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An improved sum-product estimate for general finite fields

Oliver Roche-Newton

Abstract

This paper improves on a sum-product estimate obtained by Katz and Shen for subsets of a

finite field whose order is not prime.

1 Introduction

Let A be a subset of F = Fpn for some prime p and some n ∈ N. Consider the sumset and productset
of A, defined respectively as

A+A := {a+ b : a, b ∈ A},

A ·A := {ab : a, b ∈ A}.

An interesting problem is to establish lower bounds on the quantity max {|A+A|, |A · A|}. The
existence of non-trivial bounds was first establish by Bourgain, Katz and Tao[2]. Garaev[3] established
the first quantitative sum-product estimate for fields of prime order. Garaev’s result can be stated as
follows:

Theorem 1.1. Let A ⊂ Fp for some prime p, such that |A| ≤ p7/13(log p)−4/13. Then

max{|A+A|, |A · A|} ≫
|A|15/14

(log |A|)2/7
.

This result was generalised, for finite fields whose order is not necessarily prime, by Katz and Shen[4]
in the form of the following theorem.

Theorem 1.2. Let F = Fpn be a finite field. Suppose that A is a subset of F so that for any subfield
G ⊆ F , and any elements c, d ∈ F ,

|A ∩ (cG+ d)| ≤ max{|G|1/2, |A|18/19}. (1)

Then it must be the case that

max {|A+A|, |A ·A|} ≫
|A|20/19

(log |A|)α
,

where 0 < α ≤ 1 is some absolute constant.

Since Garaev’s sum-product estimate[3], there have been a number of small improvements made
courtesy of more subtle arguments by Katz-Shen[5], Bourgain-Garaev[1], Shen[9], Li[6] and most
recently Rudnev[7]; so the following result of Rudnev represents the state of the art.
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Theorem 1.3. Let A ⊂ F ∗
p with |A| < p1/2 and p large. Then

max {|A+A|, |A ·A|} ≫
|A|12/11

(log |A|)4/11
.

This paper seeks to update the result of Katz and Shen for general finite fields, by using the refinements
that allowed for the improved sum-product estimates in the prime setting in [5], [1], [9] and [7]. As
well as adopting the techniques from the more recent sum-product estimates in prime fields, a slightly
different argument is made in what will later be called case 3, which leads to a further improvement
in the final estimate. The outcome is the following result:

Theorem 1.4. Let F = Fpn be a finite field and suppose that A is a subset of F ∗ with the following
property. For any subfield G ⊂ F and any elements c, d ∈ F ,

|A ∩ (cG+ d)| ≤ max{|G|14/25, |A|6/7}. (2)

Then we get the sum-product inequality

max{|A+A|, |A ·A|} ≫
|A|

15

14

log |A|
.

Note that the final estimate here is aligned with the original quantitative bound Garaev obtained in
Theorem 1.1.

1.1 Some remarks concerning Theorem 1.4

As well as improving the exponent in the final bound, the first term from condition (1) has been
increased in (2), thus relaxing one of the conditions. However, it seems necessary to also tighten one
of the conditions, as the second term from (1) becomes smaller in (2).

The statement of Theorem 1.4 is in fact quite flexible. The tools used do not distinguish between
addition and subtraction, which means that the difference set, A−A, can replace A+A in the above.
It is also possible to get a sum-ratio estimate, where A ·A is replaced by the ratio set A : A, which is
defined as follows:

A : A
def
=

{a

b
such that a, b ∈ A, b 6= 0

}

.

The presentation of a sum-ratio estimate proof is of a very similar nature, but rather more simple, as
Rudnev [7] alluded to. Lemma 3.1 can be replaced by a more straightforward pigeonholing argument
and there is no need for dyadic pigeonholing, which means less technicalities are required and no
logarithmic factor appears in the final estimate. One more benefit of this simplified argument is that
the condition from Theorem 1.2 which was made stricter for the main result in this paper (the second
term in (1) and (2)), can be relaxed slightly.

