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Abstract

Time series anomaly detection is a challenging task with
a wide range of real-world applications. Due to label
sparsity, training a deep anomaly detector often relies
on unsupervised approaches. Recent efforts have been
devoted to time series domain adaptation to leverage
knowledge from similar domains. However, existing so-
lutions may suffer from negative knowledge transfer on
anomalies due to their diversity and sparsity. Motivated
by the empirical study of context alignment between two
domains, we aim to transfer knowledge between two do-
mains via adaptively sampling context information for
two domains. This is challenging because it requires
simultaneously modeling the complex in-domain tem-
poral dependencies and cross-domain correlations while
exploiting label information from the source domain. To
this end, we propose a framework that combines con-
text sampling and anomaly detection into a joint learn-
ing procedure. We formulate context sampling into the
Markov decision process and exploit deep reinforcement
learning to optimize the time series domain adapta-
tion process via context sampling and design a tailored
reward function to generate domain-invariant features
that better align two domains for anomaly detection.
Experiments on three public datasets show promise for
knowledge transfer between two similar domains and
two entirely different domains.

1 Introduction

Detecting anomalies from time series data has a wide
variety of applications [19, 26, 1, 21, 20, 37, 42, 23] in
various domains and is very challenging due to the lim-
ited access to the label information and complex depen-
dencies between individual time points. Nevertheless,
modeling time series data with limited label information
leads to sub-optimal performance, and therefore increas-
ing research efforts are devoted to time series domain
adaptation. There are two types of existing approaches:
domain discrepancy minimization and domain discrim-
ination. The former one [3, 10, 25], which forcefully
minimizes metric distances between the mapped sub-
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Incompatible Context

Figure 1: Comparison of two machines in SMD dataset.

sequences of two domains in a shared subspace, may
lead to a sub-optimal shared subspace due to the dis-
tinction in the data distribution of two domains. The
latter one [16, 10, 35], which extracts domain invariant
features from subsequences of two domains with adver-
sarial learning, may be intractable when the lengths of
subsequences from two domains are not well-aligned.

To facilitate knowledge transfer between time se-
ries from two different domains, it is critical to align
the context of time points (i.e., length of subsequences).
Figure 1 compares an attribute of two machines from a
server monitoring dataset (i.e., SMD dataset [33]). We
can observe that even if the anomalies of two machines
behave similarly, directly conducting knowledge transfer
without aligning the context (i.e., the orange window)
may lead to negative transfer. To this end, we hypoth-
esize that aligning the context of two domains with dif-
ferent context window sizes benefits anomaly detection.

To validate the assumption, we conduct knowledge
transfer between two deep anomaly detectors from two
domains and apply multiple context window sizes to the
target domain while fixing the source domain window
size. Figure 2 illustrates the preliminary experiment
that reports the detected ratio of 20 outliers with
different context alignment settings for 20 runs. We
observe that setting target domain windows at 6 and
8 leads to generally better performance than making
them the same as the source domain (i.e., window
size of 10). Furthermore, different anomalies can be
better detected with different context window sizes. For
example, anomalies 1 and 6 can always be detected
when the window size is 6, whereas anomalies 2 and
7 can be better detected when the window size is set
to 8. The observations above motivate us to develop a
contextual domain adaptation framework to facilitate
knowledge transfer for time series anomaly detection.

However, it is non-trivial to develop the framework
due to two challenges. First, aligning two domains for
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Figure 2: Preliminary context window alignment exper-
iment. The X-axis is the anomaly ID, and the Y-axis is
context window size of the target domain. Lighter color
indicates better detection ratios.

knowledge transfer while simultaneously modeling the
correlation between sensors and temporal dependency
between time points is a complex task. As each machine
in the SMD dataset has 38 sensors, transferring knowl-
edge between two machines requires extracting domain
invariant features from the correlation between 38 sen-
sors from two domains. Second, anomalies from differ-
ent domains behave differently. It is challenging to ex-
tract beneficial information for target domain anomaly
detection. For instance, directly exploiting the informa-
tion of anomalies with extreme values to detect anoma-
lies with sudden drop behavior in a fully supervised
manner may lead to sub-optimal performance.

To address the challenges, we propose ContexTDA,
a data-centric framework [39, 40] to select context win-
dow size toward time series domain adaptation for
anomaly detection. Motivated by recent success of
deep reinforcement learning on partial domain adapta-
tion [6, 7], we formulate the time series context sampling
problem of domain adaptation into a Markov decision
process (MDP). A MDP solver is adopted to simul-
taneously capture temporal dependencies and domain
correlations for aligning the context of two domains.
Specifically, as the recent benchmark [31] shows the
promising of LSTM autoencoder [18], we instantiate the
ContexTDA with the LSTM autoencoder as the base
anomaly detector and adopt Deep Q-learning [28] as the
MDP solver, to address discrete action space. Extensive
experiments suggest the superiority of ContexTDA in
transferring knowledge between homogeneous domains,
and a pilot study on two heterogeneous datasets demon-
strates the potential of ContexTDA toward heteroge-
neous time series domain adaptation. To sum up, we
make the following contributions:

• Identify context sampling as a key toward time series
domain adaptation for detecting anomalies.

• Formulate the context sampling into a MDP and
propose ContexTDA to facilitate domain adaptation.

• Instantiate ContexTDA with DQN and LSTM au-
toencoder with extensive experiments to show the
promise of ContexTDA compared to the state-of-the-
arts domain adaptation methods.

2 Preliminary

In this section, we define the problem of context sam-
pling for time domain adaptation and introduce the
background of time series anomaly detection, time series
domain adaptation, and deep reinforcement learning.

