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BOUNDS ON THE SIZE OF AN INCLUSION USING THE TRANSLATION

METHOD FOR TWO-DIMENSIONAL COMPLEX CONDUCTIVITY∗

HYEONBAE KANG† , KYOUNGSUN KIM† , HYUNDAE LEE† , XIAOFEI LI† , AND GRAEME W.

MILTON‡

Abstract. The size estimation problem in electrical impedance tomography is considered when the
conductivity is a complex number and the body is two-dimensional. Upper and lower bounds on the volume
fraction of the unknown inclusion embedded in the body are derived in terms of two pairs of voltage and
current data measured on the boundary of the body. These bounds are derived using the translation method.
We also provide numerical examples to show that these bounds are quite tight and stable under measurement
noise.

AMS subject classifications. 65N21, 35J20, 45Q05
Key words. inverse problems, size estimation, electrical impedance tomography, complex conductivity,
variational principle, translation method

1. Introduction. The size estimation problem in electrical impedance tomography (EIT) is to
estimate the size (area or volume) of unknown inclusions embedded in a conducting body by means of
boundary measurements of the voltage and current. The unknown inclusions may represent anomalies in
EIT imaging or non-destructive testing or a phase in two phase composite materials. Here we consider the
problem where the body is two-dimensional.

To put the problem in a precise way, let Ω be a body in R
2 occupied by a conducting material and let D

be a conducting inclusion inside Ω. Let σ1 and σ2 (σ1 6= σ2) be the conductivities (or dielectric constants)
of D and Ω \D, respectively, and σ be the conductivity profile of Ω, i.e.,

σ = σ1χ(D) + σ2χ(Ω \D) (1.1)

where χ(D) is the characteristic function of D. If Ω is a two phase composite, we may write σ as

σ = σ1χ1 + σ2χ2 (1.2)

where χ1 = 1 in phase 1 and 0 in phase 2, and χ2 = 1 − χ1. We consider the boundary value problem
of the conductivity equation assuming that the Dirichlet data φ is assigned on ∂Ω. So the problem to be
considered is

{
∇ · σ∇u = 0 in Ω,

u = φ on ∂Ω.
(1.3)

Then the current

q := σ∇u · n (1.4)

is measured on ∂Ω where n is the unit outward normal to ∂Ω. Then the size estimation problem is to
estimate the area or volume |D| of the inclusion (or the volume fraction) in terms of a single or finitely
many pairs of Cauchy data (φ, q). It is worth mentioning that we may apply a current on the boundary
and measure the corresponding voltage, and methods developed in this this paper can be applied to such
situation.

There has been some significant work on the size estimation problem in the context of the conductivity
equation. Upper and lower bounds of |D| were obtained by Kang-Seo-Sheen [11], Alessandrini-Rosset [1],
and Alessandrini-Rosset-Seo [2]. These bounds were obtained using estimates of elliptic partial differential
equations and expressed by integrals evaluated by a single pair of Cauchy data. A different kind of bound
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was obtained by Capdeboscq-Vogelius [4] using variational methods. Their bounds hold asymptotically when
|D| is small. They require special Cauchy data. For special Cauchy data, such as affine boundary conditions
on the potential, the universal bounds of Nemat-Nasser and Hori [21] may be inverted to bound |D|. Milton
[17], generalizing the results of Nemat-Nasser and Hori, showed that bounds on the properties of composites
imply bounds on the response of bodies with special Cauchy data, and these too can be inverted to bound
|D| and do not require the assumption that |D| is small.

Recently, a completely different method to derive bounds on the volume fraction has been introduced
by Kang, Kim and Milton which uses translations of the classical variational principles. The translation
method was introduced by Murat-Tartar [20, 23, 24] and Lurie-Cherkaev [12, 13], and has been used in an
essential way to derive bounds on the effective properties of two phase composites in terms of the volume
fraction. It turns out that this method of translation can be applied effectively to derive bounds of the volume
fraction in terms of boundary measurements: see Kang-Kim-Milton [8], and Kang-Milton [9]. Numerical
implementations of the bounds presented in [8] show that these bounds work quite well to estimate the
volume fraction. These bounds are sharp in the sense that for some geometries and for some boundary data
the bounds are attained.

In this paper we deal with the case when the conductivity is a complex number. The subject of EIT
imaging using complex conductivity has attracted much attention lately since the imaginary part of the
complex conductivity changes depending on frequency and images at different frequencies can be used to
generate images of high resolution. We refer to [22] and references therein for this direction of research. Our
purpose is to derive bounds for the volume fraction using boundary measurements when the conductivity is
a complex number.

