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The Balog-Szemerédi-Gowers theorem has a rich history, and is one of the
most useful tools in additive combinatorics. It began with the a paper by
Balog and Szemerédi [2], and then was refined by Gowers [3] to the following
basic result (actually, Gowers proved somewhat more than we bother to state
here):

Theorem 1 There exists an absolute constant κ > 0 such that the following

holds for all finite subsets X and Y of size n > n0 of an abelian group:

Suppose that there are at least Cn3 solutions to x1 + y1 = x2 + y2, xi ∈ X
and yi ∈ Y . Then, X contains a subset X ′, of size at least Cκn, such that

|X ′ +X ′| ≤ C−κn.

Sudakov, Szemerédi and Vu [5] proved a refinement of this theorem (Balog
[1] independently obtained a similar result), given as follows:

Theorem 2 Let n, C,K be positive numbers, and let A and B be two sets

of n integers. Suppose that there is a bipartite graph G(A,B,E) with at least

n2/K edges and |A +G B| ≤ Cn. Then one can find a subset A′ ⊂ A and

a subset B′ ⊂ B such that |A′| ≥ n/16K2, |B′| ≥ n/4K and |A′ + B′| ≤
212C3K5n.

Remark. It is not difficult to show that this theorem, along with some
lemmas and theorems of Ruzsa (the Ruzsa triangle inequality [6], and the
Ruzsa-Plunnecke Theorem [4]), implies that we may take κ < 20 in Theorem
1.
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In the same paper, Sudakov, Szemerédi and Vu [5, Theorem 4.3] proved
the following powerful hypergraph version of the Balog-Szemerédi-Gowers
Theorem:

Theorem 3 For any positive integer k, there are polynomials fk(x, y) and

gk(x, y) with degrees and coefficients depending only on k, such that the fol-

lowing holds. Let n, C,K be positive numbers. If A1, ..., Ak are sets of n pos-

itive integers, H(A1, ..., Ak, E) is the k-partite, k-uniform hypergraph with at

least nk/K edges, and | ⊕k
Hi=1 Ai| ≤ Cn, then one can find subsets A′

i ⊂ Ai

such that

• |A′
i| ≥ n/fk(C,K) for all 1 ≤ i ≤ k;

• |A′
1 + · · ·+ A′

k| ≤ gk(C,K)n.

The notation ⊕H means that the sum is restricted to the hypergraph H .

Beautiful and useful as it is, it would be nice if one had some control on
the degrees of these polynomials f and g. And, for particular applications
that we (Croot and Borenstein) have in mind, it would be good to be able
to control the rate of growth of sums A′

1 + · · ·+A′
ℓ, where ℓ is much smaller

than k – it would be good to be able to bound the size of this sum from
above by

C1+εKdkn, (1)

where dk depends only on k. Perhaps such a bound can be developed by
modifying the proof of Sudakov, Szemerédi and Vu; however, in the present
paper, we take a different tack, and produce an alternate proof of a related
hypergraph Balog-Szmeredi-Gowers theorem, where such an upper bound as
(1) will be implicit, though only for the case where A1 = · · · = Ak. In our
proof, we will use some of the same standard tricks as Sudakov, Szemerédi
and Vu do in their proof.

The notation we use to describe this theorem, and its proof, will be some-
what different from that used by Sudakov, Szemerédi and Vu. Furthermore,
we will not attempt here to give the most general formulation of the theorem.

Theorem 4 For every 0 < ε < 1/2 and c > 1, there exists δ > 0, such that

the following holds for all k sufficiently large, and all sufficiently large finite

subsets A of an additive abelian group: Suppose that

S ⊆ A×A× · · · ×A = Ak,
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and let

Σ(S) := {a1 + · · ·+ ak : (a1, ..., ak) ∈ S}.

If

|S| ≥ |A|k−δ, and |Σ(S)| < |A|c,

then there exists

A′ ⊆ A, |A′| ≥ |A|1−ε,

such that

|ℓA′| = |A′ + · · ·+ A′| ≤ |A′|c(1+εℓ).

1 Proof of Theorem 4

1.1 Notation and basic assumptions

It will be advantageous to describe the proof in terms of strings. So, the set

S ⊆ Ak

will be thought of as a collection of strings of length k:

x1x2 · · ·xk,

where each xi ∈ A.
Often, we split these strings up into substrings; for example, the string

x = x1 · · ·xk

can be written as a product of a “left substring ℓ of length k/2” (assume k
is even) and a “right substring r of length k/2”. So,

x = ℓr.

