
ar
X

iv
:c

s/
06

10
00

1v
1

 [
cs

.D
S]

 2
9

Se
p

20
06

Practical Entropy-Compressed Rank/Select Dictionary

Daisuke Okanohara∗ Kunihiko Sadakane†

Abstract

Rank/Select dictionaries are data structures for an ordered set S ⊂ {0, 1, . . . , n−1} to com-
pute rank(x, S) (the number of elements in S which are no greater than x), and select(i, S)
(the i-th smallest element in S), which are the fundamental components of succinct data struc-
tures of strings, trees, graphs, etc. In those data structures, however, only asymptotic behavior
has been considered and their performance for real data is not satisfactory. In this paper, we
propose novel four Rank/Select dictionaries, esp, recrank, vcode and sdarray, each of which
is small if the number of elements in S is small, and indeed close to nH0(S) (H0(S) ≤ 1 is the
zero-th order empirical entropy of S) in practice, and its query time is superior to the previous
ones. Experimental results reveal the characteristics of our data structures and also show that
these data structures are superior to existing implementations in both size and query time.

1 Introduction

Rank/Select dictionaries are data structures for an ordered set S ⊂ {0, 1, . . . , n−1} to support the
following queries:

• rank(x, S): the number of elements in S which are no greater than x,

• select(i, S): the position of i-th smallest element in S.

These data structures are used in succinct representations of several data structures. A succinct
representation is a method to represent an object from an universe with cardinality L by (1 +
o(1)) lgL bits1. While this idea is very similar to the idea of data compression, the difference is
that succinct representations support fast queries on the object such as enumerations or navigations.
Various succinct representation techniques have been developed to represent data structures such
as ordered sets [25, 19, 20, 21], ordinal trees [1, 26, 5, 6, 13, 18, 23], strings [4, 9, 10, 22, 23,
24], functions [17], and labeled trees [1, 3]. All these data structures are based on a succinct
representation of Rank/Select dictionaries.

Many data structures have been proposed for Rank/Select dictionaries, most of which support
the queries in constant time on word RAM [7, 13, 16, 19, 21] using n+ o(n) bits or nH0(S) + o(n)
bits (H0(S) ≤ 1 is the zero-th order empirical entropy of S). In most of these data structures,
however, their asymptotic behavior is only considered, and their performance is not optimal for
real-size data. As a result, the query time is slow and the data structure size is large for real data.
Although recently some practical implementation of Rank/Select dictionaries have been proposed

∗Department of Computer Science, University of Tokyo. Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0013, Japan.
(hillbig@is.s.u-tokyo.ac.jp).

†Department of Computer Science and Communication Engineering, Kyushu University. Motooka 744, Nishi-
ku, Fukuoka 819-0395, Japan. (sada@csce.kyushu-u.ac.jp). Work supported in part by the Grant-in-Aid of the
Ministry of Education, Science, Sports and Culture of Japan.

1Let lg n denote log
2
n

1

http://arxiv.org/abs/cs/0610001v1

using n+ o(n) bits [8, 14], there is no practical implementation of those using nH0(S) + o(n) bits.
Recently gap-based compressed dictionaries have been proposed [11, 12]. They use another measure
called gap(S) :=

∑

i=1...m⌈lg (select(i+ 1, S) − select(i, S))⌉ to define the minimum space to store
S and propose the data structure using gap+O(m log(n/m)/ logm)+O(n log logm/n) bits, which
is much smaller than the entropy-based ones if m ≪ n, but it cannot not support constant time
rank and select queries because of the lower bound [15, 7].

We will introduce novel four Rank/Select dictionaries, esp, recrank, vcode and sdarray(sarray
and darray), each of which is based on different ideas and thus has different advantage and disad-
vantage in terms of speed, size and simpleness. These sizes are small if the number of elements in
S is small, and even close to the zero-th order empirical entropy of S, H0(S) ≤ 1, which is defined
as nH0(S) = m lg n

m + (n−m) lg n
n−m where m is the number of elements in S.