The derivation of bounds in this paper is based on the variational principle of Cherkaev and Gibiansky
[6] and the translation method. Let u be the solution to (1.3) when σ is complex. Then the corresponding
electric and current fields are given by

e = −∇u := e′ + ie′′ (1.5)

and

j = −σ∇u := j′ + ij′′. (1.6)

In above mentioned paper, a minimizing variational principle is obtained for the field

[
j′

e′′

]
. We may apply

the translation method for this field to derive upper and lower bounds for the volume fraction using two
Dirichlet boundary data φ1 and φ2. But the bounds obtained in this way depends on the choice of boundary
data, and it is necessary to consider measurements corresponding to the boundary data eθ1φ1 and eθ2φ2 for
all θ1 and θ2. So, we use the parameterized version of the Cherkaev-Gibiansky variational principle which
was obtained by Milton-Seppecher-Bouchitte [19]. Using this variational principle (and translation) a set of
bounds parameterized by θ1 and θ2 is obtained, and by minimizing (or maximizing) them over θ1 and θ2
we obtain tighter bounds. We emphasize that only the boundary measurements corresponding to one set
of boundary data φ1 and φ2 are used to compute the bounds. We perform numerical experiments using
the bounds obtained in this paper. Results show that the bounds are quite tight and stable in presence of
measurement noise.

There is already some work on size estimation for complex conductivity, both for two and three di-
mensional bodies, but only using a single pair of Cauchy data unlike the two pairs we use here. Beretta-
Francini-Vessella [3] obtained bounds on the size of the inclusion using elliptic estimates, and Thaler-Milton
[25] developed a comprehensive set of sharp bounds on the volume fraction based on the splitting method.
The splitting method, like the translation method, uses the fact that certain integrals (null-Lagrangians) are
known in terms of boundary values, but unlike the translation method does not use variational principles,
but instead uses the positivity of the norm of certain fields. It was first used in [18] in the context of elasticity
(see also [10]).

This paper is organized as follows. In section 2 we review the variational principle of Cherkaev and
Gibiansky and its parameterized version, and introduce some null Lagrangians. In section 3 we use null
Lagrangians with parameters to translate the variational principle and compute the minimum. In section
4 parameters are determined and upper and lower bounds for the volume fraction are derived. Section 5
presents results of numerical experiments which show that bounds can be quite tight. We finish the paper
with a short conclusion. The appendix is to prove a lemma used in the text.

2. Variational principle and null-Lagrangian. We suppose the conductivity σ given in
(1.1) or (1.2) is a complex constant of the following form:

σ = σ′ + iσ′′, σ1 = σ′1 + iσ′′1 , σ2 = σ′2 + iσ′′2 . (2.1)
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Assume that

σ′ > 0, |σ1| 6= |σ2|, σ1/σ2 /∈ R. (2.2)

The second condition in the above is required to guarantee that all four points (σ′1, σ
′′
1 ), (−σ′1,−σ′′1 ), (σ′2, σ′′2 ),

(−σ′2,−σ′′2 ) are not on the same circle, and the last condition guarantees that all four points are not on the
same straight line. (See Section 4.)

Let u be the solution u to (1.3) and let

e = −∇u and j = −σ∇u. (2.3)

Then we have

∇ · j = 0 and ∇× e = 0 in Ω, (2.4)

and

j = σe. (2.5)

Let

j = j′ + ij′′ and e = e′ + ie′′. (2.6)

Then, (2.5) is equivalent to the system of equations
{
j′ = σ′e′ − σ′′e′′,

j′′ = σ′′e′ + σ′e′′,
(2.7)

which is in turn equivalent to the following matrix equation:
[
e′

j′′

]
=

1

σ′

[
I σ′′I
σ′′I (σ′2 + σ′′2)I

] [
j′

e′′

]
=: DJE

[
j′

e′′

]
, (2.8)

where I is 2× 2 identity matrix. We then have the variational principle of Cherkaev and Gibiansky [6]: for
a given Cauchy datum (φ, q) on ∂Ω,

〈[
j′

e′′

]
·DJE

[
j′

e′′

]〉
= min

e′′=−∇u′′

u′′=φ′′ on ∂Ω

∇·j′=0

j′·n=−q′ on ∂Ω

〈[
j′

e′′

]
·DJE

[
j′

e′′

]〉
, (2.9)

where 〈f〉 denotes the average of f over Ω, namely,

〈f〉 := 1

|Ω|

∫

Ω

f.

From now on, we put DJE = D for ease of notation.
We now introduce a parameter θ (0 ≤ θ < 2π) and parameterized variational principle following [19].

Let j̃ := eiθj and ẽ := eiθe. Then we have

ẽ = −∇(ueiθ) and j̃ = σẽ,

and hence

∇ · j̃ = 0 and ∇× ẽ = 0 in Ω.

