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Abstract

In recent years, the proximal gradient method and its variants have been generalized to
Riemannian manifolds for solving optimization problems with an additively separable structure,
i.e., f + h, where f is continuously differentiable, and h may be nonsmooth but convex with
computationally reasonable proximal mapping. In this paper, we generalize the proximal New-
ton method to embedded submanifolds for solving the type of problem with h(x) = µ‖x‖1. The
generalization relies on the Weingarten and semismooth analysis. It is shown that the Rieman-
nian proximal Newton method has a local quadratic convergence rate under certain reasonable
assumptions. Moreover, a hybrid version is given by concatenating a Riemannian proximal
gradient method and the Riemannian proximal Newton method. It is shown that if the switch
parameter is chosen appropriately, then the hybrid method converges globally and also has a
local quadratic convergence rate. Numerical experiments on random and synthetic data are
used to demonstrate the performance of the proposed methods.

Key words. Riemannian optimization, manifold optimization, proximal Newton method, em-
bedded submanifold, quadratic

1 Introduction

In this paper, we consider the following optimization problem

min
x∈M

F (x) = f(x) + h(x) with h(x) = µ‖x‖1, (1.1)

where M is a finite-dimensional embedded submanifold of an Euclidean space, see Definition 2.1,
f is a sufficiently smooth function, and µ > 0. This optimization problem arises in many im-
portant applications, such as sparse principal component analysis [ZHT06, ZX18], sparse partial
least squares regression [CSG+19], compressed model [OLCO13], sparse inverse covariance estima-
tion [BESS19], sparse blind deconvolution [ZLwK+17] and clustering [HWGD22, LYL16, PZ18].

In the case that the manifold constraint is dropped, i.e., M = R
n, and the function h is not

restricted to be µ‖x‖1 but a continuous, convex, and not necessarily smooth function, the Euclidean
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nonsmooth problem (1.1) has been extensively studied in [Bec17, Nes18]. The well-known methods
include the proximal gradient method and its variants, which have found many practical successes
in applications [BT09a, SYGL14, Tib96, WOR12]. The proximal gradient method updates the
iterate via

{

vk = argminv∈Rn f(xk) +∇f(xk)Tv + 1
2t‖v‖2F + h(xk + v), (Proximal mapping)

xk+1 = xk + vk, (Update iterates)
(1.2)

where the proximal mapping in (1.2) uses the first-order approximation of f around the current
estimate xk. If the function f is convex, then under certain standard assumptions, the proximal
gradient method has an O(1/k) rate of convergence [Bec17, Chapter 10]. Moreover, multiple
accelerated versions of the proximal gradient method have been proposed in [AP16, BT09b, LL15,
VSBV13], which achieve the optimal convergence rate O(1/k2) [Nes83]. If the function f is further
assumed to be strongly convex, then the convergence rate of the proximal gradient method can be
shown to be linear.

With the presence of the manifold constraint, the nonsmooth optimization problem (1.1) be-
comes more challenging. The update iterates in (1.2) can be generalized to the Riemannian setting
using a standard technique called retraction. However, generalizing the proximal mapping in (1.2)
to the Riemannian setting is not straightforward, and multiple versions have been proposed. In
[CMSZ20], a proximal gradient method called ManPG for solving the optimization problem over
the Stiefel manifold is proposed and the update parallel to (1.2) is given by

{
vk = argminv∈Txk

M f(xk) +∇f(xk)Tv + 1
2t‖v‖2F + h(xk + v),(Proximal mapping)

xk+1 = Rxk
(vk). (Update iterates)

(1.3)

Compared to the Euclidean setting, the Riemannian proximal mapping in (1.3) has an additional
linear constraint that ensures the search direction vk stays in the tangent space Txk

M. It is
shown in [CMSZ20, Section 4.2] that the proximal mapping in (1.3) can be solved efficiently by a
semismooth Newton method. Moreover, the global convergence of ManPG has been established.
In [HW22a], a diagonal weighted proximal mapping is defined by replacing ‖v‖2F in (1.3) by 〈v,Wv〉,
where the diagonal weighted linear operator W is motivated from the Hessian. In addition, an
accelerated proximal gradient method is generalized to the Riemannian setting called AManPG that
empirically exhibits accelerated behavior over the Stiefel manifold. The Riemannian generalization
of the proximal mapping in (1.3) requires being able to perform a linear combination of xk+v, which
cannot be defined on a generic manifold. In [HW22b], a Riemannian gradient method called RPG
is proposed by replacing the addition xk + v with a retraction Rxk

(v), which yields a Riemannian
proximal mapping

vk = argmin
v∈Txk

M
f(xk) + 〈grad f(xk), v〉xk

+
1

2t
‖v‖2xk

+ h (Rxk
(v)) , (1.4)

where grad f denotes the Riemannian gradient of f and 〈·, ·〉x is Riemannian metric defined on the
tangent space TxM. Not only the global convergence but also the local convergence rate has been
established in terms of the Riemannian KL property. The same authors further propose the inexact
Riemannian proximal gradient method called IRPG without solving (1.4) exactly in [HW23]. The
global convergence and local convergence rates have also been given. Moreover, the search direction
given by (1.3) can be viewed as an inexact solution of the Riemannian proximal mapping (1.4) that
still guarantees global convergence. Though the Riemannian proximal gradient method with (1.4)
has nice global and local convergence results, it is still unknown whether Subproblem (1.4) can be
solved efficiently in general.

If M = R
n and the function f is twice continuously differentiable and strongly convex, proximal

Newton-type methods are proposed in [LSS14] and achieve a superlinear convergence rate. The
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proximal mapping in the proximal Newton-type methods replaces f with a second-order approxi-
mation and yields the search direction

vk = argmin
v∈Rn

f(xk) +∇f(xk)Tv +
1

2
vTHkv + h(xk + v), (1.5)

where Hk represents a suitable approximation of the exact Hessian ∇2f(xk). If Hk is chosen to be
the Hessian, i.e., Hk = ∇2f(xk), then the search direction (1.5) yields the proximal Newton method.
The Euclidean proximal Newton-type method traces its prototype back to [Jos79a, Jos79b], where
it was primarily used to solve generalized equations. Over the next few decades, this method was
extensively studied and has been proven to be efficient and effective in many applications [KV17,
PJL+13, SSS18, ZYDR14]. In the Euclidean setting, if the function f is twice continuously differ-
entiable and strongly convex, the Hessian of f is Lipschitz continuous, and the function h is convex,
then the proximal Newton method converges quadratically. When generalizing to the Riemannian
setting, some of the assumptions may be too strong. For example, a geodesically-convex function,
which is a commonly-used Riemannian generalization of convexity, on a compact manifold must be
a constant function, see [Bou23, Corollary 11.10]. In [MYZZ23], the authors remove the global con-
vexity of f of the Euclidean proximal Newton method while still guaranteeing global convergence
and local superlinear convergence. However, the manifold curvature appears in the second-order
information of the objective function, which still significantly increases the difficulty of generalizing
to the Riemannian setting. The recent paper [WY23] proposes the proximal quasi-Newton method,
called ManPQN, over the Stiefel manifold with the Riemannian proximal mapping

vk = argmin
v∈Txk

M
f(xk) + 〈grad f(xk), v〉+

1

2
‖v‖2Bk

+ h (xk + v) , (1.6)

where Bk is a symmetric positive definite operator on Txk
M and ‖v‖2Bk

= 〈v,Bk[v]〉. Addition-
ally, the global convergence of ManPQN has been established. However, in both theoretical and
numerical results, only the local linear convergence of ManPQN has been demonstrated. Note
that the naive generalization of replacing the Euclidean gradient and Hessian with the Riemannian
counterparts generally does not yield a superlinear convergence result, see details in Subsection 5.1.

The main contributions of this paper are summarized as follows. A Riemannian proximal
Newton method, called RPN, is proposed and studied. This method is based on the idea of semis-
mooth implicit function analysis, which is different from the naive generalization of Euclidean
setting [LSS14]. It is proven that the proposed algorithm is capable of achieving quadratic con-
vergence under certain reasonable assumptions. The local result requires that the iterative point
is sufficiently close to an optimal point. We show that the distance between the iterative point
and the optimal point can be controlled by the norm of search direction. Therefore, a hybrid
version by concatenating a Riemannian proximal gradient method and the Riemannian proximal
Newton method is given, and its global and local quadratic convergence is guaranteed. Numerical
experiments are used to demonstrate the performance of the proposed methods.

There also exist multiple generic nonsmooth optimization algorithms on Riemannian man-
ifolds that can be used to solve Problem (1.1), such as subgradient-based algorithms [GH16,
LCD+21], Riemannian gradient sampling algorithm [HU17], and Riemannian proximal bundle
algorithm [HMNP21]. These algorithms do not exploit the structure of the objective function
in (1.1). In [ZBDZ22], an augmented Lagrangian method that uses the structure of (1.1) is pro-
posed, where the subproblem needs to find a zero of a semismooth vector field on a matrix manifold.
A semismooth Newton method is developed therein for the subproblem and is proven to converge
superlinearly under certain conditions. The convergence rate of the augmented Lagrangian method
is given later in [ZBD22] and is shown to converge linearly.