Table 1 summarizes the properties of proposed data structures for an ordered set S ⊂ {0, 1, . . . , n−
1} with m elements in terms of size, time for rank and select. We note that these bounds are
in the worst case and we can expect faster in practice. For example, the O(log4m/ log n) term in
sarray and darray and O(log n) term in vcode are O(1) in almost the case.

Table 1: The space and time results for esp, recrank, vcode, sarray and darray for an ordered
set S ⊂ {0, 1, . . . , n− 1} with m elements. H0(S) ≤ 1 is the zero-th order empirical entropy of S.

method size (bits) rank select

esp (Sec. 3) nH0(S) + o(n) O(1) O(1)
recrank (Sec. 4) 1.44m lg n

m +m+ o(n) O(log n
m) O(log n

m)
vcode (Sec. 5) m lg(n/ lg2 n) + o(n) O(log2 n) O(log n)

sarray (Sec. 6) m lg n
m + 2m+ o(m) O(log n

m) + O(log4m/ log n) O(log4m/ log n)
darray (Sec. 6) n+ o(n) O(1) O(log4m/ log n)

We conducted experiments using proposed methods and previous methods and show that our
data structures are fast and small compared to the previous ones.

2 Preliminaries

In this paper we assume the word RAM model. Under the word RAM model we can perform
logical and arithmetic operations for two O(logn)-bit integers in constant time, and we can also
read/write consecutive O(log n) bits of memory for any address in constant time.

An ordered set S, which is a subset of the universe U = {0, 1, . . . , n − 1}, can be represented
by a bit-vector B[0, . . . , n− 1] such that B[i] = 1 if i ∈ S and B[i] = 0 otherwise. We denote m as
the number of ones in B. Then rank(x, S) is the number of ones in B[0, x], and select(i, S) is the
position of the i-th one from the left in B. These values are computed in constant time on word
RAM using O(n log log n/ log n)-bit auxiliary data structures [16].

The above representation of S using the bit vector of length n-bit is the worst-case optimal
because there exist 2n different sets in the universe and we need lg 2n = n bits to distinguish
different subsets. We call this representation verbatim representation. Similarly, a lower-bound
of the size of the representation of S with m elements is B(n,m) = ⌈lg

(n
m

)

⌉ bits. This value is
approximately nH0(B), which is further approximated by H0(B) ≤ m lg n

m +1.44m bits . Therefore
the size of the verbatim representation is far from this lower-bound if m ≪ n. Raman et al. [21]
proposed a constant-time Rank/Select data structure whose size is B(n,m) + O(n log log n/ log n),
which matches the above lower-bound asymptotically.

The applications of Rank/Select dictionaries can be divided into two groups. One is for sets

2

with m ≃ n/2 and the other is for sets with m≪ n. In this paper we call the former dense sets and
the latter sparse sets. Typical applications of dense sets are for the wavelet trees [9] that are used
for indexing strings, and for ordinal trees. On the other hand sparse sets are used in many succinct
data structures in order to compress pointers to blocks, each of which stores a part of the data.
Because in the word RAM model any consecutive O(log n) bits of data are accessed in constant time,
we often divide the data into blocks of Θ(log n) bits each. For example, an ordinal tree with n nodes
is encoded in a bit-vector of length 2n, and to support tree navigating operations, the bit-vector
is divided into block of length 1

2 lg n bits and in each block we logically mark one bit to construct
a contracted tree with O(n/ log n) nodes. These logical marks are represented by a bit-vector of
length 2n in which 4n/ lg n bits are one. The ratio of one is 2/ lg n, that is, the vector is sparse. Such
vectors can be encoded in B(2n, 4n/ log n)+O(n log log n/ log n) = O(n log log n/ log n) = o(n) bits.
Therefore for storing a sparse vector in a compressed form is important for succinct data structures.

In this paper we will mainly focus on sparse sets to support rank and select functions. Al-
though in some applications like wavelet trees we also need a select0 function2, we usually assume
dense sets in such applications and well-developed Rank/Select dictionaries for dense sets can be
applied.

