are given by (3.6).
The following corollary will be used in the computation of the spectral radius of

the iteration matrix.
Corollary 3.8. Let A,B and T be as in Lemma 3.7. Let a0 = b0 = 0, and

a1, a−1, b1, b−1 ∈ R be such that

a1a−1 = b1b−1.(3.8)

□ 
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Then,

ρ(T ) ≤ |a1 + a−1|+ |b1 + b−1|.(3.9)

This estimate is sharp: equality in (3.9) holds when J is even or in the limit when J
tends to infinity.

Proof. For convenience, define

s1 = a1 + a−1 and s2 = (b1 − b−1)
2 − (a1 − a−1)

2.

From (3.7), for j = 1, . . . , J , we have νj = (b1 + b−1) cos t + i(b1 − b−1) sin t and
μj = (a1 + a−1) cos t + i(a1 − a−1) sin t, where t = 2πj/J . Therefore, it suffices to
show that

φ(t) = (a1 + a−1) cos t+

√
(b1 + b−1)2 cos2 t+ (b1 − b−1)2 sin

2 t− (a1 − a−1)2 sin
2 t

= (a1 + a−1) cos t+
√
(b1 − b−1)2 − (a1 − a−1)2 + ((a1 − a−1)2 + 4b1b−1) cos2 t

(3.8)
= s1 cos t+

√
s2 + s21 cos

2 t

attains its maximum absolute value when t = 0. This follows from the fact that the
function φ(z) = s1z +

√
s2 + s21z

2, with z in the interval [−1, 1], attains a maximum
absolute value of (3.9) either at z = 1 or z = −1.

The discriminant d(z) = s2 + s21z
2 is a convex quadratic polynomial, with its

minimum at z = 0, and is symmetric about z = 0 (i.e., d(z) is an even function). It is
possible that d(0) < 0; however, d(±1) = (b1 + b−1)

2 ≥ 0. Hence, d(z) is nonnegative
for z2 in an interval [η2, 1] (and if η > 0, then d(z) < 0 in (−η, η)). Since φ(z) is real
and monotonic on [−1,−η] and [η, 1], no z in (−1,−η) and (η, 1) is a global extremum.

If the discriminant s2 + s21z
2 is nonpositive (and in particular, (�

√
s2 + s21z

2)2 =
−(s2 + s21z

2)) for z in some interval [−η, η], then on that interval, we have

|φ(z)| =
√

(�φ(z))2 + (�φ(z))2 =
√
(s1z)2 − (s2 + s21z

2) =
√

|s2|

=
√
|(b1 − b−1)2 − (a1 − a−1)2|

≤ |a1 + a−1|+ |b1 + b−1| = max{φ(−1), φ(1)}.

Hence, there is no global maximum in [−η, η].
To show that equality holds in (3.9) when J is even, observe that z = 1 is

obtained precisely when j = 0, and z = −1 is obtained precisely when j = J/2.
Similarly, if J → ∞, then setting j = �J/2� leads to z → −1. Hence, max |λj,±| →
max{φ(−1), φ(1)}.

3.2. Convergence factor of the overlapping algorithm for a general
Robin parameter. Using Lemma 3.7 and Corollary 3.8, it is now possible to ob-
tain an estimate for the convergence factor of the iteration. The convergence factor
depends on k, the frequency parameter on the fine grid, but also on the parameter
j ∈ {1, . . . , J}, which can be interpreted as a frequency parameter for the coarse grid
problem.

The proof of the following result is highly technical and is presented in the ap-
pendix.

□ 
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Lemma 3.9. Consider the CO0 algorithm with J subdomains. An upper bound
for the convergence factor for frequencies k ≥ π/H is

ρp,L,H(k) = max± |ρp,L,H,±(k)|

= max±

∣∣∣∣∣
−e−kL (−p+ k)2 + ek L (p+ k)2 ±

(
−p2 + k2

) (
ekH − e−kH

)
ek (H+L) (p+ k)

2 − e−k (H+L) (p− k)
2

∣∣∣∣∣ .(3.10)

Further, let

a−1 = a−1(k, p, L,H)

= e−
1
2 k (H+L)

(
−2 (−p+ k)

2
He−

1
2k (−H+L) − (−p+ k) (pH + pL+ 2)

)
/d,

(3.11)

b−1 = b−1(k, p, L,H)

= e−
1
2 k (H+L)

(
2 (−p+ k)H (p+ k) e

1
2 k (−H+L) − (−p+ k) (pH + pL+ 2)

)
/d,

(3.12)

a0 = a0(k, p, L,H) = b0 = b0(k, p, L,H) = (−pH + pL+ 2)/d,
(3.13)

a1 = a1(k, p, L,H)

= e
1
2k (H+L)

(
− (p+ k) (−2 pH − 2 kH) e

1
2k (−H+L) − (p+ k) (pH + pL+ 2)

)
/d,

(3.14)

b1 = b1(k, p, L,H)

= e
1
2k (H+L)

(
2 (p+ k)H (−p+ k) e−

1
2 k (−H+L) + (p+ k) (pH + pL+ 2)

)
/d,

(3.15)

where the denominator d is

d = d(k, p, L,H) = −2 (p+ k)
2
Hek (H+L) + 2 (−p+ k)

2
He−k (H+L).(3.16)

Then, an upper bound for the convergence factor for frequencies k < π/H is

ρp,L,H(k) = max{|λk,1,+|, |λk,1,−|, |λk,−1,+|, |λk,−1,−|,�
√
pk(1),�

√
pk(−1)},(3.17)

where λk,·,· and pk(z) are defined by

λk,1,± =λk,1,±(p, L,H) = (a0 + a1 + a−1)± (b0 + b1 + b−1),(3.18)

λk,−1,± =λk,−1,±(p, L,H) = (a0 − a1 − a−1)± (b0 − b1 − b−1),(3.19)

pk(z) = pk(z, p, L,H) = 2(a0(a1 + a−1)− b0(b1 + b−1))z

+ a20 + a21 + a2−1 − b20 − b21 − b2−1.(3.20)
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Lemma 3.9 is the first of several technical results. The estimate (3.10) arises
naturally from the definition of the iteration and from the formula (3.1) combined
with Corollary 3.8. In principle, the low-frequency estimate (3.17) is obtained in a
similar fashion, but the combination of the local solves with the effect of the coarse
grid makes the estimate (3.17) much more complicated.

3.3. Asymptotic convergence factor and the optimized parameter. Given
the convergence factor estimate calculated in Lemma 3.9, we can now estimate the
asymptotic convergence factor for the Robin parameter p = p∗c given by (3.3). This
analysis is technical, so we split it into two lemmas, the first for the high frequencies
and the second for the low, coarse grid corrected frequencies. The proofs themselves
are in the appendix.

Lemma 3.10. Consider the CO0 algorithm with J subdomains, coarse grid pa-
rameter H, and overlap parameter L. Fix c > 0 and let ε = L/H and p = cε2/3L−1.
When ε is sufficiently small, the convergence factor for frequencies k ≥ π/H is

sup
k≥π/H

ρ(k) = 1−min

{
2
π (−1 + eπ)

c (eπ + 1)
,
√
8c

}
ε1/3 +O(ε2/3).(3.21)

Lemma 3.11. Consider the CO0 algorithm with J subdomains, a coarse grid
parameter H, and an overlap parameter L. Fix c > 0. Let ε = L/H and p = cε2/3/L.
If ε is sufficiently small, the CO0 algorithm converges for frequencies k < π/H. An
upper bound of the asymptotic convergence factor, as ε→ 0, is given by

ρ = 1− 2

c
ε1/3 +O(ε2/3).(3.22)

After these two lemmas, all that remains is to put them together and obtain the
proof of the main result of this section.

Proof of Theorem 3.1. Putting together (3.21) and (3.22), one obtains (3.4).
For the divergence result, one can verify that

lim
k→0+

λk,−1,+(p, L,H) = (L/H) + 2/(pH)− 1 ≥ −1.

This is a monotonically decreasing function of p and

lim
k→0+

λk,−1,+(p, L,H) > 1 when p <
2

2H − L
,

which is (3.5). If the number of subdomains J is even, the value λk,−1,+(p, L,H) is
an exact eigenvalue of the iteration matrix T = Tk with k = 0, obtained by taking
j = J/2 in (3.7) and λj,− in (3.6), hence the convergence factor ρ(T0) > 1 (i.e., the
iteration diverges for low frequencies5) if p < 2

2H−L . Similarly, if J → ∞ is odd but
large, we use j = �J/2� and obtain that λ0,z,+ → λ0,−1,+; cf. (10.3) in the appen-
dix.

4. Analysis of the nonoverlapping CO0 algorithm. In addition to the over-
lapping method analyzed in the previous section, we present a nonoverlapping method
here. By setting L = 0 in the iteration (2.4), a nonoverlapping, coarse grid corrected
OSM is obtained. The optimized Robin parameter for the overlapping algorithm de-
pends on the overlap L and the coarse grid parameter H , but not on the fine grid

5The frequency k = 0 is not part of our spectrum (π/a)N, but it is approached when a tends to
infinity.

□ 
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parameter h. The nonoverlapping optimized Robin parameter also depends on the
coarse grid parameter H , but it also depends on the fine grid parameter h.

Our analysis of the nonoverlapping algorithm recycles many of the results of the
preceding section, and again the technical proofs are detailed in the appendix. In this
section, L = 0 (we have a nonoverlapping algorithm), and h is the fine grid size. We
define ε = h/H , the ratio of the fine grid to the coarse grid parameter.

The estimate (3.10) for the convergence factor for the high frequencies remains
valid (if we replace L = 0), but now we have that limk→∞ ρp,0,H(k) = 1, which would
indicate that the convergence factor is 1, i.e., there is no convergence. To resolve this
difficulty, we exploit the fact that the fine grid cannot resolve arbitrarily large frequen-
cies. Indeed, we assume that the fine grid is “semispectral” and that it only resolves
frequencies k < π/h.6 The convergence factor is then ρ = sup0<k<π/h ρp,0,H(k), with
ρp,0,H(k) defined by (3.10) for the high frequencies k ≥ π/H , and by (3.17) for the
low frequencies k < π/H .

