
HAL Id: hal-04832135
https://hal.science/hal-04832135v1

Submitted on 11 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Accuracy of a Low Mach Number Model for
Time-Harmonic Acoustics

Jean-François Mercier

To cite this version:
Jean-François Mercier. Accuracy of a Low Mach Number Model for Time-Harmonic Acoustics. SIAM
Journal on Applied Mathematics, 2018, 78 (4), pp.1891-1912. �10.1137/17M113976X�. �hal-04832135�

https://hal.science/hal-04832135v1
https://hal.archives-ouvertes.fr


ACCURACY OF A LOW MACH NUMBER MODEL FOR TIME1

HARMONIC ACOUSTICS∗2

J-F. MERCIER†3

Abstract. We study the time-harmonic acoustic radiation in a fluid in flow. To go beyond the4
convected Helmholtz equation adapted only to potential flows, starting from the Goldstein equations,5
coupling exactly the acoustic waves to the hydrodynamic field, we develop a new model in which6
the description of the hydrodynamic phenomena is simplified. This model, initially developed for a7
carrier flow of low Mach number M , is proved theoretically to be accurate, associated to a low error8
bounded by M2. Numerical experiments confirm the M2 law and show that the model remains of9
very good quality for flow of moderate Mach numbers.10
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1. Introduction. We are interested in time-harmonic radiation problems in14

aeroacoustics and more precisely we aim at determining the acoustic perturbations15

created by a known source and propagating in an imposed carrier flow of velocity v0.16

The main motivation lies in aeronautics, with the seek of noise reduction of plane en-17

gines. But such study interests also the car industry with the need to reduce the sound18

of exhaust pipes or the domestic industry with the noise reduction of air-conditioning19

devices and ventilation ducts.20

Acoustics propagation in a general flow is a complicated problem, due to the co-21

existence of acoustics waves and hydrodynamic vortices. These phenomena are very22

different: acoustics waves are radiated at the speed of sound whereas the vortices are23

convected at the carrier flow velocity. Also these phenomena are associated to very24

different wavelengths, which can be very short for the vortices when the carrier flow25

is slow. Moreover these phenomena are coupled: the acoustic waves produce vortices26

which in return radiate sound.27

In the time-domain, aeroacoustics has been well studied and several methods have28

been developed to solve the Linearized Euler Equations, although the treatment of29

artificial boundaries still raises open questions. On the other hand, the time-harmonic30

problem has not been entirely solved for a general flow. It has been done in the simpler31

case of a potential carrier flow [1, 2, 3, 4], for which no vortices are produced. Indeed32

for a carrier flow potential v0 = ∇ϕ0 and homentropic, the acoustic perturbations33

are found also potential: the velocity perturbation reads v = ∇ϕ and the velocity34

potential ϕ satisfies the convected Helmholtz equation [5, 6]:35

(1) Dω

(

1

c20
Dωϕ

)

=
1

ρ0
∇ · (ρ0∇ϕ).36

ρ0 and c0 are respectively the density and the sound velocity of the flow and37

(2) Dω = −iω + v0 ·∇,38

is the convective derivative with ω the frequency. In parallel to the consideration39

of a potential flow, another popular restriction avoiding to solve the full Linearized40
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2 J-F. MERCIER

Euler Equations, is to consider an intermediate between a potential flow and a general41

flow: a shear flow v0 = u0(y)ex. Then the Linearized Euler Equations simplify in42

the Pridmore-Brown equation [7], which is a scalar ordinary differential equation.43

However, the numerical resolution of this equation is difficult [8], in particular due44

to the presence of a continuous spectrum of hydrodynamic modes and sometimes45

to the presence of unstable modes [9]. To solve this difficulty, a usual approach is46

to neglect hydrodynamic modes [8, 9, 10]. Another approach is to approximate a47

shear flow by a uniform flow. This is a natural approach for a boundary layer flow48

when the thickness of the layer is very small, but it is not always possible since49

such approximation can lead to ill-posed problems. It is in particular the case when50

studying the acoustic propagation in a duct with absorbing walls [11, 12]. In presence51

of a uniform flow, these walls are classically described by the Myers condition [13],52

but this condition leads to several theoretical and numerical troubles [14]. On the53

contrary, the problem is well-posed in presence of a shear flow vanishing on the wall,54

because the Myers condition becomes a simple Robin condition. But the shear flow55

introduces hydrodynamic modes. To recover the comfort of dealing with a uniform56

flow, improved Myers conditions have been derived [15], allowing to consider a uniform57

flow while leading to a well-posed problem.58

In this paper we propose to go beyond the restrictions to a uniform, a shear or59

a potential flow and to go toward a more general flow while keeping a simple model.60

To deal with a general flow, different wave-like models are available, among which61

the Galbrun equation [16, 17, 18], the Möhring equations [19, 20] and the Goldstein’s62

equations [21, 22, 23, 24]. We choose the Goldstein equations (4)-(5), linking two63

unknowns, the velocity potential ϕ and the hydrodynamic vector field ξ, because: (i)64

they are a direct extension of the potential wave equation (1), (ii) they are simpler than65

alternative models: in the area where the carrier flow is potential, it can be proved66

that ξ vanishes and the Goldstein equations degenerate in the convected Helmholtz67

equation (1), (iii) the unknowns of Goldstein’s equations have a physical meaning: ϕ68

represents the acoustical field whereas ξ describes the hydrodynamic phenomena.69

An interesting application of Goldstein equations is to give the possibility to relate70

a hydrodynamic field and an acoustic field when studying the gust-aerofoil interaction71

noise. It has been done for potential [25] and for tranverse shear flows [26, 27]. The72

derived theoretical models are precise but rather complex, involving integration in73

the complex plane in presence of poles and branch cuts, Wiener-Hopf techniques or74

asymptotic expansions. Simplifications are obtained by restricting to the far-field75

behavior or to low frequencies. In this paper we will rather focus on building a model76

both very simple and valid at all frequencies and for the near-field and the far-field,77

but that will be justified only for flows of moderate speed.78

The aim of this paper is the following: to propose an aeroacoustic model, defined79

for a general flow, simpler than the general Goldstein equations, but still taking into80

account hydrodynamic effects. Starting from the Goldstein equations, we will derive81

a simpler model, called the Low Mach number model Eq. (10). This model will be82

designed to be very well adapted to slow flows and we postulate that it is a good83

approximation for non-slow flows. Restricting to a 1D shear flow (Eq. (11)) for the84

theory, by deriving precise estimates we will prove that the corresponding Low Mach85

number model Eq. (12) remains of good quality for moderate velocity flows.86

The paper is organized as follows. In the second section are given the Goldstein87

equations, for a general flow and simplified expressions for two classes of flows: a88

slow flow and a parallel shear flow. The rest of the paper focuses on estimating89

theoretically the quality of the Low Mach number model. It will be done in the case90
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of a shear flow, leading to a complete theory. In section 3, introducing a dissipative91

problem to simplify the treatment of radiation conditions, the Goldstein equations92

are proved to be well-posed. The simplifications induced when considering a slow93

flow and the link with the no-flow problem are presented in section 4. The alternative94

model to the Goldstein equations, the Low Mach number model Eq. (12), is precisely95

characterized in section 5 and the quality of this approximation is quantified. Finally,96

the theoretical estimates are validated numerically in section 6.97

2. Equations of the problem.98

2.1. Goldstein’s equations for a general flow. The flow is taken stationary99

and homentropic (entropy is constant and uniform). It is characterized by its non100

uniform fields of velocity v0, density ρ0, pressure p0 and solves the stationary Euler101