We may assume that
k = 2n,

since if this is not the case, then we let k′ be the largest power of 2 of size at
most k, and proceed as follows: Given a string x1 · · ·xk in S, we write it as
a product ℓxrx, where

ℓx := x1 · · ·xk′ and rx := xk′+1 · · ·xk.
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Now, for some string y we will have that rx = y for at least |S|/|A|k−k′ choices
for x ∈ S. Letting S ′ denote the set of all strings ℓx with rx = y, we will
have

|S ′| ≥ |A|k
′−δ,

and clearly

|Σ(S ′)| ≤ |Σ({ℓxy : x ∈ S ′})| ≤ |Σ(S)| ≤ |A|c.

So, we could just assume that our k had this value k′ all along (remember,
we get to choose k to be as large as needed to get the desired conclusion).

1.2 The suppression of subscripts, and a comment about

iteration

In the proof of our theorem, we will iteratively replace our initial set S with
other, smaller and smaller sets having certain useful properties. If we were
so inclined, we could describe this iteration by saying that we produce a
sequence of sets

S0 := S, S1, S2, ..., St, where Si ⊆ Aki , |Si| ≥ |A|
ki−δi.

The trouble with this is that it leads to a proliferation of subscripts, which
can be unpleasant.

Instead of introducing subscripts, we use the “assignment operator”, de-
noted by

S ← S ′,

which means that the set S gets “reassigned” to the set S ′. So, it is worth
keeping in mind that later into the proof, S refers to a different set than at
the start of the proof. The same will be true of k and δ.

1.3 Lengths of iterations and the choice of δ and k

At almost every step of our iteration, we will replace S ⊆ Ak with S ′ ⊆ Ak′ ,
satisfying

|S ′| ≥ Ak′−δ, and |A|1−O(δ) ≤ |Σ(S ′)| ≤ |Σ(S)|1−ε/400c

Clearly, for δ > 0 small enough, the number of such iterations we can take
will be bounded from above in terms of ε and c. Furthermore, since at each
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step, k′ is at least half the size of k, so long as the initial value of k is large
enough in terms of c and ε, we will not run out of dimensions.

Since our theorem is a qualitative result, in that it does not even attempt
to explain how δ or k depends on ε and c, there is no need to be more precise
about just how small one needs take δ or how large to take k, in order for
our iteration process to terminate and prove our theorem.

1.4 The iteration part of the argument

Given a string x of length k/2, we let Rx denote the set of all strings y of
length k/2 such that

xy ∈ S.

We analogously define Lx.

We will now select an x, and therefore Rx, very carefully, so that it satisfies
certain useful properties: We begin with the inequality

∑

x

|Rx| = |S| ≥ |A|k−δ.

We now apply the following lemma, which is easily proved upon using the
Cauchy-Schwarz inequality:

Lemma 1 Suppose that V is a set of n elements, and suppose that

U1, U2, ..., Ur ⊆ V

satisfy
r∑

i=1

|Ui| ≥ rn1−δ.

Then, there exists 1 ≤ j ≤ r such that

∑

1≤i≤r

|Ui ∩ Uj| ≥ rn1−2δ.

From this lemma we easily deduce that there exists x such that

∑

y

|Rx ∩ Ry| ≥ |A|
k−2δ.
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Next, we let
S ′ := {yz ∈ S : z ∈ Rx}, (2)

and we observe that

|S ′| =
∑

y

|Rx ∩ Ry| ≥ |A|
k−2δ;

so, S ′ is not too much smaller than S.
We now make a reassignment:

S ← S ′, δ ← 2δ,

and observe that S now satisfies

|S| ≥ |A|k−δ,

and we in addition have that every element of S can be expressed as yz,
where z ∈ Rx.

Now suppose that there is a string y of length k/2 such that if

|Ry| ≥ |A|
k/2−2δ,

then
|Σ(Ry)| ≤ |Σ(S)|

1−ε/400c.

If this occurs, then we make another reassignment:

S ← Ry, k ← k/2, δ ← 2δ,

and we start back at the very beginning of this subsection 1.4.

1.5 The sets H ′ and H ′′

When we come out of the iteration loops (‘reassignments’) from the previous
subsection, we finish with a set S having a number of highly useful properties,
among them:

• |S| ≥ |A|k−δ;

• Each Ry ⊆ Rx; and,
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• If we let H denote those strings h of length k/2 such that

|Rh| ≥ |A|
k/2−2δ,

then for every such h we will have that

|Σ(S)|1−ε/400c < |Σ(Rh)| ≤ |Σ(S)|.

One can easily show, using the lower bound for |S|, that for |A| sufficiently
large,

|H| > |A|k/2−2δ.