This paper is organized as follows. Notation and preliminaries are given in Section 2. The
Riemannian proximal Newton method together with its local convergence analysis are presented in
Section 3. The hybrid algorithm is described and analyzed in Section 4. Numerical experiments are
reported in Section 5. Finally, we draw some concluding remarks and potential future directions
in Section 6.
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2 Notation and Preliminaries

2.1 Preliminaries on Riemannian Submanifolds of Euclidean Spaces

An n-dimensional Euclidean space is denoted by R
n. The Euclidean space R

n does not only refer
to a vector space, but also can refer to a matrix space or a tensor space. In a Euclidean space, the
Euclidean metric is typically represented by 〈u, v〉, which is defined as the sum of the entry-wise
products of u and v, such as uTv for vectors and trace(uTv) for matrices. The Frobenius norm

is denoted by ‖ · ‖F =
√

〈·, ·〉. A linear operator A on the Euclidean space R
n is call self-adjoint

or symmetric if it satisfies 〈Ax, y〉 = 〈x,Ay〉, for all x, y ∈ R
n. If a symmetric linear operator

A satisfies 〈Ax, x〉 > (≥)0 for all x ∈ R
n \{0}, then A is called a symmetric positive definite

(semidefinite) linear operator and denoted by A ≻ (�)0. For x ∈ R
n, ‖x‖1 denotes the sum of the

absolute values of all entries in x and sgn(x) ∈ R
n denotes the sign function, i.e., (sgn(x))i = −1 if

xi < 0; (sgn(x))i = 0 if xi = 0; and (sgn(x))i = 1 otherwise. For x, y ∈ R
n, x⊙ y denotes z ∈ R

n

such that zi = xiyi for all i, that is, ⊙ denotes the Hadamard product.
The following is the standard definition of an embedded submanifold [AMS08, Bou23], which

is used in the proof of Lemma 3.11. Roughly speaking, an embedded submanifold in an Euclidean
space is either an open subset or a smooth surface in the space.

Definition 2.1 (Embedded submanifolds of Rn [Bou23] ). Let M be a subset of a Euclidean space
R
n. We say M is a (smooth) embedded submanifold of Rn if either M is an open subset of Rn

or for a fixed integer k ≥ 1 and for each x ∈ M there exists a neighbourhood U of x in R
n and a

smooth function h : U → R
k such that

(a) If y is in U , then h(y) = 0 if and only if y ∈ M; and

(b) rankDh(x) = k,

where D denotes the differential operator. Such a function h is called a local defining function for
M at x.

The tangent space of the manifold M at x is denoted by TxM, and the tangent bundle, denoted
TM, is the set of all tangent vectors. Since the tangent space is a vector space, one can equip it
with an inner product (or metric) 〈·, ·〉x : TxM×TxM → R. The induced norm from the metric

is denoted by ‖ · ‖x =
√

〈·, ·〉x. The subscript x of ‖ · ‖x is omitted if it is clear in the context.
A manifold whose tangent spaces are endowed with a smoothly varying metric is referred to as a
Riemannian manifold. If the manifold M is an embedded submanifold of Rn and the Riemannian
metric of M is endowed from R

n, then M is called a Riemannian submanifold of Rn. Throughout
this paper, the manifold M is assumed to be a Riemannian submanifold of Rn.

When the manifold M is an embedded submanifold of Rn, the tangent space TxM is a linear
subspace of Rn. In this paper, we assume that the dimension of TxM is n− d. One can define the
orthogonal complement space of TxM as NxM = T⊥

x M, called the normal space of M at x. If

one can find a basis of Nx M, denoted by Bx =
(

b
(1)
x , b

(2)
x , . . . , b

(d)
x

)

, then the tangent space TxM
can be characterized as its orthogonal complement

TxM =

{

v ∈ R
n : BT

x v :=
(

〈b(1)x , v〉, 〈b(2)x , v〉, . . . , 〈b(d)x , v〉
)T

= 0

}

.

By [Hua13, Page 139] and [HAG17], the map x 7→ Qx can be chosen to be smooth at least locally,
where Qx is an orthonormal basis of TxM. Since NxM = T⊥

x M, a smooth orthonormal basis
Bx can be obtained, i.e. the map x 7→ Bx is smooth in a neighborhood of x for any x ∈ M. We
will see in Section 3, that such a characterization of TxM is useful in reformulating Riemannian
proximal mappings.
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The Riemannian gradient of a smooth function f : M → R at x, denoted by grad f(x), is the
unique tangent vector satisfying

Df(x)[ηx] = 〈ηx, grad f(x)〉x , ∀ηx ∈ Tx M, (2.1)

where 〈·, ·〉x is the Riemannian metric on TxM and Df(x)[ηx] is the directional derivative of f at
x along ηx. If M is a Riemannian submanifold of Rn, then Riemannian gradient grad f(x) has the
following explicit statement,

grad f(x) = Projx (∇f(x)) ,
where ∇f(x) is the Euclidean gradient, Projx denotes the orthogonal projector onto TxM, and
the orthogonality is defined by the Euclidean metric.

The Riemannian Hessian of f at x, denoted by Hess f(x), is a linear operator on TxM satisfying

Hess f(x)[ηx] = ∇̄ηx grad f(x), ∀ηx ∈ TxM,

where Hess f(x)[ηx] denotes the action of Hess f(x) on a tangent vector ηx, and ∇̄ denotes the
Riemannian affine connection, see [AMS08, Section 5.3] and [Bou23, Section 5.4]. Roughly speaking,
an affine connection generalizes the concept of a directional derivative of a vector field. Furthermore,
if M is a Riemannian submanifold of Rn, then the action of Riemannian Hessian Hess f(x) along
the direction ηx ∈ TxM has the following explicit expression, see [Bou23, Section 5.5 and 5.11],
i.e.,

Hess f(x)[ηx] = Projx (Dgrad f(x)[ηx])

= Projx
(
∇2f(x)[ηx]

)
+Wx

(

ηx,Proj
⊥
x

(
∇f(x)

))

,
(2.2)

where∇2f(x) is the Euclidean Hessian, Proj⊥x = Id−Projx is the orthogonal projector to the normal
space NxM = (TxM)⊥, Id denotes the identity operator, Wx is the Weingarten map [Bou23,
Section 5.11] defined by

Wx : TxM×NxM → TxM : (w, u) 7→ Wx(w, u) = D(x 7→ Projx)(x)[w] · u, (2.3)

where D(x 7→ Projx)(x) is the differential of the function Projx at x. The Weingarten map is
related to the curvature of the manifold, see [Lee18, Chapter 8].

A retraction on a manifold M is a smooth mapping from the tangent bundle TM to M such
that (i)Rx(0x) = x, where 0x is the zero vector in TxM; (ii) the differential of Rx at 0x, denoted
DRx(0x), is the identity map. Although the domain of a retraction does not necessarily need to be
the whole tangent bundle, it is often the case in practice. Retractions whose domain is the whole
tangent bundle are referred to as globally defined retractions. We denote Rx : TxM → M to be
the restriction of R to TxM . For any x ∈ M, there always exists a neighborhood of 0x such that
Rx is a diffeomorphism in the neighborhood.

2.2 Preliminaries on Implicit Function Theorems

The proposed proximal Newton method relies on an implicit function theorem for semismooth
functions. In this section, the implicit function theorems for both smooth and semismooth functions
are reviewed. We refer interested readers to [DR09, Gow04, KP02, PSS03, Sun01] for more details.
Lemma 2.2 states the well-known implicit function theorem for continuously differentiable functions.

Lemma 2.2 (Implicit Function Theorem). Let F : Rn+m → R
m be a continuously differentiable

(i.e., C1) function, and F (x0, y0) = 0. If the Jacobian matrix JyF (x
0, y0) is invertible, then there

exists an open set U ⊂ R
n containing x0 such that there exists a unique C

1 function f : U → R
m

such that f(x0) = y0, and F (x, f(x)) = 0 for all x ∈ U . Moreover, the Jacobian matrix of partial
derivatives of f in U is given by the matrix product Jf(x) = −[JyF (x, y)]

−1JxF (x, y).
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However, in many applications, we encounter functions that are not differentiable everywhere,
which leads to the following definition of semismoothness.

Definition 2.3 (Semismoothness [LST18, QS93]). Let D ⊂ R
n be an open set, K : D ⇒ R

m×n be
a nonempty and compact valued, upper semicontinuous set-valued mapping, and let F : D → R

m

be a locally Lipschitz continuous function. We say that F is semismooth at x ∈ D with respect to
K if

(a) F is directionally differentiable at x; and

(b) for any J ∈ K(x+ d),

F (x+ d)− F (x)− Jd = O(‖d‖) as d→ 0.

Furthermore, F is said to be strongly semismooth at x ∈ D with respect to K if F is semismooth
at x ∈ D and for any J ∈ K(x+ d),

F (x+ d)− F (x)− Jd = O(‖d‖2) as d→ 0.

If F is (strongly) semismooth at any x ∈ D with respect to K, then F is called a (strongly)
semismooth function with respect to K.

Commonly-encountered semismooth functions include smooth functions, piecewise smooth func-
tions, and convex functions. For every p ∈ [1,∞], the norm ‖ ·‖p is strongly semismooth. Piecewise
affine functions are strongly semismooth. Note that the proximal mapping of ℓ1 norm ‖ · ‖1, i.e.,
prox‖·‖1 is component-wise separable and piecewise affine, then prox‖·‖1 is strongly semismooth.

It has been shown in [QS93] that the corresponding set-valued mapping K can be chosen as the
B(ouligand)-subdifferential or the Clarke subdifferential, i.e.,

K : D 7→ R
m×n : x 7→ ∂BF (x) or K : D 7→ R

m×n : x 7→ ∂F (x),

where ∂BF (x) and ∂F (x) respectively denote the B(ouligand)-subdifferential and the Clarke’s sub-
differential, and the definitions of B(ouligand)-subdifferential and the Clarke’s subdifferential can
be found in [Cla90] and we state them in Definition 2.4 for completeness.

Definition 2.4 (B-subdifferential and Clarke’s subdifferential). Let F : D ⊂ R
n → R

m be a locally
Lipschitz continuous function, where D is an open subset of Rn. Let DF denote the set of the points
in D such that F is differentiable at any x ∈ DF

1. The B-subdifferential of F at x ∈ D is defined
by

∂BF (x) =

{

lim
k→+∞

JF (xk) : xk ∈ DF , lim
k→+∞

xk = x

}

.