Equations:102

(3)



















∇ · (ρ0v0) = 0,

ρ0 (v0 ·∇)v0 +∇p0 = 0,

p0 = µργ0 ,

103

where ρ0 is the density p0 is the pressure. The state law reduces to a barotropic law104

(the pressure depends only on the density) for an homentropic flow. The physical105

constants γ and µ characterize this state law. On rigid boundaries we have v0 ·n = 0.106

For the acoustic perturbations, the velocity potential ϕ and ξ, the hydrodynamic107

unknown, satisfy the Goldstein equations:108

Dω

(

1

c20
Dωϕ

)

=
1

ρ0
∇ · [ρ0 (∇ϕ+ ξ)] ,(4)109

Dωξ = ∇ϕ× ω0 − (ξ ·∇)v0.(5)110

with111

(6) ω0 = ∇× v0,112

the vorticity of the carrier flow. The sound speed c0 is given by113

(7) c20 = γ
p0
ρ0
.114

The velocity and pressure are deduced thanks to [21]115

{

v = ∇ϕ+ ξ,

p = −ρ0Dωϕ.
116

In presence of rigid boundaries, the unknowns satisfy117

v · n =
∂ϕ

∂n
+ ξ · n = 0.118

As mentioned in the introduction, we will not solve the Goldstein equations in the119

general case. Now we present two configurations, for which the Goldstein equations120

simplify: a 2D slow flow and a parallel shear flow.121
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2.2. Goldstein’s equations for a slow flow. The Goldstein equations (4)-(5)122

in the general case are complicated to solve, on a theoretical and a numerical point123

of view. Eq. (4) is rather classic: for a fixed value of ξ, ∇ · ξ in (4) can be considered124

as a source term and ϕ satisfies the classical convected Helmholtz equation (1), in125

particular associated to classical radiation conditions. A consequence is that it can be126

solved numerically, using continuous finite elements and classical Perfectly Matched127

Layers (PMLs) to bound the calculation domain [28, 29, 30]. On the contrary, for128

a fixed value of ϕ, ξ in (5) satisfies an harmonic transport equation. This equation129

is classical in the time domain (solved by the characteristics method) but not in the130

harmonic domain. In particular, this equation is difficult to solve numerically: the use131

of Lagrange finite elements to approximate this transport equation leads to polluted132

results and it has to be solved with other methods like with discontinuous finite133

elements [31, 32]. Also the radiation conditions are replaced by a causality condition134

[18]. A consequence is that the introduction of PMLs is not straightforward.135

Let us write the harmonic transport equation (5) in the form Lξ = ∇ϕ × ω0,136

where137

(8) Lξ = −iωξ + (v0 ·∇) ξ + (ξ ·∇)v0.138

The difficulty is to determine L−1. In general, its determination requires to integrate139

the transport equation along the streamlines of the flow. This procedure will be140

presented later in the case of a parallel-shear flow, leading to explicit expressions.141

But in general, this has to be done numerically.142

To express the hydrodynamic unknown versus the velocity potential in a simple143

way, a first approximation is to take ξ = 0 (then Eq. (1) is recovered). This ap-144

proximation is exact only for a uniform flow or for a potential flow, but for a vortical145

flow, it is in general inaccurate. The situation is much simpler if the flow is slow,146

in the sense v0 and |∇v0| are small. Then ξ can be obtained explicitly versus ϕ:147

the operator L can be replaced by −iω and the hydrodynamic unknown is obtained148

explicitly versus the velocity potential149

(9) ξ = i(∇ϕ× ω0)/ω.150

This leads to the Low Mach number model:151

(10) Dω

(

1

c20
Dωϕ

)

=
1

ρ0
∇ ·

[

ρ0

(

∇ϕ+
i

ω
(∇ϕ× ω0)

)]

.152

The idea of simplifying an aeroacoustic problem by restricting to a low Mach number153

flow has been also introduced for a potential flow [1, 33, 34], shear flows [35], Gal-154

brun’s equation [36] or Linearised Euler’s Equations [37, 38]. However in all these155

cases, no error estimates have been derived. On the contrary, in this paper and for156

a shear flow we will quantify the error committed when using the Low Mach number157

approximation. We will show the main result of this paper: this approximation is158

very good, of order two in the sense that the error on ϕ is bounded by the square of159

the Mach number M = sup
x∈Ω |v0|/c0.160

Remark 1. Note that, since the assumption v0 and |∇v0| small implies that |ω0|161

is small, the Low Mach number approximation seems to indicate that ξ = 0 is a good162

approximation. However, we will prove that it is a crude first order approximation163

since it leads to an error bounded only by M , not M2.164
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M(y)ΩL
− Ω

Γ

Fig. 1. Acoustic source radiating in a shear flow in an infinite duct

Remark 2. Note that (9) has the advantage to be a closed form formula but it165

leads to ξ less regular than ϕ since it differentiates ϕ. On the contrary, L in Eq. (8)166

does not give ξ explicitly but is a zero order operator in the sense that ξ and ϕ have167

the same regularity (this will be proved in the shear flow case).168

2.3. Case of a shear flow in a duct. To simplify the presentation of the169

Low Mach number approximation, we will consider a 2D rectangular geometry Ω =170

R × (0, h) with the cartesian coordinates (x, y) and we will consider a parallel shear171

flow v0 = v0(y)ex with v0 ∈ C1([0, h]). Then from (6) we get ω0 = −v′0ez where172

ez = ex × ey, from Euler’s equations (3) we get ρ0 = cst, p0 = cst and from Eq.173

(7) is deduced c0 = cst. For such shear flow, introducing the Mach number profile174

M(y) = v0(y)/c0, M
′(y) = dM/dy and noting D = M(y)∂/∂x − ik with k = ω/c0,175

the Goldstein equations take the simpler form:176

(11)







































D2ϕ = ∇ · (∇ϕ+ ξ) + f in Ω,

Dξ =







−M ′

(

∂ϕ

∂y
+ ξy

)

M ′
∂ϕ

∂x






in Ω,

∂ϕ

∂y
+ ξy = 0 on ∂Ω,

177

where ∂Ω = {(x, y)/y = 0 or y = h}, ξ = (ξx, ξy)
T and where we have introduced a178

source term f ∈ L2(Ω) to consider a radiation problem (see Fig. 1). The Low Mach179

number approximation (9) written for a shear flow consists in taking180











ξx = − iM
′(y)

k

∂ϕ

∂y
,

ξy =
iM ′(y)

k

∂ϕ

∂x
,

181

and leads to the Low Mach number model for a shear flow:182

(12)














D2ϕ−∆ϕ =
i

k

[

∂

∂y

(

M ′(y)
∂ϕ

∂x

)

− ∂

∂x

(

M ′(y)
∂ϕ

∂y

)]

+ f in Ω,

∂ϕ

∂y
+
iM ′(y)

k

∂ϕ

∂x
= 0 on ∂Ω.