Then we have
[
ẽ′

j̃′′

]
= DJE

[
j̃′

ẽ′′

]
, (2.10)

and the variational principle:

〈[
j̃′

ẽ′′

]
·DJE

[
j̃′

ẽ′′

]〉
= min

〈[
j̃′

ẽ′′

]
·DJE

[
j̃′

ẽ′′

]〉
, (2.11)

where the minimization is over the trial fields ẽ′′ and j̃′ such that
{
ẽ′′ = −∇(ℑ(ueiθ)), ∇ · j̃′ = 0 in Ω,

u′ = φ′, u′′ = φ′′, j̃′ · n = −ℜ(qeiθ) on ∂Ω.
(2.12)
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Here and throughout this paper ℜ(z) and ℑ(z) stand for the real and imaginary parts of z, respectively.
Let φj (j = 1, 2) be given functions (Dirichlet data) defined on ∂Ω and uj be the solution to (1.3) when

φ = φj . Let qj = σ∇uj · n|∂Ω. Then ej = −∇uj and jj = −σ∇uj satisfy (2.4) and (2.5), and jj · n = −qj
on ∂Ω. Set

vj =

[
j̃′j
ẽ′′j

]
, j = 1, 2, (2.13)

where j̃j := eiθj j and ẽj := eiθjej . The measurement (response) matrix is given by A = (ajk)j,k=1,2 where

ajk = 〈vj ·Dvk〉. (2.14)

We emphasize that ajk is a null-Lagrangian, i.e., it can be computed from the boundary measurements. In
fact, we have from (2.8) that

ajk =
1

|Ω|

∫

Ω

[
j̃′j
ẽ′′j

]
·D
[
j̃′
k
ẽ′′
k

]
=

1

|Ω|

∫

Ω

[
j̃′j
ẽ′′j

]
·
[
ẽ′
k

j̃′′
k

]

=
1

|Ω|

∫

∂Ω

[
ℜ(qje

iθj )ℜ(φke
iθk ) +ℑ(qke

iθk )ℑ(φje
iθj )

]
ds. (2.15)

It is worth mentioning that the measurement matrix A depends on the two independent parameters θ1 and
θ2.

Let

R⊥ =

[
0 1
−1 0

]
,

and define for real numbers t1 and t2

R = R(t1, t2) :=

[
t1R⊥ O

O t2R⊥

]
. (2.16)

Since RT = −R, we have 〈vj · Rvj〉 = 0 for j = 1, 2. Let

b = b(t1, t2) := 〈v1 · Rv2〉 = −〈v2 · Rv1〉. (2.17)

Then b can be written as

b = α1t1 + α2t2, (2.18)

where

α1 := 〈̃j′1 ·R⊥ j̃′2〉, α2 := 〈ẽ′′1 ·R⊥ẽ′′2 〉. (2.19)

We emphasize that α1 and α2 can be computed using the boundary data. In fact, since ∇ × R⊥j2 =
−∇ · j2 = 0, there is a potential ψ2 such that R⊥j2 = ∇ψ2 in Ω. Thus, if t denotes the unit tangent vector
on ∂Ω, then we have

t · ∇ψ2 = t ·R⊥j2 = −n · j2 = q2 on ∂Ω. (2.20)

So the boundary value ψ0
2 of ψ2 on ∂Ω is given by

ψ0
2(x) =

∫
x

x0

q2ds, x ∈ ∂Ω,

where the integration is along ∂Ω in the positive orientation (counterclockwise). Hence

α1 =
1

|Ω|

∫

Ω

j̃′1 · (cos θ2∇ψ′
2 − sin θ2∇ψ′′

2 )dx

=
1

|Ω|

∫

∂Ω

j̃′1 · n(cos θ2ψ′
2 − sin θ2ψ

′′
2 )ds(x)

= − 1

|Ω|

∫

∂Ω

ℜ(q1e
iθ1 )ℜ(ψ0

2e
iθ2 )ds(x)

= − 1

|Ω|

∫

∂Ω

ℜ(q1e
iθ1 )ℜ(

∫
x

x0

q2e
iθ2 ds)ds(x). (2.21)
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Since ∇ · (R⊥∇u2) = 0, we also have

α2 =
1

|Ω|

∫

Ω

(cos θ1∇u′′1 + sin θ1∇u′1) · (cos θ2R⊥∇u′′2 + sin θ2R⊥∇u′2)

=
1

|Ω|

∫

∂Ω

(u′′1 cos θ1 + u′1 sin θ1)
∂

∂t
(u′′2 cos θ2 + u′2 sin θ2) ds

=
1

|Ω|

∫

∂Ω

ℑ(φ1e
iθ1 )ℑ

(∂φ2
∂t

eiθ2
)
ds. (2.22)

3. Translation of the variational principle. We now apply the translation method to
derive bounds for f1, the volume fraction of the phase 1.

We first note that

[
0 t3I
t3I 0

]
applied to fields

[
j̃′

ẽ′′

]
is a null Lagrangian for any real number t3. Define

L = L(t1, t2, t3) to be the translation of

[
D 0
0 D

]
by a null Lagrangian:

L :=

[
D̃ R
−R D̃

]
(3.1)

where

D̃ := D+

[
0 t3I
t3I 0

]
. (3.2)

We only consider parameters t1, t2, t3 for which L is positive semi-definite.
Let

W :=
〈[k1v1 + k2v2

k3v1 + k4v2

]
· L
[
k1v1 + k2v2

k3v1 + k4v2

]〉
(3.3)

for real numbers k1, . . . , k4. One can see that

W =




k1
...
k4


 ·
[

Ã bR⊥

−bR⊥ Ã

]


k1
...
k4


 , (3.4)

where Ã = (ãjk) with

ãjk := ajk + t3 〈̃j′j · ẽ′′k + ẽ′′j · j̃′k〉, (3.5)

and b is the number defined by (2.17). We emphasize that the new quantity ãjk is also determined by the
boundary measurements since