2.1 Previous Implementation of Rank/Select Dictionaries

We first give a brief description of Rank/Select dictionary using n + o(n) bits, which is called
verbative. We conceptually partition B into subsequences of length l := log2 n each, called
large block. Then each large block is partitioned into subsequences of length s := log n/2 each,
called small block. For the boundaries of large blocks we store rank-directory (results of rank) in
Rl[0 . . . n/l] explicitly using O(n/ log2 n · log n) = O(n/ log n) bits. We also store rank-directory for
each boundary of small blocks in Rs[0 . . . n/s], but here we store only relative values to ones stored
for the large blocks, which are stored in O(n log log n/ log n) bits.

Then rank is computed by rank(x, S) = Rl[⌊x/l⌋] +Rs[⌊x/s⌋] + popcount(⌊x/s⌋ · s, x mod s),
where popcount(i, j) is the number of ones between B[i . . . i+j] which can be calculated in constant
time using a pre-computed table of size O(

√
n log2 n) bits or the popcount function [8]3. For select

we have two options; the first is a constant time solution using o(n) auxiliary data structures [14]
and the second is a O(log n) solution which is a binary search using rank functions without any
auxiliary data structures [8]. Because of the luck of space we omit the detail of select in constant
time [14].

We next introduce Rank/Select dictionary using nH0(S) + o(n) bits, which is called ent. The
main difference between verbative and ent is the representation of bit-vector itself, that is each
small block is encoded by the enumerative code [2] as follows. Given t, the length of the block, and
u, the number of ones in the block, we calculate

∑

i=1...u

(i
t−pi−1

)

where pu is the position of i-th

one in the block. This value is the unique number in [0, ⌈lg
(t
m

)

⌉ − 1] for each possible block of t

length with u ones. This number can be represented by B(t, u) = ⌈lg
(t
m

)

⌉ bits and the size of all
encoded blocks is less than B(n,m) ≤ nH0(S) [19]. We represent each small block as the result of
enumerative code, and the total size is less than nH0(S). Since they have different sizes, we also
need to store pointers to compressed small blocks, which is O(n log log n/ log n) = o(n) bits. These
encoding and decoding are performed by using pre-computed table of O(

√
n log2 n)-bits.

We note that although the size of ent is nH0(S) + o(n) bits, we cannot ignore the o(n) term
because nH0(S) term is small compared to n if m≪ n and o(n) is as much as Θ(nH0(S)).

2We do not discuss rank0 since it can be computed by rank as rank0(i, S) = i + 1 − rank(i, S).
3In this paper let a mod b denote a − ⌊a/b⌋.

3

3 Estimating Pointer Information

We first propose esp (stands for EStimating Pointer information), which does not require pointer
information by estimating them from rank information. Although the size of pointer information
is O(n log log n/ log n) = o(n), this size is actually large as much as Θ(nH0(S)) terms for real-size
data.

First we show the propositions which are needed to bound the size of compressed bit vector in
terms of rank information. Given a bit-vector B[0 . . . n − 1] with m ones, let L(B) be the length
of code word for B using enumerative code [2] (See Section 2.1). Then,

Proposition 1 L(B) ≤ H0(B).

Because H0(B) is the size of a representation of block that uses lg(n/m) bits for each 1’s and
lg(n/(n −m)) bits for each 0’s, and the L(B) = B(n,m) := ⌈lg

(

n
m

)

⌉ is the smallest length of the
code to represent the bit vector.

Let Bi (i = 1 . . . ⌈n
u⌉) be the partition of B, and u be the size of each block. Then,

Proposition 2

⌈n

u
⌉

∑

i=1

L(Bi) ≤
⌈n

u
⌉

∑

i=1

uH0(Bi) ≤ nH0(B).