Theorem 4.1. Let H > 0 be the coarse grid parameter, and let 0 < h < H be
the fine grid parameter, with each subdomain having a width of H. Let J ∈ N be the
number of subdomains. When h/H is small, the optimized parameter of the coarse
grid corrected nonoverlapping algorithm CO0 is

p∗c,0 = c(hH)−1/2.

When h/H is small, the convergence factor obtained is

ρ(h,H) = 1−min{2/c, 2c/π}(h/H)1/2 +O(h/H) < 1.(4.1)

Furthermore, the iteration diverges if p < 1/H.
Remark 4.2. As Theorem 3.1 did for the overlapping iteration, Theorem 4.1 states

that the nonoverlapping iteration diverges if p is too small. In order to guarantee p >
1/H regardless of the parameters h,H, ε, J, a, one should choose c > 1. Note also that
as in Remark 3.6, the coefficient p∗c,0 is related to the coefficient obtained in [15] for
the nonoverlapping case. Also as in Theorem 3.1, the estimate (4.1) depends only on
the quotient ε = h/H and not on the specific values of h/H . This is important in the
situation where we make h tend to zero, while keeping the quotient ε = h/H constant
by increasing the number of subdomains. Such an algorithm scales “weakly.”

5. On the performance of two-level domain decomposition with mini-
mal overlap. Since the structure for a parallel elliptic solver is sufficiently compli-
cated, it is not immediately obvious that there is a benefit to using an algorithm with
a convergence factor of ρCO0 = 1−Cε1/3 (e.g., CO0) over one that has a convergence
factor of ρCS = 1 − Cε (such as classical Schwarz). In this section, we briefly dis-
cuss a simple computational scenario which illustrates the fact that indeed it may be
worthwhile to use the method which is in theory asymptotically faster.

We keep the algorithm as simple as possible even though there are many obvious
possibilities for improvements. In our scenario, we assume a cluster with a sufficiently

6This can be implemented exactly by considering (2.2) and replacing Δvnj by Dxxv̂nj − k2v̂nj ,

etc. . . , and truncating the Fourier coefficients at k < π/h. However, a realistic code will typically
deviate from this “pure” model by solving the one-dimensional boundary value problems inexactly
and even by using a nonspectral scheme in the y direction. This type of analysis, where the model
problem studied has some discrete features and some continuous features, is known as a “semidiscrete
analysis.” The idea of using Fourier transforms in y, even though this may not correspond exactly
to the numerical solver, has a long tradition in this field [16].
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large number of processing units, and we calculate the total running time as a function
of the fine grid parameter h. Each processing unit handles a single subdomain. In
this algorithm sketch, we take an example domain which is a unit square.7 In this
analysis, we further assume that the subdomains are squares of side H and that the
coarse grid has one degree of freedom per subdomain. These dimensions are used
to estimate the number of subdomains and elements, but these estimates would be
similar if the domain were a more general planar region.

We assume that we want a solution within a tolerance of γh2, where h is the
fine grid size and γ > 0 is some threshold. This requirement is inspired by the fact
that piecewise linear finite element solvers often yield a precision of O(h2). In two
dimensions, we therefore have approximately m = 1/h2 grid points. For simplicity,
we choose L = h, so that there is one grid length of overlap for all the subdomains.
We then choose some coarse grid size H (and thus our subdomain diameters are
H+h). There are J = (1/H)2 subdomains and consequently each subdomain contains
approximately m′ = H2/h2 grid points.

If we assume that multigrid is used for the subdomain solvers, then each local
solver can attain a fixed tolerance with O(m′) calculations. The number of iterations
(or V-cycles) needed to obtain the tolerance γh2 would then be of the order of log(γh2),
and thus a local solve would require Cloc = −K log(γh2)m′ calculations.

Once all the local solves have been performed, the local solutions are projected
to the coarse grid, and the information is sent to a central server. This central server
must now solve an elliptic problem with grid size H , i.e., with 1/H2 grid points. This
calculation is also performed using a multigrid approach, and the running time is
Ccg = −K log(γH2)/H2. During this time, the rest of the computers in the cluster
are idle. Once the coarse grid correction is computed, it is distributed to all the
computers in the network and parallel computation resumes.

The running time for a single iteration (of either CO0 or classical Schwarz) is
Ccg + Cloc. The number of iterations NCO0 of CO0 to obtain an error of γh2 is
approximately given by solving (ρCO0)

NCO0 = γh2, and the total running time until
the final stopping criterion is reached is CCO0 = NCO0(Ccg + Cloc). We can find the
optimal value of ε to minimize the running time, and we find that

εCO0 ∼ 1.29h1/2 and for this value

CCO0 ∼ −0.11

(
7.20− 14.0 ln (γ h)− 5.0 ln

(
γ h2

))
ln

(
γ h2

)
K

h7/6C
.

Neglecting the polylogarithmic terms, we obtain CCO0 = O(h−7/6) or O(m0.56333...).
A similar analysis for the classical Schwarz iteration with coarse grid correction yields
εCS ≈ 1.57h1/2 and CCS = O(h−3/2) or CCS = O(m0.75) (up to polylogarithmic
terms). We see that the best choice of ε in both cases ensures that the local problems
and the coarse problem have similar numbers of degrees of freedom, so the time spent
in the parallel step is proportional to the time spent in the coarse (sequential) step.
These results are summarized in Table 5.1.

Note that if we had a Schwarz-like iteration whose convergence factor was in-
dependent of ε, we would obtain an O(m0.5) algorithm by spending approximately
the same amount of time in the parallel code as in the coarse grid correction. This
corresponds to the entry “Best possible” in Table 5.1.

7Our theoretical results in sections 3 and 4 concern a cylindrical domain, while we are considering
here a square domain. We will see (by numerical experiments) in sections 7 and 8 that the theoretical
results also apply to this square domain with square subdomains and cross points.
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Table 5.1

Running times for two-level algorithms (in two dimensions, m grid points), up to polylogarith-
mic terms.

Method Running time

“Best possible” O(m0.5)
CO0 O(m0.56333...)

Classical Schwarz O(m0.75)
Sequential multigrid code O(m)

In our analysis, we have considered a domain decomposition of a cylinder into
strips. As a result, when there are many subdomains, there is an unusual anisotropy
in the geometry. This does not pose a problem because our coarse grid is designed
to handle this anisotropy. Indeed, the grid has one “point” per subdomain in the x
direction (and hence these points are “H apart”). These widths are skinny next to the
height a of the cylinder, but this is not an issue since the coarse grid has many frequen-
cies in the y direction, corresponding roughly to the “accuracy” ofH in the x direction.

That being said, a realistic implementation will use more evenly shaped subdo-
mains, which will introduce cross points. Although we have not analyzed this version
of the algorithm, we will now explain how the algorithm with cross points is imple-
mented. We will also provide numerical experiments to show that the algorithm with
cross points behaves approximately like the algorithm that we did analyze, which
subdivides a cylindrical domain into strips.

6. Implementation of the overlapping CO0 algorithm. The algorithm we
have analyzed is specific to the Laplacian on the cylinder, where the subdomains are
strips. Nevertheless, our CO0 method is applicable to more general domains and
subdomains. We now introduce a variant which we can use for general domains, and
we demonstrate in sections 7 and 8 with numerical experiments that our optimized
parameter (3.3) gives good convergence results when applied to these more general
situations.

In [13], [42] it is shown that, under certain conditions, the classical Schwarz and
optimized Schwarz algorithms converge at the same rate as the RAS and optimized
RAS (ORAS) variants, respectively; RAS was introduced in [5] and analyzed in [14].
In a Schwarz iteration that also includes a coarse grid correction, it is therefore possible
to implement the local solves using a RAS approach, but the coarse grid correction
must be treated separately (and “multiplicatively”), because it overlaps with all the
subdomains. We now discuss such an implementation for overlapping subdomains.

6.1. Components of RAS. Let Ω be the domain and Ω1, . . . ,ΩJ be the subdo-
mains, and let Γ = Ω∩ (∪j∂Ωj) (the “interface”). We denote by x1, . . . ,xm the nodes
of the triangulation τ of Ω (or of the grid), excluding those nodes on the boundary ∂Ω.
When using a piecewise linear finite element discretization, one obtains the m ×m
stiffness matrix A of the Laplacian on Ω, with entries given by

Aij =

∫
Ω

∇φi · ∇φj ,

where φi and φj are piecewise linear functions on τ , where as usual

φk(x�) =

{
0 if k �= 	,
1 if k = 	.
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Each subdomain Ωj , j = 1, . . . , J , contains mj vertices xj,1, . . . ,xj,mj , including
those on ∂Ωj ∩Ω. Some of these vertices are “interior” (they are in Ωj), and some of
the vertices are on the interface ∂Ωj ∩ Ω. For each subdomain Ωj , we can define an
mj ×m restriction matrix Rj , whose entries are zeroes and ones by

(Rj)k,� =

{
1 if xj,k = x�,
0 otherwise.

We can think of the matrix Rj as mapping a finite element function on Ω to its
restriction on Ωj . We can conversely think of RT

j as a matrix which prolongs a finite
element function of Ωj to all of Ω by padding it with zeroes.

In the RAS method, one further defines matrices R̃1, . . . , R̃J , where R̃j is also
mj ×m and consists of zeroes and ones, in such a way that

J∑
j=1

R̃T
j Rj = I.

These restriction matrices usually correspond to a nonoverlapping partition of the
unknowns given by a nonoverlapping decomposition {Ω̃j}Jj=1 of Ω. When the domain

decomposition has one grid length of overlap, the restrictions R̃j can be obtained from
Rj by replacing any row corresponding to a vertex on ∂Ωj with a zero row.