2.1 Problem Statement Let X = (v0, v1 · · · , vt)
and X̂ = (v̂0, v̂1 · · · , v̂t) be two fully observed multi-
variate time series data of source and target domain
respectively. Let Y ∈ Nt+1 be the label of source do-
main X indicating whether individual time point vt is
an anomaly or not. Time series anomaly detection aims
at recognizing if a time point v̂t is anomalous or not.
A scoring function F : x̂t → R evaluates the degree
of anomalous of individual instances based on the in-
put data x̂t; the higher the score, the more anomalous
the time point t is. A context window is used to sam-
ple subsequences from X̂, resulting in the input data
x̂t = (v̂t−m, v̂t−m+1, · · · , v̂t) as the input of F , where m
is the size of the context window. Following the context
window mechanism, our goal is to transfer the source
domain information (i.e., X and Y ) with a context sam-
pling policy in order to optimize the performance of F
in detecting anomalies from the unlabeled X̂.

The context sampling problem can be formulated
as follows. Given two multivariate time series data,
our goal is to jointly learn a sampling policy π̃ with
an anomaly detector, where π̃ maps xt and x̂t into two
context window sizes m and n. This way, by sampling
subsequences xt = (vt−m, vt−m+1, · · · vt) and x̂t =
(v̂t−n, v̂t−n+1, · · · v̂t) to perform domain adaptation, the
performance of anomaly detection on the target domain
X̂ can be optimized.

2.2 Deep Time Series Anomaly Detection To
detect anomalies from a time series, existing deep learn-
ing approaches assume that normal data instances are
compact in hyperspace [32], and therefore model ma-
jority patterns lie in the data with autoencoder [2] to
identify the decision boundary between anomalies and
normalities. Specifically, a fix-sized sliding window is
adopted to segment the time series into subsequences
that reflects local patterns of the data. Then, autoen-
coder [30] can be introduced to model the majority by
minimizing the dissimilarity between the input subse-
quences and the decoded subsequences based on the
low-dimensional latent vector generated by the encoder
with following loss function:

min
D,E
||X −D(E(X))||22,(2.1)

where X ∈ Rt×w×n is a tensor representing a segmented
n-dimensional time series data with window size w and
timesteps t, E and D are the encoder and decoder.
This way, the loss value of the potential anomalous
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subsequence in timestamp t may explicitly larger than
rest of the subsequences. Additionally, instead of using
multi-layer perceptron, LSTM [18] can be adopted
to further capture the temporal correlations between
individual subsequences. As recent benchmark [31]
shows promise of the LSTM autoendoer, we employ
LSTM autoencoder as the core anomaly detector. One
may also adopt other RNN-based anomaly detectors [15,
33] into the framework.

2.3 Time Series Domain Adaptation Domain
adaptation is widely adopted to image data due to the
consistent definition of each entry in images. The two
common strategies to perform domain adaptation are
domain discrepancy minimization [25] and domain dis-
crimination [35, 24]. Domain discrepancy minimization
introduces a mapping function M to map source and
target domain data into a shared subspace, and then
perform distance minimization based on the feature vec-
tors of both domains in the subspace:

min
M
||M(X)−M(X̂))||22(2.2)

where X and X̂ are the source and target domain
data. Recent study [3] on domain adaptation for time
series fault detection develop a LSTM-based classifica-
tion framework that generates source and target domain
features by a shared LSTM unit and adopt domain dis-
crepancy minimization with self-attention mechanism to
adaptively align the size of subsequences between two
domains toward domain adaptation.

Domain discrimination conducts adversarial learn-
ing with generator and discriminator. The goal of the
generator G is to generate domain invariant features
that cannot be distinguished by the discriminator H
while the target of discriminator is to identify the do-
main of the input feature vector from the generator:

min
H

max
G

Ex∼X∪X̂ [H(x)] + Ez∼Z [log(1−H(G(z)))](2.3)

where z ∈ Z is a prior noise. By performing the min-
max optimization between G and H, the generator will
be able to generate domain invariant features. Latest
study [16] on domain adaptation for time series fore-
casting introduces a dual encoder-decoder framework
with a shared attention layer as the feature generator
to generate domain invariant features to train a do-
main discriminator. However, existing works are tai-
lored for classification and forecasting tasks, which focus
on transferring the knowledge of majority distribution
of time series and potentially ignore the diverse minor-
ity distribution [41]. Therefore, they cannot be directly
adopted to anomaly detection problem. Motivated by
partial domain adaptation, in our framework, we intro-
duce a context sampling policy to tailor the contextual
information for individual time points to alleviate the
aforementioned issues.

2.4 Solving Markov Decision Process via Deep
Reinforcement Learning Markov Decision Pro-
cess (MDP) models sequential decision making process
by a quintuple (S,A,PT ,R, γ), where S is a finite set of
states, A is a finite set of actions, PT : S ×A×S → R+

is the state transition probability function that maps
the current state s, action a and the next state s′ to
a probability value, R : S → R is the immediate re-
ward function that reflects the quality of action a, and
γ ∈ (0, 1) is a discount factor. At each timestep t, the
agent takes action at ∈ A based on the current state
st ∈ S, and observes the next state st+1 as well as a
reward signal rt = R(st+1). The goal is to search an
optimal series of actions such that the expected dis-
counted cumulative reward is maximized. Mathemat-
ically speaking, we would like find a policy π : S → A
to maximize Eπ[

∑∞
t=0 γ

trt].
Deep reinforcement learning algorithms are de-

signed to solve the Markov decision process (MDP) with
deep neural networks. In this work, we adopt model-
free deep reinforcement learning, which learns the deci-
sion function during the exploration. Deep-Q Learning
(DQN) [28] is a pioneering algorithm which uses deep
neural networks as a function approximator to model
state-action values Q(s, a) that satisfies:

Q(s, a) = Es′ [R(s′) + γmax
a′

(Q(s′, a′)],(2.4)

where s′ is the next state and a′ is the next action. DQN
introduces two techniques to stabilize the training: (1)
a replay buffer to reuse past experiences; (2) a separate
target network that is periodically updated. In this
work, we employ DQN to solve the MDP; one could also
apply advanced algorithms such as soft actor-critic [13].

3 Methodology

Figure 3 illustrates the overview of the proposed frame-
work. There are two main components: a context sam-
pler and an anomaly detector. The context sampler
aims at learning an optimal policy to sample contex-
tual information for individual time points as input data
batches for the anomaly detector. The anomaly detec-
tor takes the output of the context sampler to model
the data from two domains into two feature vectors for
knowledge transfer and anomaly detection.