Since ∑

z∈Rx

|{h ∈ H : hz ∈ S}| ≥ |H| · |A|k/2−2δ,

we deduce that there exists z ∈ Rx such that there are at least

|H| · |A|−2δ ≥ |A|k/2−4δ

vectors h ∈ H satisfying
hz ∈ S. (3)

Fix one of these z, and let
H ′ ⊆ H

denote all those h ∈ H such that (3) holds. Note that

|H ′| ≥ |A|k/2−4δ.

Next, let
H ′′ ⊆ H ′

denote those h ∈ H ′ such that there are at least

|H ′| · |Σ(H ′)|−1/2 (4)

other h′ ∈ H ′ satisfying
Σ(h′) = Σ(h).

We have that

|H ′ \H ′′| ≤ |Σ(H ′)|(|H ′| · |Σ(H ′)|−1/2) = |H ′|/2
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So,
|H ′′| ≥ |H ′|/2 ≥ |A|k/2−5δ, (5)

for |A| sufficiently large.
We also note that

|Σ(H ′′)| ≤ |Σ(H ′)| = |Σ({hz : h ∈ H ′})| ≤ |Σ(S)|.

This is one of the places where it was essential to have that z ∈ Rh for all
h ∈ H ′.

Now suppose that, in fact,

|Σ(H ′′)| ≤ |Σ(S)|1−ε/400c. (6)

If so, then we assign

S ← H ′′, k ← k/2, δ ← 5δ,

and we repeat our iteration process again, starting in subsection 1.4.

On the other hand, if (6) does not hold, then we will have that

|Σ(S)|1−ε/400c ≤ |Σ(H ′′)| ≤ |Σ(H ′)| ≤ |Σ(S)| (7)

1.6 The final leg of the proof

From the fact that

|Σ({hu ∈ S : h ∈ H ′′, u ∈ Rh})| ≤ |Σ(S)|,

along with the fact that Rh ⊆ Rx and

|Σ(S)|1−ε/400c ≤ |Σ(Rh)| ≤ |Σ(Rx)| ≤ |Σ(S)|,

as well as (7), we deduce that there are at least

|Σ(S)|3−3ε/400c

quadruples
h1, h2 ∈ Σ(H ′′), and u1, u2 ∈ Σ(Rx),
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such that
Σ(h1) + Σ(u1) = Σ(h2) + Σ(u2).

Now we apply Theorem 1, setting

X := Σ(H ′′), and Y := Σ(Rx).

Following the comment after Theorem 2, we have that there exists

Σ ⊆ Σ(H ′′), |Σ| ≥ |Σ(H ′′)|1−ε/2c,

such that
|Σ+ Σ| ≤ |Σ|1+ε/2c. (8)

Let H ′′′ denote the set of all

h ∈ H ′′,

such that
Σ(h) ∈ Σ.

By (4) and (7), we have that

|H ′′′| ≥ |Σ|(|H ′| · |Σ(H ′)|−1/2)

≥ |Σ(H ′′)|1−ε/2c|H ′| · |Σ(S)|−1/2

≥ |Σ(H ′′)|1−ε/2c|Σ(H ′′)|−1/(1−ε/400c)|H ′|/2

≥ |Σ(H ′′)|−ε/c|H ′|

≥ |A|k/2−4δ−ε.

By simple averaging, there is some vector

w ∈ Ak/2−1,

such that there are at least
|A|1−4δ−ε

vectors h ∈ H ′′′ whose last k/2−1 coordinates are the vector w. The upshot
of this is that if we let

A′ := {a ∈ A : aw ∈ H ′′′},
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then
|A′| ≥ |A|1−4δ−ε, (9)

and
A′ + A′ + 2Σ(w) ⊆ Σ(H ′′′) + Σ(H ′′′) = Σ + Σ.

Now we apply a weak form of the Ruzsa-Plunnecke Theorem [4], given as
follows:

Theorem 5 Suppose that X is some finite subset of an additive abelian

group, such that

|X +X| ≤ C|X|.

Then, we have that

|kX| = |X +X + · · ·+X| ≤ Ck|X|.

Using
X := Σ, and C := |Σ|ε/2c,

we deduce that for ℓ even,

|ℓA′| ≤ |ℓΣ| ≤ |Σ|1+εℓ/2c ≤ |A|c+εℓ ≤ |A′|(c+εℓ)/(1−4δ−ε)

By selecting δ > 0 small enough, relative to ε > 0, we can ensure that for
ε < 1/2,

|ℓA′| ≤ |A′|c(1+2εℓ).

Of course, when 1/2 ≤ ε < 1 the inequality is trivial, as c > 1. Clearly, on
rescaling ε appropriately, our theorem is proved.
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