Given an initial vector v0, the one-level RAS algorithm is then given by

(6.1) vn+1 = vn +

J∑
j=1

R̃T
j A

−1
j Rj(f −Avn), n = 0, 1, . . . ,

where the local matrices are

Aj = RjAR
T
j , j = 1, . . . , J.(6.2)

Remark 6.1. Note that our definition of the restriction matrices Rj is slightly
different from the usual definition found in the literature on additive Schwarz precon-
ditioners, since we are keeping unknowns on the interface Γ. The reason behind this
choice is that we will impose Robin transmission conditions on this interface, and we
will need those unknowns when discretizing the local problems.

6.2. Coarse spaces. In this section, we define a coarse space by constructing
basis functions on a coarse mesh. The resulting coarse space correction will be quite
different from the one described in section 2, but we aim to show with numerical
experiments that the results of the convergence analysis still hold for other decompo-
sitions and different coarse spaces. Consider, for the purpose of the explanation, the
example of a square domain Ω = (0, 1)× (0, 1) with 16 overlapping subdomains (4× 4
decomposition).

The classical approach for the additive Schwarz preconditioner is to introduce a
coarse mesh as in Figure 6.1(a). Note that the coarse mesh may not conform with
the fine mesh when both are required to be uniform; this is how the coarse mesh was
implemented in our solver. If we denote the interior nodes of this coarse mesh by
y1, . . . ,ym0 (assuming homogeneous Dirichlet boundary condition on ∂Ω), we choose
piecewise bilinear hat functions on this coarse mesh

ψj(yk) =

{
1 if j = k,
0 otherwise.
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(a) Classical coarse mesh. (b) New coarse mesh.

Fig. 6.1. Two different coarse meshes: the classical version is uniform, whereas the new
proposed mesh is better suited to a RAS implementation. The circles indicate degrees of freedom
(coarse nodes).

To construct the operators on this coarse space, each coarse basis function ψj is
evaluated at each of the fine mesh nodal points, ψj(x�), 	 = 1, . . . ,m. We then store
these functions as rows of the m0 ×m matrix

R0 =

⎡
⎢⎣

ψ1(x1) · · · ψ1(xm)
... · · ·

...
ψm0(x1) · · · ψm0(xm)

⎤
⎥⎦ .

Thus, the matrix RT
0 will be the natural interpolation from the coarse to the fine

space, and R0 will be the associated restriction matrix. The induced coarse matrix is
defined by A0 = R0AR

T
0 .

The coarse mesh described previously performs well for the additive Schwarz
method: if we think of the discrete vectors as functions in space, then the applica-
tion of additive Schwarz produces continuous iterates over the domain, so the coarse
correction can be smooth. On the other hand, in the RAS method, the subdomain ap-
proximations are combined to produce discontinuous iterates, and thus smooth coarse
corrections will not be as effective. We now introduce a different coarse space, which
we believe is better suited and more efficient when using a RAS implementation. It
stems from the observation that in the one-level RAS iteration (6.1), after the first
iteration the residual is always 0 at the interior nodes of each Ω̃j. In other words, the

residual after each iteration is nonzero only at nodes x ∈ Ω̃j that have a neighbor in

another partition Ω̃k.
To mimic this observation, we pick coarse basis functions that are discrete har-

monic in the interior of Ω̃j and can have nonzero residuals only at nodes described
above. For our example on the square, this suggests introducing the coarse mesh
shown in Figure 6.1(b) and constructing piecewise bilinear basis functions on this
mesh instead. Observe that this coarse mesh is completely independent of the size
of the overlap; it depends only upon the definition of R̃j (the subdomains are not
depicted in Figure 6.1). Note also that this coarse space will have m0 = 36 degrees
of freedom in our example, four times as many as the classical approach.
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6.3. RAS algorithm to solve Au = f. The one-level RAS iteration is given
by (6.1). By treating the coarse space correction “multiplicatively,” the two-level RAS
algorithm is

vn+1/2 = vn +

J∑
j=1

R̃T
j A

−1
j Rj(f −Avn),(6.3)

vn+1 = vn+1/2 +RT
0 A

−1
0 R0(f −Avn+1/2),(6.4)

where

Aj = RjAR
T
j , j = 0, 1, . . . , J.

To obtain faster convergence, we can use a Krylov subspace method such as GMRES
with the two-level RAS as the preconditioner (which is nonsymmetric in this case).

6.4. ORAS algorithm to solve Au = f. In [42], the ORAS algorithm was
introduced. It is easily obtained by replacing the local matrices Aj with matrices Ãj

corresponding to the discretization of the local problem on subdomain Ωj with Robin
boundary condition

∂uj
∂nj

+ puj = 0 on ∂Ωj\∂Ω.

Because this is only a change in the interface condition, the local matrices need to be
modified only for unknowns on, and possibly near, the interface Γ. Of course, this
modification depends on the discretization of the problem and may not be unique.

Given an initial vector v0, the one-level ORAS algorithm is

vn+1 = vn +

J∑
j=1

R̃T
j Ã

−1
j Rj(f −Avn),(6.5)

and the two-level ORAS iteration is given by

vn+1/2 = vn +

J∑
j=1

R̃T
j Ã

−1
j Rj(f −Avn),(6.6)

vn+1 = vn+1/2 +RT
0 A

−1
0 R0(f −Avn+1/2).(6.7)

Two important remarks need to be made here. First, the “physical” overlap is
different in the RAS and ORAS methods. From the way we have defined RAS, the
Dirichlet interface conditions are not imposed on Γ: the local matrices Aj correspond
to having u = 0 at the nodes outside Ωj , because Ωj includes the nodes on its
boundary. Thus, the physical overlap of RAS has two additional mesh layers when
compared to ORAS. We will use L to denote the overlap width in the ORAS algorithm,
and it should be understood that the RAS algorithm has a wider physical overlap of
L + 2h. On the other hand, the “algebraic” overlap between the discrete degrees of
freedom is the same for both methods.

The second remark concerns the equivalence between the one-level ORAS (6.5)
and a Schwarz iteration on the subdomains of the form

(6.8) Ãjv
n+1
j = fj +

J∑
j=1

B̃jkv
n
k , j = 1, 2, . . . , J,

--
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where B̃jk perform the extraction of interface conditions from neighboring subdo-
mains; see [42] for details. It is shown in [42] that such an equivalence holds under
certain conditions. For a decomposition into strips, these conditions amount to hav-
ing enough overlap: in our notation, L = h is sufficient to satisfy these conditions.
However, when there are cross points (as in Figure 6.1), an algebraic condition given
in [42] becomes more restrictive. In [11], it is shown that for Robin conditions, it is
sufficient in the presence of cross points to use a first order accurate discretization of
the normal derivative for the equivalence to hold. One may decide to apply ORAS
regardless of whether equivalence holds; however, the convergence behavior may not
be as expected, and the choice of the optimized Robin parameter may also be affected,
since the analysis of optimized Schwarz methods is usually done for the continuous
analogue of iteration (6.8).

7. Numerical experiments with overlapping subdomains. Throughout
this section, we consider overlapping subdomains and we use the RAS and ORAS
implementations discussed in section 6. We consider the unit square Ω = (0, 1)×(0, 1)
decomposed uniformly into J subdomains with L = h (minimal overlap). We solve
the problem −Δu = f with homogeneous Dirichlet boundary conditions, discretized
using the standard 5-point finite difference stencil.8 To obtain the local matrices Ãj ,
we use only a first order accurate discretization of the normal derivative in the Robin
conditions; this implies that we need only to modify diagonal entries from Aj for the
unknowns on the interface, and thus we are able to satisfy the equivalence conditions
of [42]. The coarse space is still constructed from bilinear basis functions on a coarse
mesh. For the one-level and two-level ORAS methods, we use the Robin parameters
given by the formulas

p∗one-level = 2−1/3π2/3h−1/3 ≈ 1.7h−1/3,(7.1)

p∗two-level = 2−1/3π2/3h−1/3H−2/3 ≈ 1.7h−1/3H−2/3;(7.2)

cf. (3.3).
For the iterative applications of RAS (6.3)–(6.4) and ORAS (6.6)–(6.7), we mea-

sure the relative error in the supremum norm on Ω. For the preconditioned GMRES
method (without restart), the convergence is measured with the relative 	2-norm of
the residual. We report the number of iterations when the error falls below a toler-
ance of 10−8. The results shown were obtained from a parallel code using the library
PETSc [2] and running on an Orion cluster of 96 processors.

There are several parameters to vary, and in particular we explore three different
relevant cases.

7.1. Decreasing the fine mesh size h. First, we fix the number of subdomains
to J = 16 (4 × 4 decomposition). Recall that we choose the minimal overlap L = h.
The results for the iterative application of the algorithms are illustrated in Figure 7.1.
The labels RAS and ORAS refer to the one-level methods, whereas RAS2 and ORAS2
refer to the two-level versions with coarse space correction. We compare the two
choices of the coarse mesh: the classical mesh from Figure 6.1(a) is denoted by (c1)
and the new coarse mesh from Figure 6.1(b) by (c2).

It is clear that the new coarse mesh we propose yields much faster convergence
than the classical mesh: when h = 1/512, RAS2(c1) and ORAS2(c1) need 674 and

8This is a problem that is very similar to the one treated in [15] and several other places, but
our experiments include a coarse grid correction that gives good scaling properties.
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Fig. 7.1. Convergence as we refine h for the different iterative methods on a unit square with
16 subdomains.

Table 7.1

Number of iterations for the preconditioned GMRES method.