183
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6 J-F. MERCIER

To close this radiation problem and to prove its well-posedness, we need to intro-184

duce some radiation conditions, which is done in the next section.185

3. Well-posedness of the dissipative problem in an infinite duct. In this186

part, we introduce the dissipative problem to simplify the description of the radiation187

conditions of problem (11). Then we prove that the dissipative problem is well-posed188

under the condition of a subsonic flow.189

3.1. The dissipative problem. We consider the dissipative problem where the190

wave number is extended to the complex plane:191

kε = k + iε, ε > 0.192

Thanks to the dissipation ε, the outgoing solution corresponds to the solution with193

a finite energy (which stands for the radiation condition): the velocity potential is194

sought in H1(Ω) and ξ is sought in (L2(Ω))2, which leads to v = ∇ϕ+ξ in (L2(Ω))2.195

To simplify our study, we suppose that the flow does not vanish:196

M(y) > 0 ∀y ∈ [0, h].197

Let us consider the following problem, which is problem (11) with k replaced by kε:198

find ϕ ∈ H1(Ω) and ξ ∈ (L2(Ω))2 such that199

(13)







































D2
εϕ = ∇ · (∇ϕ+ ξ) + f in Ω,

Dεξ =







−M ′

(

∂ϕ

∂y
+ ξy

)

M ′
∂ϕ

∂x






in Ω,

∂ϕ

∂y
+ ξy = 0 on ∂Ω,

200

where201

Dε =M(y)
∂

∂x
− ikε.202

The strategy to prove the well-posedness of Eq. (13) is to decouple the treatments203

of the acoustics and the hydrodynamic phenomena and is the following:204

• first we solve the hydrodynamic equation of (13). The solution is noted205

ξ = Aεϕ and we prove that Aε is continuous from H1(Ω) onto (L2(Ω))2.206

• second we solve the acoustic part of (13):207











D2
εϕ−∇ · (∇ϕ+Aεϕ) = f in Ω,

∂ϕ

∂y
+Ay

εϕ = 0 on ∂Ω.
208

3.2. The hydrodynamic equation.209

Theorem 1. The second equation of (13) admits a unique solution in (L2(Ω))2:210

ξ = Aεϕ = [(Ax,1
ε +Ax,2

ε )ϕ,Ay
εϕ]

T ,211

where212
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(14)































Ax,1
ε ϕ = −M

′(y)

M(y)

∫ x

−∞

ei
kε

M(y)
(x−s) ∂ϕ

∂y
(s, y)ds,

Ax,2
ε ϕ = −

(

M ′(y)

M(y)

)2 ∫ x

−∞

(x− s)ei
kε

M(y)
(x−s) ∂ϕ

∂x
(s, y)ds,

Ay
εϕ =

M ′(y)

M(y)

∫ x

−∞

ei
kε

M(y)
(x−s) ∂ϕ

∂x
(s, y)ds.

213

Moreover Aε is continuous from H1(Ω) onto (L2(Ω))2 with the inequality214

(15) ||Aεϕ||L2(Ω)2 ≤
√
2
S1

ε

(

1 +
S1

ε

)

||∇ϕ||L2(Ω)2 ,215

where S1 = maxy∈[0,h] |M ′(y)|.216

Proof. By linearity, ξ may be sought in the form217

ξ = (ξ1x + ξ2x, ξy)
T ,218

where219

(16)

Dεξ
1
x = −M ′

∂ϕ

∂y
,

Dεξ
2
x = −M ′ξy,

Dεξy = M ′
∂ϕ

∂x
.

220

The second equation for ξ2x implies that D2
εξ

2
x = −M ′2 ∂ϕ

∂x
.221

The uniqueness in L2(Ω) is straightforward since the solutions of the homogeneous222

equation Dεζ = 0, which are a(y)eikεx/M(y), cannot belong to L2(Ω), except if a = 0.223

Then it is easy to check that the causal Green functions:224

Gε(x, y) =
Y (x)

M(y)
ei

kε
M(y)

x,225

G̃ε(x, y) =
Y (x)

M(y)2
xei

kε
M(y)

x,226

with Y the Heaviside function, are the unique functions ∈ L2(Ω) satisfying for every227

y ∈ [0, h]:228

DεGε(x, y) = δ(x),229

D2
εG̃ε(x, y) = δ(x).230

The expression of ξ is finally obtained by convolution of the right hand sides in (16)231

with Gε and G̃ε:232


























ξ1x = Ax,1
ε ϕ = Gε ∗

(

−M ′
∂ϕ

∂y

)

,

ξ2x = Ax,2
ε ϕ = G̃ε ∗

(

−M ′2 ∂ϕ

∂x

)

,

ξy = Ay
εϕ = Gε ∗M ′

∂ϕ

∂x
.

233
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8 J-F. MERCIER

Finally, to prove that ξ is in (L2(Ω))2, let us recall that a direct application of Cauchy-234

Schwartz inequality leads to: if h ∈ L2(R) and g ∈ L1(R), then h ∗ g ∈ L2(R) and235

||h ∗ g||L2(R) ≤ ||h||L2(R)||g||L1(R).236

Since a simple calculation gives ||Gε||L1(R) = 1/ε and
∣

∣

∣

∣

∣

∣G̃ε

∣

∣

∣

∣

∣

∣

L1(R)
= 1/ε2, we get237

finally:238

||Aεϕ||2L2(R)2 =

∫

R

(

∣

∣(Ax,1
ε +Ax,2

ε )ϕ
∣

∣

2
+ |Ay

εϕ|2
)

dx,239

≤ 2

∫

R

(

∣

∣Ax,1
ε ϕ

∣

∣

2
+
∣

∣Ax,2
ε ϕ

∣

∣

2
+ |Ay

εϕ|2
)

dx,240

≤ 2

[

|M ′|2
ε2

∫

R

∣

∣

∣

∣

∂ϕ

∂y

∣

∣

∣

∣

2

dx+
|M ′|4
ε4

∫

R

∣

∣

∣

∣

∂ϕ

∂x

∣

∣

∣

∣

2

dx+
|M ′|2
ε2

∫

R

∣

∣

∣

∣

∂ϕ

∂x

∣

∣

∣

∣

2

dx

]

