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ACCURACY OF A LOW MACH NUMBER MODEL FOR TIME
HARMONIC ACOUSTICS*

J-F. MERCIER'

Abstract. We study the time-harmonic acoustic radiation in a fluid in flow. To go beyond the
convected Helmholtz equation adapted only to potential flows, starting from the Goldstein equations,
coupling exactly the acoustic waves to the hydrodynamic field, we develop a new model in which
the description of the hydrodynamic phenomena is simplified. This model, initially developed for a
carrier flow of low Mach number M, is proved theoretically to be accurate, associated to a low error
bounded by M?2. Numerical experiments confirm the M2 law and show that the model remains of
very good quality for flow of moderate Mach numbers.

Key words. Aeroacoustics, time-harmonic radiation, acoustics in vortical flows, Goldstein’s
Equations, small parameter, approximate model, error estimates
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1. Introduction. We are interested in time-harmonic radiation problems in
aeroacoustics and more precisely we aim at determining the acoustic perturbations
created by a known source and propagating in an imposed carrier flow of velocity vg.
The main motivation lies in aeronautics, with the seek of noise reduction of plane en-
gines. But such study interests also the car industry with the need to reduce the sound
of exhaust pipes or the domestic industry with the noise reduction of air-conditioning
devices and ventilation ducts.

Acoustics propagation in a general flow is a complicated problem, due to the co-
existence of acoustics waves and hydrodynamic vortices. These phenomena are very
different: acoustics waves are radiated at the speed of sound whereas the vortices are
convected at the carrier flow velocity. Also these phenomena are associated to very
different wavelengths, which can be very short for the vortices when the carrier flow
is slow. Moreover these phenomena are coupled: the acoustic waves produce vortices
which in return radiate sound.

In the time-domain, aeroacoustics has been well studied and several methods have
been developed to solve the Linearized Euler Equations, although the treatment of
artificial boundaries still raises open questions. On the other hand, the time-harmonic
problem has not been entirely solved for a general flow. It has been done in the simpler
case of a potential carrier flow [1, 2, 3, 4], for which no vortices are produced. Indeed
for a carrier flow potential vg = Vi and homentropic, the acoustic perturbations
are found also potential: the velocity perturbation reads v = V¢ and the velocity
potential ¢ satisfies the convected Helmholtz equation [5, 6]:

1 1
1) D. (gw) = Ly (v
(&) £o

po and ¢q are respectively the density and the sound velocity of the flow and
(2) Dw = —w + v - V,

is the convective derivative with w the frequency. In parallel to the consideration
of a potential flow, another popular restriction avoiding to solve the full Linearized
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2 J-F. MERCIER

Euler Equations, is to consider an intermediate between a potential flow and a general
flow: a shear flow vo = ug(y)e,. Then the Linearized Euler Equations simplify in
the Pridmore-Brown equation [7], which is a scalar ordinary differential equation.
However, the numerical resolution of this equation is difficult [8], in particular due
to the presence of a continuous spectrum of hydrodynamic modes and sometimes
to the presence of unstable modes [9]. To solve this difficulty, a usual approach is
to neglect hydrodynamic modes [8, 9, 10]. Another approach is to approximate a
shear flow by a uniform flow. This is a natural approach for a boundary layer flow
when the thickness of the layer is very small, but it is not always possible since
such approximation can lead to ill-posed problems. It is in particular the case when
studying the acoustic propagation in a duct with absorbing walls [11, 12]. In presence
of a uniform flow, these walls are classically described by the Myers condition [13],
but this condition leads to several theoretical and numerical troubles [14]. On the
contrary, the problem is well-posed in presence of a shear flow vanishing on the wall,
because the Myers condition becomes a simple Robin condition. But the shear flow
introduces hydrodynamic modes. To recover the comfort of dealing with a uniform
flow, improved Myers conditions have been derived [15], allowing to consider a uniform
flow while leading to a well-posed problem.

In this paper we propose to go beyond the restrictions to a uniform, a shear or
a potential flow and to go toward a more general flow while keeping a simple model.
To deal with a general flow, different wave-like models are available, among which
the Galbrun equation [16, 17, 18], the Mohring equations [19, 20] and the Goldstein’s
equations [21, 22, 23, 24]. We choose the Goldstein equations (4)-(5), linking two
unknowns, the velocity potential ¢ and the hydrodynamic vector field &, because: (i)
they are a direct extension of the potential wave equation (1), (ii) they are simpler than
alternative models: in the area where the carrier flow is potential, it can be proved
that & vanishes and the Goldstein equations degenerate in the convected Helmholtz
equation (1), (iii) the unknowns of Goldstein’s equations have a physical meaning: ¢
represents the acoustical field whereas € describes the hydrodynamic phenomena.

An interesting application of Goldstein equations is to give the possibility to relate
a hydrodynamic field and an acoustic field when studying the gust-aerofoil interaction
noise. It has been done for potential [25] and for tranverse shear flows [26, 27]. The
derived theoretical models are precise but rather complex, involving integration in
the complex plane in presence of poles and branch cuts, Wiener-Hopf techniques or
asymptotic expansions. Simplifications are obtained by restricting to the far-field
behavior or to low frequencies. In this paper we will rather focus on building a model
both very simple and valid at all frequencies and for the near-field and the far-field,
but that will be justified only for flows of moderate speed.