One-level Two-level (c1) Two-level (c2)
h RAS ORAS RAS2 ORAS2 RAS2 ORAS2
1/64 30 18 17 14 15 10
1/128 41 20 23 14 20 12
1/256 56 22 31 16 27 15
1/512 72 24 40 18 37 16
1/1024 99 27 52 20 49 19

133 iterations to converge, respectively, whereas RAS2(c2) and ORAS2(c2), with the
new coarse mesh, require only 140 and 25 iterations, respectively. Of course, some
improvement was expected because the new coarse space has four times the dimension
of the classical coarse space. However, we believe that the idea of capturing where
the residual is nonzero with the new coarse mesh was key in obtaining this significant
improvement in convergence.

Figure 7.1 also shows reference lines of slope −1 and −1/3. We observe very good
agreement with our expectation that one-level and two-level RAS have a convergence
factor of the form ρ ∼ 1 − O(h) and that one-level and two-level ORAS have the
better convergence factor ρ ∼ 1 − O(h1/3), as the theory predicts. Under GMRES
acceleration, the number of iterations for the preconditioners are listed in Table 7.1.
We also find the weaker dependence on L = h for the optimized Robin conditions,
for both the one-level and two-level preconditioners. The difference in performance
between the two coarse spaces is greatly attenuated by the Krylov subspace method.

7.2. Weak scaling experiment (h/H constant). In our second experiment,
we decrease the mesh size h (recall that L = h) and increase the number of subdomains
J in such a way that the ratio h/H remains constant (see Remark 3.2). To achieve

.... , .... , 
. . .... , .... 0 -·-·-(:). ._ ,_G·-·- •e ,_ ,_ ,~ .... 

v- ·- ·-o ,,, ,, ,, , ,, ,, ,,,,,, , ,,, ,, ,,,,,,,,,,,, , ,,,,, , ,,,,,, , ,,, 



A440 DUBOIS, GANDER, LOISEL, ST-CYR, AND SZYLD

Table 7.2

Number of iterations for a weak scaling experiment when h/H ≈ 0.004 is constant.

J 4 16 36 64 81
No. of unknowns 262, 194 1, 048, 576 2, 359, 296 4, 194, 304 5, 308, 416

Iterative method
RAS2 243 250 266 264 271
ORAS2 27 29 31 31 31

Preconditioned GMRES
RAS2 45 49 49 50 50
ORAS2 16 19 19 19 19

this, we keep the size of the local problems fixed to 256 × 256, i.e., each processor
has a constant number of unknowns, and we use more processors, thus increasing
the size of the global problem. This gives the constant ratio h/H = 1/256 ≈ 0.004.
Table 7.2 shows the weak scalability of the two-level preconditioners (we only use the
new coarse mesh here), under both the CO0 iteration (2.4) and its application as a
preconditioner to GMRES.

Recall that the dimensions of the local matrices for RAS and ORAS are exactly
the same and that we use the same coarse space for both methods. The cost of
modifying the matrices Aj to obtain Ãj is negligible. So, the computational cost for
constructing and applying the RAS2 and ORAS2 preconditioners is the same. Hence,
in this example, under GMRES acceleration, the ORAS2 method is more than twice as
fast as the RAS2 preconditioner. This performance improvement will become greater
if we increase the size of the local problems (smaller h/H).

7.3. Varying the Robin parameter p. The question arises whether the for-
mula for the optimized Robin parameter (7.2), coming from the analysis, gives a good
approximation to the best parameter value in practice and whether the asymptotic
behavior of the parameter is correct when h and H are small. In this section, we test
several values of the Robin parameter p and compute in each case an approximation
of the convergence factor ρ given by

ρ ≈
(
sup-norm error at iteration 15

sup-norm error at iteration 10

)1/5

.

For the specific problem with h = 1/512, L = h, and J = 16 subdomains, this
approximation to ρ is plotted in Figure 7.2 for 100 values of the Robin parameter p.
Note that we can get divergence of the iteration when choosing p too small. Also,
note that the value obtained from the formula p∗ = 2−1/3π2/3h−1/3 for the one-level
method and two subdomains can be significantly less efficient compared to the best
numerical value in the case of many subdomains.

Next, we find the best Robin parameter in our solver by minimizing the estimation
of ρ over a uniform sample of 100 values of p (this is a very crude optimization proce-
dure). By varying the fine grid size h (withH constant) and the number of subdomains
(with h constant) independently, we show in Figure 7.3 that the best Robin parameter
for the two-level ORAS iteration has the asymptotic behavior p ∼ O(H−2/3h−1/3),
confirming the result of Theorem 3.1, where the formula p∗c = cH−2/3L−1/3 is found.
In general, the best choice for the constant c will depend on the particular discretiza-
tion and implementation of the method; in this case, we find that c ≈ 1.4 works better
than the value 1.7.
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Fig. 7.3. Comparison of the best numerical values of the Robin parameter with the formula p∗
for two-level ORAS.

8. Implementation of the nonoverlapping CO0 algorithm. We now pre-
sent numerical experiments with two different implementations of the nonoverlapping
algorithm. The first example implements a finite element discretization for a decom-
position into strips with a coarse space similar to the one introduced in section 2 for
the convergence analysis. The second implementation consists of spectral elements
with a specific coarse space that will be described. In both cases, the algorithms will
use an augmented formulation.

8.1. Finite element method. There is no RAS version of the nonoverlapping
algorithm; we therefore implemented an iteration on the augmented system. Our
domain is the unit square, which we subdivide into J strips along the x axis; each strip
has width H = 1/J . The nodal values for subdomain Ωj correspond to the vertices in

... ... ... ... --- --

• 
0 

' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 
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[jH, (j+1)H ]× (0, 1)∩ (0, 1)× (0, 1); i.e., each subdomain Ωj has degrees of freedom
associated with vertices inside Ωj , or on the artificial interfaces ∂Ωj ∩ (0, 1)× (0, 1).

The problem is discretized with bilinear finite elements on the fine mesh. Let Nj

be the mj ×mj matrix whose entries are

(Nj)k,� =

∫
Ωj

∇φxj,k
· ∇φxj,�

,

where we have abused the notation and denoted the piecewise linear basis function
for vertex xj,k by φxj,k

. The matrix Nj is the stiffness matrix for a Neumann problem
for the Laplace operator on Ωj . Likewise, let Bj be the mj ×mj matrix whose entries
are

(Bj)k,� =

∫
∂Ωj∩Ω

φxj,k
φxj,�

.

In this way, the matrix

Ãj = Nj + pBj

is the stiffness matrix for a Robin problem for the Laplace operator on Ωj with Robin
parameter p.

In subdomain Ωj , the iterate v
n+1/2
j is obtained by solving the Robin problem

Ãjv
n+1/2
j = Rj

⎛
⎝f +

∑
�=j−1,j+1

RT
� (pBj −Nj)v

n
�

⎞
⎠ .

To compute a coarse grid correction, we glue together the local solutions into a single-
valued function vn+1/2 of the domain (0, 1)× (0, 1). If xj = (xj , yj) is a vertex of the

triangulation, and if 	H ≤ xj < (	 + 1)H , then we define vn+1/2(xj) = v
n+1/2
� (xj).

Given this “reassembled iterate,” we can compute a global residual and hence a coarse
grid correction.

We define coarse “basis functions” in each subdomain. For subdomain Ωj , a basis
function ψ is linear in x and piecewise linear in y, with nodes at y = H, 2H, . . . , (J −
1)H ; there are 2(J − 1) such functions per subdomain. We concatenate the basis
vectors for subdomain Ωj as column vectors to form the matrix Qj, whose size is
mj × 2(J − 1), where mj is the number of degrees of freedom for the Robin problem

on Ωj . We let Q̄ = diag(Q1, . . . , QJ) and we let R̄T = [R̃T
1 . . . R̃

T
J ]. The coarse grid

correction matrix is

A0 = (R̄T Q̄)TA(R̄T Q̄).

We compute the coarse grid correction by solving the linear problem

zn+1/2 = Q̄A−1
0 Q̄T R̄(f −Avn+1/2).

The coarse grid correction to be applied to subdomain Ωj is now represented in the
jth block of coefficients of zn+1/2. To extract those coefficients, we can define a block
matrix Cj = [0 . . . 0 I 0 . . . 0], where each 0 block is a 2(J−1)×2(J−1) zero matrix
and I is the 2(J − 1)× 2(J − 1) identity. Then, the coarse grid corrected iterate is

vn+1
j = v

n+1/2
j + Cjz

n+1/2.



OSM WITH A COARSE GRID A443

Table 8.1

Estimated convergence factors and number of iterations for the nonoverlapping algorithm for
various values of h.

h ρ(h) Iterations
1/16 0.5994 22
1/32 0.6139 26
1/64 0.6576 32
1/128 0.7318 40
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Fig. 8.1. Iteration counts for nonoverlapping CO0 for various values of H.

We can optionally apply the coarse grid correction to the “reassembled iterate”

vn+1 = R̄T zn+1/2,

although this calculation is not used in the computation of v
(n+1)+1/2
j .

8.1.1. Numerical results. We have performed a numerical experiment with
J = 4 subdomains and random initial vectors v0

1, . . . ,v
0
J , and we report the results

in Table 8.1. For h, we use the values h = 1/16, 1/32, 1/64, 1/128. We use the
optimized Robin parameter p∗4,0 = 4(hH)−1/2. The coefficient c = 4 was found to be
a good value numerically. The convergence factor ρ(h) is estimated by the formula
ρ(h) ≈ (‖v15 − u‖∞/‖v10 − u‖∞)1/5, where u = A−1f is the true solution. We also
give the number of iterations before the relative error, in the uniform norm, as less
than 10−6. Observe that going from h = 1/64 to h = 1/128 increases the iteration
count by a factor of 1.25, while the theoretical prediction is

√
2 ≈ 1.4.

We also have a scaling experiment in the H variable in Figure 8.1. We set h = 1
64

and we vary H = 1
4 ,

1
8 ,

1
16 ,

1
32 . We run the nonoverlapping CO0 iteration and count

the number of iterations before the error is less than the tolerance 10−6. From this
experiment, we notice the very good agreement of the scaling properties with the
estimate (4.1).