,241

≤ 2
S2
1

ε2

(

1 +
S2
1

ε2

)∫

R

|∇ϕ|2dx.242

Integration on y ∈]0, h[ gives the constant in (15).243

3.3. Variational formulation. By injecting the expression of ξ in the first244

equation of (13), the following problem of unknown ϕ is obtained: find ϕ ∈ H1(Ω)245

such that246










D2
εϕ−∇ · (∇ϕ+Aεϕ) = f in Ω,

∂ϕ

∂y
+Ay

εϕ = 0 on ∂Ω.
247

This problem has good mathematical properties: for instance, the Lax-Milgram248

theorem applies if ε is large enough. To prove this, let us first derive the variational249

formulation of the problem:250

(17)







Find ϕ ∈ H1(Ω) such that ∀ψ ∈ H1(Ω),

aε(ϕ,ψ) =

∫

Ω

fψ,
251

where aε(ϕ,ψ) = bε(ϕ,ψ) + cε(ϕ,ψ) with252

bε(ϕ,ψ) =

∫

Ω

(

1−M2
) ∂ϕ

∂x

∂ψ

∂x
+
∂ϕ

∂y

∂ψ

∂y
− 2ikεM

∂ϕ

∂x
ψ − k2εϕψ,253

cε(ϕ,ψ) =

∫

Ω

(Aεϕ) ·∇ψ.254

Theorem 2. The variational problem (17) is well-posed for S0 = maxy∈[0,h] |M(y)| <255

1 and ε large enough.256

Proof. We just need to prove that the sesquilinear form aε(ϕ,ψ) is coercive. Con-257

cerning the sesquilinear form bε(ϕ,ψ), first we note that258

|bε(ϕ,ϕ)| =
∣

∣

∣

∣

kε
kε
bε(ϕ,ϕ)

∣

∣

∣

∣

≥ |kε|ℑm
(

−bε(ϕ,ϕ)
kε

)

.259
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An integration by parts for all ϕ in H1(Ω) leading to260

∫

Ω

∂ϕ

∂x
ϕ ∈ iR,261

we get262

ℑm
(

−bε(ϕ,ϕ)
kε

)

=

∫

Ω

ε

|kε|2

[

(

1−M2
)

∣

∣

∣

∣

∂ϕ

∂x

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂ϕ

∂y

∣

∣

∣

∣

2
]

+ ε |ϕ|2 ,263

≥ ε

|kε|2
(1− S2

0) ||∇ϕ||2L2(Ω)2 + ε ||ϕ||2L2(Ω) ,264

≥ min

(

ε

|kε|2
(1− S2

0), ε

)

||ϕ||2H1(Ω) .265

Concerning the sesquilinear form cε(ϕ,ψ), we get thanks to Theorem 1:266

|cε(ϕ,ϕ)| ≤ ||Aεϕ||L2(Ω)2 ||∇ϕ||L2(Ω)2 ≤
√
2
S1

ε

(

1 +
S1

ε

)

||∇ϕ||2L2(Ω)2 .267

Combining the two previous results we get268

(18) |aε(ϕ,ϕ)| ≥ Cc
ε ||ϕ||2H1(Ω) ,269

with270

(19) Cc
ε = min

([

ε

|kε|
(1− S2

0)−
√
2
S1

ε

(

1 +
S1

ε

)]

, ε|kε|
)

.271

Since272

lim
ε→∞

Cc
ε = 1− S2

0 > 0,273

Cc
ε is positive for ε large enough.274

Remark 3.275

• to get well-posedness, the flow must be subsonic: S0 < 1,276

• for a uniform flow, S1 = 0 and the problem is well-posed for all ε values.277

S1 > 0 means that we are in presence of a shear flow which may produce278

instabilities [39]: then enough dissipation ε must be introduced to absorb the279

energy of the instabilities.280

4. The restriction to a slow flow. In the rest of the paper, we consider the281

dissipative problem for a slow shear flow, presented in the previous section. We282

consider a particular family of flows of the general form283

(20) M(y) =Mm(y),284

with M a constant such that 0 ≤M < 1 and m(y) a strictly positive fixed C2([0, h])285

function with maxy∈[0,h] |m(y)| = 1. Contrary to the previous section, we suppose286

that the dissipation ε is fixed and M is the only variable parameter. We note AM287

instead of Aε defined in Eq. (14) the hydrodynamic operator and ϕM the solution288

of Goldstein’s equations (17). First we will prove that the solution ϕM exists for289

M small enough. Then we will show that the no flow solution ϕ0, although easy to290

determine (then AM = A0 = 0), is not a good approximation of ϕM . Indeed we will291

prove that the error ||ϕM − ϕ0||H1(Ω) is only of order M .292
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4.1. Existence and unicity of the exact solution. Let us prove first that,293

for any ε values, the problem (17) is well-posed for M small enough (previously we294

have proved that this problem is well-posed for M fixed and ε large enough). This295

problem is now written296

(21)







Find ϕ ∈ H1(Ω) such that ∀ψ ∈ H1(Ω),

aM (ϕ,ψ) =

∫

Ω

fψ,
297

where aM (ϕ,ψ) = a0(ϕ,ψ) + bM (ϕ,ψ) + cM (ϕ,ψ) with298

a0(ϕ,ψ) =

∫

Ω

∇ϕ ·∇ψ − k2εϕψ,(22)299

bM (ϕ,ψ) =

∫

Ω

−M2m(y)2
∂ϕ

∂x

∂ψ

∂x
− 2ikεMm(y)

∂ϕ

∂x
ψ,(23)300

cM (ϕ,ψ) =

∫

Ω

(AMϕ) ·∇ψ.(24)301

Theorem 3. The variational problem (21) is well-posed for M small enough and302

its solution ϕM satisfies303

(25) Cc
M ||ϕM ||H1(Ω) ≤ ||f ||L2(Ω) ,304

where305

(26) Cc
M = min

([

ε

|kε|
(1−M2s20)−

√
2
Ms1
ε

(

1 +
Ms1
ε

)]

, ε|kε|
)

,306

with s0 = maxy∈[0,h] |m(y)| and s1 = maxy∈[0,h] |m′(y)|.307

Proof. Following the proof of Theorem 2, using Eq. (15) we have308

(27) ||AMϕ||L2(Ω)2 ≤
√
2
Ms1
ε

(

1 +
Ms1
ε

)

||∇ϕ||L2(Ω)2 ,309

and the problem (21) is well-posed if Cc
M > 0 (Cc

M is Cc
ε in Eq. (19)). To conclude,310

we just notice that for M small enough311

Cc
M ∼ Cc

0 = min

(

ε

|kε|
, ε|kε|

)