The aim of this paper is the following: to propose an aeroacoustic model, defined
for a general flow, simpler than the general Goldstein equations, but still taking into
account hydrodynamic effects. Starting from the Goldstein equations, we will derive
a simpler model, called the Low Mach number model Eq. (10). This model will be
designed to be very well adapted to slow flows and we postulate that it is a good
approximation for non-slow flows. Restricting to a 1D shear flow (Eq. (11)) for the
theory, by deriving precise estimates we will prove that the corresponding Low Mach
number model Eq. (12) remains of good quality for moderate velocity flows.

The paper is organized as follows. In the second section are given the Goldstein
equations, for a general flow and simplified expressions for two classes of flows: a
slow flow and a parallel shear flow. The rest of the paper focuses on estimating
theoretically the quality of the Low Mach number model. It will be done in the case
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ACCURACY OF A LOW MACH NUMBER MODEL FOR TIME HARMONIC ACOUSTICS 3

of a shear flow, leading to a complete theory. In section 3, introducing a dissipative
problem to simplify the treatment of radiation conditions, the Goldstein equations
are proved to be well-posed. The simplifications induced when considering a slow
flow and the link with the no-flow problem are presented in section 4. The alternative
model to the Goldstein equations, the Low Mach number model Eq. (12), is precisely
characterized in section 5 and the quality of this approximation is quantified. Finally,
the theoretical estimates are validated numerically in section 6.

2. Equations of the problem.

2.1. Goldstein’s equations for a general flow. The flow is taken stationary
and homentropic (entropy is constant and uniform). It is characterized by its non
uniform fields of velocity vq, density pg, pressure pg and solves the stationary Euler
Equations:

V- (povg) = 0,
(3) po(vo-V)vg+Vpy = 0,

po = oy,

where pg is the density pg is the pressure. The state law reduces to a barotropic law
(the pressure depends only on the density) for an homentropic flow. The physical
constants v and p characterize this state law. On rigid boundaries we have vy -1 = 0.

For the acoustic perturbations, the velocity potential ¢ and &, the hydrodynamic
unknown, satisfy the Goldstein equations:

1 1
(4) D, (C%Dwga) = L9 (Vi + ),

(5) Dy,€ =Vpxwe— (£ V).

(6) wo =V X vy,
the vorticity of the carrier flow. The sound speed cq is given by

Po
7 2 ==
(7) 0=

The velocity and pressure are deduced thanks to [21]

{ v = Vop+¢,
p = —poDue.
In presence of rigid boundaries, the unknowns satisfy

0
v-n:£+§~n:0.
on
As mentioned in the introduction, we will not solve the Goldstein equations in the
general case. Now we present two configurations, for which the Goldstein equations

simplify: a 2D slow flow and a parallel shear flow.
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4 J-F. MERCIER

2.2. Goldstein’s equations for a slow flow. The Goldstein equations (4)-(5)
in the general case are complicated to solve, on a theoretical and a numerical point
of view. Eq. (4) is rather classic: for a fixed value of £, V - £ in (4) can be considered
as a source term and ¢ satisfies the classical convected Helmholtz equation (1), in
particular associated to classical radiation conditions. A consequence is that it can be
solved numerically, using continuous finite elements and classical Perfectly Matched
Layers (PMLs) to bound the calculation domain [28, 29, 30]. On the contrary, for
a fixed value of ¢, & in (5) satisfies an harmonic transport equation. This equation
is classical in the time domain (solved by the characteristics method) but not in the
harmonic domain. In particular, this equation is difficult to solve numerically: the use
of Lagrange finite elements to approximate this transport equation leads to polluted
results and it has to be solved with other methods like with discontinuous finite
elements [31, 32]. Also the radiation conditions are replaced by a causality condition
[18]. A consequence is that the introduction of PMLs is not straightforward.

Let us write the harmonic transport equation (5) in the form L& = Vo X wo,
where

(8) L§ = —iw€ + (vo - V) €+ (£ V) vo.

The difficulty is to determine L~!. In general, its determination requires to integrate
the transport equation along the streamlines of the flow. This procedure will be
presented later in the case of a parallel-shear flow, leading to explicit expressions.
But in general, this has to be done numerically.

To express the hydrodynamic unknown versus the velocity potential in a simple
way, a first approximation is to take &€ = 0 (then Eq. (1) is recovered). This ap-
proximation is exact only for a uniform flow or for a potential flow, but for a vortical
flow, it is in general inaccurate. The situation is much simpler if the flow is slow,
in the sense vy and |Vuvg| are small. Then € can be obtained explicitly versus ¢:
the operator L can be replaced by —iw and the hydrodynamic unknown is obtained
explicitly versus the velocity potential

9) £=i(Vp xwo)/w.

This leads to the Low Mach number model:

(10) D, <01(2)Dw¢> - %v- |:p0 (th + i(v@ x wo))] .