The Clarke’s subdifferential of F at x ∈ D is defined as the convex hull of ∂BF (x), i.e., ∂F (x) =
conv{∂BF (x)}.

In [Gow04, Theorem 4], the author proposed an implicit function theorem for semismooth
function, however, the semismoothness in [Gow04] is weaker than the semismoothness in Defini-
tion 2.3. To distinguish this kind of semismoothness, the authors in [PSS03] called semismoothness
in [Gow04] to be G-semismoothness, where it is defined as follows.

1Note that by Rademacher’s theorem, any locally Lipschitz continuous function is differentiable almost everywhere
in its domain. In other words, DF is a dense subset of D in the sense of the Lebesgue measurement.
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Definition 2.5 (G-semismoothness [Gow04, PSS03]). Let F : D → R
m where D ⊂ R

n be an open
set, K : D ⇒ R

m×n be a nonempty set-valued mapping. We say that F is G-semismooth at x ∈ D
with respect to K if for any J ∈ K(x+ d),

F (x+ d)− F (x)− Jd = O(‖d‖) as d→ 0.

Furthermore, F is said to be G-strongly semismooth at x ∈ D with respect to K if F is G-
semismooth at x ∈ D and for any J ∈ K(x+ d),

F (x+ d)− F (x)− Jd = O(‖d‖2) as d→ 0.

If F is G-(strongly) semismooth at any x ∈ D with respect to K, then F is called a G-(strongly)
semismooth function with respect to K.

Next, we give the semismooth implicit function theorem that it is used later to prove the local
quadratic convergence result. It is a rearrangement of [Gow04, Theorem 4] and [PSS03, Theorem
6]. The proofs are given in Appendix A.

Corollary 2.6 (Semismooth Implicit Function Theorem). Suppose that F : Rn × R
m → R

m is
a (strongly) semismooth function with respect to ∂BF in an open neighborhood of (x0, y0) with
F (x0, y0) = 0. Let H(y) = F (x0, y). If every matrix in ∂H(y0) is nonsingular, then there exists
an open set V ⊂ R

n containing x0, a set-valued function K : V ⇒ R
m×n, and a G-(strongly)

semismooth function f : V → R
m with respect to K satisfying f(x0) = y0,

F (x, f(x)) = 0

for every x ∈ V and the set-valued function K is

K : x 7→
{
−(Ay)

−1Ax : [Ax Ay] ∈ ∂BF
(
x, f(x)

)}
,

where the map x 7→ K(x) is compact valued and upper semicontinuous.

Note that the set-valued function K in Corollary 2.6 is not necessarily ∂Bf(x) nor ∂f(x).

3 A Riemannian Proximal Newton Method

In this section, the proposed Riemannian proximal Newton method is described in detail and the
local quadratic convergence rate is established.

3.1 Algorithm Interpretation

We propose a Riemannian proximal Newton (RPN) method stated in Algorithm 1. Each iteration
of RPN consists of three phases: the computation of a Riemannian proximal gradient direction, the
Riemannian Newton modification of the step direction, and finally, the retraction on the manifold
constraint.

Firstly, in Step 2, we compute the Riemannian proximal gradient direction v(xk) as done
in [CMSZ20]. It has been shown that v(xk) can be efficiently computed by applying a semis-
mooth Newton method to the KKT conditions of the optimization problem in (3.1). Specifically,
the KKT condition for Problem (3.1) is given by

∂vLk(v, λ) = 0, and BT
xk
v = 0, (3.4)

where we use the fact that v ∈ Txk
M is equivalent to BT

xk
v = 0, Lk is the Lagrange function given

by Lk(v, λ) = f(xk)+∇f(xk)Tv+ 1
2t‖v‖2F +h(xk + v)+λ

TBT
xk
v, and λ ∈ R

d denotes the Lagrange
multiplier. It follows from (3.4) that

v = proxth
(
xk − t [∇f(xk) +Bxk

λ]
)
− xk, and B

T
xk
v = 0, (3.5)

7



Algorithm 1 A Riemannian proximal Newton method (RPN)

Input: A (n− d)-dimensional embedded submanifold of Rn, x0 ∈ M, t > 0;
1: for k = 0, 1, . . . do
2: Compute v(xk) by solving

v(xk) = argmin
v∈Txk

M
f(xk) +∇f(xk)Tv +

1

2t
‖v‖2F + h(xk + v). (3.1)

3: Find u(xk) ∈ Txk
M by solving

J(xk)[u(xk)] = −v(xk), (3.2)

where
J(xk) = −

[
In−Λxk

+ tΛxk
(∇2f(xk)− Lxk

)
]
, (3.3)

Λxk
= Mxk

− Mxk
Bxk

Hxk
BT

xk
Mxk

, Hxk
=
(
BT

xk
Mxk

Bxk

)−1
, Bxk

is an orthonormal basis of

Nxk
M, Lxk

(·) = Wxk

(
·, Bxk

λ(xk)
)
, Wxk

denotes the Weingarten map (2.3), λ(xk) is the
Lagrange multiplier (3.5) at xk, and Mxk

is a diagonal matrix defined in (3.13).
4: xk+1 = Rxk

(u(xk));
5: end for

where proxth(z) denotes the proximal mapping of th, i.e.,

proxth(z) = argmin
x∈Rn

1

2
‖x− z‖2 + th(x) = max(|z| − tµ, 0)⊙ sign(z). (3.6)

From (3.5), we have an equation of λ given by

BT
xk

(
proxth

(
xk − t [∇f(xk) +Bxk

λ]
)
− xk

)
= 0, (3.7)

which can be solved efficiently by a semismooth Newton method and the resulting v(xk) is obtained
by the first equation of (3.5).

Step 3 is the main innovation of our proposed RPN compared to the first-order method of [CMSZ20]
and it is the Riemannian analogue of the semismooth Newton method applied to f(x) + µ‖x‖1 in
the Euclidean setting [XLWZ18]. For smooth optimization problems, the direction v(xk) plays the
same role as the negative Riemannian gradient. To see that, if the nonsmooth term h is the zero
function, i.e., h(x) ≡ 0, and t is chosen to be one, then v(xk) is the negative Riemannian gradient,
i.e., v(xk) = − grad f(xk). The Newton direction is given by solving the Newton equation

Hess f(xk)[ηk] = − grad f(xk),

which can be written in terms of v(xk), i.e.,

Projxk
(Dv(xk)[ηk]) = −v(xk), (3.8)

since v(xk) = − grad f(xk). The same idea can be used for v(xk) given by (3.1). However, v(xk)
is not a smooth function of xk. In Subsections 3.2, 3.3 and 3.4, we will show that given a local
optimal point x∗, (i) v(x) is a G-strongly semismooth function of x in a neighborhood of x∗, (ii)
the linear operator J(x) : TxM → TxM in (3.3) is motivated by a generalized Jacobian of v(x),
and (iii) the direction u(x) given by (3.2) is a quadratic convergence direction.
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3.2 G-strongly semismoothness of v(x)

The first step of the analysis is to prove the G-strongly semismoothness of the term v(xk), which
herein we denote as v(x) for a concise notation. The G-strongly semismoothness of v(x) is proven
by verifying the assumptions of the semismooth implicit function theorem in Corollary 2.6 at x∗.
Define the function

F : Rn × R
n+d 7→ R

n+d : (x; v, λ) 7→
(

v + x− proxth
(
x− t[∇f(x) +Bxλ]

)

BT
x v

)

.

Since F is piecewise smooth, it follows from [Ulb11, Proposition 2.26] that

F is a strongly semismooth function with respect to ∂BF . (3.9)

Let x∗ be a local optimal point. It has been shown in [CMSZ20, Lemma 5.2] that the solution v(x)
of (3.1) is a strict decent direction. Hence

v(x∗) = 0. (3.10)

It follows from the KKT condition (3.5) that

F(x∗; v(x∗), λ(x∗)) = 0, (3.11)

where λ(x∗) also is the solution of (3.7) at x∗. We use v∗ and λ∗ to respectively denote v(x∗) and
λ(x∗) for simplicity. It follows that F(x∗; v∗, λ∗) = 0.

Define

G : Rn+d → R
n+d

: (v, λ) 7→ G(v, λ) = F(x∗; v, λ) =

(
v + x∗ − proxth

(
x∗ − t[∇f(x∗) +Bx∗

λ]
)

BT
x∗

v

)

.

Next, we will show that under a certain reasonable assumption, any entry in ∂G(v∗, λ∗) is nonsin-
gular. Since the proximal mapping proxth is given by (3.6), it follows from the chain rule [Cla90,
Theorem 2.3.9] that the Clarke subdifferential of G is given by

∂G(v∗, λ∗) =
{[

In tMBx∗

BT
x∗

0d

]

:M ∈ ∂ proxth
(
x∗ − t[∇f(x∗) +Bx∗

λ∗]
)
}

, (3.12)

where

∂ proxth(z) = {M ∈ R
n×n is diagonal :Mii = 1 if |zi| > tµ,Mii = 0 if |zi| < tµ,

and Mii ∈ [0, 1] otherwise.} .

We consider a representative matrix in ∂ proxth(x− t[∇f(x) +Bxλ(x)]), denoted by Mx, i.e.,

(Mx)ii =
{

0 if |x− t[∇f(x) +Bxλ(x)]|i ≤ tµ;
1 otherwise.

(3.13)

We let j denote the number of nonzero entries in Mx∗
and, without loss of generality, we assume

that the nonzero entries of Mx∗
lie on the left upper corner of the matrix, i.e.,

Mx∗
=
[
Ij

0n−j

]

. (3.14)

The nonsingularity of all entries in ∂G(v∗, λ∗) relies on Assumption 3.1. In addition, we provide an
alternative interpretation for Assumption 3.1, see Remark 3.12.
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Assumption 3.1. Let BT
x∗

= [B̄T
x∗

, B̂T
x∗

], where B̄x∗
∈ R

j×d and B̂x∗
∈ R

(n−j)×d. It is assumed

that j ≥ d and B̄x∗
is full column rank.