To integrate the two modules, we frame the time
series domain adaptation into a Markov decision pro-
cess. Specifically, the context sampler considers the fea-
ture vectors generated by the anomaly detector as the
state. It maps the state into the action that specifies
the context window sizes for the source and target do-
mains in the next timestamp. Then, the input data
of the anomaly detector will be sampled according to
the action of the context sampler. During the train-
ing process, three types of losses will be computed to
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Figure 3: An illustration of ContextTDA. In each step, sub-sequences from two domains are encoded as feature
vectors. The feature vectors are adopted to compute losses for updating the anomaly detector and source domain
classifier, and to compute the reward signals. Then, the context sampler generates context window sizes of two
domains for the next time step based on the feature vectors and is updated with the reward signal.

generate reward signals for updating the context sam-
pler while training the anomaly detector: classification
loss of source domain data to better exploit label infor-
mation; unsupervised reconstruction loss of source and
target domains to reflect majority modeling for anomaly
detection task; and domain adaptation losses to encour-
age knowledge transfer between domains.

In what follows, we elaborate on the details of our
framework. We first focus on framing the context sam-
pling problem into a Markov decision process. Then, we
introduce the domain adaptation strategies and model
training details. Lastly, we introduce anomaly inference
with the trained model.

3.1 Context Sampling as Markov Decision Pro-
cess Viewing each single data point alone neglects tem-
poral dependency [46] and thus a context window is usu-
ally adopted to capture meaningful local patterns. In
this session, we define time series context sampling as a
Markov decision process to capture local patterns to fa-
cilitate domain adaptation. As discussed in Section 2.4,
the key components of an MDP include states, actions,
and rewards, as well as a transition function that maps
the current state and action into the next state. Here,
we define our state, action, and reward signal as follows:

• State: The state st ∈ S at timestep t is defined as
a 2n dimensional vector (E(xt), E(x̂t)), which is the
concatenation of two n-dimensional feature vectors
from the encoder E of the anomaly detector based on
current data point of source xt and target x̂.

• Action: The action at ∈ A at timestep t is a two-
dimensional vector. The first and second dimensions
are the window size for source and target domains

respectively. The action space for the source and
target domains ranges from 1 to a given maximum
window size.

• Reward: We define the reward rt at timestep t as
a combinatorial signal of source domain classification
loss, source and target domain reconstruction loss,
domain alignment and discrimination loss. The goal
is to encourage the context sampler to sample qual-
ity data batches toward better exploitation of label
information and domain adaptation.

The proposed domain adaptation process consists of
three phases: 1) generate state st based on the source
and target into windows that ends at timestamp t, 2)
generate an action at from π̃(st) to specify the context
window size of the next data points from source and
target domains, 3) sample the next input data for
training the anomaly detector and the source classifier
based on at and generate the next state st+1.

To solve the aforementioned MDP, we employ deep
reinforcement learning to model the transition dynamics
between states and actions and learn a context sampling
policy for domain adaptation. Due to the fact that
window sizes for the two domains are finite integers,
the action space is a discrete space and actions for the
two domains are always positive integers. Therefore, we
introduce deep Q-learning to address the problem. In
particular, the reward function is the critical signal that
guides the whole learning process. We design the reward
function as the reciprocal of the combination of multiple
losses, which will be elaborated in Section 3.2. With
the reward function, the Q-function are approximated
by a multi-layer perceptron, and the epsilon-greedy
algorithm is adopted to form the sampling policy π̃.
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3.2 Contextual Domain Adaptation To facilitate
knowledge transfer from a well-labeled source domain to
an unlabeled target domain, we design a combinatorial
reward function that reflects the status of the anomaly
detector, the exploitation of the source domain label
information, and the discrepancy between the two do-
mains. The goal of the reward function is to encourage
the context sampler to obtain an adequate context win-
dow size such that the label information can be prop-
erly transferred to the target domain and domain dis-
crepancies can be minimized. Specifically, we involve
three types of losses generated by the LSTM anomaly
detector in the reward function: 1) classification loss
on the source domain; 2) reconstruction losses on both
domains; and 3) domain adaptation losses between two
domains. In the meantime, the encoder and decoder of
the LSTM anomaly detector are jointly trained with a
source domain classifier and a domain discriminator.

First, to compute the classification loss, we intro-
duce a multi-layer perceptron classifier C with sigmoid
activation function, and the input of latent features gen-
erated by the encoder of the anomaly detector. Then,
we compute the binary cross-entropy on the source do-
main and re-weight the loss values with weight matrix
wt ∈ W on labeled anomalies and nomalities to form
the reward signal that puts emphasis on precise classi-
fication on anomalies:

Lcls =
∑
xt∈X −wt[yt · log(C(E(xt))) + (1− yt) · log(1− C(E(xt)))].

where weight matrix wt ∈ W specifies the weight for
anomalies and normalities.

Second, we compute the reconstruction loss to en-
courage the detector to precisely model the general dis-
tribution of both domains. To leverage the label infor-
mation in the source domain, we follow the equation 2.1
to compute reconstruction loss in both domains:

Lrecon =
∑

xt∈X+,x̂t∈X̂

||xt−D(E(xt))||22+||x̂t−D(E(x̂t))||22

where X+ and X̂ are the labeled normalies on source
domain and the unlabeled target domain dataset. This
way, we can put emphasis on the data distribution of
the source domain without outliers, which is potentially
beneficial to modeling the general distribution of the
target domain.

Finally, to facilitate domain adaptation, we com-
pute domain discrepancy minimization loss and domain
discrimination loss to encourage the encoder to gener-
ate domain-invariant features toward minimum domain
discrepancy. We follow the equation 2.2 to compute the
domain discrepancy with the feature vectors generated
by the encoder of the anomaly detector:

Lalign =
∑

xt∈X,x̂t∈X̂

||E(xt)− E(x̂t))||22.