1.2 Notation

Throughout this paper, the symbols≪,≫ and ≈ are used to suppress constants. For example, X ≪ Y
means that there exists some absolute constant C such that X < CY . X ≈ Y means that X ≪ Y
and Y ≪ X . When describing such a rough inequality in general language, inverted commas are used
in an effort to avoid confusion. For example, the statement that “X is ‘at most’ Y ” tells us that
X ≪ Y . A similar meaning is attached to ‘at least’.
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2 Preliminary results

Before proving the main theorem, it is necessary to state some previous results. The first is a lemma
from the paper of Katz and Shen[4].

Lemma 2.1. Let A ⊂ F and let G ⊆ F be a subfield such that

A−A

A−A
⊆ G.

Then there exist c, d ∈ F such that

A ⊆ cG+ d.

The next two results are well-known within arithmetic combinatorics, and have been crucial to all
known quantitative sum-product estimates over finite fields. The first is due to Plünnecke and Rusza
(see [8]), whilst the second is a generalisation which Katz and Shen[5] used to obtain an improve the
original quantitative sum-product estimate of Garaev[3].

Lemma 2.2. Let X,B1, ..., Bk be subsets of F . Then

|B1 + ...+Bk| ≤
|X +B1|...|X +Bk|

|X |k−1
.

Lemma 2.3. Let X,B1, ..., Bk be subsets of F . Then for any 0 < ǫ < 1, there exists a subset X ′ ⊆ X,
with |X ′| ≥ (1− ǫ)|X |, and some constant C(ǫ), such that

|X ′ +B1 + ...+Bk| ≤ C(ǫ)
|X +B1|...|X +Bk|

|X |k−1
.

Finally, we will need the following covering lemma, which appeared in sum-product estimates for
the first time in [9]. An application of this lemma has been the key to the two of the most recent
improvements to the sum-product estimate over prime fields (see [7], [9],).

Lemma 2.4. Let X and Y be additive sets. Then for any ǫ ∈ (0, 1) there is some constant C(ǫ), such

that at least (1− ǫ)|X | of the elements of X can be covered by C(ǫ)min{|X+Y |,|X−Y |}
|Y | translates of Y .

The rest of this paper is devoted to proving Theorem 1.4.

3 Proof of Theorem 1.4

Let A be a set satisfying the conditions of Theorem 1.4, and suppose that |A + A|, |A · A| ≤ K|A|.

The aim is to show that K ≫ |A|1/14

log |A| .

At the outset, apply Lemma 2.3 to identify some subset A′ ⊂ A, with cardinality |A′| ≈ |A|, so that
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|A′ +A′ +A′ +A′| ≪
|A+A|3

|A|2
≪ K3|A|.

Next apply Lemma 2.3 again to identify a further subset A′′, with cardinality |A′′| ≈ |A|, such that

|A′′ +A′′ +A′′| ≪
|A+A|2

|A|
≪ K2|A|.

Since many more refinements of A are needed throughout the proof, this first change is made without
a change in notation. So, throughout the rest of the proof, when the set A is referred to, we are really
talking about the large subset A′′, which satisfies each of the above inequalities. In other words, we
assume that

|A+A+A+A| ≪ K3|A|. (3)

and

|A+A+ A| ≪ K2|A| (4)

hold, for our set A.

Consider the point set A × A ⊂ F × F . The multiplicative energy, E(A), of A is defined to be the
number of solutions to

a1
a2

=
a3
a4

, (5)

such that a1, a2, a3, a4 ∈ A. Let L be the set of all lines through the origin. By definition,

E(A) =
∑

l∈L

|l ∩ (A×A)|2.

By dyadic pigeonholing, a technique familiar frommost known sum-product estimates (see [3],[5],[4],[9],[7]),
we can identify a popular dyadic group. This is done by partitioning lines through the origin according
to their popularity. Speaking more precisely, let Li be the set of all lines l through the origin such
that 2i ≤ |l ∩ A×A| < |2i+1|. Therefore the multiplicative energy may be rewritten in the form

E(A) =

log |A|
∑

j=0

∑

l∈Lj

|l ∩ (A×A)|.