In view of Lemma 3.2, it follows from v(x∗) = 0 of (3.10) that if the matrix Mx∗
is in the

form of (3.14), then x∗ can be written in the form of x∗ = [x̄T∗ , 0
T ]T , where any entries in x̄∗ ∈ R

j

are nonzero. Therefore, if the manifold M is the unit sphere S
n−1, then d = 1 and Bx∗

= x∗
with B̄x∗

= x̄∗. Since x∗ ∈ S
n−1 with x∗ 6= 0, then j ≥ 1 and B̄x∗

is full column rank, i.e.,
Assumption 3.1 holds for the unit sphere Sn−1. It also can be shown that Assumption 3.1holds for
the oblique manifold OB(p, n) = (Sn−1)p.

Lemma 3.2. Suppose that v is the solution of (3.1) at x, then (x+v)i = 0 if and only if (Mx)ii = 0,
and (x+ v)i 6= 0 if and only if (Mx)ii = 1, where Mx is defined in (3.13).

Proof. According to the first equality in (3.5), we have

x+ v = proxth
(
x− t[∇f(x) +Bxλ]

)
, (3.15)

where the proxth(z) is given by (3.6) with z = x− t[∇f(x) +Bxλ]. Thus,

(1) if (Mx)i,i = 1, then |zi| > tµ. It follows from (3.15) that xi + vi = zi − tµsgn(zi) 6= 0;

(2) if (Mx)i,i = 0, then |zi| ≤ tµ. It follows from (3.15) that xi + vi = 0.

Therefore, (x+ v)i = 0 if and only if (Mx)ii = 0, and (x+ v)i 6= 0 if and only if (Mx)ii = 1.

Lemma 3.3. If Assumption 3.1 holds, then every matrix in ∂G(v∗, λ∗) is invertible.

Proof. For any M ∈ ∂ proxth
(
x∗ − t[∇f(x∗) + Bx∗

λ∗]
)
, without loss of generality, assume that

M = diag(s), where sT = [1, · · · , 1, s1, · · · , sℓ, 0, · · · , 0], where si ∈ (0, 1), i = 1 . . . , ℓ, the number

of element 1 is j. According to the partition of M , let BT
x∗

= [B̄T
x∗

, ˜̄BT
x∗

,
˜̂
BT

x∗

], where B̄x∗
∈

R
j×d, ˜̄Bx∗

∈ R
ℓ×d and

˜̂
Bx∗

∈ R
(n−j−ℓ)×d. Note that BT

x∗

MBx∗
=

[
B̄x∗

S ˜̄Bx∗

]T [
B̄x∗

S ˜̄Bx∗

]

, where S =

diag(
√
s1, · · · ,

√
sℓ). Since B̄x∗

is full column rank by Assumption 3.1, then

[
B̄x∗

S ˜̄Bx∗

]

is also full

column rank, then BT
x∗

MBx∗
is invertible.

For any D ∈ ∂G(v∗, λ∗), it follows from (3.12) that

D =

[
In tMBx∗

BT
x∗

0d

]

.

One can verify that the matrix

[
In−MBx∗

Hx∗
BT

x∗

MBx∗
Hx∗

1
tHx∗

BT
x∗

−1
tHx∗

]

,

is the inverse of D, where Hx∗
=
(
BT

x∗

MBx∗

)−1
. Thus, every matrix in ∂G(v∗, λ∗) is invertible.

It follows from (3.9), (3.11), and Lemma 3.3 that the assumptions of Corollary 2.6 hold. As
a consequence of Corollary 2.6, we have that there exists a neighborhood U of x∗ such that there
exists a G-strongly semismooth function S : U → R

n+d : x 7→ S(x) = (v(x), λ(x)) with respect to
KS such that for every x ∈ U ,

F (x;S(x)) = 0,
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and the set-valued function KS is

KS : x 7→
{
−B−1A : [A B] ∈ ∂BF(x;S(x))

}
.

Thus, v : U → R
n : x 7→ v(x) is a G-strongly semismooth function with respect to Kv, where

Kv : x 7→
{
−[In, 0] · B−1A : [A B] ∈ ∂BF

(
x;S(x)

)}
. (3.16)

Given x ∈ U , any element of Kv(x) is called a generalized Jacobian of v at x.

3.3 The linear operator J(x)

In this section, we derive a semismooth analogue of the Riemannian Newton direction. Recall that
the classical smooth Riemannian Newton direction satisfies (3.8), i.e.,

Projx(Dv(x)[η(x)]) = −v(x),

where Dv(x)[η(x)] = (Jxv)ηx involves the Jacobian of v at x. For the nonsmooth case, the main
task is to design a linear operator J(x) : TxM → TxM, where J(x) is related to the generalized
Jacobian of v at x. To this end, we need to first compute a generalized Jacobian of v. For x ∈ U ,
we select a matrix [A B] ∈ ∂BF

(
x, S(x)

)
, that is

A =

[

In −Mx

(
In − t∇2f(x)

)
+ tMx(DBx)λ

(DBT
x )v

]

, B =
[
In tMxBx
BT

x 0d

]

,

where Mx is given in (3.13). Therefore the generalized Jacobian has the following form

Jx
(3.16)
= −[In, 0] ·B−1A

= −
[

In−MxBxHxB
T
x − Λx(In−t∇2f(x)) + tΛx(DBx)λ+MxBxHx(DB

T
x )v
]

= −
[
In−Λx + tΛx

(
∇2f(x) + (DBx)λ

)]
−
[
MxBxHx(DB

T
x )v −MxBxHxB

T
x

]
,

(3.17)

where Λx = Mx −MxBxHxB
T
xMx and Hx =

(
BT

xMxBx

)−1
. Thus, Jx ∈ Kv(x) is a generalized

Jacobian of v at x. For any ω ∈ TxM, the action of Jx is given by

Jx[ω] = −ω + Λx(In−t∇2f(x))ω − tΛx(DBx[ω])λ−MxBxHx(DB
T
x [ω])v. (3.18)

The differential of Bx requires the information of an orthonormal basis of the normal space NxM
at x, which may not be readily available. Lemma 3.4 shows that the term including the differential
of Bx can be written in term of the Weingarten map.

Lemma 3.4. Suppose that Bx is an orthonormal basis of NxM with dimNxM = d. Then

Λx(DBx[ω])λ = −ΛxWx(ω,Bxλ),

where ω ∈ TxM, λ ∈ R
d and Wx denotes the Weingarten map defined in (2.3).

Proof. Since Proj⊥x = BxB
T
x and ΛxBx = 0, we have

Λx(DBx[ω])λ = Λx Projx (DBx[ω]λ) .
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By the definition of Weingarten map in (2.3), we have Wx(ω, u) = Projx
(
Wx(ω, u)

)
, where ω ∈

TxM, u ∈ NxM. Therefore, it holds that

Wx(ω, u) = Projx
(
D(x 7→ Projx)(x)[ω] · u

)
= Projx

(
D(I −BxB

T
x )[ω] · u

)

= Projx
(
−DBx[ω] ·BT

x u−Bx ·DBT
x [ω] · u

)

= −Projx
(
DBx[ω] · BT

x u
)
,

(3.19)

where the sign · denotes usual matrix multiplication, the last equality follows from Bx ·DBT
x [ω] ·u ∈

NxM. Letting u = Bxλ ∈ NxM in (3.19) yields Wx(ω,Bxλ) = −Projx
(
DBx[ω] ·λ

)
, which implies

Λx(DBx[ω])λ = −ΛxWx(ω,Bxλ).

By Lemma 3.4, the action of Jx can be reformulated as

Jx[ω] = −
[
In−Λx + tΛx(∇2f(x)− Lx)

]
ω −MxBxHx(DB

T
x [ω])v, (3.20)

where Lx(ω) = Wx(ω,Bxλ) is linear operator with respect to ω ∈ TxM. Since at a stationary point
x∗, v(x∗) is equal to zero by [CMSZ20], the last term in (3.20) can be dropped without influencing
the local quadratic convergence rate. This yields the linear operator J(x) used in Algorithm 1.
Since for any ω ∈ TxM, we have BT

x J(x)[w] = 0, it follows that J(x) : TxM → TxM.

Remark 3.5. If the manifold M is the unit sphere S
n−1, then by [AMT13], we have Wx(w, u) =

−wxTu for any w ∈ TxM, u ∈ NxM. For x ∈ S
n−1, we have Bx = x. Without loss of generality,

we assume that Mx =
[
Ij

0n−j

]

. According to the partition of Mx, we have

x =
[
xj
xn−j

]

, ∇2f(x) =

[

H
(11)
x H

(12)
x

H
(21)
x H

(22)
x

]

, Lx(·) = Wx

(
·, Bxλ(x)

)
= −λ(x) In,

where H11 ∈ R
j×j. By (3.3), we have

J(x) = −
[
In −Λx + tΛx

(
∇2f(x)− Lx

)]

= −





xjxT

j

xT

j
xj

+ t

(

Ij −
xjxT

j

xT

j
xj

)(

H
(11)
x + λ(x) Ij

)

t

(

Ij −
xjxT

j

xT

j
xj

)

H
(12)
x

0(n−j)×j In−j



 .

Remark 3.6. Consider the smooth case in (1.1), i.e., h(x) ≡ 0. The KKT condition in (3.5) is there-
fore ∇f(x) + 1

t v +Bxλ = 0, BT
x v = 0. The closed-form solution is given by λ = −BT

x∇f(x), v =
−t grad f(x). For the smooth case, we have Mx = In, then J(x) in (3.3) can be simplified to
J(x) = BxB

T
x − t(In−BxB

T
x )(∇2f(x)− Lx). Therefore, for any ω ∈ TxM,

J(x)[ω] = −t(In−BxB
T
x )(∇2f(x)− Lx)ω = −tHess f(x)[ω],

where the last equation follows from [AMT13]. It follows that the linear system J(x)[u(x)] = −v(x)
is equivalent to the Riemannian Newton linear system

Hess f(x)[u(x)] = − grad f(x).