〈̃j′j · ẽ′′k + ẽ′′j · j̃′k〉 =
1

|Ω|

∫

Ω

[
− j̃′j · ∇ℑ(uke

iθk )−∇ℑ(uje
iθj ) · j̃′k

]
dx

= − 1

|Ω|

∫

∂Ω

[
(̃j′j · n)ℑ(uke

iθk ) + (̃j′k · n)ℑ(uje
iθj )

]
ds

=
1

|Ω|

∫

∂Ω

[
ℜ(qje

iθj )ℑ(φke
iθk ) + ℜ(qke

iθk )ℑ(φje
iθj )

]
ds. (3.6)

Let

D =

[
Ã bR⊥

−bR⊥ Ã

]
. (3.7)

Since null Lagrangians are determined by boundary values, one can see from (2.9) that the following
variational principle holds:

W = min
〈[k1v1 + k2v2

k3v1 + k4v2

]
· L
[
k1v1 + k2v2

k3v1 + k4v2

]〉
, (3.8)
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where the minimum is taken over all vj =

[
j̃′j

ẽ′′j

]
, j = 1, 2, satisfying




ẽ′′j = −∇ℑ(uje

iθj ), ∇ · j̃′j = 0 in Ω,

u′j = φ′j , u
′′
j = φ′′j , j̃′j · n = −ℜ(qje

iθj ) on ∂Ω.
(3.9)

If ẽ′′j and j̃′j satisfy (3.9), one can see that

〈̃j′j〉 =
1

|Ω|

∫

∂Ω

x̃j′j · nds = − 1

|Ω|

∫

∂Ω

xℜ(qje
iθj ) = 〈̃j′j〉,

〈ẽ′′j 〉 = − 1

|Ω|

∫

∂Ω

ℑ(uje
iθj )n = − 1

|Ω|

∫

∂Ω

ℑ(φje
iθj )n = 〈ẽ′′j 〉.

Hence by relaxing the constraints (3.9) for minimization we have

W ≥ min
〈vj〉=〈vj〉

〈[k1v1 + k2v2

k3v1 + k4v2

]
· L
[
k1v1 + k2v2

k3v1 + k4v2

]〉
. (3.10)

Here the existence of minimum is guaranteed by the positive semi-definiteness of L.
If the pair (v̂1, v̂2) is a minimizer of the righthand side of (3.10), then we have

0 =
d

dt

∣∣∣
t=0

〈[k1(v̂1 + tψ1) + k2(v̂2 + tψ2)
k3(v̂1 + tψ1) + k4(v̂2 + tψ2)

]
· L
[
k1(v̂1 + tψ1) + k2(v̂2 + tψ2)
k3(v̂1 + tψ1) + k4(v̂2 + tψ2)

]〉

= 2
〈[k1ψ1 + k2ψ2

k3ψ1 + k4ψ2

]
· L
[
k1v̂1 + k2v̂2

k3v̂1 + k4v̂2

]〉

for any pair (ψ1, ψ2) satisfying 〈ψ1〉 = 〈ψ2〉 = 0. Thus we have

L
[
k1v̂1 + k2v̂2

k3v̂1 + k4v̂2

]
= µ (3.11)

for some constant vector µ.
Let L1 and L2 be restrictions of L to phase 1 and phase 2, respectively, i.e.,

L = L1χ1 + L2χ2.

Note that L1 and L2 are 8×8 constant matrices. The relation (3.11) says that the component of

[
k1v̂1 + k2v̂2

k3v̂1 + k4v̂2

]
χ1

which is orthogonal to kerL1 is constant. Likewise, the component of

[
k1v̂1 + k2v̂2

k3v̂1 + k4v̂2

]
χ2 orthogonal to kerL2

is constant. Since components in kerL1 and kerL2 do not contribute to minimum value in (3.10), we obtain

W ≥ min
f1V1+f2V2=V

(
f1V1 · L1V1 + f2V2 · L2V2

)
, (3.12)

where V1 and V2 are constant vectors and

V :=

[
k1〈v1〉+ k2〈v2〉
k3〈v1〉+ k4〈v2〉

]
. (3.13)

We use the following lemma whose proof will be given in Appendix.
Lemma 3.1. Let V be a finite dimensional vector space, L1, L2 : V → V self-adjoint linear operators,

f1 and f2 positive numbers, and E0 ∈ V . Then

min
f1E1+f2E2=E0

(f1E1 · L1E1 + f2E2 · L2E2) = (πE0) ·
[
π(f1L−1

1 + f2L−1
2 )π

]−1

πE0, (3.14)

where π is the orthogonal projection onto Range L1 ∩Range L2 and all the inverses are pseudo-inverses.
Let π be the orthogonal projection onto Range L1 ∩ Range L2. Using Lemma 3.1, we know that the

minimum on the righthand side of (3.12) is V · L∗V where

L∗ := π
(
π(f1L−1

1 + f2L−1
2 )π

)−1

π. (3.15)