Then, by elementary piegeonholing, one may choose a particular dyadic group, which contributes more
than the average for this sum. Therefore, there exists a set of L lines, each supporting ≈ N points
from A×A such that

M := LN2 ≫
E(A)

log |A|
≥

|A|4

|A ·A| log |A|
≥

|A|3

K log |A|
, (6)

where the second inequality comes from the standard Cauchy-Schwarz bound on the multiplicative
energy (see [10]). Refine the point set by now considering only points that lie on these L lines, and
call this set P ⊂ A×A. Clearly, |P | ≈ LN . Denote by Ξ the set of slopes through the origin in this
refined set P . More precisely, define Ξ as follows:
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Ξ :=

{

b

a
: (a, b) ∈ P

}

.

The fact that LN ≤ |A|2 easily implies that

N ≥
M

|A|2
. (7)

Similarly, since N ≤ A, it is clear that

L ≥
M

|A|2
. (8)

Let

Ax = {y : (x, y) ∈ P}

and

By = {x : (x, y) ∈ P}.

So, Ax is the set of ordinates of P for a fixed abscissa x, and By is the set of abscissae of P for a fixed
ordinate y.

A little more notation is required still. For some element ξ ∈ Ξ, let Pξ be the projection of points in
P on the line with equation y = ξx onto the x-axis. So,

Pξ = {x : (x, ξx) ∈ P},

and since all lines with slope in Ξ intersect P with cardinality approximately N , it follows that
|Pξ| ≈ N for all ξ∈ Ξ. Note also, since P ⊂ A×A, that Pξ is a subset of A.

The following lemma is taken from Rudnev([7]).

Lemma 3.1. There exists a popular abscissa x0 and a popular ordinate y0 (popular here means that
|Ax0

|, |By0
| ≫ LN

A ), as well as a large subset Ãx0
⊆ Ax0

, with

|Ãx0
| ≫

LM

|A|3
, (9)

such that for every z ∈ Ãx0
,

|Ãz̃ := Pz/x0
∩By0

| ≫
LMN

|A|4
. (10)

Since the sum-product estimate is invariant under dilation, we may assume without loss of generality
that x0 = 1. This means that elements of Ax0

are also the popular slopes described above, i.e.

Ax0
⊂ Ξ.
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3.1 Application of the covering lemma

Since Lemma 2.4 is applied in a similar manner several times throughout the remainder of the proof,
it is worthwhile highlighting this in advance, to avoid repetition.

Application 3.2. If A′ ⊂ A and ξ ∈ Ξ, then ±ξA′ can be 90% covered by ‘at most’ K|A|
N translates

of A.

Proof. 90% of ξA′ can be covered by ‘at most’

|ξA′ + ξPξ|

|ξPξ|
≪

|A+A|

N
≤

K|A|

N
,

translates of ξPξ, which is a subset of A. Similarly, 90% of −ξA′ can be covered by ‘at most’

| − ξA′ − ξPξ|

|ξPξ|
≪

|A+A|

N
≤

K|A|

N
,

translates of ξPξ ⊂ A.

3.2 Four Cases

For any set B ⊂ F , define R(B) to be the set

R(B) :=

{

b1 − b2
b3 − b4

: b1, b2, b3, b4 ∈ B, b3 6= b4

}

.

The remainder of the proof is now divided into four cases corresponding to the nature of the sets
R(Ãx0

) and R(By0
).

Case 1 R(Ãx0
) is a subfield:

Case 1.1: First of all, it is possible that |Ãx0
| ≤ |A|6/7. If so, then combining this bound with (9), it

can be deduced that

|A|27/7 ≫ LM.