Thus, u(x) is the Riemannian Newton direction.
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3.4 Local Convergence Analysis

In this section, we show that for a sufficiently small neighborhood of a local optimal point x∗, the
RPN has quadratic convergence. Without loss of generality, we assume that the nonzero entries of
x∗ are in the first part, i.e., x∗ = [x̄T∗ , 0

T ]T , where any entries in x̄∗ ∈ R
j are nonzero. Moreover,

it follow from Lemma 3.2 together with v(x∗) = 0 of (3.10) that if x∗ is written in the form of
[x̄T∗ , 0

T ]T , then the matrix Mx∗
is in the form of (3.14).

Our analysis is based on an assumption that in a sufficiently small neighborhood, RPN will
produce iterates with the correct support of the stationary point x∗, which will achieve quadratic
convergence.

Assumption 3.7. There exists a neighborhood U of x∗ = [x̄T∗ , 0
T ]T on M such that for any

x = [x̄T , x̂T ]T ∈ U , it holds that x̄+ v̄ 6= 0 and x̂+ v̂ = 0, where v = [v̄T , v̂T ]T denotes the solution
of (3.1) at x.

Since x+v is promoted to be sparse by the term h(x) = µ‖x‖1 in Problem (3.1), and other terms
therein are smooth, it is reasonable to assume that the support does not change in a neighborhood
of x∗.

Lemma 3.8 shows that when the support of x + v is the one of x∗, i.e., the support does not
change, the locations of the nonzero entries of Mx also remain the same.

Lemma 3.8. Under Assumption 3.7, for any x ∈ U , we have Mx = Mx∗
, where Mx is defined

in (3.13).

Proof. According to Lemma 3.2, we have (x+ v)i = 0 if and only if (Mx)ii = 0, and (x+ v)i 6= 0 if
and only if (Mx)ii = 1. It follows from Assumption 3.7 that Mx =Mx∗

for any x ∈ U .
Now, we are ready to give the local convergence analysis of Algorithm 1, with the assumption

that J(x∗) is nonsingular, where x∗ is a local optimal point of (1.1). We claim that, under the
condition of Proposition 3.13 given later, J(x∗) is always nonsingular.

Theorem 3.9. Suppose that x∗ is a local optimal point of (1.1), that Assumption 3.1 and Assump-
tion 3.7 hold, and that J(x∗) is nonsingular. Then there exists a neighborhood V of x∗ on M such
that for any x0 ∈ V, Algorithm 1 generates a sequence {xk} converging quadratically to x∗.

Proof. Since v is G-strongly semismooth with respect to Kv, it holds that

v(x) − v(x∗)− Jx(x− x∗) = O(‖x− x∗‖2),

where Jx = J 1(x) + J 2(x) ∈ Kv(x) in (3.17) with

J 1(x) = −
[
In−Λx + tΛx

(
∇2f(x) + (DBx)λ

)]

and
J 2(x) = −

[
MxBxHx(DB

T
x )v −MxBxHxB

T
x

]
.

According to Lemma 3.8, for x ∈ U , the position of Mx is fixed, it follows that J 1(x) and J 2(x)
vary continuously with x. Since v(x) is G-strongly semismooth, it follows from [Gow04, Corollary
1] that there exists γ > 0 such that ‖v(x)− v(x∗)‖ ≤ γ‖x− x∗‖. Therefore,

J 2(x− x∗) = −MxBxHx · DBT
x [x− x∗] · v +MxBxHxB

T
x (x− x∗)

(i)
= −MxBxHx ·DBT

x [x− x∗] · v −MxBxHxB
T
x

(
R−1

x (x∗) +O(‖x− x∗‖2
)

(ii)
= −MxBxHx ·DBT

x [x− x∗] · v +O(‖x− x∗‖2)
(iii)
= O(‖x− x∗‖2),
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where (i) follows from x∗−x = R−1
x (x∗)+O(‖x−x∗‖2) and R−1

x (x∗) ∈ TxM is inverse retraction,(ii)
and (iii) follow from Mx being fixed, R−1

x (x∗) belonging to TxM and therefore BT
x

(
R−1

x (x∗)
)
= 0,

Bx and Hx varying smoothly when x is sufficiently close to x∗. Therefore,

v(x)− v(x∗)− J 1(x)(x − x∗) = O(‖x− x∗‖2).

Note that

J 1(x)(x− x∗) = −J 1(x)
[
R−1

x (x∗) +O(‖x− x∗‖2
]

=− J(x)
[
R−1

x (x∗)
]
+O

(
‖x− x∗‖2

)
= J(x)(x − x∗) +O

(
‖x− x∗‖2

)
,

then
v(x)− v(x∗)− J(x)(x− x∗) = O(‖x− x∗‖2).

Since J(x)u(x) = −v(x), then

−J(x) [u(x) + x− x∗] = O(‖x− x∗‖2).

Since J(x) in (3.3) varies continuously with x and J(x∗) is nonsingular, J(x) and J(x)−1 are
bounded. Thus, x+ u(x) − x∗ = O(‖x − x∗‖2). By adding the subscript, we have xk + uk − x∗ =
O(‖xk − x∗‖2). Therefore, for any η > 0, there exists a neighborhood U1 of x∗ such that for
any xk ∈ U1, it holds that ‖xk + uk − x∗‖ ≤ η‖xk − x∗‖2 ≤ η‖xk − x∗‖. Therefore, we have
‖uk‖ ≤ (1 + η)‖xk − x∗‖, which means uk = O(‖xk − x∗‖). According to the definition of the
retraction, there exists a neighborhood U2 of x∗ such that for any xk ∈ U2,

Rxk
(uk)− (xk + uk) = O(‖uk‖2).

Let V = U ∩U1 ∩U2, for any xk ∈ V, we have

Rxk
(uk)− (xk + uk) = O(‖xk − x∗‖2),

and
‖xk+1 − x∗‖ = ‖Rxk

(uk)− x∗‖
≤ ‖Rxk

(uk)− (xk + uk)‖+ ‖xk + uk − x∗‖ = O(‖xk − x∗‖2).

Remark 3.10. In Theorem 3.9, we achieve local quadratic convergence results within the neigh-
borhood V, which plays a key role in the design of globalization methods. The main idea behind
globalization is to enable xk to enter the neighborhood V, we then propose a globalized version,
see Algorithm 2.

3.5 Optimality Conditions

The first-order necessary optimality condition for Stiefel manifold has been given in (3.10), which
shows that v(x∗) = 0 if x∗ is a local optimal point. It’s worth noting that the first-order necessary
condition is straightforward to apply when M is a submanifold of a Euclidean space. In this
section, we derive the second-order necessary optimality condition. Additionally, we present a
sufficient condition for the nonsingularity of J(x∗) in (3.21).

Without loss of generality, let x∗ =
[
x̄∗
0

]

be a stationary point of (1.1), where x̄∗ ∈ R
j. By

Lemma 3.8, it holds that

Mx∗
=
[
Ij

0n−j

]

.
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By the partition of Mx∗
, we have

Bx∗
=

[

B̄x∗

B̂x∗

]

, ∇2f(x∗) =

[

H
(11)
x∗

H
(12)
x∗

H
(21)
x∗

H
(22)
x∗

]

, Lx∗
=

[

L
(11)
x∗

L
(12)
x∗

L
(21)
x∗

L
(22)
x∗

]

,

where B̄x∗
∈ R

j×d with j ≥ d has full column rank by Assumption 3.1, H
(11)
x∗

∈ R
j×j, L

(11)
x∗

∈ R
j×j.

Therefore,

J(x∗) = −
[
In −Λx∗

+ tΛx∗
(∇2f(x∗)− Lx∗

)
]

= −
[

B̄x∗
B̄†

x∗
+ t(Ij −B̄x∗

B̄†
x∗
)(H

(11)
x∗

− L
(11)
x∗

) t(Ij −B̄x∗
B̄†

x∗
)(H

(12)
x∗

− L
(12)
x∗

)
0(n−j)×j In−j

]

,
(3.21)

where † denotes generalized Moore-Penrose inverse and B̄†
x∗

= (B̄T
x∗

B̄x∗
)−1B̄T

x∗

.

Since x∗ =
[
x̄∗
0

]

, the non-smooth optimization problem (1.1) can be separated into the smooth

part and non-smooth part at the sufficiently small neighborhood of x∗, which correspond to x̄∗
and the zero part, respectively. By fixing the location of the zero part, the second-order necessary
condition follows from only considering the smooth part of the optimization problem. To do this, we
first analyze the property of the set consisting of the points on M that keep zero part unchanged.

Lemma 3.11 shows that the set on M that keeps its location of zero part unchanged is an
embedded submanifold of Rn under reasonable conditions.

Lemma 3.11. Let M be an embedded submanifold of Euclidean space R
n. Let q(x) = Qx, where

Q =
[
0(n−j)×j , In−j

]
, if

Nx∗
M∩ range(QT) = {0}, (3.22)

then N = {x ∈ M : q(x) = 0} ∩Ωx∗
is an embedded submanifold of Rn, where Ωx∗

is a sufficiently
small neighbourhood of x∗ and range(QT) denotes the columns space of QT . Furthermore, the
tangent space of N at x ∈ N is

TxN =
{
u =

[u1
0
]
: B̄T

x u1 = 0, u1 ∈ R
j
}
.

Proof. The result follows from transversality theory, see [Lee12, Theorem 6.30(b)]. We give a
detailed proof for the reader’s convenience.