The idea of simplifying an aeroacoustic problem by restricting to a low Mach number
flow has been also introduced for a potential flow [1, 33, 34], shear flows [35], Gal-
brun’s equation [36] or Linearised Euler’s Equations [37, 38]. However in all these
cases, no error estimates have been derived. On the contrary, in this paper and for
a shear flow we will quantify the error committed when using the Low Mach number
approximation. We will show the main result of this paper: this approximation is
very good, of order two in the sense that the error on ¢ is bounded by the square of
the Mach number M = sup,cq |vol/co.

REMARK 1. Note that, since the assumption vg and |Vvg| small implies that |wo|
is small, the Low Mach number approximation seems to indicate that & = 0 is a good
approximation. However, we will prove that it is a crude first order approzimation
since it leads to an error bounded only by M, not M?.
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Fic. 1. Acoustic source radiating in a shear flow in an infinite duct

REMARK 2. Note that (9) has the advantage to be a closed form formula but it
leads to € less reqular than ¢ since it differentiates . On the contrary, L in Eq. (8)
does not give & explicitly but is a zero order operator in the sense that € and ¢ have
the same regularity (this will be proved in the shear flow case).

2.3. Case of a shear flow in a duct. To simplify the presentation of the
Low Mach number approximation, we will consider a 2D rectangular geometry ) =
R x (0, h) with the cartesian coordinates (z,y) and we will consider a parallel shear
flow vg = vo(y)ex with vg € C1([0,h]). Then from (6) we get wg = —vje, where
€. = ey X ey, from Euler’s equations (3) we get py = cst, pp = cst and from Eq.
(7) is deduced ¢y = cst. For such shear flow, introducing the Mach number profile
M(y) = vo(y)/co, M'(y) = dM/dy and noting D = M (y)0/0x — ik with k = w/co,
the Goldstein equations take the simpler form:

D¥p = V- (Vp+&+f in Q,
)
_M/(a%p_‘_gy)
(11) D¢ = Y in Q
2%
P ox
¥ _
6y+€y =0 on 01,

where 9Q = {(z,y)/y =0 or y = h}, & = (&;,&,)T and where we have introduced a
source term f € L?(€2) to consider a radiation problem (see Fig. 1). The Low Mach
number approximation (9) written for a shear flow consists in taking

o _ MWy
* k oy’
¢ = M'(y) 0p
Y k oz’

and leads to the Low Mach number model for a shear flow:

(12)
Do —Ap = %
dp  IMWI

Q.
dy k Oz on 9

This manuscript is for review purposes only.
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6 J-F. MERCIER

To close this radiation problem and to prove its well-posedness, we need to intro-
duce some radiation conditions, which is done in the next section.

3. Well-posedness of the dissipative problem in an infinite duct. In this
part, we introduce the dissipative problem to simplify the description of the radiation
conditions of problem (11). Then we prove that the dissipative problem is well-posed
under the condition of a subsonic flow.

3.1. The dissipative problem. We consider the dissipative problem where the
wave number is extended to the complex plane:

ke=k+ie, e>0.

Thanks to the dissipation e, the outgoing solution corresponds to the solution with
a finite energy (which stands for the radiation condition): the velocity potential is
sought in H*(2) and £ is sought in (L?(£2))?, which leads to v = Vo +£ in (L?(Q))2.
To simplify our study, we suppose that the flow does not vanish:

M(y) >0 VYye€|[0,h].

Let us consider the following problem, which is problem (11) with k replaced by k.:
find ¢ € H'(Q2) and & € (L?(2))? such that

Dip = V- (Vo+&+f n Q
0
(i
(13) D.£ = g in Q,
mE
P oz
ﬁ —
8y+§y 0 on 09,

where

o .
D. = M(y) . ike.
The strategy to prove the well-posedness of Eq. (13) is to decouple the treatments
of the acoustics and the hydrodynamic phenomena and is the following:
e first we solve the hydrodynamic equation of (13). The solution is noted
& = A_p and we prove that A, is continuous from H'(Q) onto (L?(£2))2.
e second we solve the acoustic part of (13):

DZp—V-(Vo+Ap) = [ in ©
0
a—j +A% = 0 on 09.

3.2. The hydrodynamic equation.

THEOREM 1. The second equation of (13) admits a unique solution in (L*(2))?:
§=Acp=[(AT" + AT?)p, Aly]",

where

This manuscript is for review purposes only.
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_M'(y) Iy
ATty = et 51y (=5 s,y)ds,
e M) 8y( y)
M’ i-Fe _(r—g 0
(1) R ((j) o) 925 s,
M’ x o>
AYp = M((j)/ ettt (@ S)Z:c (s,y)ds.

Moreover A. is continuous from H'(Q) onto (L*(Q))? with the inequality
Si S1
(15 lAcellzoe < VS (142 1196l

where S1 = maxyeo,n | M’ (y)|.

Proof. By linearity, € may be sought in the form

5 = (5; + é—i’gy)T’

where
D&t =
2 0y’
(16) DEgm = 7]\485347
4
D.¢, = M’%.
: 20 242 1209
The second equation for &7 implies that D27 = —M *——.