The second inequality holds because nH0(B) is the concave function.
Let B′ := B[0 . . . t] (t ≤ n) be the prefix of bit-vector B. Since L(B′) ≤ H0(B

′) (use Prop.(1)
and Prop.(2)), we can store all code words of B′ within H0(B

′) bits. However since the inequality
not equality holds we still have an estimation error of pointers. We therefore need to insert gap
bits so that we always estimate the correct pointer information.

We will explain the details of esp. Basically, esp is based on ent except the existence of super-
large blocks (SLB) since we need to reset estimation errors in each SLB. We conceptually partition
B into subsequences of length k := log3 n each, called super large block (SLB). Then each SLB
is partitioned into large block (LB) of length l := log2 n. Then each LB is partitioned again into
small block (SB) of length s := log n/2. We then encode each SB by enumerative code (Section
2.1) independently. The code word for i-th SB: SBi is stored in the position which is determined
as follows. Let lr and sr be results of rank for LB and SB as lr = Rl[xl], and sr = Rs[xs] where
xl = ⌊x/l⌋ and xs = ⌊x/s⌋. Then we estimate the starting positions of LB and SB as

lp = H0(LB
′
xl

) = lr · lg
l · xl

lr
+ (l · xl − lr) · lg

l · xl

l · xl − lr
(1)

sp = H0(SB
′
xs

) = sr · lg
s · xs

sr
+ (s · xs − sr) · lg

s · xs

s · xs − sr
. (2)

where LB′
xl

denotes the preceding LBs from the boundary of SLB up to LBi and SB′
i denotes

the preceding SBs from the boundary of LB up to SBi. Then the position for compressed SBi is
slp+ lp + sp where slp is the pointer information of SLB which is stored explicitly. We note that
all code words are not overlapped (use Prop.(2)) and gap-bits are automatically inserted.

We store rank-directory for LB, SB and pointer information for SLB. All of them are stored
in o(n) bits.

For rank(x, S), we lookup correspondent rank-directory for LB, SB as lr = Rl[xl], and sr =
Rs[xs] where xl = ⌊x/l⌋ and xs = ⌊x/s⌋. Then we estimate the pointer information for LB and SB
as in (1) and (2). We then read the compressed bit representation of SB from that position and
decode it in constant time and do popcount as in verbative.

For select, we use the same approach as in [14] which is done in constant time with the o(n)-bits
auxiliary data structures.

4

In practice, since it is very slow to compute the logarithm of a floating-point number for the
estimating the entropy, we use a pre-computed table lookup and also use fixed-point integer repre-
sentation. We require two integer multipliers and one integer addition for estimating one value of
the entropy.

4 RecRank

The second data structure recrank uses the reduction of a sparse bit-array into a contracted bit-
array and a denser extracted bit-array which was originally used for Algorithm I in [14]. Here we
use the reduction recursively.

Given a bit-arrays B[0 . . . n − 1] with m ones, we conceptually partition B into the blocks
B0, . . . , Bn/t of length t. We call zero block (ZB) a block where all elements are 0 and non-zero
block (NZ) a block where there is at least one 1. The contracted bit-array of B, Bc[0, . . . , n/t− 1]
is defined as a bit-string such that Bc[i] = 0 if Bi is ZB, and Bc[i] = 1 if Bi is NZ, and the extracted
bit-array Be is defined as a bit-array which is formed by concatenating all NZ blocks of B in order.

We can calculate rank of B using Bc and Be as

rank(x,B) = rank(rank(⌊x/t⌋, Bc) · t+ (x mod t) · Bc[⌊x/t⌋], Be). (3)

We then recursively apply this reduction by considering the extracted bit array as a new input bit
array. We continue this process until the extracted bit-array is dense enough (the probability of one
in a bit-array is larger than 1/4). After u times of the reduction, we have t contracted bit arrays
B1

c , B
2
c , .., B

t
c and the final extracted bit array Bt

e.
Here we take the strategy that contracted bit arrays would be dense (the probability of ones in

the bit array would be 1/2). Let p(B) = m/n be the probability of ones in the bit array B. We
choose the block size t = 1

− lg(1−p) so that the p(Bc) would be 0.5. This is because the probability

of t bits being all zero is (1 − p)t and the half of the elements in contracted bit array is one when
(1− p)t = 1/2. Then the length of Bc is −n lg(1− p) and the length of Be is n/2. We note that Be

contains m ones and p(Be) = 2p. This reduction is applied u = − lg p times so that the probability
of ones in the final extracted bit array is larger than 1/4.