If M is an open subset of Rn, then N is the intersection of an open set of Rn with a hyperplane
{x ∈ R

n : q(x) = 0}. Therefore, it is an embedded submanifold of Rn.
If M is not an open subset of R

n, then for x∗ ∈ M, there exists a local defining function
φ : U → R

d satisfying

(a) M∩U = φ−1(0) = {y ∈ U : φ(y) = 0}; and
(b) rankDφ(x∗) = d,

where U is a neighborhood of x∗ in R
n. Define

ψ(x) =

(

φ(x)
q(x)

)

: U → R
d+(n−j).

We have

rank(Dψ(x∗)) = rank

(

Dφ(x∗)
D q(x∗)

)

= rank

(

BT
x∗

Q

)

= rank (Bx∗
QT ) = d+ n− j,

where the last equation follows from (3.22).
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Therefore, there exist a neighborhood Ω̃x∗
of x∗ in R

n such that Dψ(x) is full row rank. Let

Ωx∗
= U ∩ Ω̃x∗

. We have
N ∩ Ωx∗

= ψ−1(0),

and
rankDψ(x) = d+ (n− j).

It follows that N is an embedded submanifold of R
n with dimTxN = j − d, where j ≥ d.

Furthermore, for any x ∈ N , we have

TxN = ker(Dψ(x)) = {u : Dφ(x)[u] = 0,D q(x)[u] = 0}
=
{
u : BT

x u = 0, q(u) = 0
}

=
{
u =

[u1u2
]
: B̄T

x u1 = 0, u2 = 0
}
.

Remark 3.12. Condition (3.22) is implied by Assumption 3.1. Specifically, for any z ∈ Nx∗
M ∩

range(QT), we have z = QTs = Bx∗
t for certain vectors s and t. Since Q =

[
0(n−j)×j , In−j

]
, the

first j entries of z are zeros. It follows that the first j entries of Bx∗
t are zeros, which implies

B̄x∗
t = 0. Combining with Assumption 3.1 yields t = 0. Therefore, z = Bx∗

t must be 0, which
implies Condition (3.22) holds.

Now, we are ready to give a second-order necessary optimality condition for Problem (1.1).

Proposition 3.13. Suppose Assumption 3.1 holds. If x∗ =
[
x̄∗
0

]

is a local optimal point of Prob-

lem (1.1) with x̄∗ ∈ R
j , then v(x∗) = 0 and H

(11)
x∗

− L
(11)
x∗

� 0 on the subspace {w : B̄T
x∗

w = 0}.
Furthermore, if H

(11)
x∗

−L
(11)
x∗

≻ 0 on the subspace {w : B̄T
x∗

w = 0}, then J(x∗) in (3.21) is nonsin-
gular.

Proof. It follows from (3.10) that v(x∗) = 0. According to the KKT condition (3.5) at x∗, we have

x∗ = proxth
(
x∗ − t[∇f(x∗) +Bx∗

λ∗]
)
.

It follows from (3.6) that

x̄∗ + tµ sgn(x̄∗) = x̄∗ − t[∇f(x∗)]1 − tB̄x∗
λ∗,

where ∇f(x∗)T =
[

[∇f(x∗)]T1 , [∇f(x∗)]T2
]

with [∇f(x∗)]1 ∈ R
j. Therefore,

−B̄x∗
λ∗ = µ sgn(x̄∗) + [∇f(x∗)]1. (3.23)

As mentioned in Remark 3.12, Condition (3.22) holds, hence N in Lemma 3.11 is an embedded

submanifold. Let θ = −B̂x∗
λ∗ − [∇f(x∗)]2 ∈ R

n−j. Define a function

F̃ (x) = f(x) + µsgn(x̄∗)
Tx1 + θTx2,

where x =
[x1x2
]
∈ N with x1 ∈ R

k. Therefore, it holds that F (x∗) = F̃ (x∗), where F (x) is the

objection function in (1.1). Since ∇F̃ (x∗) = ∇f(x∗) +
[
µ sgn(x̄∗)

θ

]

, it follows from (3.23) that

∇F̃ (x∗) =
[

[∇f(x∗)]1 + µ sgn(x̄∗)
[∇f(x∗)]2 + θ

]

=

[

−B̄x∗
λ∗

−B̂x∗
λ∗

]

= −Bx∗
λ∗. (3.24)
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Let γ(t) be a smooth curve on N with γ(0) = x∗ and γ′(0) = u for any u ∈ Tx∗
N . Therefore, γ(t)

is also a smooth curve on M, It follows that t = 0 is a local optimal point of F (γ(t)) = F̃ (γ(t)).

Since F̃ (γ(t)) is smooth at t = 0, we have

d2

dt2
F̃ (γ(t))

∣
∣
∣
∣
t=0

≥ 0.

Note that
d

dt
F̃ (γ(t)) =

〈

grad F̃ (γ(t)), γ′(t)
〉

,

and
d2

dt2
F̃ (γ(t))

∣
∣
∣
∣
t=0

=
〈

Hess F̃ (x∗)[u], u
〉

+
〈

grad F̃ (x∗), γ
′′(0)

〉

.

Since x∗ is a local optimal point of F̃ (x) over the manifold N , so that grad F̃ (x∗) = 0. On the
other hand, for any u ∈ Tx∗

N , we have

HessF̃ (x∗)[u] = ProjTx∗ N ∇2F̃ (x∗)[u] + W̃x∗

(

u,Proj⊥Tx∗ N ∇F̃ (x∗)
)

(i)
= ProjTx∗ N ∇2F̃ (x∗)[u] + W̃x∗

(

u,

[

B̄x∗

In−j

] [

B̄x∗

In−j

]†

∇F̃ (x∗)
)

(ii)
= ProjTx∗ N ∇2F̃ (x∗)[u]− W̃x∗

(u,Bx∗
λ∗)

where W̃x∗
denotes the Weingarten map on manifold N , (i) follows from

[

B̄x∗

In−j

]

is a basis of

Nx∗
N , (ii) follow from (3.24).

Note that
[
B̄x

In−j

]

is a basis of NxN , then for any u =
[u1u2
]
∈ Tx∗

N satisfying B̄T
x∗

u1 = 0

and u2 = 0, we have

W̃x∗
(u,Bx∗

λ∗)
(2.3)
= D

(

In −
[
B̄x

In−j

] [
B̄x

In−j

]†
)

[u] ·Bx∗
λ∗

= −
[
D B̄x

0n−j

] [u1u2
]
·
[

B̄†
x∗

In−j

] [

B̄x∗
λ∗

B̂x∗
λ∗

]

−
[

B̄x∗

In−j

]

·
[

D B̄†
x

0n−j

]
[u1u2
]
·
[

B̄x∗
λ∗

B̂x∗
λ∗

]

(a)
= −ProjTx∗ N

([
D B̄x

0n−j

] [u1u2
]
·
[

B̄†
x∗

In−j

] [

B̄x∗
λ∗

B̂x∗
λ∗

])

= −ProjTx∗ N

([

D B̄x[u1] · λ∗
0(n−j)×1

])

,

where (a) follows from W̃x∗
(u,Bx∗

λx∗
) = ProjTx∗ N

(

W̃x∗
(u,Bx∗

λx∗
)
)

. Therefore,

〈

u, W̃x∗
(u,Bx∗

λ∗)
〉

= −uT1 D B̄x[u1] · λ∗. (3.25)
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Furthermore, for any η ∈ Tx∗
M satisfying BT

x∗

η = 0, we have

Wx∗
(η,Bx∗

λ∗) = D(In−BxB
T
x )[η] ·Bx∗

λ∗

= −DBx[η] ·BT
x∗

Bx∗
λ∗ −Bx∗

·DBT
x [η] · Bx∗

λ∗

= −ProjTx∗ MDBx[η] · λ∗,

where Wx∗
denotes the Weingarten map on manifold M. We take η = u ∈ Tx∗

N ⊂ Tx∗
M, then

〈u,Wx∗
(u,Bx∗

λ∗)〉 = −uTDBx[u] · λ∗
= −uT1 D B̄x[u1] · λ∗
(3.25)
=

〈

u, W̃x∗
(u,Bx∗

λ∗)
〉

Therefore, for any u =
[u1u2
]
∈ Tx∗

N satisfying B̄T
x∗

u1 = 0 and u2 = 0, we have

0 ≤
〈

Hess F̃ (x∗)[u], u
〉

=
[
uT1 , 0

]
∇2f(x∗)

[u1
0
]
− [uT1 , 0]W̃x∗

([u1
0
]
, Bx∗

λ∗
)

=
[
uT1 , 0

]
∇2f(x∗)

[u1
0
]
− [uT1 , 0]Wx∗

([u1
0
]
, Bx∗

λ∗
)

= uT1H
(11)
x∗

u1 − uT1 L
(11)
x∗

u1.

Therefore, on the subspace {w : B̄T
x∗

w = 0}, we have

H(11)
x∗

− L(11)
x∗

� 0.