Using (8), rearranging, and then subsequently applying (6) implies that

|A|41/7 ≫ M2 ≫

(

|A|3

K log |A|

)2

,

and a simple rearrangement of the above gives

K ≫
|A|1/14

log |A|
,

as required.

Case 1.2: The other possibility here is that |Ãx0
| > |A|6/7. In this case, since R(Ãx0

) is a subfield,
Lemma 2.1 tells us that Ãx0

⊆ cR(Ãx0
) + d for some c, d ∈ F , and clearly
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|A ∩ (cR(Ãx0
) + d)| ≥ |Ãx0

| > |A|6/7.

Then, the hypotheses of Theorem 1.4 imply that

|R(Ãx0
)|14/25 ≥ |A ∩ (cR(Ãx0

) + d)| ≥ |Ãx0
|,

and therefore

|R(Ãx0
)| ≥ |Ãx0

|25/14.

For some r ∈ R(Ãx0
), define Er(Ãx0

) to be the number of solutions to

a1 + ra2 = a3 + ra4,

such that a1, a2, a3, a4 ∈ Ãx0
. A solution is considered to be trivial if a2 = a4, and non-trivial

otherwise. Summing over all r ∈ R(Ãx0
) yields

∑

r∈R(Ãx0
)

Er(Ãx0
) = |{all trivial solutions}|+ |{all non-trivial solutions}|

≤ |Ãx0
|2|R(Ãx0

)|+ |Ãx0
|4

≤ |Ãx0
|2|R(Ãx0

)|+ |Ãx0
|31/14|R(Ãx0

)|.

Since the last term is dominant, it follows that

∑

r∈R(Ãx0
)

Er(Ãx0
) ≪ |Ãx0

|31/14|R(Ãx0
)|.

Hence, there exists some r = p−q
s−t ∈ R(Ãx0

), such that Er(Ãx0
) ≪ |Ãx0

|31/14. Fix this r and

corresponding elements p, q, s, t ∈ Ãx0
.

Let Ã′
x0

be any subset of Ãx0
such that |Ã′

x0
| ≈ |Ãx0

|. This vague subset is introduced at this stage
so that the covering lemma can later be applied effectively. Now, apply Cauchy-Schwarz in the usual
way:

|Ãx0
|4 ≈ |Ã′

x0
|4 =







∑

x∈Ã′

x0
+rÃ′

x0

ν(x)







2

≤ |Ã′
x0

+ rÃ′
x0
||Er(Ã

′
x0
)| ≪ |Ã′

x0
+ rÃ′

x0
||Ãx0

|31/14,

where ν(x) is the number of representations of x as an element of Ã′
x0

+ rÃ′
x0
. This implies that

|Ãx0
|25/14 ≪ |Ã′

x0
+ rÃ′

x0
| ≤ |pÃ′

x0
− qÃ′

x0
+ sÃ′

x0
− tÃ′

x0
|.

Now, by Application 3.2, each of pÃ′
x0
,−qÃ′

x0
, sÃ′

x0
and −tÃ′

x0
can be 90% covered by ≪ K|A|

N trans-

lates of A. Therefore, the subset Ã′
x0

is chosen earlier in the proof so that each of pÃ′
x0
,−qÃ′

x0
, sÃ′

x0

and −tÃ′
x0

are covered completely by these copies of A. Applying the covering lemma four times
yields
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|Ãx0
|25/14 ≪ |A+A+A+A|

(

K|A|

N

)4

≪
K7|A|5

N4
,

where the last step follows from (3). Applying bound (9) from Lemma 3.1 and rearranging gives

M50/14N6/14 ≪ K7|A|5|A|75/14.

Next, use (7) to obtain

M4 ≪ K7|A|5|A|75/14|A|12/14 = K7|A|157/14.

Finally, apply (6) and rearrange to get

K ≫
|A|1/14

(log |A|)4/11
,

which is slightly better than required.