The uniqueness in L?(12) is straightforward since the solutions of the homogeneous
equation D.¢ = 0, which are a(y)e?*<*/M®) cannot belong to L?(Q), except if a = 0.
Then it is easy to check that the causal Green functions:

Y (x ke o
Gs(xay> = M((y))e M),
~ Y X i ke T
Gelary) = g s .

with Y the Heaviside function, are the unique functions € L?(Q) satisfying for every
y € [0, h]:

DaG}s(xﬁ‘/) = 0(),
D2G.(z,y) = d(x).

The expression of £ is finally obtained by convolution of the right hand sides in (16)
with G, and G,:

f; = A?’lgp = GE * M/8%0> s

86y
52 = Ag’Q()O = G’E * —[“/2ai> s
Op
€y = Aggﬁ = GE * IHI%.
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8 J-F. MERCIER

Finally, to prove that £ is in (L2(£2))?2, let us recall that a direct application of Cauchy-
Schwartz inequality leads to: if h € L?(R) and g € L'(R), then h * g € L?(R) and

1P * gllLz®y < [|PllL2@)llgllLr ®)- 0

= 1/e2, we get

Since a simple calculation gives ||G.l[;.(z) = 1/¢ and Hég L®)

finally:

T xT 2
Meplage = [ (1427 + 42l + |426l%) da,
z,1 2 x,2 2 Yy, 12
<2 |AZ | + |AZ2p]" + |AYel?) da,
112 2 114 2 72
<o |1M] / O d:c+|M|/ dx+|M|/
g2 r |0y R €2 R

o4
S? S?

< 2—; <1 + ;) / |Vp|*dx.
9 9 R

Integration on y €]0, h[ gives the constant in (15).

9
Ox

9y
ox

2
dx] ,

3.3. Variational formulation. By injecting the expression of £ in the first
equation of (13), the following problem of unknown ¢ is obtained: find ¢ € H*(Q)
such that

DXp—V-(Vo+Ap) = f in Q
%4‘14230 = 0 on O
dy

This problem has good mathematical properties: for instance, the Lax-Milgram
theorem applies if ¢ is large enough. To prove this, let us first derive the variational
formulation of the problem:

Find ¢ € H'(Q) such that Vo € HY(Q),

(17) ac (i) = /Q 17,

where a.(p, 1) = be(p, V) + ce(p,¥) with

Op O Dp OY . Op— —
2 2
be(p, 1) = /Q (1 - M ) e B + —y —y — 2ik. M —xw — ko,

ce(r¥) = /Q (Asp) - V.

THEOREM 2. The variational problem (17) is well-posed for So = maxyc(o,n) |M (y)| <}
1 and € large enough.

Proof. We just need to prove that the sesquilinear form a.(p, ) is coercive. Con-
cerning the sesquilinear form b, (¢, 1), first we note that

b 0)| > el (220

bs 5 =
b (0, 0| i -

This manuscript is for review purposes only.
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An integration by parts for all ¢ in H'(2) leading to

dp
—p eiR
anw o
we get
g [ _be(2:9) —/ = (1- ) Opf" |02f +elpl?
ke ) JolkP oz| |0y o
€ 2 2
> |2(1 = SHIVellL2pe +ellellza g
€
. g 2 2
> min (2(1 - 50)75> ||SOHH1(Q)'
| e |

Concerning the sesquilinear form c. (¢, 1), we get thanks to Theorem 1:

S S
a1 < Aetllne IVl < VED (142 ) 1960

Combining the two previous results we get

c 2
(18) lac (e, )l = CZ Il (qy »
with
S S

(19) 0 = min | [—(1—52) —v22L (1+ 22| elke] ).

k.| € €
Since

61Ln()1()0§z1—5§>0,

C¢ is positive for ¢ large enough. ]

REMARK 3.

e to get well-posedness, the flow must be subsonic: Sy < 1,

e for a uniform flow, S1 = 0 and the problem is well-posed for all & values.
S1 > 0 means that we are in presence of a shear flow which may produce
instabilities [39]: then enough dissipation & must be introduced to absorb the
energy of the instabilities.

4. The restriction to a slow flow. In the rest of the paper, we consider the
dissipative problem for a slow shear flow, presented in the previous section. We
consider a particular family of flows of the general form

(20) M(y) = Mm(y),

with M a constant such that 0 < M < 1 and m(y) a strictly positive fixed C?([0, h])
function with max,cjo.) |m(y)] = 1. Contrary to the previous section, we suppose
that the dissipation ¢ is fixed and M is the only variable parameter. We note A,
instead of A. defined in Eq. (14) the hydrodynamic operator and ¢y the solution
of Goldstein’s equations (17). First we will prove that the solution ¢ps exists for
M small enough. Then we will show that the no flow solution ¢q, although easy to
determine (then Ay = Ag = 0), is not a good approximation of ;. Indeed we will
prove that the error |[pnr — ol|m1 (o) is only of order M.
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4.1. Existence and unicity of the exact solution. Let us prove first that,
for any e values, the problem (17) is well-posed for M small enough (previously we
have proved that this problem is well-posed for M fixed and e large enough). This
problem is now written

Find ¢ € H'(Q) such that Vo € HY(Q),
Q

where CLM((P, 1/}) = ao(% d)) + bM (907 1/’) +cm (@7 1/’) with

(22) ao(w,w)=/QVs0-V@—kf<ﬂ,

Ao O Op—
(23) bar (0, 16) = /Q () 22 ik Mm(y) 20,
(24) exr(p, ) = /Q (Auo) - V.