8.2. Spectral element method. We now consider the spectral element dis-
cretization as introduced by [32], [38]. To that end, we tile the original computational
domain Ω into J subdomains Ωj with j = 1, 2, . . . , J consisting of quadrangles. On
each tile, a high order tensor product Lagrange basis is constructed using the points
of the Gauss–Legendre–Lobatto (GLL) quadrature rule. The corresponding space is

PN = {vh ∈ L2(Ω) | vh|Ωj ◦ TΩj ∈ (PN ⊗ PN )(Ωj) ∀ Ωj ∈ Th }

1 1 

, , 
, , 

, , 
, , 
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Table 8.2

Number of stationary iterations before the error drops below 10−6 for increasing number of
spectral elements: strip decomposition with 10 elements.

N = 8 N = 10 N = 12 N = 14 N = 16 N = 18
M = 3, c = 2.0 17 21 25 30 34 38
M = 3, c = 2.5 15 19 25 26 31 34
M = 3, c = 3.0 15 19 25 29 35 37

Table 8.3

Number of GMRES iterations before the error drops below 10−10 for increasing number of
spectral elements.

2× 2 4× 4 8× 8 12× 12 16× 16 20× 20
N = 8, M = 3 24 31 36 38 40 40

with TΩj the image of the reference element [−1, 1]× [−1, 1] for quadrangle Ωj . With
the spectral element method (SEM), an augmented system can be built quite natu-
rally, and a description of this procedure can be found in [42]. The coarse problem
is then constructed by taking advantage of the rich polynomial space. A different
polynomial degree M with M < N is chosen over the same mesh Th. That coarse
correction is then applied in a multiplicative fashion as aforementioned.

8.2.1. Numerical experiments. As a first test, we look at the strip decompo-
sition involved in the development of the theory. We perform tests for various ratios of
the fine mesh spacing versus the element width, as well as for three different values of
the constant c in the formula p∗c,0 = c(hH)−1/2 for the Robin parameter. It should be
noted that the smallest spacing between the GLL points scales as h = O(N−2). Thus
doubling the polynomial degree corresponds to dividing the effective h by 4. The
theory predicts that dividing h by 4 would lead to twice the number of stationary
iterations, or

√
2 times the number of preconditioned Krylov iterations. We observe

such a behavior in Table 8.2 when the iterations for N = 8 and N = 16 are compared.
For a constant c too large we observe that this property is lost.

The second test considers a two-dimensional domain with fixed polynomial de-
grees N and M for the fine and the coarse grid, respectively. The number of elements
is increased in both directions and, in this case, our theory predicts that the conver-
gence rate is a function of the ratio ε = h/H which stays constant. Therefore, the
number of iterations should be bounded (or reach a fixed value) as the number of
subdomains is increased. In this case we use c = 4 for the Robin parameter involved
in the transmission condition. The number of iterations seems to plateau at 40 GM-
RES iterations when going from 256 domains to 400. A random starting vector was
employed in the experiment as well as bi-periodic boundary conditions. The results
are reported in Table 8.3.

8.3. Shallow water. Finally, we consider an application to the shallow water
equations on the sphere. They are traditionally used to investigate promising numer-
ical methods for global numerical climate modeling. The shallow water equations are
derived from the Navier–Stokes equations in the case where the horizontal length scale
is much larger than the vertical one. This results in three equations: two momentum
equations for velocities and one for conservation of the geopotential height.9 On the

9The geopotential height is the usual height at sea level, multiplied by the gravitational acceler-
ation constant.
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Table 8.4

Number of GMRES iterations before the error drops below 10−10 for an increasing number of
spectral elements.

4× 2 8× 4 16× 8 24× 12
N = 8, M = 3 24 27 29 29

Fig. 8.2. Geopotential height field after 15 days for the flow over the mountain test. The center
of the mountain (not depicted) is located at coordinates (270◦ , 30◦) in spherical coordinates. The
contour regions start from (near the poles) 5100 m up to 5900 m (near the equator).

sphere, the Coriolis terms are added to the momentum equations. Here we consider
the case of the positive definite Helmholtz problem arising either in a semi-implicit
semi-Lagrangian discretization [43], [44] or as a gravity wave preconditioner for a fully
implicit time discretization [41]. In both cases, omitting the details, we are lead to the
problem ( I

Δt2 −Δ)u = f , where Δt can be chosen large enough such that the stiffness
of the Laplacian dominates. In this extreme case, we want to observe a plateau in the
number of iterations as the number of spectral elements on the sphere is increased.
A right-hand side is generated from a high-resolution simulation extracted from the
high order methods modeling environment code [4]. Then the problem is solved in
latitude-longitude coordinates using zero as a starting vector for GMRES. The shal-
low water test case we consider consists of a flow impinging a mountain, originally
described in [46] as test case 5. As Table 8.4 reports, the number of iterations seems
bounded at 29 when N = 8 and M = 3 for the coarse grid. Thus very efficient time
discretizations can be crafted using the CO0 algorithm. A plot of the geopotential
height of the solution at day 15 of the simulation is depicted in Figure 8.2.

9. Conclusions. In the OSMs, Robin or higher order transmission conditions
are used at the artificial interfaces between subdomains in order to obtain faster
convergence. This is the first paper in which an analysis of (multiplicative) coarse grid
correction for OSMs is presented. Our analysis for a model problem (the Laplacian
on a cylinder, with the subdomains being overlapping strips and Robin transmission
conditions) shows that the eigenvalues of the preconditioned system lie within a disc
of radius 1 − O(h/H)1/3 centered at z = 1. This tight clustering of the eigenvalues
can be attractive for the convergence of many Krylov subspace methods.

80 

60 

40 

20 

0 

- 20 

-40 1----A-'.,t. 

- 60 

- 80 

0 50 100 150 200 250 300 350 



A446 DUBOIS, GANDER, LOISEL, ST-CYR, AND SZYLD

Our new coarse mesh is especially tailored for the discontinuous iterates of OSM
and thus is also very suitable for classical RAS implementations. We illustrate this
by numerical experiments and also show that our results for the special case in our
analysis seem to hold in the more general setting of arbitrary decompositions.

10. Appendix. We present in this appendix the four proofs postponed from the
body of the paper. Some of the proofs are highly technical. This is unfortunately
unavoidable if we want to allow the reader to check the analysis. We attempt to pro-
vide some guidance at the beginning of each argument, but the arguments themselves
remain challenging.

The four proofs collected in the present appendix are as follows. For the over-
lapping case, the proof of Lemma 3.9 is an estimate of the convergence factor of the
CO0 method for arbitrary Robin parameter p. The estimates for the optimized Robin
parameter (3.3) are calculated in the proofs of Lemmas 3.10 (high frequencies) and
3.11 (low frequencies). For the nonoverlapping case, the proof of Theorem 4.1 gives
the estimate of the convergence factor.

Proof of Lemma 3.9. We split this proof into three steps: the high-frequency case
(which is easier), leading to (3.8), and the low-frequency case and the estimate of
ρ(T ), which is harder and leads to (3.17).

Step 1. Consider first the frequencies k ≥ π/H which are unaffected by the coarse
grid correction. For these frequencies, we will use (2.2) and (3.1) together to obtain
an explicit recurrence for the Fourier coefficients v̂nj (x, k). This explicit recurrence
is linear and the spectral radius of this recurrence can be analyzed with the help of
(3.6).

On the subdomain Ω0, the Robin transmission condition at x = (H + L)/2 is

(p+Dx)v̂
n+1
0 (x, k)|x=H+L

2
= (p+Dx)v̂

n
1 (x, k)|x=H+L

2
.

Substituting formula (3.1) leads to the equation

(p+ k)e
k(H+L)

2 αn+1
0 + (p− k)e−

k(H+L)
2 βn+1

0

= (p+ k)e
k(−H+L)

2 αn
1 + (p− k)e−

k(−H+L)
2 βn

1 .

Similarly, an equation for the Robin condition at x = −(H + L)/2 is obtained:

(p− k)e−
k(H+L)

2 αn+1
0 + (p+ k)e

k(H+L)
2 βn+1

0

= (p− k)e−
k(−H+L)

2 αn
−1 + (p+ k)e

k(−H+L)
2 βn

−1.

Explicitly solving for (αn+1
0 , βn+1

0 )T produces the linear relation

[
αn+1
0

βn+1
0

]
=

[
a−1 b−1 0 0 a1 b1
b1 a1 0 0 b−1 a−1

]
⎡
⎢⎢⎢⎢⎢⎢⎣

αn
−1

βn
−1

αn
0

βn
0

αn
1

βn
1

⎤
⎥⎥⎥⎥⎥⎥⎦
,
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where

a±1 = ± 1

d0
e±kL(k ± p)2,

b±1 = ∓ 1

d0
e±kH(k2 − p2), and

d0 = ek(H+L)(k + p)2 − e−k(H+L)(k − p)2.

It clearly follows that (3.8) holds. Let αn = [αn
1 , . . . , α

n
J ]

T and βn = [βn
1 , . . . , β

n
J ]

T ,
and the iteration can be rewritten in the form[

αn+1

βn+1

]
= Tk

[
αn

βn

]
(10.1)

with Tk = T as in Lemma 3.7 and a0 = b0 = 0. The eigenvalues λj,± are hence given
by (3.6), and the upper bound (3.10) is given by (3.9).

Step 2. The technique is more or less the same as the one used for the high
frequencies, but with the added complication of the coarse grid correction. Because the
eigenvalues of T are more complicated in the low frequencies, we have an additional,
final step to find a bound for the spectral radius ρ(T ).

For the frequencies k < π/H and with x ∈ [0, H ], the coarse grid correction is
the linear polynomial

ẑn(x, k) =
H − x

H
(αn

0 + βn
0 ) +

x

H
(αn

1 + βn
1 ).