Case 2 - R(Ãx0
) 6= R(By0

):

Case 2.1: There is some element r ∈ R(Ãx0
) such that r /∈ R(By0

). Fix this r = a1−a2

a3−a4
and elements

a1, a2, a3, a4 ∈ Ãx0
representing it. Since r /∈ R(By0

), there exist only trivial solutions to

b1 + rb2 = b3 + rb4, (11)

such that b1, b2, b3, b4 ∈ By0
. Let B′

y0
be some subset of By0

, with cardinality |B′
y0
| ≈ |By0

|. Once
again, this subset is required for the benefit of applying the covering lemma, and can be specified
later. The absence of non-trivial solutions to (11) implies that

|B′
y0
|2 ≤ |B′

y0
+ rB′

y0
|.

So,

(

NL

|A|

)2

≤ |a1B
′
y0

− a2B
′
y0

+ a3B
′
y0

− a4B
′
y0
|.

By Application 3.2, each of a1By0
,−a2By0

, a3By0
and −a4By0

can be 90% covered by ≪ K|A|
N trans-

lates of A. By choosing an appropriate subset B′
y0
, we can ensure that each of the four terms in the

above sumset get fully covered. Therefore, Application 3.2 is used four times in order to deduce that

(

NL

|A|

)2

≪

(

K|A|

N

)4

|A+A+ A+A| ≪

(

K|A|

N

)4

K3|A|.

The above inequality can be rearranged into the form

M2N2 ≪ K7|A|7.

An application of (7) and then subsequently (6) implies that
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K ≫
|A|1/11

(log |A|)4/11
,

which is a better bound than required.

Case 2.2: There is some r ∈ R(By0
) such that r /∈ R(Ãx0

). Fix this r = p−q
s−t as well as elements

p, q, s, t ∈ By0
representing r. Since (p, y0) ∈ P and all lines through the origin in P support approx-

imately N points in P , it can be deduced that the line with gradient y0

p supports ≈ N points in P .

The same can be said of the lines with gradients y0

q ,
y0

s and y0

t respectively. In other words, each of
y0

p , y0

q , y0

s and y0

t belong to Ξ.

Next, since P is symmetric through the line y = x, it can be observed that p
y0

, q
y0

, s
y0

and t
y0

are also
elements of Ξ, the set of slopes supporting ≈ N points from P . r can be rewritten as

r =

p
y0

− q
y0

s
y0

− t
y0

.

Let Ã′
x0

be a positively proportioned subset of Ãx0
, to be chosen later in order to apply the covering

lemma. Now, since r /∈ R(Ã′
x0
), there exist only trivial solutions to the equation

a1 + ra2 = a3 + ra4,

such that a1, a2, a3, a4 ∈ Ã′
x0
. Therefore,

|Ãx0
|2 ≈ |Ã′

x0
|2 ≤ |Ã′

x0
+ rÃ′

x0
|

≤

∣

∣

∣

∣

p

y0
Ã′

x0
−

q

y0
Ã′

x0
+

s

y0
Ã′

x0
−

t

y0
Ã′

x0

∣

∣

∣

∣

.

By Application 3.2, each of p
y0
Ãx0

,− q
y0
Ãx0

, s
y0
Ãx0

and − t
y0
Ãx0

can be 90% covered by ≪ K|A|
N

translates of A. The subset Ã′
x0

may be chosen earlier so that each of p
y0

Ã′
x0
,− q

y0

Ã′
x0
, s
y0

Ã′
x0

and

− t
y0

Ã′
x0

are covered in their entirety by the translates of A.

Therefore, four applications of the covering lemma, along with (9) and (3) yield

(

LM

|A|3

)2

≪

(

K|A|

N

)4

|A+A+A+A| ≪
K7|A|5

N4
.

This can be rearranged to give

M4 ≪ K7|A|11.

Finally, apply (6) to deduce that

K ≫
|A|1/11

(log |A|)4/11
.

From this point forward, we may assume that R(Ãx0
) = R(By0

).