So, we have

W ≥ V · L∗V.
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We finally obtain from (3.4) and (3.7) that




k1
..
.
k4


 · D




k1
..
.
k4


 ≥

[
k1〈v1〉 + k2〈v2〉
k3〈v1〉 + k4〈v2〉

]
· L∗

[
k1〈v1〉+ k2〈v2〉
k3〈v1〉+ k4〈v2〉

]
. (3.16)

We emphasize that L∗ depends on the parameters t1, t2, t3. We will choose these parameters in a special
way and calculate the corresponding L∗ in the next section. In doing so, the following observation plays a
crucial role. Let

J :=
1√
2




1 0 0 0 0 0 1 0
0 0 1 0 −1 0 0 0
0 1 0 0 0 0 0 1
0 0 0 1 0 −1 0 0
0 0 1 0 1 0 0 0
1 0 0 0 0 0 −1 0
0 0 0 1 0 1 0 0
0 1 0 0 0 0 0 −1




. (3.17)

The matrix J has very special properties: it is an orthogonal matrix, namely, JJT = I, and the following
holds:

L = J




Dt3 +T O O O

O Dt3 −T O O

O O Dt3 +T O

O O O Dt3 −T


JT , (3.18)

where

Dt3 :=

[
1
σ′

σ′′

σ′ + t3
σ′′

σ′ + t3
σ′2+σ′′2

σ′

]
, T =

[
t1 0
0 t2

]
. (3.19)

4. Translation bounds. One can see from (3.18) that L ≥ 0 if and only if

Dt3 +T ≥ 0, Dt3 −T ≥ 0. (4.1)

We choose parameters (t1, t2, t3) so that L is positive semi-definite, more precisely the sum of the ranks of
matrices L1 and L2 is minimized. Let

P
±
1 := Dt3 |phase1 ±T, P

±
2 := Dt3 |phase2 ±T.

Then, (t1, t2, t3) are chosen to be minimizers of

min
t1,t2,t3

[
rank P

+
1 + rank P

−
1 + rank P

+
2 + rank P

−
2

]
. (4.2)

Such a rank minimizing condition has been used in [14, 15].
Since rank P±

j ≥ 1, we have

min
[
rank P

+
1 + rank P

−
1 + rank P

+
2 + rank P

−
2

]
= 5, (4.3)

and hence there are four possibilities:

detP+
1 > 0, detP−

1 = 0, detP±
2 = 0, (4.4)

detP+
2 > 0, detP±

1 = 0, detP−
2 = 0, (4.5)

detP−
1 > 0, detP+

1 = 0, detP±
2 = 0, (4.6)

detP−
2 > 0, detP±

1 = 0, detP+
2 = 0. (4.7)

The possibilities (4.4) and (4.5) yield upper and lower bounds for f1 as we shall see shortly. But, (4.6) and
(4.7) are equivalent to (4.4) and (4.5), respectively, changing signs of t1 and t2, and hence they yield the
same bounds.
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Suppose that (t1, t2, t3) satisfies (4.4). Following [7] (see also [16, Section 23.7]), we interpret this
condition in terms of circles. By explicit calculations, one can see that the last three conditions in (4.4) are
equivalent to the fact that (−σ′1,−σ′′1 ), (σ′2, σ

′′
2 ), (−σ′2,−σ′′2 ) pass through the circle

t1(x
2 + y2) + (1 + t1t2 − t23)x− 2t3y + t2 = 0. (4.8)

Under the last condition in (2.2), the circle is determined uniquely and t1, t2, t3 are given as follows:

1/t1 = rσ′′2 ±
√

(r2 + 1)|σ2|2, t2 = −|σ2|2t1, t3 = rσ′2t1 (4.9)

where

r :=
|σ1|2 − |σ2|2

2(σ′1σ
′′
2 − σ′2σ

′′
1 )
. (4.10)

Moreover, the second condition in (2.2) guarantees the first condition in (4.4).
There are additional conditions for t1, t2, t3 to fulfill. To ensure (4.1), they should satisfy

|t1| ≤ 1/σ′1, |t1| ≤ 1/σ′2, detP+
1 > 0. (4.11)

We show that these conditions can be fulfilled by choosing t1 properly in (4.9).
Since detP+

2 = 0, we have

|σ2|2(1/(σ′2)2 − t21) = (1/σ′2 + t1)(|σ2|2/σ′2 + t2) = (σ′′2 /σ
′
2 + t3)

2 ≥ 0,

and hence |t1| ≤ 1/σ′2.

On the other hand, since detP−
1 = 0, we have

|σ1|2
(

1

(σ′1)
2
− t21

)
=

(
1

σ′1
− t1

)
t1(|σ1|2 − |σ2|2) +

(
1

σ′1
− t1

)( |σ1|2
σ′1

− t2

)

=

(
1

σ′1
− t1

)
t1(|σ1|2 − |σ2|2) +

(
σ′′1
σ′1

+ t3

)2

. (4.12)

Let f be a quadratic function whose roots are 1/t1 = rσ′′2 ±
√

(r2 + 1)|σ2|2. In fact, it is given by

f(x) := x2 − 2rσ′′2 x− r2(σ′2)
2 − |σ2|2.