A similar formula also holds in other x intervals. The algorithm with a coarse grid
correction (CO0) has the following Robin transmission condition at x = H+L

2 :

(p+Dx)v̂
n+1
0 (x, k)|x=H+L

2
= (p+Dx)(v̂

n(x, k)− ẑn(x, k))|x=H+L
2
.

Using (3.1), the left-hand side is

(p+Dx)v̂
n+1
0 (x, k)|x=H+L

2
= e

1
2 k (H+L) (p+ k)αn+1

0 + e−
1
2k (H+L) (p− k)βn+1

0 .

Similarly, the right-hand side is

(p+Dx)(v̂
n(x, k)− ẑn(x, k))|x=H+L

2

=
2 + (−H + L) p

2H
αn
0 +

2 + (−H + L) p

2H
βn
0

+
2H (p+ k) e1/2 k (−H+L) − 2− pH − pL

2H
αn
1

+
−2H (−p+ k) e−1/2 k (−H+L) − 2− pH − pL

2H
βn
1 .

Similar relations can be obtained for the boundary condition at x = −H+L
2 . The

resulting recurrence can be written as

[
αn+1
0

βn+1
0

]
=

[
b−1 a−1 b0 a0 b1 a1
a1 b1 a0 b0 a−1 b−1

]
⎡
⎢⎢⎢⎢⎢⎢⎣

βn
−1

αn
−1

βn
0

αn
0

βn
1

αn
1

⎤
⎥⎥⎥⎥⎥⎥⎦
,(10.2)
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which leads to an expression of the form (10.1) with Tk = T as in Lemma 3.7, but now
the entries of the matrix are given by (3.11)–(3.14), (3.15), and (3.16). Therefore, the
eigenvalues are given by (3.6).

Step 3. We must now find an upper bound for ρ(Tk) for the low frequencies which
is sharp enough for our convergence analysis. This upper bound is essentially given
by maximizing the eigenvalues (3.6) over the parameter j, which plays the role of a
“coarse frequency.”

The eigenvalues (3.6) are all of the form

λk,z,± = a0 + (a1 + a−1)z ±
√
δ(z),(10.3)

where the discriminant δ(z) is

δ(z) = (b0 + (b1 + b−1z))
2 + (b1 − b−1)

2(1− z2)− (a1 − a−1)
2(1− z2)

= (a1 + a−1)
2z2 + 2b0(b1 + b−1)z + b20 + b21 + b2−1 − a21 − a2−1

(since b1b−1 = a1a−1),

and the variable z = cos 2πj/J ranges in the closed interval [−1, 1]. We proceed by
finding six candidates for extrema, such that the maximum absolute value of these
six candidates for extrema is an upper bound for ρ(Tk). Notice that δ(±1) is positive
and that

λk,1,± = (a0 + a1 + a−1)± (b0 + b1 + b−1) and(10.4)

λk,−1,± = (a0 − a1 − a−1)± (b0 − b1 − b−1).(10.5)

These form the first four candidates for extrema. Next, note that there is no interior
extremum since ∂λk,z,±/∂z is nonzero (as long as δ > 0). Observe that δ is a convex
quadratic polynomial, and thus it is either nonnegative over the entire range [−1, 1],
or possibly it is nonpositive over an interval [z1, z2] ⊂ (−1, 1). If such an interval
exists, it is possible that λk,zj ,± is an extremum, j = 1, 2. In this situation, we derive
a conservative upper bound as follows.

For values of z in the interval [z1, z2], we have that

|λk,z,±|2 = (a0 + (a1 + a−1)z)
2 + |

√
δ|2

= (a0 + (a1 + a−1)z)
2 − δ (since δ ≤ 0, hence |

√
δ|2 = −δ)

= pk(z),(10.6)

where pk(z) is given by (3.20). If the number pk(z) is negative, then clearly the
interval [z1, z2] is empty. Then

√
pk(z) is not a candidate for an extremum, which is

the effect of writing �
√
pk(z) in (3.17). On the other hand, if pk(z) is positive, then

it will be used to produce two more candidates for extrema.
Since pk(z) is a linear polynomial, its maximum over the interval z ∈ [z1, z2]

is attained either at z = z1 or z = z2. Since no explicit formula for z1 and z2 is
available, we use instead that pk(z) < max(pk(1), pk(−1)). This leads us to the final
two candidates for extrema,

√
pk(±1).

Proof of Lemma 3.10. The challenge of this proof is to estimate supk≥π/H

|ρp,L,H,+(k)|. Unfortunately, we were unable to find a “soft” way of doing this and
instead the entire proof is based on difficult, tedious “hard” estimates.10

10We would add that the authors had great difficulty finding this proof. The motivation for the
substitution k = sp (and splitting the s interval into many subintervals) has unfortunately been lost.

□ 



OSM WITH A COARSE GRID A449

The convergence factor for k ≥ π/H is governed by ρp,L,H,± as defined in (3.10).
We thus consider several cases.

Case 1. First, consider ρp,L,H,+ given in (3.10). It turns out that the analysis is
easier if we apply a change of variable to the k variable. To that end, we introduce
the new variable s and we let k = sp = scε2/3L−1. Thus,

sup
k≥π/H

|ρp,L,H,+(k)| = sup
s≥πc−1ε1/3

|ρcε2/3L−1,L,Lε−1,+(sπcε
2/3L−1)|

= sup
s≥πc−1ε1/3

(
escε

2/3 − e
sc

ε1/3

)
s+ escε

2/3

+ e
sc

ε1/3(
−1 + e

sc

ε1/3 escε2/3
)
s+ 1 + e

sc

ε1/3 escε2/3
.(10.7)

For frequencies k ≥ π/H , the last expression is independent of the overlap L, and
therefore so is the convergence factor. To compute this supremum, we consider the
cases πc−1ε1/3 ≤ s≤ 1 and s≥ 1 separately. Let ρ+(s) = ρcε2/3L−1,L,Lε−1,+(scε

2/3L−1),

as in (10.7). We make the substitutions q = escε
−1/3

> 1 and r = escε
2/3

> 1 and
write

ρ+(s) =
(−s+ 1) q + rs+ r

(rs + r) q − s+ 1
> 0.

Case 1(a). For the range πc−1ε1/3 ≤ s ≤ 1, observe that ρ+(s) is a monotonically
decreasing function of s. Indeed, the derivative of ρ+(s) with respect to s is

<0︷ ︸︸ ︷
cr (q − 1) (q + 1) (s− 1) (s+ 1) ε−

>0︷ ︸︸ ︷
2 r (q − 1) (q + 1) ε1/3−cq

>0︷ ︸︸ ︷
(−s+ rs+ 1+ r)

>0︷ ︸︸ ︷
(rs+ r + s− 1)

(−s+ sqr + 1 + qr)2︸ ︷︷ ︸
>0

ε1/3
< 0.

Therefore, on the interval s ∈ [πc−1ε1/3, 1], the function ρ+(s) is maximized at s =
πc−1ε1/3.

Case 1(b). For s > 1, we can approximate ρ uniformly in s up to O(e−cε−1/3

).
We have

ρ+(s)−
1− s

1 + s
e−csε2/3 =

(s+ 1)
2
r2 − (s− 1)

2

(rs+ r) (s+ 1) rq + (−s+ 1) (s+ 1) r
≥ 0,

where we have used that r > 1 and s > 0. Hence,

0 ≤ ρ+(s)−
1− s

1 + s
e−csε2/3 ≤ (s+ 1)

2
r2 − (s− 1)

2

(rs+ r) (s+ 1) rq
= O(e−cε−1/3

),

as claimed. The function ρ≈(s) := 1−s
1+se

−csε2/3 has a unique extremum (a minimum)

in s > 1, at s0 =
√
2c−1ε−2/3 + 1. Therefore, since ρ≈ attains its maximum at s = 1,

ρ≈(s0) < ρ+(s) < ρ≈(1) +O(e−cε−1/3

),

and since ρ≈(1) = 0,

1− s0
1 + s0

e−cs0ε
2/3

< ρ+(s) < O(e−cε−1/3

)

for all s > 1.
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Thus, to conclude Case 1, when ε is sufficiently small, we have that

ρ+(πc
−1ε1/3) ≥ ρ+(s) ≥

1− s0
1 + s0

e−cs0ε
2/3

for all s ≥ πc−1ε1/3. The bounds are independent of s, and thus taking a series
expansion in ε of the upper and lower bounds, one obtains

1− 2
π (−1 + eπ)

c (eπ + 1)
ε1/3 +O

(
ε2/3

)
≥ ρ+(s) ≥ −1 + 2

√
2c ε1/3 +O

(
ε2/3

)
.(10.8)

Case 2. A similar reasoning applies to |ρp,L,H,−(k)|. Define ρ−(s) from (3.10) by

ρ−(s) = ρcε2/3L−1,L,Lε−1,+(scε
2/3L−1)

=
escε

2/3

+ sescε
2/3

+ se
sc

ε1/3 − e
sc

ε1/3

escε2/3e
sc

ε1/3 + sescε2/3e
sc

ε1/3 + s− 1
.

Case 2(a). On the range s ∈ [πc−1ε2/3, 1], ρ− is monotonically increasing when ε
is small enough. We have

ρ′−(s) =

p(q)︷ ︸︸ ︷
−r

(
cεs2 − cε− 2 ε1/3

)
q2 − c (sr + s+ r − 1) (sr − s+ r + 1) q + r

(
cεs2 − cε− 2 ε1/3

)
(rq+srq+s−1)2ε1/3

.

We have labeled the numerator p(q). We now fix values of s, ε ∈ (0, 1), also fixing

r = escε
2/3

, but keeping q as a variable. Hence, we want to show that p(escε
−1/3

) > 0.
To do this, we look at p(q) as a quadratic polynomial in the variable q. We will show
that p(q) is convex and that if ε is small enough, then p′(1 + scε−1/3) is positive,
implying that p(q) is monotonically increasing for q > 1 + scε−1/3. Finally, we will
show that p(1 + scε−1/3 + (scε−1/3)2/2) > 0 if ε is sufficiently small. Since q =

escε
−1/3

> 1 + scε−1/3 + (scε−1/3)2/2, we will thus have shown that p(escε
−1/3

) > 0 if
ε is sufficiently small.