Following the equation 2.3, we introduce a domain
classifier K with sigmoid activation function to compute
the domain discrimination loss based on the feature
vectors generated by the encoder:

Ldisc = −
∑

xt∈X∪X̂
ỹt · log(K(E(xt))) + (1− ỹt) · log(1−K(E(xt)))

where ỹt ∈ Ỹ is the label indicating the domain of
individual data instances x ∈ X ∪ X̂.

Here, since the domain discrimination loss will be
minimized to prompt the encoder to generate domain-
distinctive representations, we set the Ldisc with a
negative coefficient to encourage the context sampler
to sample subsequences that maximize the domain
discrimination loss. This way, when DQN maximizes
the reward signal, the loss will also be maximized, which
leads to min-max optimization that generates domain
invariant feature vectors. Based on the losses, the
reward function is defined as:

R(st, at) = 1
α·Lcls+β·Lrecon+γ·Lalign−λ·Ldisc

,(3.5)

where α, β, γ, λ are the hyper-parameters to control
the reward. The details of the algorithm and training
procedure are provided in Appendix A.

3.3 Anomaly Inference To detect the anomalies in
target domain, we integrate the trained anomaly de-
tector with the learned sampling policy π̃. Specifically,
we sample the context window sizes for individual time
points with the learned policy π̃, and input the sam-
pled context window to the anomaly detector to de-
tecting anomalies. During the training procedure, we
introduce an action counter N to identify the most fre-
quently selected context window size on source domain
and correspondingly sample the data to generate E(xt)
for all time points in source domain. Then, the E(xt)
will be concatenated with the E(x̂t), which generated
by the encoder based on the context window sampled
with policy π̃ for target domain.

We iteratively sample xt and x̂t based on action at
to obtain the state st by fixing the source domain action
as the most frequently selected context window size to
evaluate the level of anomaly for each time point. The
intuition behind this is to prompt the context sampler
to focus on the context sampling for target domain data.
The feature vector of the target domain E(x̂t) is fed to
the source classifier C during each iteration to obtain the
confidence score of being an anomaly. Meanwhile, the
reconstruction error is computed based on equation 2.1
to measure the level of deviation from the general
distribution of the data. Finally, the anomalous score
can be computed by multiplying the reconstruction
error with the confidence score:

A(x̂t) = C(E(x̂t)) · ||x̂t −D(E(x̂t))||22
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4 Experiment

We conduct experiments to answer the following re-
search questions: RQ1: How does the ContexTDA
compare against existing time series anomaly detection
algorithms and the state-of-the-art time series domain
adaptation methods when two domains share identical
feature space? RQ2: How does the ContexTDA com-
pare against baselines when two domains are equipped
with two entirely different feature spaces? RQ3: How
do hyper-parameters affect the ContexTDA and what
are the intuitions for tuning hyper-parameters?

4.1 Experiment Settings Datasets. Domain
adaptation can be homogeneous or heterogeneous. The
knowledge from a source domain with identical data
characteristics (i.e., data dimensions) is transferred to
the target domain in the homogeneous setting, whereas
the knowledge from the source domain with com-
pletely different characteristics from the target domain
is adapted in the heterogeneous setting. We adopt
Server Machine Dataset (SMD) [33] and Boiler [3]
for homogeneous setting; and Mars Science Labora-
tory rover (MSL) and Soil Moisture Active Pas-
sive satellite (SMAP) [15] for the heterogeneous set-
ting. More details are provided in Appendix C.

In the homogeneous experiments, we adopt the first
set of machines in the SMD dataset and select the first
machine as the source domain and use the rest as the
target domains. For the Boiler dataset, we use all 3
boilers and perform domain adaptation on all pair-wise
combinations. In the heterogeneous setting, due to the
data sparsity of MSL, we use the SMAP as the source
domain and MSL as the target domain.

Baselines. We consider two competitive autoen-
coders suggested by a recent benchmark[31] with differ-
ent neural units (i.e., AE-MLP [30], AE-LSTM) [27]
to examine the anomaly detection performance in the
target domain. We compare ContexTDA with state-
of-the-art domain adaptation methods (i.e., RDC [36],
RDC-VRADA [29], SASA [3]) to evaluate the effec-
tiveness of knowledge transfer in our framework. We
also create a simplified version of our framework with
a random context sampling policy (i.e., RandCon-
texTDA) to examine the effectiveness of policy learn-
ing. Details of baselines can be found in Appendix E.

Evaluation Protocol. Following the imbalanced
classification [17, 14], we evaluate the performance via
the macro-averaged F1-score (Macro-F1) and the area
under the ROC Curve (AUC).

4.2 Homogeneous Transfer To study RQ1 we
compare ContexTDA with baselines on the performance
of time series anomaly detection. Table 1 reports the
Macro-F1 and AUC of all algorithms across all pairs of

settings on the two datasets. In general, ContexTDA
outperforms the second best baseline with 6.7% and
6.3% improvement on the average Macro-F1 score and
achieves a superior average AUC score to all base-
lines. Additionally, ContexTDA achieved superior per-
formance on 6 out of 7 settings on the SMD dataset and
4 out of 6 settings on the Boiler dataset. We make the
following observations:

First, transferring the knowledge with a unified con-
text window size for both domains may not be helpful
for anomaly detection. Specifically, we observe that
the dual-domain baselines are generally outperform-
ing AE-LSTM on AUC score. However, by comparing
RDC, RDC-VRADA, and SASA with AE-LSTM on the
Macro-F1 score, the performances are inferior or com-
parable to the AE-LSTM. The phenomenon suggests
that although transferring the knowledge without tai-
lored contextual information for each point is able to
improve the quality of the decision score, the improve-
ments are mainly on normalities instead of anomalies.

Second, aligning the context size locally for domain
adaptation facilitates knowledge transfer on both out-
liers and normalities. When comparing the proposed
ContexTDA with dual domain baselines, we observe
that it slightly improves the AUC score and achieves
the superior Macro-F1 score among all baselines. In
particular, when comparing ContexTDA with SASA,
we observe that the AUC score is generally comparable
while Macro-F1 is significantly better. This suggests
that the ContexTDA framework is capable of extract-
ing meaningful representation for each time point such
that both normal and anomalous information can be
properly transferred.