Furthermore, if H
(11)
x∗

− L
(11)
x∗

≻ 0 on the subspace {w : B̄T
x∗

w = 0}, we have J(x∗) : Tx∗
M →

Tx∗
M, i.e.,

J(x∗) = −
[

B̄x∗
B̄†

x∗
+ t(Ij −B̄x∗

B̄†
x∗
)(H

(11)
x∗

− L
(11)
x∗

) t(Ij −B̄x∗
B̄†

x∗
)(H

(12)
x∗

− L
(12)
x∗

)
0(n−j)×j In−j

]

,

where B̄†
x∗

= (B̄T
x∗

B̄x∗
)−1B̄T

x∗

. In order to verify J(x∗) is nonsingular, we only need to verify

J
(11)
x∗

= B̄x∗
B̄†

x∗
+ t(Ij −B̄x∗

B̄†
x∗
)(H

(11)
x∗

− L
(11)
x∗

) is nonsingular. For any η ∈ R
j, we have

J (11)
x∗

η = B̄x∗
B̄†

x∗

η
︸ ︷︷ ︸

s1

+ t(Ij −B̄x∗
B̄†

x∗

)(H(11)
x∗

− L(11)
x∗

)η
︸ ︷︷ ︸

s2

,

where s1 is orthogonal to s2. Thus, if J
(11)
x∗

η = 0, then s1 = 0 and s2 = 0. Since s1 = B̄x∗
B̄†

x∗
η = 0,

then η = (Ij −B̄x∗
B̄†

x∗
)η. According to s2 = 0, we have

0 = s2 = t(Ij −B̄x∗
B̄†

x∗

)(H(11)
x∗

− L(11)
x∗

)η

= t(Ij −B̄x∗
B̄†

x∗

)(H(11)
x∗

− L(11)
x∗

)(Ij −B̄x∗
B̄†

x∗

)η,

then 0 = ηTs2 = tηT(Ij −B̄x∗
B̄†

x∗
)(H

(11)
x∗

−L(11)
x∗

)(Ij −B̄x∗
B̄†

x∗
)η. With the condition H

(11)
x∗

−L(11)
x∗

≻
0 on the subspace {ω : B̄T

x∗

ω = 0}, we have η = 0. Therefore, J
(11)
x∗

η = 0 if and only if η = 0, which

implies J
(11)
x∗

is nonsingular. It follows that we have J(x∗) is nonsingular.
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4 Globalization

In Section 3, the Riemannian proximal Newton method in Algorithm 1 is guaranteed to converge
locally and quadratically. However, it may not converge globally. In this section, a hybrid version
by concatenating the Riemannian proximal gradient method in [CMSZ20] and Algorithm 1 is given
and stated in Algorithm 2.

Specifically, if the norm of the search direction vk is not sufficiently small, then the search
direction is taken to be the proximal gradient step, see Steps from 7 to 11, which has global
convergence property and is well-defined [CMSZ20, Lemma 5.2]. Otherwise, the proximal Newton
step is used. Next, we show that if ‖vk‖ is sufficiently small and certain reasonable assumptions
hold, then the iterate xk is sufficiently close to a local minimizer x∗. Therefore, the local quadratic
convergence rate follows from Theorem 3.9.

Algorithm 2 A globalized version of the Riemannian proximal Newton method (RPN-G)

Input: x0 ∈ M, t > 0, ρ ∈ (0, 12 ], ǫ > 0
1: k = 0;
2: loop
3: Compute vk by solving (3.1) with t;
4: if ‖vk‖ ≤ ǫ then
5: K = k and break;
6: end if
7: Set α = 1;
8: while F (Rxk

(αvk)) > F (xk)− 1
2α‖vk‖2 do

9: α = ρα;
10: end while
11: xk+1 = Rxk

(αvk);
12: k = k + 1;
13: end loop
14: for k = K + 1,K + 2, . . . do
15: Compute vk by solving (3.1) with t;
16: Compute uk by solving (3.2);
17: xk+1 = Rxk

(uk);
18: end for

Theorem 4.1. Suppose that

(a) M is a compact Riemannian submanifold of Rn, the retraction R is globally defined, f : Rn →
R has Lipschitz continuous gradient with Lipschitz constant L in the convex hull of M, i.e.,
‖∇f(x)−∇f(y)‖F ≤ L‖x− y‖F for all x, y in the convex hull of M;

Let {x̂k} denote the sequence generated by Algorithm 2 with ǫ = 0 and x∗ denote an accumulation
point of {x̂k}. Then x∗ is a stationary point. Further, suppose that

(b) x∗ is a strict local optimal point and isolated stationary point of F , i.e., there exists a neigh-
borhood Nx∗

of x∗ such that for any y ∈ Nx∗
and y 6= x∗, it holds that F (y) > F (x∗) and x∗

is the only stationary point in Nx∗
.

(c) The assumptions of Theorem 3.9 hold at x∗ (i.e., Assumption 3.1 and Assumption 3.7 hold,
and J(x∗) is nonsingular).

Then there exists ǫ > 0, such that the iterates {xk} generated by Algorithm 2 with the ǫ > 0
converges to the local optimal x∗ and the local convergence rate is quadratic.

Proof. Since ǫ = 0, then Algorithm 2 degenerates to ManPG [CMSZ20]. It follows from (a)
and [CMSZ20, Theorem 5.5] that limk→∞ ‖vk‖ = 0 and x∗ is a stationary point of (1.1).
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Assume (b) and (c) hold. Next, by an argument akin to the capture theorem [AMS08, Theo-
rem 4.4.2], we show that {x̂k} converges to x∗. Specifically, since x∗ is a strict local optimal point
of F , there exists δ > 0 such that for any y ∈ B(x∗, δ) := {z ∈ M | dist(x∗, z) ≤ δ} and y 6= x∗,
it holds that F (y) > F (x∗). Let B(x∗, δ) = {z ∈ M | dist(x∗, z) = δ} denote the boundary of
B(x∗, δ) and define Fδ,x∗

= infy∈B(x∗,δ) F (y). Since B(x∗, δ) is compact, it holds that Fδ,x∗
> F (x∗).

Let Nx∗
denote B(x∗, δ) ∩ {z ∈ M | F (z) < F (x∗) + (Fδ,x∗

− F (x∗)) /2}. Therefore, it holds that
dist(B(x∗, δ),Nx∗

) := infz1∈B(x∗,δ),z2∈Nx∗
dist(z1, z2) > 0, otherwise, it violates the continuity of F .

Since x∗ is an accumulation point of {x̂k} and ‖vk‖ → 0, there exists K > 0 such that for all
k > K, inequality ‖vk‖ < dist(B(x∗, δ),Nx∗

) holds, and there exists J > K such that x̂J ∈ Nx∗
.

Since ManPG is a descent algorithm in the sense that F (x̂k) > F (x̂k+1) for all k, we have x̂k ∈ Nx∗

for all k ≥ J . Since x∗ is the only stationary point of F in Nx∗
, x̂k converges to x∗.

Since x̂k converges to x∗, there exists K̄ > 0 such that for all k > K̄, x̂k ∈ V, where V is the
neighborhood of x∗ defined in Theorem 3.9. Define ∆k = minj≤k ‖vj‖. If ∆k = 0, then there exists
j ≤ k such that vj = 0. By the definition of Algorithm 2, we have xj = xj+1 = . . .. Since x∗ is
the limit point of {xk}, it holds that xj = xj+1 = . . . = x∗, which implies finite step termination.
Suppose that ∆k > 0 for all k. Let ǫ < ∆K̄ . It follows that xk = x̂k for all k ≤ K̄ and {xk}k≥K̄
converges to x∗ quadratically by Theorem 3.9.

Remark 4.2. The global and local quadratic convergence of Algorithm 2 by Theorem 4.1 requires
a sufficiently small ǫ. However, if the value of ǫ is too small, then it is hard to observe quadratic
convergence behavior. In the numerical experiments, ǫ is chosen empirically.

5 Numerical Experiments

In this section, we perform numerical experiments to test the efficiency of our proposed RPN for
solving the sparse PCA given as

min
X∈St(n,r)

− trace(XTATAX) + µ‖X‖1, (5.1)

where St(n, r) = {X ∈ R
n×r : XTX = Ir} is the Stiefel manifold, A ∈ R

m×n is the data matrix,
µ > 0 is the sparsity inducing regularization parameter. The main benefit of Sparse PCA arises in
high-dimensional setting, when, due to the introduced sparsity in the principal vectors, it remains
a consistent estimator, while the classical PCA fails [JTU03]. The optimization problem arising
from sparse PCA has been used as a benchmark to test other Riemannian proximal methods, such
as [CMSZ20, HW22a]. All experiments are performed in MATLAB R2022b on a standard PC with
2.8 GHz CPU (Inter Core i7).

We first numerically demonstrate in Subsection 5.1 that the naive second order generalization,
which comes from simply replacing the Euclidean gradient and Hessian with their Riemannian
counterparts, does not achieve local superlinear convergence. In Subsection 5.2, we verify our theo-
retical results showing that RPN does achieve quadratic convergence, and finally, in Subsection 5.3
and Subsection 5.4 we compare its performance against ManPG.

5.1 Naive Generalization

The naive analogue in the Riemannian setting is constructed by simply replacing the Euclidean
gradient and Hessian of (1.5) by its Riemannian counterparts:

{
vk = argminv∈Txk

M f(xk) + 〈grad f (xk) , v〉 + 1
2 〈v,Hess f(xk)[v]〉+ h (xk + v) ,

xk+1 = Rxk
(vk).

(5.2)

We construct a simple example to show that (5.2) generally does not yield a superlinear convergence
when applied to the simple case of sparse PCA with r = 1 defined over a unit sphere, i.e.,

min
x∈Sn−1

−xTATAx+ µ‖x‖1. (5.3)
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Essentially, the goal of (5.3) is to compute the loading eigenvectors of ATA while promoting sparsity.
We handcraft the data matrix A in the following way. Let Σ = diag{[20, 0.1, 0.05]} such that

Σ2 is the matrix of nonzero eigenvalues values of ATA and its corresponding eigenvectors U are
defined as

U =
[
I3
03

]

∈ R
6×3,

where I3 is 3×3 identity matrix and 03 is the 3×3 matrix of zeros. Constructing A = ΣUT ∈ R
3×6

results in
ATA =

[
Σ2 03
03 03

]

,

making an optimal solution of (5.3) to be x∗ = [1, 0, 0, 0, 0, 0]T . According to (2.2), for any ηx∗
∈

Tx∗
S
n−1,

ηTx∗

Hess f(x∗)[η∗] = ηTx∗

[

Projx∗

(
∇2f(x∗)[ηx∗

]
)
+Wx∗

(

ηx∗
,Proj⊥x∗

(
∇f(x∗)

))]

= ηTx∗

[
(I6 −x∗xT∗ )(−2ATAηx∗

) + 2(xT∗A
TAx∗)η∗

]

= 2ηTx∗

(
(xT∗A

TAx∗) I6−ATA
)
ηTx∗

.