Let T be the size of recrank and p = 2−u. We can calculate T as follows,

T = n ·
∑

i=0...u−2

(

− lg(1 − 2ip)

2i

)

+ 2m (4)

≤ n · 1

loge(2)

∑

i=0...u−2

(

2ip+ 2 · (2ip)2/3

2i

)

+ 2m (5)

=
1

loge(2)
(−m lg p− 2m/3 − 2mp/3) + 2m (6)

In (5), we use lg(1−x) ≤ x+ 2
3x

2 for 0 ≤ x ≤ 1
4 . In short, T is bounded by 1.44m lg n/m+m bits.

For rank, we apply (3) at each stage. Since the number of reduction is − lg p = lg n/m and
each stage is done in constant time, the total time is O(log n/m). For select, we apply select in
each stage, each of which is done in constant time [14], so the total time is in O(log n/m).

5 Vertical Code

A Vertical Code (vcode) supports fast select and small space-size in practice because of its byte-
based operations and a novel orientation of data. This is a kind of opportunistic data structure,

5

int select_vc(int i){ // return select(i,S)

int b = i/p; int q = i%p; // b is the block number and q is the offset

int x = S[b] + q;

for (int j = 0; j < T[b]; j++) // count the number of ones in first q bits in each digit

x += popcount[V[b][j] & ((1U << q) - 1)] << j;

return x;

}

Figure 1: An example code of select in vcode written in C++. V [p][j] contains Vp[j] and
popcount[k] returns the number of set bit in binary sequence of k. Other variables correspond
to the definition in the paper

that is, although it is not entropy-compressed Rank/Select dictionary in the worst case, in most
case its size is close to the zero-th order empirical entropy.

Given a bit-arrays B[0 . . . n−1] with m ones, we first convert it into the gap sequence d[0 . . . m−
1], d[i] = select(B, i+ 1) − select(B, i) − 1, (d[0] = select(B, 1)), (i = 0 . . . m− 1).

We then partition d into blocks B1, . . . , Bm/p of size p = O(log2 n). Let T [0 . . .m/p− 1] be the
arrays such that T [i] = lg⌊maxj=0...p−1 d[ip + j]⌋, Vi[j] be the bit arrays of length p consisting of
the set of the j-th bit of d in the block Bi, and S[0 . . . m/p− 1] be the arrays such that S[i] = d[ip].
We note that all d in a block Bi can be represented in T [i] bits each.

We describe how to get select(S, i) by using T , V and S. Let b = i/p and q = i mod p.

Since select(S, i) = S[b] + q +
∑bp+q

i=bp d[i], we count the number of ones in the first q bits of each
Vb[0], . . . , Vb[Ti], then sums them up with shift. Figure 5 shows the example code of select in
vcode.

The characteristic of vcode is if we set p is a multiple of eight, all operations are byte-aligned.
And the cost of

∑bp+q
i=bp d[i] is O(T [b]), which would be small if T [b] is small. This idea is similar to

gap-based compressed dictionary [11, 12]. We encode gap information directly and we can expect
the time of select is small if gap is small. For example, the gap of ψ in compressed suffix arrays [24]
is very small.

For select, we need to do T [i] operations each of which is done in constant time. Since T [i] would
become O(log n) in the worst case, the total time for select is O(log n). For rank and select0, we
need to do the binary search from m elements using select which is done in O(log n · logm) time
in the worst case.