Third, combining MMD with domain discrimina-
tion requires careful context alignment. By compar-
ing RDC with RDC-VRADA, we observe that RDC-
VRADA is generally inferior to RDC, which demon-
strates that directly combining two domain adaptation
methods without proper context alignment leads to neg-
ative transfer on both normalities and anomalies. In
addition, we observe that ContexTDA, which is built
upon RDC-VRADA, gains significant improvement over
RDC-VRADA. This suggests that personalized contex-
tual information for each point is required to combine
the two domain adaptation methods. The reason behind
it may be due to the different behavior of anomalies.
Extracting domain-invariant features with identical con-
texts for anomalies with entirely different behavior from
two different domains may lead to noisy low-dimensional
representation and therefore lead to negative transfer.

Lastly, the proposed context sampling policy can
be properly learned by the DQN. Specifically, we can
observe a significant performance improvement across
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Algorithm Type Single Domain Dual Domain

Dataset Macro-F1 / AUC AE-MLP AE-LSTM RDC RDC-VRADA SASA RandContexTDA ContexTDA

1 → 2 0.72 / 0.83 0.74 / 0.90 0.74 / 0.89 0.74 / 0.91 0.59 / 0.63 0.61 / 0.87 0.75 / 0.91
1 → 3 0.57 / 0.70 0.49 / 0.41 0.57 / 0.72 0.49 / 0.41 0.61 / 0.90 0.54 / 0.71 0.57 / 0.75
1 → 4 0.55 / 0.74 0.54 / 0.41 0.54 / 0.75 0.54 / 0.41 0.55 / 0.75 0.52 / 0.72 0.59 / 0.76
1 → 5 0.54 / 0.79 0.55 / 0.84 0.56 / 0.85 0.55 / 0.79 0.65 / 0.87 0.54 / 0.81 0.66 / 0.87

SMD 1 → 6 0.71 / 0.88 0.71 / 0.91 0.71 / 0.87 0.71 / 0.91 0.44 / 0.84 0.71 / 0.81 0.73 / 0.84
1 → 7 0.48 / 0.55 0.48 / 0.50 0.49 / 0.54 0.48 / 0.50 0.31 / 0.57 0.46 / 0.51 0.51 / 0.53
1 → 8 0.55 / 0.57 0.53 / 0.70 0.55 / 0.58 0.54 / 0.56 0.52 / 0.56 0.54 / 0.43 0.58 / 0.58

Avg. 0.59 / 0.72 0.58 / 0.67 0.59 / 0.74 0.58 / 0.64 0.52 / 0.73 0.56 / 0.69 0.63 / 0.75

1 → 2 0.44 / 0.64 0.43 / 0.48 0.43 / 0.54 0.43 / 0.48 0.53 / 0.88 0.42 / 0.48 0.50 / 0.59
1 → 3 0.40 / 0.28 0.40 / 0.11 0.43 / 0.49 0.42 / 0.18 0.41 / 0.48 0.31 / 0.36 0.50 / 0.67
2 → 1 0.39 / 0.18 0.40 / 0.21 0.40 / 0.36 0.40 / 0.15 0.53 / 0.90 0.44 / 0.60 0.51 / 0.66

Boiler 2 → 3 0.40 / 0.38 0.40 / 0.20 0.45 / 0.39 0.42 / 0.21 0.41 / 0.49 0.33 / 0.36 0.50 / 0.69
3 → 1 0.39 / 0.20 0.40 / 0.16 0.39 / 0.31 0.40 / 0.15 0.48 / 0.67 0.42 / 0.65 0.51 / 0.67
3 → 2 0.48 / 0.54 0.49 / 0.48 0.49 / 0.55 0.49 / 0.48 0.46 / 0.31 0.48 / 0.48 0.50 / 0.57

Avg. 0.42 / 0.37 0.42 / 0.27 0.43 / 0.44 0.43 / 0.28 0.47 / 0.62 0.40 / 0.49 0.50 / 0.64

Table 1: Homogenous adaptation on SMD and Boiler dataset.

all datasets and settings when comparing ContexTDA
with RandContexTDA. This suggests that the proposed
Markov decision process is an optimizable objective and
the reward function is capable of guiding the policy
learning process toward performance improvement with
domain adaptation, and therefore, the adopted DQN
indeed learns an effective context sampling policy.

We notice that ContexTDA cannot outperform
SASA in a few cases. We conduct an investigation
and observe that the behaviors of anomalies across two
domains are highly consistent (i.e., anomalies are trig-
gered by similar sets of attributes with highly similar
values). This suggests supervised learning would be fa-
vored when anomalous behaviors from two domains are
highly similar. The reason behind this is that highly
similar behaviors of anomalies lead to a concentrated
distribution of anomalies and therefore form two clus-
ters in feature space, normalies and anomalies, that are
favorable to binary classification settings.

4.3 Heterogeneous Transfer To answer RQ2, we
compare ContexTDA with both single and dual domain
baselines on SMAP and MSL datasets. Since SASA is
designed for the setting of sharing feature space between
domains, it is not applicable to this setting. For dual do-
main baselines, we implement two encoder-decoder net-
works for modeling the two domains respectively and
exploit the representations generated by the two en-
coders to perform domain alignment and domain dis-
crimination. In general, ContexTDA outperforms the
second-best dual domain baseline with a 9.9% improve-
ment on Macro-F1 and a 1.6% on AUC score. Based on
the Table 2 we make the following observations:

First, domain discrimination facilitates heteroge-
neous domain adaptation. Comparing RDC with AE-
LSTM, we can observe that forcefully aligning two en-
tirely different domains leads to significant negative
transfer. However, by comparing RDC-VRADA with

AE-LSTM and RDC, we can learn that adding domain
discrimination to extract domain invariant features al-
leviates the negative transfer.