> 0.312

To prove that ϕM is bounded in H1(Ω), we determine a lower bound and an313

upper bound of |aM (ϕM , ϕM )|. The lower bound is deduced from the coercivity of314

aM (ϕ,ϕ) with the constant Cc
M (see Eq. (18)). For the upper bound, from (21) we315

get316

|aM (ϕM , ψ)| ≤ ||f ||L2(Ω) ||ψ||H1(Ω) .317

Taking ψ = ϕM leads to (25).318
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4.2. Convergence to the no flow case. In this part we first show that ϕM −→319

ϕ0 when M → 0 where ϕ0 is the solution of the problem without flow and also that320

ϕ0 approximates ϕM at the order M .321

4.2.1. The no flow model. With no flow, ϕM = ϕ0 is the solution of:322

(28)







Find ϕ ∈ H1(Ω) such that ∀ψ ∈ H1(Ω),

a0(ϕ,ψ) =

∫

Ω

fψ,
323

where a0(ϕ,ψ) is defined in Eq. (22). The sesquilinear form a0 coincides with aM for324

M = 0 and therefore the problem (28) is well posed with the coercivity constant Cc
0325

defined in (26), taking M = 0. In the following, to establish (32) we will need more326

regularity for ϕ0 and we have the327

Lemma 4. The solution ϕ0 of (28) belongs to H2(Ω).328

Proof. This is due to the regularity result [40, Theorem IX.26 page 182]:329

{

ϕ ∈ H1(Ω),∆ϕ ∈ L2(Ω), ∂ϕ/∂y = 0 on ∂Ω
}

= H2(Ω).330

4.2.2. Quality of the no flow approximation. We show now that ϕ0 approx-331

imates ϕM at the order M :332

Theorem 5. Let ϕ0 and ϕM be the solution of (21) and (28). For M small333

enough, we have334

||ϕM − ϕ0||H1(Ω) ≤M
C0

Cc
0C

c
M

||f ||L2(Ω),335

where Cc
M and Cc

0 are defined in (26) and where336

(29) C0 = s20 + 2|kε|s0 +
√
2
s1
ε

(

1 +
s1
ε

)

,337

with s0 = maxy∈[0,h] |m(y)| and s1 = maxy∈[0,h] |m′(y)|.338

Remark 4. M small enough simply means that M is such that Cc
M > 0. Note339

also that for M small, Cc
M may be approximated by Cc

0 which implies that ||ϕM −340

ϕ0||H1(Ω) is then bounded exactly by M (not Mn with n < 1).341

Proof. The solution ϕM satisfies (21) with342

aM (ϕM , ψ) = a0(ϕM , ψ) + dM (ϕM , ψ),343

where we have introduced344

dM (ϕ,ψ) = bM (ϕ,ψ) + cM (ϕ,ψ) =345

346

−
(∫

Ω

M2m(y)2
∂ϕM

∂x

∂ψ

∂x
+ 2ikεMm(y)

∂ϕM

∂x
ψ

)

+

∫

Ω

(AMϕM ) ·∇ψ,347

with bM and cM defined in (23) and (24). To evaluate ||ϕM − ϕ0||H1(Ω), we will348

establish the following inequality:349

(30)

{

Cc
0||ϕM − ϕ0||2H1(Ω) ≤ |a0(ϕM − ϕ0, ϕM − ϕ0)|,

≤ MC0||ϕM ||H1(Ω)||ϕM − ϕ0||H1(Ω).
350
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12 J-F. MERCIER

The left hand side is simply due to the coercivity of the problem without flow.351

To get the right hand side, we start from the following relations ∀ψ ∈ H1(Ω):352















a0(ϕM , ψ) + dM (ϕM , ψ) =

∫

Ω

fψ,

a0(ϕ0, ψ) =

∫

Ω

fψ.
353

Substraction leads to354

a0(ϕM − ϕ0, ψ) = −dM (ϕM , ψ).355

Therefore we get356

|a0(ϕM − ϕ0, ψ)| ≤357

[

M
(

Ms20 + 2|kε|s0
)

+
√
2
Ms1
ε

(

1 +
Ms1
ε

)]

||∇ϕM ||L2(Ω)2 ||ψ||H1(Ω) ,358

which can be written, using M < 1:359

|a0(ϕM − ϕ0, ψ)| ≤MC0 ||∇ϕM ||L2(Ω)2 ||ψ||H1(Ω) ,360

where C0 is defined in (29). Taking ψ = ϕM − ϕ0 leads to (30) and therefore to:361

||ϕM − ϕ0||H1(Ω) ≤
MC0

Cc
0

||ϕM ||H1(Ω).362

We conclude using inequality Eq. (25).363

5. The low Mach number approximation. We look now for an approxima-364

tion ϕ̃M of the solution ϕM at low Mach numbers (M → 0). In the previous section,365

we have shown that the no flow solution ϕ̃M = ϕ0 is not a good approximation of366

ϕM since the error was of order M . We will prove that ϕ̃M , derived by neglecting367

the convection term Mm∂/∂x in the convective operator Dε = Mm∂/∂x − ikε, is a368

better approximation of ϕM . Indeed we will obtain that the error ||ϕM − ϕ̃M ||H1(Ω)369

is of order M2.370

5.1. Construction of the approximated model. In this paragraph, we define371

the approximated Low Mach number model and we also introduce its solution ϕ̃M .372

Moreover we prove that ||ϕ̃M−ϕ0||H1(Ω) ∼M which results in ||ϕM−ϕ̃M ||H1(Ω) ∼M2373

for M small.374

5.1.1. Approximation of the hydrodynamic unknown. Let us recall that375

the hydrodynamic operator AM (see Eq. (14))is defined for all ϕ in H1(Ω) by :376

(31)















Ax,1
M ϕ = −m

′(y)

m(y)

∫ x

−∞

ei
kε

Mm(y)
(x−s) ∂ϕ

∂y
(s, y)ds,

Ay
Mϕ =

m′(y)

m(y)

∫ x

−∞

ei
kε

Mm(y)
(x−s) ∂ϕ

∂x
(s, y)ds.

377

When M = 0, the integrals defining AMϕ in (31) are not defined. Moreover when378

M → 0, these integrals are difficult to determine numerically: we have to evaluate379
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singular terms, highly oscillating integrals (kε/M → ∞). We propose here an approx-380

imated formula to replace AMϕ when M is small. We introduce the following Low381

Mach number approximation, noted ÃMϕ, defined for all ϕ in H1(Ω) by:382

ÃMϕ = (Ãx,1
M ϕ, Ãy

Mϕ)
T ,383

=

[

− iMm′(y)

kε

∂ϕ

∂y
,
iMm′(y)

kε

∂ϕ

∂x

]T

.384

To get these expressions, we start from the exact expressions (31) and we suppose385

that ϕ is in H2(Ω) (latter (32) will be applied to ϕ0 which has the good regularity386

thanks to lemma 4) and we get after integration by parts:387

(32)
Ax,1

M ϕ = − iMm′(y)

kε

(

∂ϕ

∂y
−
∫ x

−∞

ei
kε

Mm(y)
(x−s) ∂

2ϕ

∂x∂y
(s, y)ds

)