Case 3(Worst case) - R(Ãx0
)R(Ãx0

) * R(Ãx0
) = R(By0

):

9



So, there must exist some a1, a2, b1, b2, c1, c2, d1, d2 ∈ Ãx0
such that

a1 − b1
c1 − d1

a2 − b2
c2 − d2

/∈ R(Ãx0
).

Claim: This implies that there exists some elements a, b, c, d, e, f ∈ Ãx0
⊆ Ax0

such that

r :=
(a− b)(c− d)

e− f
/∈ R(Ãx0

) = R(By0
).

Suppose not. Then certainly

p− q

s− t
= a1 − b1

a2 − b2
c2 − d2

∈ R(Ax0
),

for some elements p, q, s, t ∈ Ax0
. Therefore,

1

c1 − d1

p− q

s− t
/∈ R(Ax0

).

Note also that R(Ax0
) is closed under reciprocation, and thus

c1 − d1
s− t

p− q
/∈ R(Ax0

),

which proves the claim.

Consider subsets Ãã, Ãc̃ and Ãẽ of By0
; recall that these subsets were defined in the statement of

Lemma 3.1.

Furthermore, let Ã′
ã ⊂ Ãã, Ã

′
c̃ ⊆ Ãc̃ and Ã′

ẽ ⊆ Ãẽ be subsets with cardinality |Ã′
ã| ≈ |Ãã|, |Ã

′
c̃| ≈ |Ãc̃|,

and |Ã′
ẽ| ≈ |Ãẽ|. These subsets are to be specified later in order to apply the covering lemma.

Since Ã′
ã and Ã′

ẽ are subsets of By0
, there exist only trivial solutions to the equation

a1 + ra2 = a3 + ra4,

such that a1, a3 ∈ Ã′
ẽ and a2, a4 ∈ Ã′

ã, as otherwise r would be an element of R(By0
). This implies

that

|Ã′
ẽ||Ã

′
ã| ≤ |Ã′

ẽ + rÃ′
ã|. (12)

On the other hand, Lemma 2.2 can be applied with X = c−d
e−f Ã

′
c̃ to bound the right hand side of the

above inequality as follows:

|Ã′
ẽ + rÃ′

ã| ≤
| c−d
e−f Ã

′
c̃ + Ã′

ẽ||Ã
′
c̃ + (a− b)Ã′

ã|

|Ã′
c̃|

≤
|cÃ′

c̃ − dÃ′
c̃ + eÃ′

ẽ − fÃ′
ẽ||aÃ

′
ã − bÃ′

ã + Ã′
c̃|

|Ã′
c̃|

.

Observe also that crucially, aÃ′
ã ⊂ aPa ⊂ A, and similarly cÃ′

c̃ ⊂ A and eÃ′
ẽ, meaning there is no

need to apply the covering lemma for these terms of the sum. Also, by definition, Ã′
c̃ ⊂ A.
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After combining this knowledge with (12), rearranging and applying (10) to bound the left hand side,
it follows that

(

LMN

|A|4

)3

≪ |A− dÃ′
c̃ +A− fÃ′

ẽ||A− bÃ′
ã +A|.

Next we must apply the covering lemma. By Application 3.2, each of −dÃc̃,−fÃẽ and −bÃã can be

90% covered ≪ K|A|
N translates of A. Therefore, the earlier choices of Ã′

c̃, Ã
′
ẽ and Ã′

ã are made so that

each of −dÃ′
c̃,−fÃ′

ẽ and −bÃ′
ã are covered completely by these translates of A.

Therefore, only three applications of the covering lemma are needed in order to deduce that

(

LMN

|A|4

)3

≪ |A+A+A+A||A+A+A|

(

K|A|

N

)3

.

Applying (3) and (4), we get

(

LMN

|A|4

)3

≪ K3|A|K2|A|

(

K|A|

N

)3

,

which can be rearranged to give

M6 ≪ K8|A|17.

Finally, an application of (6) implies that

K ≫
|A|1/14

(log |A|)6/14
.