Then one can see that

f(σ′1) = − [((σ′1)
2 − (σ′2)

2)|σ2|2 − (σ′1σ
′′
2 − σ′′1 σ

′
2)

2]2

4(σ′1σ
′′
2 − σ′′1 σ

′
2)

2(σ′2)
2

≤ 0. (4.13)

Therefore we have

rσ′′2 −
√

(r2 + 1)|σ2|2 ≤ σ′1 ≤ rσ′′2 +
√

(r2 + 1)|σ2|2,

and hence we can choose t1 (among 1/t1 = rσ′′2 ±
√

(r2 + 1)|σ2|2) so that
(

1

σ′1
− t1

)
t1(|σ1|2 − |σ2|2) ≥ 0. (4.14)

Then (4.12) implies |t1| ≤ 1/σ′1. Here we know t1 6= 1/σ′1 because t1 = 1/σ′1 would imply σ′2 > σ′1 so that

0 = f(1/t1) = f(σ′1) < 0 by (4.13). Thus the condition detP+
1 > 0 (equivalently, t1(|σ1|2 − |σ2|2) > 0) is

satisfied automatically with the choice of t1 satisfying (4.14).
Now we calculate L∗. First we observe that

det
(
P

±
1 −P

±
2

)
= det

(
Dt3 |phase1 −Dt3 |phase2

)
= − (σ′1 − σ′2)

2 + (σ′′1 − σ′′2 )
2

σ′1σ
′
2

< 0. (4.15)

Since detP−
1 = detP−

2 = 0 while P
−
1 −P

−
2 has rank 2, we have

range P
−
1 ∩ range P

−
2 = 0. (4.16)

Since detP+
1 6= 0, we have

range P+
1 ∩ range P+

2 = range P+
2 . (4.17)
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Recalling from (3.18) that

Lj = J




P
+
j O O O

O P
−
j O O

O O P
+
j O

O O O P
−
j


JT , j = 1, 2,

it follows that

range L1 ∩ range L2 = range J




P
+
2 O O O

O O O O

O O P
+
2 O

O O O O


JT . (4.18)

Let p be an unit vector generating rangeP+
2 , and let P be the orthogonal projection onto rangeP+

2 ,
namely,

P = ppT .

Then the orthogonal projection π onto range L1 ∩ range L2 is given by

π = J




P O O O

O O O O

O O P O

O O O O


JT . (4.19)

Thus, we have

π(f1L−1
1 + f2L−1

2 )π = f1J




P(P+
1 )−1P O O O

O O O O

O O P(P+
1 )−1P O

O O O O


JT

+ f2J




P(P+
2 )−1P O O O

O O O O

O O P(P+
2 )−1P O

O O O O


JT .

Here (P+
j )−1 is the pseudo-inverse. Since P+

2 is symmetric, we have

P
+
2 = (trP+

2 )P. (4.20)

One can also see that

P(P+
1 )−1P =

(
p · (P+

1 )−1p
)
P. (4.21)

Therefore, we have

π(f1L−1
1 + f2L−1

2 )π =

[
f1
(
p · (P+

1 )−1p
)
+

f2

trP+
2

]
π ,

and hence

L∗ := π
(
π(f1L−1

1 + f2L−1
2 )π

)−1

π =

[
f1
(
p · (P+

1 )−1p
)
+

f2

trP+
2

]−1

π . (4.22)

By positive semi-definiteness of P+
1 and P+

2 , and by (4.4) and (4.15), we have

p · (P+
1 )−1p > 0, trP+

2 > 0. (4.23)

Moreover we have

f1
(
p · (P+

1 )−1p
)
+

f2

trP+
2

= f1

(
p · (P+

1 )−1p− 1

trP+
2

)
+

1

trP+
2

= −f1
det(P+

1 −P
+
2 )

trP+
2 detP+

1

+
1

trP+
2

.
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We emphasize that

− det(P+
1 −P

+
2 )

trP+
2 detP+

1

> 0 (4.24)

which is a consequence of (4.4), (4.15) and (4.23).
Let

F (f1) :=

(
−f1

det(P+
1 −P+

2 )

trP+
2 detP+

1

+
1

trP+
2

)−1

. (4.25)

By (3.16) we obtain

D =

[
Ã bR⊥

−bR⊥ Ã

]
≥ F (f1)CT

[
P 0
0 P

]
C (4.26)

where

C =
1√
2




〈j̃′1,1〉 〈j̃′2,1〉 〈j̃′1,2〉 〈j̃′2,2〉
〈ẽ′′1,1〉 〈ẽ′′2,1〉 〈ẽ′′1,2〉 〈ẽ′′2,2〉
−〈j̃′1,2〉 −〈j̃′2,2〉 〈j̃′1,1〉 〈j̃′2,1〉
−〈ẽ′′1,2〉 −〈ẽ′′2,2〉 〈ẽ′′1,1〉 〈ẽ′′2,1〉


 . (4.27)

Here j̃′
k,l

and ẽ′′
k,l

(k = 1, 2) are defined by

j̃′k =

[
j̃′
k,1

j̃′
k,2

]
, ẽ′′k =

[
ẽ′′
k,1

ẽ′′
k,2

]
.