The size of S is O(log n ·m/ log2 n) = o(n). Since d[i] < n, the size of Ti is bounded by lgn
and T is bounded by O(log n ·m/ log2 n) = o(n) and the size of V is bounded by m lg n/ lg2 n bits,
which happens when d[ip] = n/ lg2 n (0 ≤ i < n/p) and others d[i] are all 0. we note that we can
expect the size of V is close to m lg n/m (≃ nH0(B)) bits and the time of select is close to O(1)
when adjacent elements in d have similar values.

6 SDarrays

The idea of SDarrays (sdarray) is to use two different techniques for sparse sets and dense sets
each, which enables us to design the data structure simply. We call the former sarray and the
latter darray(sarray uses darray as a part of data structure).

First we will introduce sarray for sparse sets. Given a bit-arrays B[0 . . . n − 1] with m ones
(m ≪ n), we define x[0 . . . m − 1] such that x[i] = select(i + 1, B). Each x is then divided into
upper z = ⌊lgm⌋ bits and lower w = ⌈lg n/m⌉ bits. Lower bits are stored explicitly in L[0 . . . m−1]
using m · ⌈lg n/m⌉ bits. Upper bits are represented by a bit array H[0 . . . 2m − 1] such that

6

int rank_sarray(int i){ // return rank(i,B) in sarray

int y = select_0(i/2^w,H)+1; int x = y-i/2^w;

for (int j = i%2^w; H[y] == 1; x++,y++){

if (L[x] >= j){ //L is lower-bit of B

if (L[x] = j) x++;

break;

}

}

return x;

}

Figure 2: An example code of rank in sarray. Variables correspond to the definition in the paper

H[xi/2
w + i] = 1 and others are 0. By using H and L, we can calculate select in sarray by

select(i, B) = (select(i,H) − i) · 2w + L[i]. We need select for H. Here we can assume that H is
dense because there are m ones and m zeros in H.

We then explain darray for dense sets, B[0 . . . n− 1] with m ≃ n/2 ones4. We first partition H
into the blocks such that each block contains L ones respectively. Let Pl[0 . . . n/L− 1] be the bit
arrays such that Pl[i] is the position of (iL + 1)-th one. We classify these blocks into two groups.
If the length of block size (Pl[i] − Pl[i − 1]) is larger than L2, we store all the positions of ones
explicitly in Sl. If the length of block size is smaller than L2, we store the each L3-th positions of
ones in Ss. We can store these values in lgL2 bits.

For select(i, B) in darray, we lookup Pl[⌈i/L⌉] and see whether the block is larger than L2 or
not. If it is, we lookup the value in Sl which is stored explicitly. If not, we lookup correspondent
L3-th value in Ss and then do sequential search in the block which would take O(L2/ log n) time
because we can read O(log n) bits in RAM model. We note that if we can assume that ones is
distributed in B uniformly, this sequential search is done in O(1) time. Although this data structure
concerns only select, we can use same data for select0 by reversing bits in H at reading time.

For rank in darray, we use the same method as in verbative. For rank(i, B) in sarray(see
the example code in figure 4), we first calculate y = select0(i/2

w ,H) + 1 to find the smallest
element which is greater than ⌈i/2w⌉ · 2w. Then we count the number of elements which equals to
or smaller than i by sequentially searching over H and L in time O(n/m) because the possible bit
pattern of length lgn/m is n/m. If we use binary search, we can do it in O(log n/m) time but this
is slower than sequential search in practice and we use sequential search.

The size of Pl is O(n
L · log n), that of Sl is at most n

L2
· L lg n bits, and that of Ss is at most

n
L3

lgL2 bits. When we choose L := O(log2 n), L2 := O(log4 n), and L3 := O(lg n), all the sizes of
Pl and Sl and Ss are o(n). In summary, the size of darray is n+ o(n) bits.

We then analyze the size of sarray. We use m · ⌈lg n/m⌉ bits for L. For H of length 2m, we
use the data structure of darray, which is m + o(m) bits. Therefore the total size of sarray is
m · ⌈lg n/m⌉ + 2m+ o(m) bits.