,

Ay
Mϕ =

iMm′(y)

kε

(

∂ϕ

∂x
−
∫ x

−∞

ei
kε

Mm(y)
(x−s) ∂

2ϕ

∂x2
(s, y)ds

)

.
388

The Low Mach number approximation consists in keeping the first term in the above389

developments by supposing that the integral terms are negligible (we will show later390

that it is the case for ϕ = ϕ0). The term Ax,2
M ϕ, corresponding to Ax,2

ε in Eq. (14), is391

not taken into account because it is very small, of order M2, as shown in (36). The392

variational formulation associated to the Low Mach number approximation reads393

(33)







Find ϕ ∈ H1(Ω) such that ∀ψ ∈ H1(Ω),

ãM (ϕ,ψ) =

∫

Ω

fψ.
394

ãM (ϕ,ψ) = a0(ϕ,ψ) + bM (ϕ,ψ) + c̃M (ϕ,ψ) with a0 and bM defined in (22) and (23).395

Moreover,396

(34) c̃M (ϕ,ψ) =

∫

Ω

(ÃMϕ) ·∇ψ,397

and (33) is (21) with cM (ϕ,ψ) replaced by c̃M (ϕ,ψ). Note that we could also replace398

bM by b̃M , defined as bM with the term weighted by M2 cancelled. It would give399

the same quality of approximation ||ϕM − ϕ̃M ||H1(Ω) ∼ M2. However, as said in the400

introduction, only the term AMϕ is complicated to evaluate numerically and is worth401

being approximated at low Mach numbers.402

Remark 5. As it is the case for Ay
Mϕ and Ax,1

M ϕ (see Eq. (15)), the terms Ãy
Mϕ403

and Ãx,1
M ϕ are of order 1 in M in the sense that404

(35)















∣

∣

∣

∣

∣

∣Ã
y
Mϕ
∣

∣

∣

∣

∣

∣

L2(Ω)
≤ Ms1

|kε|

∣

∣

∣

∣

∣

∣

∣

∣

∂ϕ

∂x

∣

∣

∣

∣

∣

∣

∣

∣

L2(Ω)

,

∣

∣

∣

∣

∣

∣
Ãx,1

M ϕ
∣

∣

∣

∣

∣

∣

L2(Ω)
≤ Ms1

|kε|

∣

∣

∣

∣

∣

∣

∣

∣

∂ϕ

∂y

∣

∣

∣

∣

∣

∣

∣

∣

L2(Ω)

.
405

These upper bounds are the same than the one obtained for AM Eq. (27), replacing ε406

by kε. On the contrary, Ax,2
M is of order 2:407

(36)
∣

∣

∣

∣

∣

∣
Ax,2

M ϕ
∣

∣

∣

∣

∣

∣

L2(Ω)
≤ M2s21

ε2

∣

∣

∣

∣

∣

∣

∣

∣

∂ϕ

∂x

∣

∣

∣

∣

∣

∣

∣

∣

L2(Ω)

.408

This is why a low Mach number approximation Ãx,2
M is not introduced for Ax,2

M .409
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Before showing that ϕ̃M is an order 2 approximation of ϕM , let us prove that ϕ̃M410

exists.411

5.1.2. Well-posedness of the approximated model. For M small enough,412

the problem (33) is well-posed. Indeed, from (35) we get413

∣

∣

∣

∣

∣

∣ÃMϕ
∣

∣

∣

∣

∣

∣

L2(Ω)2
≤ Ms1

|kε|
||∇ϕ||L2(Ω)2 ,414

from which we deduce that ãM is coercive for M small enough with the coercivity415

constant:416

C̃c
M = min

([

ε

|kε|
(1−M2s20)−

Ms1
|kε|

]

, ε|kε|
)

.417

Of course C̃c
M is similar to (26).418

5.1.3. Quality of the low Mach number approximation. Proceeding as in419

Theorem 5, we can prove the estimation420

(37) ||ϕ̃M − ϕ0||H1(Ω) ≤M
C̃0

C̃c
0C̃

c
M

||f ||L2(Ω),421

where422

C̃0 = s20 + 2|kε|s0 +
s1
|kε|

,423

similarly to the constant (29). Now we will prove our main result: ϕ̃M is a good424

approximation of ϕM in the sense that the error is bounded by M2:425

Theorem 6. Let ϕM and ϕ̃M be the solution of (21) and (33). Then there exists426

C(M) > 0 such that427

||ϕM − ϕ̃M ||H1(Ω) ≤ C(M)M2,428

with C(M) bounded (C tends to a constant when M → 0).429

Proof. If we denote430

(38) eM (ϕ,ψ) = a0(ϕ,ψ) + bM (ϕ,ψ),431

Then using (21) and (33) we get432

eM (ϕ̃M − ϕM , ψ) = cM (ϕM , ψ)− c̃M (ϕ̃M , ψ),433

where cM , c̃M are defined in (24) and (34). The right hand side of the previous term434

is more explicitly:435

cM (ϕM , ψ)−c̃M (ϕ̃M , ψ) =

∫

Ω

(

Ax,1
M ϕM − Ãx,1

M ϕ̃M

) ∂ψ

∂x
+
(

Ax,2
M ϕM

) ∂ψ

∂x
+
(

Ay
MϕM − Ãy

M ϕ̃M

) ∂ψ

∂y
.436

We need to find an upper bound of this term: we write437

|cM (ϕM , ψ)− c̃M (ϕ̃M , ψ)| ≤438

(

∣

∣

∣

∣

∣

∣
Ax,1

M ϕM − Ãx,1
M ϕ̃M

∣

∣

∣

∣

∣

∣

L2(Ω)
+
∣

∣

∣

∣

∣

∣
Ax,2

M ϕM

∣

∣

∣

∣

∣

∣

L2(Ω)
+
∣

∣

∣

∣

∣

∣
Ay

MϕM − Ãy
M ϕ̃M

∣

∣

∣

∣

∣

∣

L2(Ω)

)

||∇ψ||2L2(Ω) ,439

and we will prove that each of the three terms in the right hand side is bounded by440

M2.441
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• Terms
∣

∣

∣

∣

∣

∣A
x,1
M ϕM − Ãx,1

M ϕ̃M

∣

∣

∣

∣

∣

∣

L2(Ω)
and

∣

∣

∣

∣

∣

∣A
y
MϕM − Ãy

M ϕ̃M

∣

∣

∣

∣

∣

∣

L2(Ω)
442

Both terms can be treated in the same way and we just present the derivation443

of an upper bound for Ax,1
M . We use ϕ0 as an intermediate field between ϕM444

and ϕ̃M and we write:445

∣

∣

∣

∣

∣

∣A
x,1
M ϕM − Ãx,1

M ϕ̃M

∣

∣

∣

∣

∣

∣

L2(Ω)
=
∣

∣

∣

∣

∣

∣A
x,1
M (ϕM − ϕ0)− Ãx,1

M (ϕ̃M − ϕ0) +
(

Ax,1
M − Ãx,1

M

)