First, observe that

p′′(q) = 2 rc (1− s) (s+ 1) ε+ 4 rε1/3 > 0,

implying that p(q) is a convex quadratic polynomial in q. Furthermore,

p′(1 + scε−1/3) =

>0︷ ︸︸ ︷
2 rc (1− s) (s+ 1) ε+

>0︷ ︸︸ ︷
2 rc2 (1− s) (s+ 1) sε2/3 +

>4ε1/3︷ ︸︸ ︷
4 rε1/3

− c

O(ε2/3)︷ ︸︸ ︷
(r − 1)

O(1)︷ ︸︸ ︷(
s2r + 2 sr + r − 2 s+ s2 + 1

)
> 0,
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so long as ε is sufficiently small. Finally, consider

p(1 + scε−1/3 + (scε−1/3)2/2)

=

>0︷ ︸︸ ︷
2 rc2 (1− s) (s+ 1) sε2/3 +

>0︷ ︸︸ ︷
2 rc3 (1− s) (s+ 1) s2ε1/3+

>0︷ ︸︸ ︷
c4rs3

(
1− s2

)

−

L︷ ︸︸ ︷(
c+

c2s

ε1/3

)
(r − 1)

(
(s+ 1)

2
r + (s− 1)

2
)
+

>0︷ ︸︸ ︷
1/4

c5s4r
(
1− s2

)
ε1/3

−

M︷ ︸︸ ︷
1/2

c3s2 (r − 1)
(
rs2 + 2 rs+ r − 2 s+ s2 + 1

)
ε2/3

+

N︷ ︸︸ ︷
1/2

rs4c4

ε
.

Note the definitions of L,M , andN in the last equation. We now analyze the quantity
N − L −M and show that it is positive, when ε is small, for all s ∈ (c−1πε1/3, 1).
Consider two cases, depending on whether s ≤ ε1/5 or s ≥ ε1/5. In the first case, if
s ≤ ε1/5, then we can estimate the values of L and M as follows:

L =

<c+c2ε−2/15︷ ︸︸ ︷(
c+

c2s

ε1/3

) O(ε2/3)︷ ︸︸ ︷
(r − 1)

O(1)︷ ︸︸ ︷(
(s+ 1)

2
r + (s− 1)

2
)
= O(ε8/15),

M = 1/2
c3

O(ε2/5)︷︸︸︷
s2

O(ε2/3)︷ ︸︸ ︷
(r − 1)

O(1)︷ ︸︸ ︷(
rs2 + 2 rs+ r − 2 s+ s2 + 1

)
ε2/3

= O(ε2/5).

As for N , using the fact that s ≥ πc−1ε1/3, the following holds:

N = 1/2
rs4c4

ε
≥ 1/2π4ε1/3.

Therefore, when ε is sufficiently small, N − L−M > 0 for all s ∈ [πc−1ε1/3, ε1/5].
In the second case, if s > ε1/5, then we obtain

L =

O(ε−1/3)︷ ︸︸ ︷(
c+

c2s

ε1/3

) O(ε2/3)︷ ︸︸ ︷
(r − 1)

O(1)︷ ︸︸ ︷(
(s+ 1)

2
r + (s− 1)

2
)
= O(ε1/3),

M = 1/2
c3s2

O(ε2/3)︷ ︸︸ ︷
(r − 1)

O(1)︷ ︸︸ ︷(
rs2 + 2 rs+ r − 2 s+ s2 + 1

)
ε2/3

= O(1), and

N = 1/2
rs4c4

ε
≥ 1/2rc4ε−1/5 = Ω(ε−1/5).

(Recall that Ω(g) is a function bounded below by a constant times g, to be distin-
guished from the notation for the domain Ω.) Hence, for any sufficiently small ε,
N − L−M > 0 for all s ∈ [ε1/5, 1]. Therefore,

p(escε
−1/3

) > p(1 + scε−1/3 + (scε−1/3)2/2) > 0,

as required.
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Consequently, ρ′−(s) > 0 for all s ∈ [πc−1ε1/3, 1], as long as ε is sufficiently small,

and the only candidates for extrema of ρ− in the interval ε1/3πc−1 ≤ s ≤ 1 are on the
boundary, at s = ε1/3πc−1 and s = 1 (as long as ε is sufficiently small).

Case 2(b). For s > 1, we again use a uniform approximation,

ρ−(s)−
s− 1

s+ 1
e−scε2/3 =

(s+ 1)
2
r2 − (s− 1)

2

(s+ 1)
2
r2q + r (s2 − 1)

≥ 0,

which also leads to the following estimate:

0 ≤ ρ−(s)−
s− 1

s+ 1
e−scε2/3 ≤

O(1)︷ ︸︸ ︷(
(s+ 1)2r2 − (s− 1)2

(s+ 1)2r2

)
1

q
= O(1/q) = O(e−cε−1/3

).

This time, the uniform approximation does not yield a conservative bound, but it
does yield a uniformly good estimate. Concluding Case 2, for every s > πc−1ε1/3,

ρ−(s) ∈ Hull

{
ρ−(πc−1ε1/3), ρ−(1),

s0 − 1

s0 + 1
e−s0cε

2/3

+O(e−cε−1/3

)

}
,

where Hull(E) is the closed interval [inf E, supE]. Taking a series expansion in ε, we
obtain

−1 + 2
π (1 + eπ)

c (eπ − 1)
ε1/3 +O

(
ε2/3

)
≤ ρ−(s) ≤ 1− 2

√
2c ε1/3 +O

(
ε2/3

)
.(10.9)

Putting (10.8) and (10.9) together, the desired estimate (3.21) is obtained.
Proof of Lemma 3.11. Let αn = [αn

1 , . . . , α
n
J ]

T and βn = [βn
1 , . . . , β

n
J ]

T be the vec-
tors containing the Fourier coefficients of the iterates as in (3.1). Following Lemma 3.9,
the iteration becomes [

αn+1

βn+1

]
=

[
A B
B∗ A∗

] [
αn

βn

]
,

where A, B are as in Lemma 3.7. The eigenvalues λj,± are given by (3.6), and we may
use the upper bound ρp,L,H defined in (3.17) for the convergence factor. Therefore,
we will analyze the candidates for extrema (3.18), (3.19), and (3.20) by substituting
p = cε2/3L−1, H = ε−1L, and k = εs/L.

For the first candidate extremum, we obtain

λ1,+(s) := λεsL−1,1,+

=
ε2/3 (r + q) (r − q)

(
q2v2 + 1

)
s2 + 2 ε1/3cq

(
r3q − 1

)
(r − q) s+ c2 (rq − 1) (rq + 1) (r − q)2

ε2/3 (rq − 1) (rq + 1) (q2r2 + 1) s2 + 2 ε1/3c (q4r4 + 1) s+ c2 (rq − 1) (rq + 1) (q2r2 + 1)
,

where we have used the shorthand q = es/2 and r = eεs/2. Note that s ranges in the
interval [0, π], and thus 1 ≤ q ≤ eπ/2 ≈ 4.82 and 1 ≤ r ≤ q, when 0 < ε < 1. We next
show that if ε is sufficiently small, then λ1,+(s) ≥ 0 for all s ∈ [0, π]. We first show
that λ1,+(s) �= 0. To that end, assume that q and r are fixed (and not functions of s)
and solve λ1,+(s) = 0 for the unknown s, obtaining

s =
c (q − r)

ε1/3 (r + q)
.

□ 
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One easily verifies that q − r ≥ 1−ε
2 s and (r + q) ≤ 2q < 10, hence

s ≥ c
1− ε

20ε1/3
s.

Dividing across by s (if it is nonzero), a contradiction is reached when ε is small.
Thus, λ1,+(s) does not have a zero in the interval (0, π]. Furthermore, we have that

λ1,+(1) =
−

O(ε1/3)︷ ︸︸ ︷(
eε/2 + e1/2

)(
−eε/2 + e1/2

)
ε1/3 +

Ω(1)︷ ︸︸ ︷(
−eε/2 + e1/2

)2

c

(e1+ε − 1) ε1/3 + c (e1+ε + 1)
> 0

if ε is sufficiently small.
Next, we find an upper bound for λ1,+(s). To that end, define

�(ε) :=
(q − 1)2

1 + q2
− λ1,+(s)

=

(
ε1/3s + r2c − c + sr2ε1/3

)
q4−2 r

(
rc + rε1/3s − c

)
q3+

(
2 rc+ 2 ε1/3s − 2 c

)
q + c − ε1/3s − sr2ε1/3− r2c

r2
(
ε1/3s + c

)
q4 +

(−ε1/3s + c+ sr2ε1/3 + r2c
)
q2 − ε1/3s + c

,

and the aim is to show that 	(ε) > 0 for all s ∈ [0, 1], thus obtaining an upper bound.
In order to do this, assume that q and r are fixed (and not functions of ε), and solve
	(ε) = 0 for the unknown ε, obtaining

ε = −
c3 (r − 1)

3 (
rq4 − 2 rq3 − r + 2 q − 1 + q4

)3
s3 (q4r2 − 2 q3r2 − r2 + q4 + 2 q − 1)

3 .(10.10)

We now compute the sign of the right-hand side of (10.10). Consider the expression

p(q) = rq4 − 2 rq3 − r + 2 q − 1 + q4

as a polynomial in q. Observe that p′′(q) = 12 (r + 1) q2 − 12 rq > 0, since q > 1
(and thus q2 > q), and r > 1. Therefore, p is convex. Furthermore, p′(1) = 6− 2r ≥
6− 2eεπ/2 > 0 if ε is sufficiently small. Consequently, p(q) is monotonically increasing
for q ≥ 1. Finally, p(r) = r5 − r4 + r − 1 > 0 whenever r > 1 and p(q) > 0 whenever
q > r. A similar reasoning applies to the denominator, showing that it is positive.
Hence, we have that ε < 0, which contradicts ε > 0, implying that 	(ε) is nonzero.
Finally, by substituting values of ε, c, s we find that 	(ε) > 0. Furthermore,

0 ≤ λ1,+(s) ≤
(q − 1)2

1 + q2
< 0.61 (since 1 ≤ q < 4.82)

for every 0 ≤ s ≤ π, as long as ε is sufficiently small. As a consequence, |λ1,+| can be
removed from consideration, since it will not be an upper bound for the convergence
factor ρ.