7 Experimental Results

We conducted experiments using esp (esp), recrank (rr), vcode (vc), sarray (sa) and dar-

ray (da). We also compare them with byte-based implementation in [14] (Kim), and its re-
implementation by us (Kim2) and [8] (navarro). For esp, we used k = 212, l = 28, s = 25.
For vc, we used p = 8. For sa, we used L = 210 L2 = 216 and L3 = 25.

4The size of H in sarray is 2m not n. Here we explain darray in general case.

7

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60 70 80 90

S
iz

e
(b

pc
)

Ratio of 1

Size of the data structures

vc
Kim

sa
Kim2

da
Navarro

rec
esp

entropy

Figure 3: Size of the data structures.

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

)

Ratio of 1

Time for 100,000,000 random rank operations

vc
esp
Kim
rec
sa
da

Kim2
Navarro

Figure 4: Time for 100,000,000 random rank operations.

For select in rr, we used O(log n) solutions because o(n) auxiliary data would become large.
For rank and select in sa and da, we used sequential search in H because it is faster in practice.

We used GNC C 3.4.3 -O6 -m64. We measured time using ftime functions on the 3.4GHz Xeon
with 8GB main memory.

8

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

)

Ratio of 1

Time for 100,000,000 random select operations

esp
Kim

Kim2
rec

Navarro
vc
da
sa

Figure 5: Time for 100,000,000 random select operations.

Table 2: The space results for esp, recrank, vcode, sarray and Navarro for the bit arrays of n-bit
length with 1% and 5% ones. The values is the percentage of the size of each data structures over
an original bit-array.

Ratio of 1’s esp recrank vcode sarray nH0 Navarro

1% 17.02 15.83 15.05 10.13 8.08 137.5

5% 42.67 49.32 62.25 40.59 28.64 137.5

All experiments are done using the bit arrays of length 10M(10 · 220) bits.
Figure 3 shows the result of the size of several data structure. We also show the result of

nH0(B) which is the lower bound of data structure if we only know the ratio of ones. From here
we can see that the size of esp is very close to nH0(B) in all conditions. We also find that the size
of rec, sa and vc are very close to nH0(B) when the ratio of 1 is very small.

Table 2 shows the sizes of each data structures for the bit-arrays with 1% and 5% ones. We
find that the sizes of proposed data structures are indeed close to nH0. We note that sarray is the
smallest in both case.

Figure 4 is the result of 108 rank operations. We can see that Kim2, Navarro and da is the
fastest which is the same as in rank in verbative. On the other hand vc is the slowest for rank

because it needs binary search using select functions. Only rec is slower in the small ratio of 1
because its computation cost is O(log n/m) depending on the inverse number of m.

Figure 5 is the result of 108 select operations. Among several methods, sa is the fastest in all
conditions. As in the result of rank, rec is slower in the small ratio of 1. We also find that da
shows different behavior in the small ratio of 1 because it switches data structures depends on the
ratio of 1. We note that the result of esp for rank and select is fast in the ratio of 1 is small or
large sinc esp employ decode table for enumerative code which is only prepared for compressible
block. Therefore it becomes slower when the block could not be compressible.

9

We did not show the results in bit arrays of different length because of the lack of space. We
note that except Navarro, rec and vc which use binary search in select, all methods have the
similar result with bit arrays of different length.

8 Concluding Remarks

In this paper, we have proposed novel four Rank/Select dictionaries, esp, recrank, vcode and
sdarray. Experimental results show that the sizes of these data structures are indeed close to the
zero-th order empirical entropy and achieves fast queries.

We also note that they are easy to implement (except esp) because recrank uses reduction
which can employ well-developed dense sets techniques and vcode converts the problem into the
popcount in bytes and sdarray separates the problem for dense sets and sparse sets, which simplify
the problem.

In the next stage of our research, we will extend our result to more complex data structures,
such as sequences from large alphabets. We also consider applications which employ appropriate
data structures and also apply them to data compression as well.

References

[1] D. Benoit, E. D. Demaine, J. I. Munro, R. Raman, V. Raman, and S. S. Rao. Representing trees of
higher degree. Algorithmica, 43(4):275–292, 2005.