We emphasize that C can be computed using boundary data.

Straightforward calculations show that C
[
P 0
0 P

]
CT takes the form

CT

[
P 0
0 P

]
C :=

[
M mR⊥

−mR⊥ M

]
(4.28)

where M is a 2×2 symmetric matrix and m is a real number, which can be computed from boundary values
since so does C. Since P is singular, we know that m2 = detM. Calculating the eigenvalues of the matrix
appearing above, one can see that the inequality (4.26) is equivalent to the following two inequalities:

trÃ ≥ F (f1)trM (4.29)

and

det
(
Ã− F (f1)M

)
≥ (b− F (f1)m)2. (4.30)

Inequality (4.29) yields a lower bound:

f1 ≥ − trP+
2 detP+

1

det(P+
1 −P

+
2 )

(
trM

trÃ
− 1

trP+
2

)
. (4.31)

Note that

det
(
Ã− F (f1)M

)
= det Ã− F (f1)tr(ÃM∗) + F (f1)

2 detM, (4.32)

where M∗ is the adjugate matrix of M. So, we obtain from (4.30) another lower bound:

f1 ≥ − trP+
2 detP+

1

det(P+
1 −P

+
2 )

(
tr(ÃM∗)− 2bm

det Ã− b2
− 1

trP+
2

)
. (4.33)

Observe that Ã, b and thus M,m depend on θ1 and θ2 while P1 and P2 do not. Denoting the quantities
on the righthand sides of inequalities in (4.31) and (4.33) by L1(θ1, θ2) and L2(θ1, θ2), we have

f1 ≥ max
θ1,θ2

L1(θ1, θ2) ∨ max
θ1,θ2

L2(θ1, θ2). (4.34)
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Table 5.1

Two concentric disks. σ1: the conductivity of the inclusion D, σ2: conductivity of Ω\D, f1: the exact
area fraction of the inclusion, max(L): the lower bound, min(U): the upper bound.

σ1 σ2 f1 max(L) max(L)/f1 min(U) min(U)/f1
1+i 1 0.16 0.159919 0.999492 0.160044 1.000274
2+0.5i 1 0.16 0.159944 0.999652 0.160015 1.000097
2+5i 1 0.16 0.159937 0.999608 0.160008 1.000049
4+100i 1 0.16 0.159839 0.998992 0.160026 1.000165

Here a ∨ b is the maximum of a and b. It is worth mentioning that the bound Lj(θ1, θ2) is the same as the
bound Lj(0, 0) when the boundary data are eθ1φ1 and eθ2φ2.

Now suppose that (t1, t2, t3) satisfies (4.5). By interchanging the role of phase 1 and phase 2, we obtain

1− f1 = f2 ≥ − trP+
1 detP+

2

det(P+
1 −P

+
2 )

(
trM

trÃ
− 1

trP+
1

)
, (4.35)

1− f1 = f2 ≥ − trP+
1 detP+

2

det(P+
1 −P

+
2 )

(
tr(ÃM∗)− 2bm

det Ã− b2
− 1

trP+
1

)
. (4.36)

Here the matrix M and the constant m are defined by (4.28), but P here is the orthogonal projection onto
rangeP+

1 , not rangeP+
2 .

Let

U1(θ1, θ2) = 1 +
trP+

1 detP+
2

det(P+
1 −P

+
2 )

(
trM

trÃ
− 1

trP+
1

)
,

U2(θ1, θ2) = 1 +
trP+

1 detP+
2

det(P+
1 −P

+
2 )

(
tr(ÃM∗)− 2bm

det Ã− b2
− 1

trP+
1

)
.

Then we have

f1 ≤ min
θ1,θ2

U1(θ1, θ2) ∧ min
θ1,θ2

U2(θ1, θ2). (4.37)

Here a ∧ b is the minimum of a and b.

5. Numerical experiments. This section presents results of some numerical experiments. We
compute the bounds for various configurations: (1) the domain is a disk and the inclusion is a concentric disk
(Fig. 5.1, Table 5.1), (2) domain: a disk, inclusion: an ellipse (Fig. 5.2, Table 5.2), (3) multiple inclusions
(Fig. 5.3, Table 5.3), (4) the domain of general shape (Fig. 5.4, Table 5.4). The results clearly show that
bounds obtained in this paper are quite tight, very close to the actual volume fraction. In all computations,
we use the Dirichlet boundary data φ1 = x and φ2 = y, and acquire the corresponding Neumann data by
solving (1.3) numerically using FEM. We then discretize [0, 2π) into 200 points, which means 200×200 pairs
of (θ1, θ2) are used to optimize the bounds.