ϕ0

∣

∣

∣

∣

∣

∣

L2(Ω)
,446

≤
∣

∣

∣

∣

∣

∣A
x,1
M (ϕM − ϕ0)

∣

∣

∣

∣

∣

∣

L2(Ω)
+
∣

∣

∣

∣

∣

∣Ã
x,1
M (ϕ̃M − ϕ0)

∣

∣

∣

∣

∣

∣

L2(Ω)
+
∣

∣

∣

∣

∣

∣

(

Ax,1
M − Ãx,1

M

)

ϕ0

∣

∣

∣

∣

∣

∣

L2(Ω)
.447

The reason of the introduction of ϕ0 is that the H2(Ω) regularity of ϕ0 will448

be required to get estimates on
(

Ax,1
M − Ãx,1

M

)

ϕ0 since Eq. (32) will be used.449

Here also three terms must be bounded. For the first two ones we have, using450

Theorem 5, inequalities (35) and (27), or more precisely451

∣

∣

∣

∣

∣

∣
Ax,1

M ϕ
∣

∣

∣

∣

∣

∣

L2(Ω)
≤ Ms1

ε

∣

∣

∣

∣

∣

∣

∣

∣

∂ϕ

∂y

∣

∣

∣

∣

∣

∣

∣

∣

L2(Ω)

,452

and Eq. (37):453

∣

∣

∣

∣

∣

∣
Ax,1

M (ϕM − ϕ0)
∣

∣

∣

∣

∣

∣

L2(Ω)
+
∣

∣

∣

∣

∣

∣
Ãx,1

M (ϕ̃M − ϕ0)
∣

∣

∣

∣

∣

∣

L2(Ω)
454

≤Ms1

(

1

|ε| ||ϕM − ϕ0||H1(Ω) +
1

|kε|
||ϕ̃M − ϕ0||H1(Ω)

)

≤ C◦M2,455

where456

C◦ = s1

(

1

|ε|
C0

Cc
0C

c
M

+
1

|kε|
C̃0

C̃c
0C̃

c
M

)

||f ||L2(Ω).457

For the last term, we use (32)458

(

Ax,1
M − Ãx,1

M

)

ϕ0 =M
im′(y)

kε

∫ x

−∞

ei
kε

Mm(y)
(x−s) ∂

2ϕ0

∂x∂y
(s, y)ds459

460

= Gε ∗M2 im
′(y)m(y)

kε

∂2ϕ0

∂x∂y
.461

Note that this term is defined since ϕ0 ∈ H2(Ω), from lemma (4). We deduce462

the upper bound:463

∣

∣

∣

∣

∣

∣

(

Ax,1
M − Ãx,1

M

)

ϕ0

∣

∣

∣

∣

∣

∣

L2(Ω)
≤ CxyM

2,464

where465

Cxy =
s1s0
ε|kε|

∣

∣

∣

∣

∣

∣

∣

∣

∂2ϕ0

∂x∂y

∣

∣

∣

∣

∣

∣

∣

∣

L2(Ω)

.466

Collecting all the terms together, we obtain467

∣

∣

∣

∣

∣

∣A
x,1
M ϕM − Ãx,1

M ϕ̃M

∣

∣

∣

∣

∣

∣

L2(Ω)
≤ (C◦ + Cxy)M

2.468

In a same way we get469
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∣

∣

∣

∣

∣

∣A
y
MϕM − Ãy

M ϕ̃M

∣

∣

∣

∣

∣

∣

L2(Ω)
≤ (C◦ + Cxx)M

2.470

with471

Cxx =
s1s0
ε|kε|

∣

∣

∣

∣

∣

∣

∣

∣

∂2ϕ0

∂x2

∣

∣

∣

∣

∣

∣

∣

∣

L2(Ω)

.472

• Term
∣

∣

∣

∣

∣

∣A
x,2
M ϕM

∣

∣

∣

∣

∣

∣

L2(Ω)
473

From Eq. (36) and (25) is deduced:474

∣

∣

∣

∣

∣

∣A
x,2
M ϕM

∣

∣

∣

∣

∣

∣

L2(Ω)
≤ M2s21

ε2
||ϕM ||H1(Ω) ≤M2C•,475

where476

C• =
s21
ε2

||f ||L2(Ω)

Cc
M

.477

Combining all the results together, we get the global estimation:478

|eM (ϕM−ϕ̃M , ψ)| = |cM (ϕM , ψ)−c̃M (ϕ̃M , ψ)| ≤M2 [2C◦ + Cxy + Cxx + C•] ||∇ψ||2L2(Ω) ,479

from which we deduce, taking ψ = ϕM − ϕ̃M :480

||ϕM − ϕ̃M ||H1(Ω) ≤
[2C◦ + Cxy + Cxx + C•]

Cc
e

M2,481

with the coercivity constant for eM (ϕ,ψ):482

Cc
e = min

(

ε

|kε|
(1−M2s20), ε|kε|

)

> 0.
483

Finally, using Eq. (26), C◦ and C• depend on M but become constant when M → 0484

(see also remark 4).485

6. Numerical validation.486

6.1. Numerical setup. To solve numerically the Goldstein equations, we do not487

use the dissipative model. On the contrary we take ε = 0 and we introduce Perfectly488

Matched Layers (PMLs) to bound the calculation domain while selecting the outgoing489

solution. The advantage of using PMLs is that the solution in the neighborhood of the490

source f (more precisely outside the PMLs) is the physical one, since the unmodified491

Goldstein equations are solved there. The Goldstein equations in the PMLs are simply492

obtained by replacing ∂/∂x by α∂/∂x. The complex number α is the PML parameter493

[41, 28] and has to be chosen such that ℜe(α) > 0 and ℑm(α) < 0 to select properly494

the outgoing solution.495

In a guide of height h, the computational domain Ωc, represented in Fig. 2, is496

defined as Ωc = Ωb ∪ ΩL
± where Ωb = (0, d) × (0, h) is a bounded domain around497

the source f and ΩL
± are the PMLs of length L. We take the source f(x, y) = 1 in498

the disc of center (d/2, h/2) and of radius h/4. The Goldstein equations are solved499

with the Finite Element code Xlife++ [42] at the frequency k = 2, for a unitary500

guide h = 1 and for PMLs such that L = 0.5 and α = (1 − i)/10. Eq. (12) can501

be solved with classical Finite Element but not the hydrodynamic equation of (11).502

We could use Discontinuous Galerkin elements but for simplicity we preferred to use503

a Streamline Upwind Petrov-Galerkin (SUPG) formulation [43] of (11), introducing504

an extra parameter to the PML parameter α but allowing to use Continuous Finite505