[2] T. Cover. Enumerative source encoding. IEEE Trans. on Information, 19(1):73–77, 1973.

[3] P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan. Structuring labeled trees for optimal
succinctness, and beyond. In FOCS, 2005.

[4] P. Ferragina and G. manzini. Indexing compressed texts. Journal of the ACM, 52(4):552–581, 2005.

[5] R. Geary., N. Rahman., R. Raman., and V. Raman. A simple optimal represengtation for balanced
parentheses. In Proc. of CPM, pages 159–172, 2004.

[6] R. Geary., N. Rahman., and V. Raman. Succinct ordinal trees with level-ancestor queries. In ACM-
SIAM SODA, pages 1–10, 2004.

[7] A. Golynski. Optimal lower bounds for rank and select indexes. In Proc. of ICALP, 2006.

[8] Rodrigo González, Szymon Grabowski, Veli Mäkinen, and Gonzalo Navarro. Practical implementation
of rank and select queries. In Poster Proceedings Volume of 4th Workshop on Efficient and Experimental
Algorithms (WEA’05), pages 27–38, Greece, 2005. CTI Press and Ellinika Grammata.

[9] R. Grossi., A. Gupta., and J. Vitter. High-order entropy-compressed text indexes. In Proc. of SODA,
pages 841–850, 2003.

[10] R. Grossi., A. Gupta., and J. Vitter. When indexing equals compression: Experiments with compressing
suffix arrays and applications. In Proc. of SODA, pages 636–645, 2004.

[11] A. Gupta, W. Hon, R. Shar, and J. Vitter. Compressed data structures: Dictionaries and data-aware
measures. In Proc. of DCC, pages 213–222. IEEE, 2006.

[12] A. Gupta, W. Hon, R. Shar, and J. Vitter. Compressed dictionaries: Space measures, data sets, and
experiments. In Proc. of WEA, 2006. To appear.

[13] G. Jacobson. Space-efficient static trees and graphs. In Proc. of FOCS, pages 549–554, 1989.

[14] D. K. Kim., J.C. Na., J.E. Kim., and K. Park. Efficient implementation of rank and select functions
for succinct representation. In Proc. of WEA, 2005.

[15] P. B. Miltersen. Lower bounds on the size of selection and rank indexes. In Proc. of SODA, pages
11–12, 2005.

[16] J. I. Munro. Tables. In Proc. of FSTTCS, pages 37–42, 1996.

10

[17] J. I. Munro and S. S. Rao. Succinct representations of functions. In Proc. of ICALP, pages 1006–1015,
2004.

[18] J. I. Munro, V. Rman, and S. S. Rao. Space efficient suffix trees. Journal of Algorithms, 39(2):205–222,
2001.

[19] R. Pagh. Low redundancy in static dictionaries with constant query time. SIAM J. Computation,
31(2):353–363, 2001.

[20] C. K. Poon and W. K. Yiu. Opportunistic data structures for range queries. In Proc. of COCOON,
pages 560–569, 2005.

[21] R. Raman, V. Raman, and S. S. Rao. Succinct indexable dictionaries with applications to encoding
k-ary trees and multisets. In Proc. of SODA, pages 232–242, 2002.

[22] S. S. Rao. Time-space trade-offs for compressed suffix arrays. Information Processing Letters, 82(6):307–
311, 2002.

[23] K. Sadakane. Succinct representations of lcp information and improvements in the compressed suffi
arrays. In ACM-SIAM SODA, pages 225–232, 2002.

[24] K. Sadakane. New text indexing functionalities of the compressed suffix arrays. J. Algorithms, 48(2):294–
313, 2003.

[25] K. Sadakane W. K. Hon and W.K. Sung. Succinct data structures for searchable partial sums. In Proc.
of ISAAC, pages 505–516, 2003.

[26] C. C Lin Y. T. Chiang and H. I. Lu. Orderly spanning trees with applications. SIAM Journal on
Computing, 34(4):924–945, 2005.

11