Second, locally sampled context information for in-
dividual time points allows the model to focus on ben-
eficial information. Comparing ContexTDA to all the
domain adaptation frameworks, it is the only one with-
out a negative transfer effect on AUC while gaining im-
provement on Macro-F1 from AE-LSTM. We observe a
phenomenon that the variance of selected window sizes
is higher than the variances in homogeneous settings. It
is likely that the context sampler reduces context infor-
mation that hinders knowledge transfer while amplify-
ing the information that benefits knowledge transfer in
order to achieve better performance.

Algorithms Macro-F1 AUC

Single Domain
AE-MLP 0.53 0.48
AE-LSTM 0.53 0.61

Dual Domain
RDC 0.50 0.51

RDC-VRADA 0.51 0.60
ContexTDA 0.56 0.61

Table 2: Heterogeneous adaptation on SMAP→MSL.

4.4 Ablation Study and Hyperparameter Tun-
ing To study RQ3, we conduct reward ablation study
on transferring knowledge from machine 1 to machine
4 of the SMD dataset. Specifically, we remove the in-
dividual loss functions that form the reward signal to
observe the performance changes in Table 3. We ob-
serve that, compared to other ablations, the ablations
on the two domain adaptation objectives do not drasti-
cally change the performance, which suggests that the
majority distribution of two domains is very similar.
This phenomenon is reflected in the two datasets that
show that the first and fourth machines indeed share
a similar set of attributes equipped with constant zero
values. Another observation is that the source label
information plays a significant role in detecting anoma-
lies rather than reconstruction objective under this set-
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ting. One possible explanation is that the anomalies
in the two domains share similar behaviors, which is
also reflected in the dataset that the anomalies in the
two datasets are global anomalies triggered by surges
on similar sets of attributes.

Since each objective plays a unique role during the
training process and may affect the performance for each
setting differently, we discuss the intuitions of hyperpa-
rameter tuning for reward signal generation here based
on empirical observations. 1.) α should be larger when
anomaly behaviors between two domains are similar. 2.)
When labeled anomalies are scarce, β focuses on general
pattern modeling for each domain, and a larger value is
required. 3.) When the general patterns of two domains
are similar, γ improves performance, and a larger value
can be used when the two domains are homogeneous. 4.)
λ facilitates extracting domain invariant features and,
therefore, larger value may be useful when two domains
are heterogeneous.

Ablations Macro-F1 AUC

w/o source label information (α = 0) 0.52 0.73
w/o reconstruction objective (β = 0) 0.55 0.75

w/o domain alignment (γ = 0) 0.58 0.74
w/o domain discrimination (λ = 0) 0.57 0.74

Full ContexTDA 0.59 0.76

Table 3: Ablation study on SMD 1→4.

5 Related Work

We discuss the connections between the proposed frame-
work and related works on partial domain adaptation.

5.1 Domain Adaptation Domain adaptation [38,
34] transfers knowledge learned from a source domain
with label information to the target domain with-
out sufficient labels. Maximum Mean Discrepancy
(MMD) [36, 36] reduces domain discrepancy within a
metric space. Domain discrimination is built upon ad-
versarial learning framework [12, 11, 35] to generate
domain-invariant features that cannot be discerned by a
domain discriminator. Adversarial Discriminative Do-
main Adaptation [35] proposes an unified framework
for adversarial domain adaptation. We integrate MMD
with domain discrimination to minimize domain dis-
crepancies with domain-invariant features .

5.2 Time Series Domain Adaptation To per-
form domain adaptation on time series data, existing
methods leverage neural architectures such as RNN-
LSTM [29, 8] and self-attention [3, 16] as feature extrac-
tors to perform domain adaptation with MMD, domain
discrimination objectives from different level of observa-
tions (e.g., time point or sub-sequence), or disentangle-
ment [22]. However, all existing approaches are designed
for time series regression and classification [44] problems
that focus on aligning the majority distribution of two

domains and may potentially result in negative trans-
fer on minority distribution. As transferring knowledge
of anomalies between two domains requires aligning mi-
nority distribution of time series and the anomaly label
spaces from two domains often share very limited simi-
larity, all existing methods are unable to be adopted to
solve the anomaly detection problem.

5.3 Partial Domain Adaptation Partial domain
adaptation aims at developing instance-wise selective
transfer strategies to alleviate the strong assumption of
identical label space for different domains. Re-weighting
methods derives various strategies to weigh the source
samples according to the class probabilities from domain
discriminators [4] or domain-adversarial network [45].
Other approaches [6, 7] focus on iterative instance selec-
tion methods formulates the instance selection problem
into a Markov decision process and adopt deep rein-
forcement learning algorithms to go through individual
instances from different level of observations for par-
tial domain adaptation. However, instance-wise selec-
tive transfer methods are not applicable to time series
data since there exist temporal dependencies between
instances and arbitrary selection of partial instances
may fail to consider the dependencies during domain
adaptation. Therefore, we propose a contextual domain
adaptation framework that focuses on context sampling
for individual instances in time series data.

6 Conclusion

We propose a data-centric context-aware domain adap-
tation framework, named ContexTDA, for time series
anomaly detection. We formulate the context sampling
problem into a Markov decision process and introduce
a deep reinforcement learning algorithm with a tailored
reward function to facilitate knowledge transfer for time
series anomaly detection. The empirical evaluation of
the proposed method on two public datasets demon-
strates its superiority in homogeneous knowledge trans-
fer. Furthermore, the pilot study on two entirely dif-
ferent time series data reveals that aligning the context
window size for two domains may be a key factor toward
heterogeneous knowledge transfer.
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Algorithm 1 Training ContexTDA

1: Input: Maximum context window size K, number
of training epoch E, DQN training step S, epsilon
probability ε, reward coefficients α, β, γ, λ, number of
timesteps T .

2: Initialize action counter N ; E , D, C, K for anomaly
detector; and Q-function Q, memory buffer B for DQN.

3: Randomly sample context widow sizes, generate a state
s0 by the encoder E .