Case 4 R(Ãx0
)R(Ãx0

) = R(Ãx0
) and R(Ãx0

) +R(Ãx0
) * R(Ãx0

):

So, for some a1, a2, a3, a4, b1, b2, b3, b4 ∈ Ãx0
,

a1 − a2
b1 − b2

+
a3 − a4
b3 − b4

/∈ R(Ãx0
) = R(By0

).

Combining this with the knowledge that R(Ãx0
)R(Ãx0

) = R(Ãx0
), we can deduce that there exist

elements p, q, s, t ∈ Ãx0
such that

r :=
p− q

s− t
+ 1 =

b3 − b4
a3 − a4

a1 − a2
b1 − b2

+ 1 =
b3 − b4
a3 − a4

(

a1 − a2
b1 − b2

+
a3 − a4
b3 − b4

)

/∈ R(Ãx0
).

Let Ãp̃ be as defined in Lemma 3.1. Identify two subsets of positive proportion, Ã′
p̃ ⊂ Ãp̃ and

B′
y0

⊂ By0
, to be specified later for the purpose of applying the covering lemma.

Applying Lemma 2.3 with X = B′
y0
, there exists a further subset B′′

y0
⊆ B′

y0
, with |B′′

y0
| ≈ |B′

y0
|, such

that

∣

∣

∣

∣

B′′
y0

+ Ã′
p̃ +

(

p− q

s− t

)

Ã′
p̃

∣

∣

∣

∣

≪
|A+A|

|By0
|

∣

∣

∣

∣

B′
y0

+
p− q

s− t
Ãp̃′

∣

∣

∣

∣

(13)

Now, since B′′
y0

and Ã′
p̃ are subsets of By0

, there exist only trivial solutions to
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x1 + rx2 = x3 + rx4,

such that x1, x3 ∈ B′′
y0

and x2, x4 ∈ Ã′
p̃, as otherwise r ∈ R(By0

). This implies that

(

LN

|A|

)(

LMN

|A|4

)

≪ |B′′
y0
||Ã′

p̃| ≪ |B′′
y0

+ rÃ′
p̃|,

where the leftmost inequality is a consequence of (10) and the lower bound on |By0
| established earlier

in Lemma 3.1.

Combining this inequality with (13) and rearranging gives

(

LN

|A|

)2 (
LMN

|A|4

)

≪ K|A|

∣

∣

∣

∣

B′
y0

+

(

p− q

s− t

)

Ã′
p̃

∣

∣

∣

∣

. (14)

Clearly,

∣

∣

∣

∣

B′
y0

+

(

p− q

s− t

)

Ã′
p̃

∣

∣

∣

∣

≪ |sB′
y0

− tB′
y0

+ pÃ′
p̃ − qÃ′

p̃|.

Note also that pÃp̃ ⊆ pPp ⊆ A. Therefore,

∣

∣

∣

∣

B′
y0

+

(

p− q

s− t

)

Ã′
p̃

∣

∣

∣

∣

≪ |sB′
y0

− tB′
y0

+A− qÃ′
p̃|.

Finally, three applications of the covering lemma are required. By Application 3.2, sBy0
and −tBy0

can be 90% covered by ‘at most’ K|A|
N translates of A. The earlier choice of Ã′

s̃ should be made so as

to ensure that both sBy0
′ and −tB′

y0
get fully covered by these translates of A. Similarly, −qÃ′

p̃ can

be fully covered by ≪ K|A|
N translates of A. It follows that

∣

∣

∣

∣

B′
y0

+

(

p− q

s− t

)

Ã′
p̃

∣

∣

∣

∣

≪ |A+A+A+A|

(

K|A|

N

)3

≪
K6|A|4

N3
.

Combining the above with (14) and rearranging gives

M4 ≪ K7|A|11.

Finally, an application of (6), leads to the conclusion that

K ≫
|A|1/11

(log |A|)4/11
.
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