THEOREM 3. The variational problem (21) is well-posed for M small enough and
its solution ppr satisfies

(25) Cirllem gy < N llL2 ) »

where

(26) wazminq']:'u—M?sg)—ﬁﬂisl (1+ Mslﬂ ,e|k5|),

with so = maxye[o, ) Im(y)| and s1 = maxye(o,h] |/ ()]

Proof. Following the proof of Theorem 2, using Eq. (15) we have

MSl
(1422 I9elzqa

Ms
1) Asrgllpaap < V2=

and the problem (21) is well-posed if C§; > 0 (C§; is C¢ in Eq. (19)). To conclude,
we just notice that for M small enough

C¢, ~ CS = min <E,s|k€|) > 0.
ke

To prove that oy is bounded in H'(Q2), we determine a lower bound and an
upper bound of |ans(par, ¢ar)|. The lower bound is deduced from the coercivity of
an (@, ) with the constant C§; (see Eq. (18)). For the upper bound, from (21) we
get

lans (oar, V) < [ fll L2y 191l o) -
Taking ¢ = s leads to (25). 0

This manuscript is for review purposes only.
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4.2. Convergence to the no flow case. In this part we first show that ¢, —
wo when M — 0 where ¢ is the solution of the problem without flow and also that
o approximates ¢j,; at the order M.

4.2.1. The no flow model. With no flow, ¢y = ¢ is the solution of:

Find ¢ € H(Q) such that Vi € HY(Q),

(28) a0l ) = /Q 17,

where ag(p, 1) is defined in Eq. (22). The sesquilinear form ag coincides with aps for
M =0 and therefore the problem (28) is well posed with the coercivity constant C§
defined in (26), taking M = 0. In the following, to establish (32) we will need more
regularity for ¢y and we have the

LEMMA 4. The solution @o of (28) belongs to H*(Q).
Proof. This is due to the regularity result [40, Theorem IX.26 page 182]:

{o e H'(Q),Ap € L*(Q),0¢/0y =0 on 00} = H*(Q). 0

4.2.2. Quality of the no flow approximation. We show now that g approx-
imates ¢ps at the order M:

THEOREM 5. Let ¢o and @pr be the solution of (21) and (28). For M small
enough, we have

Co
— 1) S M——F— 2
lloar — @ollmi(a) < CgC’wafHL Q)
where C§; and C§ are defined in (26) and where
(29) 00:53+2\k5\50+\f2%1 (1+%),

with sy = max,eo,n) |m(y)| and s1 = Max,e(o,h] |m/ (y)].

REMARK 4. M small enough simply means that M is such that C§; > 0. Note
also that for M small, CS; may be approximated by C§ which implies that ||on —
wollm1(q) is then bounded exactly by M (not M™ withn < 1).

Proof. The solution ¢, satisfies (21) with

an(par>¥) = ao(par, ) + du(par, 1),

where we have introduced

0 o 0 — —
- ( /Q M2m(y)? 222 Yy ik Mm(y) gfw) 4 /Q (Aon) - VO,

with by and cps defined in (23) and (24). To evaluate |[¢oar — @ol|a1(q), we will
establish the following inequality:

A

) { Céllenm — S@OH?{l(Q) < lao(em — o, Pm — ¥o)ls

IN

MCollom|ar@)llem — wollm1)-

This manuscript is for review purposes only.
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The left hand side is simply due to the coercivity of the problem without flow.
To get the right hand side, we start from the following relations Vi € H!(Q):

/Q 17,
/Q 1.

ao(onm — @o,) = —dn(on, V).

aO(SDM7 1/J> + dM<¢M7 ¢)

ag (QOOa 1/})

Substraction leads to

Therefore we get
lao (e — o, ¥)| <

M (Ms§ + 2|ke|so) + V2

M M
S1 (1 + S1
5

)| 190l 1l
which can be written, using M < 1:

lao (e — o, )| < MCo |[[Vonll 2o 19l 1 (q) -
where Cj is defined in (29). Taking ¢ = ¢ — ¢ leads to (30) and therefore to:

MC
llear = wollae) < =5~ lleallm @)
0

We conclude using inequality Eq. (25). O

5. The low Mach number approximation. We look now for an approxima-
tion @ps of the solution ¢y, at low Mach numbers (M — 0). In the previous section,
we have shown that the no flow solution ¢y = ¢g is not a good approximation of
pp since the error was of order M. We will prove that @,s, derived by neglecting
the convection term Mmd/Ox in the convective operator D, = Mmd/dx — ik., is a
better approximation of ¢js. Indeed we will obtain that the error ||or — @arll ()
is of order M?2.

5.1. Construction of the approximated model. In this paragraph, we define
the approximated Low Mach number model and we also introduce its solution @j;.
Moreover we prove that ||@as—@o|| g1 () ~ M which results in ||oar—@ar|| o) ~ M?
for M small.