4: for e = 0, 1, 2..., E do
5: for t = 0, 1, 2..., T do
6: With probability ε randomly choose an action at,

otherwise obtain at = argmaxaQ(st, a).
7: Get context window sizes based on at and sample

the corresponding xt and x̂t from both domains.
8: Get occurrence of at by performing N [at]+ = 1.
9: Generate the next state st+1 by feeding xt and x̂t

to the encoder E .
10: Compute Lcls, Lrecon, Lalign and Ldisc with the

generated feature vectors of two domains.
11: Obtain rt via the reward function via Eq. 3.5.
12: Store the triplet Tt = (st, at, st+1, rt) into B
13: for step = 1, 2, .., S do
14: Optimize Q-function by sampling the data from

D with Eq. 2.4.
15: end for
16: end for
17: end for

A Algorithm Details

Algorithm 1 illustrates the training details of the pro-
posed framework. The training procedure begins with
generating the state of the first timestamp s0 with en-
coder E from a pair of randomly sampled context win-
dow sizes. The DQN agent will then use a greedy algo-
rithm to sample the corresponding action at based on
the Q-function in order to determine the context win-
dow size for the next timestamp and store the tran-
sition in its memory buffer [43] in order to optimize
the Q-function. During the training procedure, the per-
formed action will be recorded by an action counter N
for anomaly inference in the target domain.

B Related Works

B.1 Domain Adaptation Domain adaptation [38,
34] aims on transferring knowledge learned from a
source domain with label information to the target do-
main without sufficient labels. Maximum Mean Dis-
crepancy (MMD) is a common method for reducing do-
main discrepancy within a metric space. Deep do-
main confusion [36] minimizes the distance between
the source and target distributions within a kernel-
reproducing Hilbert space. Deep Adaptation Net-
work [24] minimizes domain discrepancy in Hilbert

space with an optimal multi-kernel selection method
for matching domain embeddings. Another approach
is domain discrimination, which is built upon adversar-
ial learning framework [12] to generate domain-invariant
features that cannot be discerned by a domain discrim-
inator. Gradient reversal layer [11] multiplies the gra-
dient by a certain negative constant in the backpropa-
gation stage to fool the domain discriminator and inte-
grate model training with domain adaptation in a single
process. Adversarial Discriminative Domain Adapta-
tion [35] proposes an unified framework for adversarial
domain adaptation. We integrate MMD with domain
discrimination and generate domain-invariant features
to minimize domain discrepancies.

B.2 Time Series Domain Adaptation Although
there are extensive studies on domain adaptation, most
of them focus on applications of image data. Fur-
thermore, due to the complex nature of time series
data, performing domain adaptation on time series data
not only requires considering instance-level correlation
between two domains but also temporal dependencies
across multiple data instances. To this end, Variational
Recurrent Adversarial Deep Domain Adaptation [29] is
built upon Variational Recurrent Neural Network [8] to
capture temporal dependencies within multivariate time
series data while generating domain-invariant features
with adversarial objectives to perform domain adapta-
tion. Domain Adversarial Neural Network [9] intuitively
adopts RNN based feature extractors to extract the rep-
resentation of time series data and performs domain
discrepancy minimization on the representations from
different domains. However, the two methods align the
two domains without considering the associative struc-
ture of time series variables. In other words, contextual
differences between two domains are not taken into con-
sideration during domain adaptation.

To alleviate the issue, Domain Adaptation Fore-
caster [16] develops a dual encoder-decoder structure
for two domains with self-attention layers and ex-
tracts domain-invariant features based on the attention
weights from two domains. Sparse Associative Struc-
ture Alignment [3] further minimizes the discrepancies
between the associative structure of time series vari-
ables from two domains and globally identifies a unified
context window size in individual domains via a self-
attention mechanism. However, all existing approaches
are designed for time series regression and classifica-
tion problems that focus on aligning the majority dis-
tribution of two domains and may potentially result in
negative transfer on minority distribution. As transfer-
ring knowledge of anomalies between two domains re-
quires aligning minority distribution of time series and
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the anomaly label spaces from two domains often share
very limited similarity, all existing methods are unable
to be adopted to solve the anomaly detection problem.

B.3 Partial Domain Adaptation One straightfor-
ward approach to transferring minority information is
partial domain adaptation, which aims at developing
instance-wise selective transfer strategies to alleviate
the strong assumption of identical label space for dif-
ferent domains. To select the instance via class-level
weighting, Selective Adversarial Network [4] introduces
multiple source discriminators to weigh the source sam-
ples according to the class probabilities predicted by
the discriminators. To generate the weighting strat-
egy by instance-level, Importance Weighted Adversar-
ial Nets [45] derives the probability of a source example
belonging to the target domain and weighs the source
examples based on the probability for the domain-
adversarial network. Example Transfer Network [5]
weighs the source samples according to the similarities
measured by a domain discriminator and down-weights
irrelevant source samples when updating the parameters
of the source classifier.

As the key technique toward partial domain adap-
tation relies on iterative instance selection, recent ad-
vancements formulate the instance selection problem
into a Markov decision process and adopt deep rein-
forcement learning algorithms to go through individual
instances for partial domain adaptation. Domain Ad-
versarial Reinforcement Learning [6] iteratively selects
instances from a candidate set to a finalized set for per-
forming domain adaptation with a tailored reward func-
tion based on the domain adversarial learning frame-
work. Reinforced Transfer network [7] eliminates out-
lier samples in source classes through a reinforced data
selector by considering both high-level and pixel-level
information. However, instance-wise selective transfer
methods are not applicable to time series data since
there exist temporal dependencies between instances
and arbitrary selection of partial instances may fail to
consider the dependencies during domain adaptation.
As a result, we propose a contextual domain adaptation
framework that focuses on context sampling for individ-
ual instances in time series data.

C Dataset Description

• SMD is a 5-week long dataset collected from a large
Internet company. It records the server connection
status. Individual servers are monitored by identical
set of attributes (e.g., CPU mload, Disk write,
TCP timeout), which made them applicable to the
homogeneous setting. The task is to detect the
unusual behaviors of the server connections.