Elements.506
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ΩL
+

Σ+Σ−

Γ

M(y)ΩL
−

Γ

Fig. 2. Computation domain with the PMLs

6.2. Numerical results. We have considered three velocity profiles m(y) de-507

fined in Eq. (20): a polynomial profile m(y) = [0.25 + y + 10y(y − 0.5)(y − 1)]/1.25,508

a sine profile m(y) = [1.5 + sin(2πy)]/2.5 and a hyperbolic tangent profile m(y) =509

[0.5 + 1 + tanh(10(y − 0.5))]/2.5. These profiles are drawn in Fig. 3 (a), Fig. 4 (a)510

and Fig. 5 (a). The profiles have been chosen such that m(y) ∈ [0.2, 1]. We note ϕ511

the exact solution and ϕLM the Low Mach number approximation. For d = 1, the512

relative H1 errors ||ϕ−ϕLM ||H1(Ωb)/||ϕ||H1(Ωb) versus M are plotted in red in Fig. 3513

(b), Fig. 4 (b) and Fig. 5 (b) for the three velocity profiles. The fits of the curves,514

represented in blue dashed lines, show that the H1 errors is of the form C1M
p with515

p = 2.14 for the polynomial profile, p = 2.23 for the sine profile and p = 2.33 for the516

hyperbolic tangent profile. The powers are very close to 2, predicted theoretically.517

We have tested other velocity profiles, linear combinations of cosine functions (results518

not reported here) and powers close to 2 have always been found. For the polynomial519

profile, the relative H1 error is found very good for M < 0.1, below 1% and becomes520

bad for M ∼ 0.3, where it reaches 10% (it reaches 10% for M ∼ 0.25 for the sine521

profile and for M ∼ 0.20 for the tangent profile). Note that the H1 error is rather522

demanding, the relative error with the L2-norm is better. The L2-error reaches 10%523

for larger values of the Mach Number than with the H1-norm: for M ∼ 0.45 for524

the polynomial profile, for M ∼ 0.40 for the sine profile and for M ∼ 0.35 for the525

tangent profile. The L2-error is again like C2M
p with p = 2.03 for the polynomial526

profile, p = 2.14 for the sine profile and p = 2.25 for the hyperbolic tangent profile.527

The values of p are very close between the L2-norm and H1-norm: it means that the528

better results obtained with the L2-norm are due to a better constant: C2 < C1.529

The dependence of the constant C1 versus the parameters of the problem, al-530

though explicit (see proof of theorem 6), is not easy to analyze since all the param-531

eters are mixed together. But from the numerical tests, general tendencies can be532

extracted: the results are less good (C1 increases) when k, s0 (the maximum of the533

velocity) or s1 (the maximum of the shear) increase. In particular the shear s1 is534

important: indeed for s1 = 0, since it implies that M ′(y) = 0, then ξ = 0 for the535

exact solution and the Low Mach number approximation becomes exact. It is why the536

results are better for the polynomial profile and the worst for the hyperbolic tangent537

profile, this latter profile corresponding to the strongestM ′(y) values in the numerical538

tests.539

To understand why the Low Mach number approximation gives so good results, it540

is useful to look at the fields. We present them for the polynomial profile, forM = 0.1541

and M = 0.5 and for a larger domain d = 2.542

For a slow flowM = 0.1, in Fig. 6 are represented, only in Ωb (outside the PMLs),543
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Fig. 3. (a): polynomial velocity profile; (b): H1 errors versus M in red, fit in blue
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Fig. 4. (a): sine velocity profile; (b): H1 errors versus M in red, fit in blue

ℜe(ϕ) and ℜe(ϕLM ): as expected, they are very similar. In complement, Fig. 7 shows544

ℑm(ξx) and ℑm(ξxLM ) and Fig. 8 shows ℑm(ξy) and ℑm(ξyLM ). For both components545

of ξ, we see that the Low Mach number approximation captures satisfactorily the long546

wavelength phenomena and neglects the fast oscillatory phenomena. ξ and ξLM seem547

rather different but let us recall that the error on ξ is expected to be stronger than548

the error on ϕ: it varies only like M whereas it varies like M2 for ϕ.549

For a faster flow M = 0.5, Fig. 9 shows ℜe(ϕ) and ℜe(ϕLM ): we see that ϕLM550

approximates badly ϕ, the Low Mach number approximation being unable to capture551

the hydrodynamic phenomena, associated to short wavelengths. However the long552

wavelength phenomena in ϕ are rather well recovered in ϕLM . This is surprising553

for this rather large M value and also because ξ and ξLM are found very different554

(comparison not shown here).555

7. Conclusion. To study the time-harmonic acoustic propagation in a general556

flow, starting from the exact Goldstein equations we have developed a new model,557

the Low Mach number Approximation of the Goldstein equations (4)-(5), which has558

two main features: it is much simpler than the initial Goldstein equations because the559

transport operator solving Eq. (5) is replaced by the explicit relation (9). Moreover it560

is able to take into account the convection of vortices, contrary to the usual convected561

Helmholtz equation (1) which restricts to acoustics phenomena. For a parallel shear562

flow, we have proved theoretically and confirmed numerically that this approximated563

model is very accurate, in the sense that the error on the acoustic field is of order564
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Fig. 5. (a): hyperbolic tangent velocity profile; (b): H1 errors versus M in red, fit in blue

Fig. 6. ℜe(ϕ) and ℜe(ϕLM ) in Ωb for a polynomial velocity profile and M = 0.1

Fig. 7. ℑm(ξx) and ℑm(ξx
LM

) in Ωb for a polynomial velocity profile and M = 0.1

Fig. 8. ℑm(ξy) and ℑm(ξy
LM

) in Ωb for a polynomial velocity profile and M = 0.1

Fig. 9. ℜe(ϕ) and ℜe(ϕLM ) in Ωb for a polynomial velocity profile and M = 0.5

This manuscript is for review purposes only.



20 J-F. MERCIER

two, bounded by the square of the Mach number.565

The generalization of this result to a non-parallel 2D or 3D flow is not straight-566

forward and would be very technical: indeed it would require to perform a change of567

variables to transform the transport equation (5) in a family of ordinary differential568

equations along the streamlines of the carrier flow. But we think that the accuracy569

of the Low Mach number model (10), rigorously proved for a shear flow, remains570

valid for any flow. This general Low Mach number model (10) is much simpler than571

the initial one (4)-(5), which is particularly interesting for 3D applications, and is572

certainly much better than Eq. (1): extrapolating the results obtained for a parallel573

shear flow, the acoustic error should be of order M2 (instead of M for Eq. (1)) where574

M is the characteristic Mach number of the carrier flow. Moreover this Low Mach575

number model has good mathematical properties, contrary to the general model: for576

instance it is easy to prove that it is well-posed as soon as ∃β > 0 such that577

inf
x∈Ω

[

1−
(

v0

c0

)2

− |ω0|
ω

]

≥ β,578

and it is of course naturally the case for a slow flow.579
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