5.1.1. Approximation of the hydrodynamic unknown. Let us recall that
the hydrodynamic operator A, (see Eq. (14))is defined for all ¢ in H*(Q) by :

/ L
Affe = _m(y)/ i = 02 g, y)as,
(31) /7?()34) ) —oc0 8ay
AY _ my / i sy (x—s) 9P '
e = s ] e 2 (s, )ds

When M = 0, the integrals defining Ajrp in (31) are not defined. Moreover when
M — 0, these integrals are difficult to determine numerically: we have to evaluate
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singular terms, highly oscillating integrals (k. /M — oco). We propose here an approx-
imated formula to replace Ayr¢ when M is small. We introduce the following Low
Mach number approximation, noted Ay, defined for all  in H(£2) by:

AMQD = (Aﬁl(pa A%@)Ta

_ [ iMm'(y) Op iMm(y) Op r
B k. 0y k. Ox|
To get these expressions, we start from the exact expressions (31) and we suppose

that ¢ is in H?(Q) (latter (32) will be applied to ¢o which has the good regularity
thanks to lemma 4) and we get after integration by parts:

iMm/(y) (Op T ke (y_g) O%p
ATy = _wamy) (9% _/ e M Y (5 y)ds |,
A?\/[‘P = T (ax —/ e’ mg) (T—9) 8;[72 (s’y)ds> .

The Low Mach number approximation consists in keeping the first term in the above
developments by supposing that the integral terms are negligible (we will show later
that it is the case for ¢ = ¢g). The term Af\fgo, corresponding to A%? in Eq. (14), is
not taken into account because it is very small, of order M?, as shown in (36). The
variational formulation associated to the Low Mach number approximation reads

Find ¢ € H'(2) such that Vo» € HY(Q),
o) = [ 15
Q

an (@, ) = ao(p, V) + bar(p, ¥) + énr (@, ) with ag and bys defined in (22) and (23).
Moreover,

(34) Exrlpn) = /Q (Arr) - VT,

and (33) is (21) with car (g, 9) replaced by ¢ (@, ). Note that we could also replace
bar by bas, defined as by, with the term weighted by M? cancelled. It would give
the same quality of approximation |[¢ar — Parl[m1(0) ~ M?. However, as said in the
introduction, only the term A ;¢ is complicated to evaluate numerically and is worth
being approximated at low Mach numbers.

(33)

REMARK 5. As it is the case for AY,p and A% g (see Eq. (15)), the terms AY,¢
and Aﬁ)f@ are of order 1 in M in the sense that

~ M81 aga
A< Mulloe)
H My L2(Q) |ke| || Oz £2(9)
(35) ~ Msy || 0
ity = 2]
L2(Q) kel 110y || 120

These upper bounds are the same than the one obtained for AM Eq. (27), replacing €
by k.. On the contrary, Af\/’fz is of order 2:

2.2
< M=sy
L2(Q) — &2

¢
ox

(36) 4574

L*(Q) '

This is why a low Mach number approzimation flﬁf s not introduced for Afj/’lz.
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410 Before showing that ¢, is an order 2 approximation of ¢y, let us prove that s
411 exists.
412 5.1.2. Well-posedness of the approximated model. For M small enough,
413 the problem (33) is well-posed. Indeed, from (35) we get

M81
414 H MSD’ L@y < | IVell L2 a2

115 from which we deduce that aps is coercive for M small enough with the coercivity
416 constant:

N € Msq
417 Cf; = min 1— M?s?) — } elke |)
M (Lka( ]

118 Of course C¢, is similar to (26).

419 5.1.3. Quality of the low Mach number approximation. Proceeding as in
420 Theorem 5, we can prove the estimation

~ Co
421 (37) l[Par — wollaro) < M NCC’C [ f1lz2(0);
122 where
423 Co = s + 2|ke|so + — |k K

424 similarly to the constant (29). Now we will prove our main result: @ps is a good
125 approximation of s in the sense that the error is bounded by M?2:

426 THEOREM 6. Let ppr and @y be the solution of (21) and (33). Then there exists
127 C(M) > 0 such that

128 lenr — @nllm ) < C(M)M?,

429 with C(M) bounded (C tends to a constant when M — 0).

430 Proof. If we denote

131 (38) enm (@, ¥) = aolp, ¥) + b (o, ¥),

132 Then using (21) and (33) we get

433 em(@m — on¥) = e, V) — e (@, ),

434 where ¢y, €py are defined in (24) and (34). The right hand side of the previous term
135 is more explicitly:

136 ear(oar, ) —Cur (Par, ¥) = /(AM ou — A our ) (?Ter(AM o) (c?)z +(Alens = Ao ?)ZI

137 'We need to find an upper bound of this term: we write

438 lear (oar, ) — e (Par, )| <

439 (HA on — A,

2
o) 10100 |

140 and we will prove that each of the three terms in the right hand side is bounded by
441 M2,

ot ]+t~ 5

L2(Q)
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1
442 e Terms HA?\/I on — A%y <pMHL (@) and HA oM — AMSOM‘ @)
443 Both terms can be treated in the same way and we just present the derivation
444 of an upper bound for Az\“}l. We use ¢q as an intermediate field between ¢,
445 and ¢y and we write:

s 1zl ~ _ z,1 _ AT~ _ z,1 _ jz,1
e HAM oar = Ay ‘pM‘ 2@ H w (Pu = o) = Ay (P — o) + (AM A ) 300‘ 2@’
< [|457 (o =20 g+ 158 e =), | (43 = 25 0] -