• Boiler is collected from three sets of sensors
that monitored three boilers with time span from
2014/3/24 to 2016/11/30. All boilers are the moni-
tored by same type of sensors (e.g. outdoor temper-
ature, gas volume, tube temperature), which lead to
identical dimensions for all boilers and therefore ap-
plicable to the homogeneous setting. The task is to
detect abnormal blow down of the boilers.

• MSL and SMAP are real spacecraft telemetry
data collected from NASA. The two datasets are
generated by two different telemetry tools (i.e., the
Curiosity rover for MSL and observation satellite
for SMAP) for two different planets (i.e., Mars for
MSL and Earth for SMAP). The task for MSL
dataset is to identify abnormal incidents on mars
surface, where the task for SMAP dataset is to detect
unusual surface activity on Earth. We adopt this
dataset for heterogeneous transfer since the tasks of
two datasets are similar, and the attributes are all
about monitoring the surface of a planet.

We adopt the public available preprocess script
provided by [33]1 to preprocess SMAP, MSL and
SMD datasets. For the Boiler dataset, we adopt the
preprocessed dataset provided on the GitHub repository
of [3]2. The detail data statistics are tabulated in
Table 4.

Dataset # Timestamps # Entities # Dim. % Anomaly

SMD 708,405 8 25 13.1%
Boiler 277,152 3 274 15.0%
SMAP 429,735 1 55 4.1%
MSL 66,709 1 38 10.7%

Table 4: Statistics of the datasets.

D Evaluation Protocol

• Macro-averaged F1-score calculates the F-
measure separately for normal and anomaly classes,
then two F-measure of two classes are averaged to
be reported.

• AUC-ROC leverages the produced anomalous
score with continuous thresholding to create a series
of points along ROC space and depicts the trade-
of between correctly classified positive samples and
incorrectly classified negative samples.

1https://github.com/NetManAIOps/OmniAnomaly/blob/

master/data_preprocess.py
2https://github.com/DMIRLAB-

Group/SASA/tree/main/datasets/Boiler
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The intuition behind this is that the Macro-F1 ignores
the imbalance between normal data points and outliers
and therefore able to accurately reflect the prediction
performance on both classes; while the AUC score
reflects the quality of decision scores when predicting
the labels with different thresholds.

E Baselines

We compare the proposed ContexTDA with both single-
domain anomaly detection models and dual-domain
anomaly detector with different domain adaptation
methods. All of the models are all trained and tested in
unsupervised manner on the target domain. The single-
domain baselines are trained without any information
from the source domain, where the dual-domain mod-
els are trained with both label and data of the source
domain.

• AE-MLP [30] is a a single-domain baseline, which
is an 256-128-128-256 fully-connected autoencoder.
AE-MLP is as a common baseline, which leverage
reconstruction error on individual time points for
anomaly detection.

• AE-LSTM [27] is a single-domain time series
anomaly detection baseline, which built upon an
autoencoder with 256-128-128-256 LSTM units.

• RDC is built upon deep domain confusion [36]
and AE-LSTM. It aligns the two domains with
MMD and leverages source domain labels to train
the encoder of AE-LSTM for label prediction while
minimizing the reconstruction error between the
input data and the decoded output.

• RDC-VRADA combines deep domain confu-
sion [36] with variational recurrent adversarial deep
domain adaptation [29], which simultaneously op-
timizes source domain label prediction, MMD and
domain discrimination with the latent representa-
tions generated by the LSTM encoder. Meanwhile,
the reconstruction objective of AE-LSTM is per-
formed for detecting anomalies. It can be treated
as the ContexTDA with a fixed context sampling
strategy that constantly sample same context size.

• SASA [3] exploits self-attention layer with LSTM
units to identify the optimal global context win-
dows for source and target domain respectively and
aligns the two domains with MMD. We directly use
the class prediction probability to evaluate anoma-
lous scores for each time point.

• RandContexTDA is a simplified version of the
proposed framework which randomly select context

window sizes for each time point to examine the
effectiveness of policy learning.

F Implementation Details.

For single-domain baselines, we adopt the code of pub-
lic available repository of AE-LSTM [27]3; AE-MLP fol-
lows the implementation of PyOD 4. The neural archi-
tectures for both baselines are 256−128−128−256 with
different types of neural units. For dual-domain base-
lines (RDC and RDC-VRADA), we follow the frame-
work of public available GitHub repository 5 and modify
the underlying neural architecture based on the afore-
mentioned single-domain baselines for anomaly detec-
tion. As for SASA, we modify the implementation of
public available GitHub repository 6 to unify the neural
architecture of LSTM units and source domain classifier
with our framework. We implement our anomaly detec-
tor based on the RDC-VRADA. Specifically, we imple-
ment two 128-128 MLP classifiers with dropout ratio
0.2 and sigmoid activation function: one for perform-
ing source domain classification task with Lcls, another
one for generating domain invariant features with Ldisc.
Then, we adopt the deep Q-learning implemented by
the open-source package RLCard 7 and use a 256-128-
64 MLP for the Q-function, where the epsilon is set to
0.2. The size of memory buffer is 10000 and the sam-
pling batch size for training DQN is set to 64. All algo-
rithms are trained with epoch 10, batch size 128 where
learning rates for each algorithm are chosen from {0.05,
0.1, 0.15, 0.2, 0.25} and the contamination ratios for all
algorithms are chosen from {0.01, 0.05, 0.1, 0.15, 0.2,
0.25, 0.3}. For fixed window sized baseline (i.e., AE-
MLP, AE-LSTM, RDC, RDC-VRADA), we empirically
select context window size as 30 for SMD dataset, 10 for
Boiler dataset and 40 for MSL and SMAP datasets; and
use the window size above as the maximum window size
and create candidate window sizes from 1 to maximum
window size for self-attention of SASA and action space
of RandContexTDA and ContexTDA.

3https://github.com/PyLink88/Recurrent-Autoencoder
4https://github.com/yzhao062/pyod/
5https://github.com/syorami/DDC-transfer-learning
6https://github.com/DMIRLAB-Group/SASA
7https://bit.ly/3FVwO6S
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