We also consider stability of the bounds under measurement noise. In the example of multiple inclusions
we add 5, 10, 15, 20% noise to the Neumann data. We first compute ∇u by solving (1.3) corresponding to
the Dirichlet data φ1 = x and φ2 = y, and then compute

∇u∗ = [1 + p ∗ rand]∇u

for p = 0.05, 0.1, 0.15, 0.2 where rand is a generator of Gaussian white noise. So the measured data (with
noise) is q = ∇u∗ · n. As Table 5.3 shows, the bounds are stable under measurement noise.

Finally we took a configuration (Fig. 5.5) which was considered in [25] for the purpose of comparing
bounds by the splitting method and those of this paper (translation method). The results presented in
Table 5.5 show that the method of this paper yields better bounds than the slitting method. It is worth
emphasizing that the splitting method in [25] uses a single measurement while the translation method uses
two measurements.
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σ1

σ2

Fig. 5.1. Concentric disks. Inclusion D is the disk of radius r1 = 0.4 and of conductivity σ1. Ω is the
unit disk and the conductivity of Ω \D is σ2 = 1.

σ1

σ2

Fig. 5.2. Ω is the unit disk, D is an ellipse with center point lying at (−0.1,−0.3) with the major
axis a = 0.4 and the minor axis b = 0.3. The conductivity of inclusion is σ1 = 2 + i and the background
conductivity is σ2 = 1.

Fig. 5.3. Ω is the unit disk, D is composed of three parts: two circles with radius 0.25 centered at (-0.4,
0.3) and (0.4 0.3), and one crescent inclusion with area 0.0225. The conductivity of the three inclusions is
σ1 = 2 + i and the background conductivity is σ2 = 1. The exact area is f1 = 0.1475.

σ1

σ2

Fig. 5.4. Ω is of general shape. D is with conductivity σ1 = 2 + i and the background conductivity is
σ2 = 1. The exact area fraction is f1 = 0.029281 .
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Table 5.2

Elliptic inclusion

σ1 σ2 f1 max(L) max(L)/f1 min(U) min(U)/f1
2+i 1 0.12 0.119559 0.996324 0.120800 1.00667

Table 5.3

Multiple inclusions. σ1 = 2 + i, σ2 = 1, f1 = 0.1475.

noise level max(L) max(L)/f1 min(U) min(U)/f1
0 0.146614 0.993991 0.148187 1.004655
5% 0.143527 0.973066 0.151170 1.024883
10% 0.134217 0.909943 0.159726 1.082891
15% 0.119537 0.810420 0.174828 1.185274
20% 0.098495 0.667764 0.194967 1.321812

Conclusion. We have derived upper and lower bounds of the volume fraction of an unknown in-
clusion (or two phase composites) using boundary measurements when the conductivity is complex. We
use the minimizing variational principles with parameters for the fields e = e′ + ie′′ and j = j′ + ij′′. The
bounds are given in a nonlinear way in terms of the determinant and the trace of the measurement matrix,
and some other null Lagrangians which can be computed using boundary measurements. We perform nu-
merical experiments to validate the effectiveness of the bounds obtained in this paper and to compare them
with those in [25]. Results show that the bounds obtained in this paper are quite tight and stable under
measurement (white) noise. They also show that these bounds are better than those obtained in [25] using
less boundary measurement data.

Appendix A. Proof of Lemma 3.1.
This appendix is to prove Lemma 3.1.
We consider the following minimization problem:

min
E1,E2∈V

(f1E1 · L1E1 + f2E2 · L2E2 − 2A · (f1E1 + f2E2)) , (A.1)

where the Lagrange multiplier A is a vector in Range L1 ∩ Range L2 (otherwise there is no minimum). If
E1 and E2 are minimizers, they should satisfy

2f1δE1 · (L1E1 − A) = 0, 2f2δE2 · (L2E2 −A) = 0 (A.2)

for all the increments δE1 and δE2. Then

E1 = L−1
1 A+E0

1 , E2 = L−1
2 A+ E0

2 (A.3)

for some E0
1 ∈ kerL1 and E0

2 ∈ kerL2. Since Range Lj is orthogonal to kerLj , if we impose the constraint
f1E1 + f2E2 = E0, then we have

πE0 = π(f1L−1
1 + f2L−1

2 )πA,

and hence

A =
[
π(f1L−1

1 + f2L−1
2 )π

]−1

πE0. (A.4)

And we have

f1E1 · L1E1 + f2E2 · LE2 = f1A · L−1
1 A+ f2A · L−1

2 A

= (πE0) ·
[
π(f1L−1

1 + f2L−1
2 )π

]−1

πE0.

This completes the proof. ✷
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Table 5.4

General shape domain

σ1 σ2 f1 max(L) max(L)/f1 min(U) min(U)/f1
1+2i 1 0.029281 0.029172 0.996278 0.029631 1.011941

σ1

σ2

σ1

Fig. 5.5. The configuration from [25]. Phase 1 consist of the core and the outer annulus, and its area
fraction is f1 = 0.8. The conductivity of phase 1 is σ1 = 3 + 8i, and that of phase 2 is σ2 = 8 + 6i. The
radii of three circles are R1 = 2, R2 = 3, R3 = 5.
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