< ||Axr (pmr — o) L) + || A% (@nm = o) L) + M M) PO g
448 The reason of the introduction of ¢ is that the H?(Q) regularity of ¢y will
449 be required to get estimates on (Aﬁ/’fl — fl"fwl) ©o since Eq. (32) will be used.
450 Here also three terms must be bounded. For the first two ones we have, using
451 Theorem 5, inequalities (35) and (27), or more precisely
M 0
452 HA ’ tll| e ,
e 1l
453 and Eq. (37):
154 ATt - ‘ HAM b — ‘
H M (v — o) L2@) + |4y (@m — o) L@
455 < Ms, <| | lerr = poll gy + 77 |k | |eas = ol | Q)) < C°M?,
456 where _
1 Gy Co
457 C°=s|— +
1 <|E|CSCJC\4 kel e ) £l L2
458 For the last term, we use (32)
1 el M (y) [T ke (ams) 070
459 (A?\/[ — A% ) wo=M P o et mepy (@ )m(s’y)ds
460 ! (g (y) O
my)mly ¥o
461 =G.x M? :
c k. Ozx0y
462 Note that this term is defined since pg € H2(), from lemma (4). We deduce
463 the upper bound:
164 AL fl“) ‘ < CypyM?
H( M M) 0|2y = Yevi

165 where 92

466 Coy = 5150 ‘ o .
elke| || 020y || 12(q)

167 Collecting all the terms together, we obtain
468 HAM om — AT < (C° + Cyy)M”.

469 In a same way we get
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< (C° + Cu) M2

470 HA?WQDM - /I?M@M’

L2(Q)
471 with
479 _ S150 ’32800
2 Tx E|]€€| o912 ) .

e x,2
A73 e Term HAM @M’ L
474 From Eq. (36) and (25) is deduced:

M?s?
f— x,2 1 2 e
i HAM CPM’ L2(Q) s~z lleallm g = M°C,
476 where )
= o _ % fllz20)

e2 Oy
478 Combining all the results together, we get the global estimation:

179 lenr(oar—@an, )| = lear (o, ) —enr (ar, )| < M? [2C° + Cry + Co + C°] ||V7/}||i2(ﬂ) ’I
480 from which we deduce, taking ¥ = oy — @

[2C° + Cyy + Cuy + C°] e
Ce ’

481 o — Pumllar(a) <

182 with the coercivity constant for ey (¢, ):
5
ke | 0

184 Finally, using Eq. (26), C° and C*® depend on M but become constant when M — 0
185 (see also remark 4).

C¢ —min< (1M233),5|k5|> > 0.

483

486 6. Numerical validation.

487 6.1. Numerical setup. To solve numerically the Goldstein equations, we do not
488 use the dissipative model. On the contrary we take ¢ = 0 and we introduce Perfectly
189 Matched Layers (PMLs) to bound the calculation domain while selecting the outgoing
190  solution. The advantage of using PMLs is that the solution in the neighborhood of the
491 source f (more precisely outside the PMLs) is the physical one, since the unmodified
492 Goldstein equations are solved there. The Goldstein equations in the PMLs are simply
493 obtained by replacing 9/0x by ad/dx. The complex number « is the PML parameter
194 [41, 28] and has to be chosen such that Re(a) > 0 and Sm(a) < 0 to select properly
195 the outgoing solution.

496 In a guide of height h, the computational domain €., represented in Fig. 2, is
497 defined as Q. = Q, U QL where Q, = (0,d) x (0,h) is a bounded domain around
198 the source f and Q% are the PMLs of length L. We take the source f(z,y) = 1 in
499 the disc of center (d/2,h/2) and of radius h/4. The Goldstein equations are solved
)0 with the Finite Element code Xlife++ [42] at the frequency k = 2, for a unitary
1 guide h = 1 and for PMLs such that L = 0.5 and o = (1 —4)/10. Eq. (12) can
2 be solved with classical Finite Element but not the hydrodynamic equation of (11).
3 We could use Discontinuous Galerkin elements but for simplicity we preferred to use
1 a Streamline Upwind Petrov-Galerkin (SUPG) formulation [43] of (11), introducing
5 an extra parameter to the PML parameter a but allowing to use Continuous Finite
6 Elements.
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C /