The second candidate extremum is

λ1,−(s) := λεsL−1,1,−

=

O(ε2/3)︷ ︸︸ ︷
s (qr + 1) (qr − 1)

(
r2 + q2

)
ε2/3 +

O(ε1/3)︷ ︸︸ ︷
2 q2c

(
r4 + 1

)
ε1/3 +

Ω(1)︷ ︸︸ ︷
c2 (r − q) (r + q)

(
q2r2 + 1

)
s−1

s (qr − 1) (qr + 1)
(
q2r2 + 1

)
ε2/3︸ ︷︷ ︸

O(ε2/3)

+2 c
(
r4q4 + 1

)
ε1/3︸ ︷︷ ︸

O(ε1/3)

+c2 (qr − 1) (qr + 1)
(
q2r2 + 1

)
s−1

︸ ︷︷ ︸
Ω(1)

,
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where the O(ε(·)) are positive and tend to zero uniformly at the appropriate rate
and the terms Ω(1) have a magnitude greater than some constant. To see that this
constant is independent of s, note that q−r ≥ 1−ε

2 s, or equivalently, s−1(q−r) ≥ 1−ε
2 .

Similarly, s−1(qr − 1) ≥ 1+ε
2 , and since r < q, when ε is sufficiently small, λ1,−(s)

is negative for every s ∈ (0, π]. We can further obtain a lower bound for λ1,−(s)
by neglecting the O(ε(·)) terms on the denominator (since they are positive) and by
neglecting the O(ε2/3) on the numerator (since it is also positive), obtaining

λ1,− ≥ 2
ε1/3q2

(
r4 + 1

)
s

c (qr − 1) (qr + 1) (q2r2 + 1)
+

(r − q) (r + q)

(qr − 1) (qr + 1)

≥ −c+ cε+ 2 ε1/3

c+ cε
= −1 +

2

c
ε1/3 +O(ε).

We analyze λk,−1,+ and λk,−1,− in a similar way, obtaining

0 ≥ λk,−1,+ ≥ 4 ε4/3 + 4 ε2c− c2ε2/3 + c2ε8/3

c
(
2 ε+ ε2/3c+ ε5/3c

) = −1 +
2

c
ε1/3 +O(ε) and

0 ≤ λk,−1,− ≤ −2 ε− cε2/3 + cε5/3

2 ε+ cε2/3 + cε5/3
= 1− 4

c
ε1/3 +O(ε2/3)

if ε is sufficiently small.
Finally, if ε is sufficiently small, then pk(1) and pk(−1) (cf. (3.20)) are both

negative and do not need to be considered. Putting together the estimates for (3.18),
(3.19), and (3.20), one obtains (3.22).

Proof of Theorem 4.1. Like much of the proofs of the results in section 3, the
proof of this theorem is a highly technical piece of “hard analysis,” although it is
significantly easier than the other proofs in this appendix. We divide our proof into
two steps, first on the high frequencies, and then on the low frequencies.

Step 1. We begin by considering the high frequencies. For k ≥ π/H , consider
ρp,0,H,±(k) given by (3.10), and by setting q = ekH > 1 we have

ρp,0,H,+(k) = −k q − k − qp− p

k q − k + qp+ p
and ρp,0,H,−(k) =

k q + k − qp+ p

k q + k + qp− p
.

Differentiating with respect to k, we obtain

ρ′p,0,H,+(k) = −2
p
(
q2 + 2 kHq − 1

)
(k q − k + qp+ p)

2 < 0

since q2 − 1 > 0. Similarly, one obtains

ρ′p,0,H,−(k) = −2
p
(
−e2k H + 2 kHekH + 1

)
(k ekH + k + ekHp− p)

2 = −

2p
∞∑
j=1

≤0︷ ︸︸ ︷
j!− 2j−1(j − 1)!

j!(j − 1)!
(kH)j

(kekH + k + ekHp− p)2
> 0.

Therefore, both ρp,0,H,−(k) and ρp,0,H,+(k) are monotonic over the interval k ∈
[π/H, π/h] and thus
(10.11)

sup
k∈[π/H,π/h]

ρp,0,H(k)

= max{|ρp,0,H,+(π/H)|, |ρp,0,H,−(π/H)|, |ρp,0,H,+(π/h)|, |ρp,0,H,−(π/h)|}

= 1− 2c

π
ε1/2 +O(ε).

□ 
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Step 2. We now consider the low frequencies k < π/H . The six critical values
λk,1,±(p, 0, H), λk,−1,±(p, 0, H), pk(±1, p, 0, H) are given by (3.18), (3.19), and (3.20).
The analysis is very similar to the procedure we followed in Lemma 3.11, but with
many differences in the details, and we briefly outline the various comparisons and
estimates we use.

For λ1,+, let q = esc/2 and write

λ1,+ = λscε/h,1,+(cε
1/2h−1, 0, h/ε) = (q − 1)

−

O(ε1/2)︷ ︸︸ ︷
(q + 1) ε1/2 +

>c/2︷ ︸︸ ︷
(q − 1)/s

(q − 1) (q + 1) ε1/2 + (q2 + 1) /s
.

Note the slightly different substitutions than the ones used in Lemma 3.11; however,
the argument used in the proof of Lemma 3.11 that shows that λ1,+ ≥ 0 for sufficiently
small ε is essentially the same. The range of the frequency parameter k < π/H leads
to s < π/c. We continue as in Lemma 3.11, comparing λ1,+ and (q − 1)2/(q2 + 1).
For all 0 < ε < 1, we find that λ1,+ < (q − 1)2/(q2 + 1). Hence, 0 < λ1,+ < 0.61 and
λ1,+ plays no role in determining the convergence factor of the iteration.

The remaining critical values are

λ1,− = λscε/h,1,−(cε1/2h−1, 0, h/ε) =

O(ε1/2)︷ ︸︸ ︷(
q2 + 1

)√
ε−

Ω(1)︷ ︸︸ ︷(
q − 1

s

)
(q + 1)

(q2 + 1)
√
ε + (q−1)(q+1)

s

,

λ−1,+ = λscε/h,−1,+(cε1/2h−1, 0, h/ε) =

O(ε1/2)︷ ︸︸ ︷(
−sc + 4 q + scq2

)√
ε−

Ω(1)︷ ︸︸ ︷
c
(
q2 + 1

)
cs (q − 1) (q + 1)

√
ε + c (q2 + 1)

,

λ−1,− = λscε/h,−1,−(cε1/2h−1, 0, h/ε) =

−

O(ε1/2)︷ ︸︸ ︷(
q2 + 1

)√
ε+

Ω(1)︷ ︸︸ ︷(
q − 1

s

)
(q + 1)

(q2 + 1)
√
ε +

(
q−1
s

)
(q + 1)

,

pscε/h(1, cε
1/2/h, 0, h/ε) =

−

O(ε)︷ ︸︸ ︷
(q − 1) (q + 1)

(
q2 + 1

)
ε

s
+2

O(ε1/2)︷ ︸︸ ︷
(q − 1)2

(
q2 + q + 1

)√
ε

s2
−

Ω(1)︷ ︸︸ ︷
(q − 1)3 (q + 1)

s3

(q−1)(q+1)(q2+1)ε
s + 2

(q4+1)
√

ε

s2
+

(q−1)(q+1)(q2+1)
s3

,

and

pscε/h(−1, cε1/2/h, 0, h/ε)

=

O(ε)︷ ︸︸ ︷
−h

(
q2 + 1

)(
−sc + 4 q + scq2

)
ε+2

O(ε1/2)︷ ︸︸ ︷
h
(
c(1 + q4)s − 2q(q − 1)(q + 1)

)√
ε

s
−

Ω(1)︷ ︸︸ ︷
hc (q − 1) (q + 1)

(
q2 + 1

)
s

hcs (q − 1) (q + 1) (q2 + 1) ε + 2 hc (q4 + 1)
√
ε +

hc(q−1)(q+1)(q2+1)
s

,

where we have used repeatedly that (q−1)/s ≥ c/2 and (q−1)/s = O(1). Furthermore,
we obtain

λ′1,− = −2

√
ε
(
−e2 sc + 2 scesc + 1

)
(
√
εsesc +

√
εs+ esc − 1)

2 > 0,

and hence

0 ≥ λ1,−(k) ≥ λ1,−(0) =
−c+ 2

√
ε

2
√
ε + c

= −1 +
4

c
ε1/2 +O(ε).
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For λ−1,+, we have

λ
′
−1,− =

(
O(ε1/2)︷ ︸︸ ︷(

−2 cq
(
q2 + 1

)
− 4

q (q − 1) (q + 1)

s

)√
ε+

Ω(1)︷ ︸︸ ︷
4 c2q2 + 2

c (q − 1) (q + 1)
(
q2 − q + 1

)
s

)
s
√
ε

c
(−√

εs +
√
εsq2 + q2 + 1

)2 > 0,

and similarly for the other critical values, leading to the approximations

|λ−1,+| ≤ 1− 2

c

√
ε,

|λ−1,−| ≤ 1− 4

c

√
ε+O(ε).

Putting together (10.11) and the estimates for |λ±1,±|, one obtains (4.1).
To obtain the divergence result, note that

λ0,−1,+(p, 0, H) =
2

pH
− 1 ≥ 1

if p < 1/H .
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