of | My i_, <<>> o) o
—
1 /,

L 0 r d d+ L
Fic. 2. Computation domain with the PMLs

6.2. Numerical results. We have considered three velocity profiles m(y) de-
fined in Eq. (20): a polynomial profile m(y) = [0.25 + y + 10y(y — 0.5)(y — 1)]/1.25,
a sine profile m(y) = [1.5 + sin(27y)]/2.5 and a hyperbolic tangent profile m(y) =
[0.5 4+ 1 + tanh(10(y — 0.5))]/2.5. These profiles are drawn in Fig. 3 (a), Fig. 4 (a)
and Fig. 5 (a). The profiles have been chosen such that m(y) € [0.2,1]. We note ¢
the exact solution and (s the Low Mach number approximation. For d = 1, the
relative H' errors || — @ral|mr(0,)/ 11|01 9,) versus M are plotted in red in Fig. 3
(b), Fig. 4 (b) and Fig. 5 (b) for the three velocity profiles. The fits of the curves,
represented in blue dashed lines, show that the H' errors is of the form C;MP with
p = 2.14 for the polynomial profile, p = 2.23 for the sine profile and p = 2.33 for the
hyperbolic tangent profile. The powers are very close to 2, predicted theoretically.
We have tested other velocity profiles, linear combinations of cosine functions (results
not reported here) and powers close to 2 have always been found. For the polynomial
profile, the relative H' error is found very good for M < 0.1, below 1% and becomes
bad for M ~ 0.3, where it reaches 10% (it reaches 10% for M ~ 0.25 for the sine
profile and for M ~ 0.20 for the tangent profile). Note that the H! error is rather
demanding, the relative error with the L2-norm is better. The L2-error reaches 10%
for larger values of the Mach Number than with the H'-norm: for M ~ 0.45 for
the polynomial profile, for M ~ 0.40 for the sine profile and for M ~ 0.35 for the
tangent profile. The L2-error is again like CoMP with p = 2.03 for the polynomial
profile, p = 2.14 for the sine profile and p = 2.25 for the hyperbolic tangent profile.
The values of p are very close between the L?-norm and H'-norm: it means that the
better results obtained with the L?-norm are due to a better constant: Cy < Cj.

The dependence of the constant C; versus the parameters of the problem, al-
though explicit (see proof of theorem 6), is not easy to analyze since all the param-
eters are mixed together. But from the numerical tests, general tendencies can be
extracted: the results are less good (C; increases) when k, so (the maximum of the
velocity) or s; (the maximum of the shear) increase. In particular the shear s; is
important: indeed for s; = 0, since it implies that M’(y) = 0, then & = 0 for the
exact solution and the Low Mach number approximation becomes exact. It is why the
results are better for the polynomial profile and the worst for the hyperbolic tangent
profile, this latter profile corresponding to the strongest M’(y) values in the numerical
tests.

To understand why the Low Mach number approximation gives so good results, it
is useful to look at the fields. We present them for the polynomial profile, for M = 0.1
and M = 0.5 and for a larger domain d = 2.

For a slow flow M = 0.1, in Fig. 6 are represented, only in ; (outside the PMLs),
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FIG. 3. (a): polynomial velocity profile; (b): H' errors versus M in red, fit in blue
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F1G. 4. (a): sine velocity profile; (b): H' errors versus M in red, fit in blue

Re(p) and Re(prar): as expected, they are very similar. In complement, Fig. 7 shows
Sm (&) and Sm(EF,,) and Fig. 8 shows Sm(&,) and Sm(£Y ,,). For both components
of &, we see that the Low Mach number approximation captures satisfactorily the long
wavelength phenomena and neglects the fast oscillatory phenomena. £ and &; 5, seem
rather different but let us recall that the error on £ is expected to be stronger than
the error on ¢: it varies only like M whereas it varies like M? for ¢.

For a faster flow M = 0.5, Fig. 9 shows Re(p) and Re(pra): we see that s
approximates badly ¢, the Low Mach number approximation being unable to capture
the hydrodynamic phenomena, associated to short wavelengths. However the long
wavelength phenomena in ¢ are rather well recovered in @r ;. This is surprising
for this rather large M value and also because £ and &;,, are found very different
(comparison not shown here).

7. Conclusion. To study the time-harmonic acoustic propagation in a general
flow, starting from the exact Goldstein equations we have developed a new model,
the Low Mach number Approximation of the Goldstein equations (4)-(5), which has
two main features: it is much simpler than the initial Goldstein equations because the
transport operator solving Eq. (5) is replaced by the explicit relation (9). Moreover it
is able to take into account the convection of vortices, contrary to the usual convected
Helmholtz equation (1) which restricts to acoustics phenomena. For a parallel shear
flow, we have proved theoretically and confirmed numerically that this approximated
model is very accurate, in the sense that the error on the acoustic field is of order
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FIG. 5. (a): hyperbolic tangent velocity profile; (b): H' errors versus M in red, fit in blue
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two, bounded by the square of the Mach number.
The generalization of this result to a non-parallel 2D or 3D flow is not straight-

forward and would be very technical: indeed it would require to perform a change of

variables to transform the transport equation (5) in a family of ordinary differential

equations along the streamlines of the carrier flow. But we think that the accuracy
of the Low Mach number model (10), rigorously proved for a shear flow, remains
valid for any flow. This general Low Mach number model (10) is much simpler than
the initial one (4)-(5), which is particularly interesting for 3D applications, and is
certainly much better than Eq. (1): extrapolating the results obtained for a parallel
shear flow, the acoustic error should be of order M? (instead of M for Eq. (1)) where
M is the characteristic Mach number of the carrier flow. Moreover this Low Mach
number model has good mathematical properties, contrary to the general model: for
instance it is easy to prove that it is well-posed as soon as 35 > 0 such that

2
inf 1(”0> _Jwol) s 4.

zEQ Co

and it is of course naturally the case for a slow flow.
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