It can easily be verified that Hess f(x∗) is positive definite on the tangent space Tx∗
S
n−1.

Since the positive definiteness is a local property, we add a sufficiently small perturbation to
A, e.g., A = A + 0.1 ∗ R1, and select the initial point x0 = x∗ + 0.1 ∗ R2, where the entries of
R1 ∈ R

3×6 and R2 ∈ R
6×1 are sampled from the standard normal distribution N (0, 1). In our

experiments, we solve vk in (5.2) by the semismooth Newton method similar to ManPG algorithm
in [CMSZ20]. We use the retraction Rx(ηx) = (x + ηx)/‖x + ηx‖ on the sphere manifold, where
x ∈ S

n−1, ηx ∈ Tx S
n−1. We compare the naive generalization, denoted RPN-N, with ManPG

and our algorithm RPN in Figure 1. We clearly see in the Figure 1 that the naive generalization
(RPN-N) fails to achieve the superlinear rate of convergence, exhibiting instead linear convergence,
while our proposed RPN does.

Remark 5.1. The naive generalization can be viewed as a specific instance of (1.6), which was shown
to have local linear convergence in [WY23]. On the other hand, a possible explanation why RPN-N
seems to only achieve linear convergence rate is that it only considers the first-order approximation
of Rx(v) in h(Rx(v)), i.e., h(x + v). However, to perform a second-order accurate approximation
of Rx(v) or h(Rx(v)) would be a computationally expensive task.

5.2 Local quadratic convergence of Algorithm 1

We proceed by testing the local quadratic convergence rate for different problem sizes in sparse
PCA. For this task, we will use the polar retraction [AMS08, Example 4.1.3] defined as Rx(ηx) =

(x+ ηx)(Ir +η
T
x ηx)

−1/2, where x ∈ St(n, r), ηx ∈ Tx St(n, r). We generate the random data matrix
A ∈ R

m×n such that its entries are drawn from the standard normal distribution N (0, 1). In
Algorithm 1, we set m = 50 and use t = 1/(2‖A‖22), which corresponds to the choice of the stepsize
in [CMSZ20, HW22a].

In order to observe the local quadratic convergence, we first choose an initial point x0 that is
sufficiently close x∗, where x∗ is a stationary point of (1.1). Theorem 4.1 shows that xk is sufficiently
close to x∗ when vk is sufficiently small, so we first run the ManPG algorithm to choose a point
xk satisfying ‖vk‖F ≤ 10−4 as the initial point x0 of Algorithm 1. Figure 2 shows ‖vk‖ versus the
number of iterations for multiple values of n, r, and µ. We can see that the proposed method RPN
empirically shows quadratic convergence results which is consistent with the theoretical result.
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Figure 1: Comparisons with RPN and ManPG algorithms.
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Figure 2: Random data: the norm of search direction for the SPCA. Left: different n =
{100, 200, 300, 400} with r = 5 and µ = 0.6; Middle:different r = {2, 4, 6, 8} with n = 300 and
µ = 0.8; Right: different µ = {0.5, 0.6, 0.7, 0.8} with n = 300 and r = 5

5.3 Comparisons with ManPG algorithm on the sphere (r = 1)

In this section, we consider the version of sparse PCA with r = 1, which admits a simple compu-
tation of uk by solving the linear equations (3.2). Thus (5.1) is simplified as

min
x∈Sn−1

−xTATAx+ µ‖x‖1, (5.4)

where the Stiefel manifold reduces to the unit sphere, as discussed in [JTU03, DaGJL04]. We
compare RPN-G, as stated in Algorithm 2, with the proximal Riemannian gradient method ManPG
in [CMSZ20].

The parameters are set as those in Subsection 5.2. ǫ is set to be 10−4. Linear system (3.2)
is solved by the built-in Matlab function cgs. ManPG does not terminate until the number of
iterations attains the maximal iteration (3000). RPN-G does not terminate until ‖vk‖ ≤ 10−12.

Random data: The matrix A is generated as that in Subsection 5.2. The results with multiple
values of n and µ are reported in Table 1 and Figure 4. Compared to ManPG, the proposed
method RPN-G is able to obtain higher accurate solutions in the sense that ‖vk‖ from RPN-G is in
double precision whereas that from ManPG is only in single precision. In addition, the number of
Riemannian proximal Newton steps is not large and usually is only 5-6 iterations. It follows that
the RPN-G is faster than ManPG when a highly accurate solution is needed, as shown in Figure 4.
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Synthetic data: The comparisons are repeated for synthetic data, which is generated by
following the experiments in [HW22a, SCE+18]. Specifically, the five principal components shown
in Figure 3 are repeated m/5 times to obtain m× n noise-free matrix. Then the data matrix A is
created by adding each entry of the noise-free matrix by i.i.d. random value drawn from N (0, 0.25).
We set m = 400, n = 4000 and µ = 1.2. The left and right plots in Figure 5 show ‖vk‖ versus the
number of iterations and ‖vk‖ versus CPU time, respectively. The behavior of RPN-G and ManPG
on the synthetic data is similar to that on the random data, that is, RPN-G converges faster in the
sense of both computational time and the number of iterations.
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Figure 3: The five principal components used in the synthetic data.

Table 1: An average result of 5 random runs for random data with different settings of (n, µ). The
subscript k indicates a scale of 10k. iter-v denotes iterations to reach the optimal ‖vk‖ for the first
time, for example, in the second row, 897 denotes the number of iterations that make ‖vk‖ firstly
attain 10−8. iter-u denotes the number of using the new search direction uk.

(n, µ) Algo iter iter-v iter-u f sparsity ‖vk‖
(5000,1.5) ManPG 3000 897 - −4.591 0.37 7.41−8
(5000,1.5) RPN-G 334 - 5 −4.591 0.37 4.53−16
(10000,1.8) ManPG 3000 1736 - −1.022 0.32 2.19−8
(10000,1.8) RPN-G 580 - 6 −1.022 0.32 5.69−16
(30000,2.0) ManPG 3000 1283 - −3.982 0.22 1.19−8
(30000,2.0) RPN-G 347 - 5 −3.982 0.22 5.25−15
(50000,2.2) ManPG 3000 1069 - −7.062 0.18 4.56−7
(50000,2.2) RPN-G 789 - 5 −7.062 0.18 1.41−14
(80000,2.5) ManPG 3000 834 - −1.173 0.17 1.41−6
(80000,2.5) RPN-G 839 - 6 −1.173 0.17 1.94−15

Remark 5.2. Here, we discuss the numbers of floating point arithmetic (flop) for computing vk and
uk per iteration. For sparse PCA with r = 1, the main computation cost is on Ax and ATAx for
ManPG, and its flops is O(4mn), where A ∈ R

m×n. Besides the computations in the function value
and gradient evaluation, there are computations in the semismooth Newton iterations, where its
dominant computational costs focus on Ψ(λ) = BT

xk

(
proxth

(
xk − t [∇f(xk) +Bxk

λ]
)
− xk

)
in (3.7)

and
JΨ(λk)[d] = BT

xk
(∂ proxth(xk − t [∇f(xk) +Bxk

λ])) ◦ (−tBxk
d) ,

where ◦ denotes the entrywise product of two matrices. The computations of Ψ(λ) and JΨ(λk)[d]
in one evaluation are respectively O(4n) and O(6n). Thus, the total computation cost in the
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Figure 4: Random data: the norm of search direction vk versus CPU for different (n, µ), where the
blue circle indicates the use of the new direction uk.
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Figure 5: Plots of ‖vk‖ versus iterations and CPU times respectively, where ‖vk‖ is the norm of
search direction, data matrix A ∈ R

4000×400 is from the synthetic data, µ is set to be 1.2. Note
that the blue circle indicates the use of the new direction uk.

semismooth method is on the order of O(ssnk ∗ 10n), where ssnk denotes the iteration number of
semismooth Newton at k-th step. Therefore, the total complexity of ManPG in one evaluation is
on the order of O(4mn + ssnk ∗ 10n).

For RPN and RPN-G, the direction uk is computed by additionally solving J(xk)[uk] = −vk.
We first compute vk by semismooth Newton method and its cost is also O(4mn+ssnk∗10n). When
uk is solved by the built-in Matlab function cgs, the dominant computational cost per iteration
comes from multiplying a vector by the matrix J(xk). Assuming that cgs takes innerk iterations
for computing uk, and the nonzero element of xk is sp, the computation of

J(xk)d =− d+Mxk
d−Mxk

xk(x
T
kMxk

xk)
−1xTkMxk

d

− t(Mxk
−Mxk

xk(x
T
kMxk

xk)
−1xTkMxk

) ∗ (−2ATAd+ λkd)

costs O(2m(n+ sp)) flops. Thus, the overall computation of uk is O(innerk ∗ 2m(n+ sp) + 4mn).
Therefore, when the direction uk is computed, the total complexity of RPN and RPN-G in one
evaluation is on the order of O(4mn+ssnk∗10n+innerk ∗2m(n+sp)). According to the numerical
test, the inner iteration number for cgs is usually 4 or 5 iterations.

5.4 Comparisons with ManPG algorithm on the Stiefel manifold (r > 1)

In this section, we repeat the numerical experiments in Subsection 5.3 for multiple values of r. The
parameters are set as those in Subsection 5.3. The results are reported in Table 2. The proposed
method RPN-G is able to obtain higher accurate solutions in the sense that ‖vk‖ from RPN-G is
in double precision whereas that from ManPG is only in single precision. In addition, the number
of Riemannian proximal Newton steps is not large and usually is only 3-4 iterations. Since ManPG
and RPN-G use different stopping criterion, their computational times are not reported in Table 2.
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Figure 6: Left: Random data: plots of ‖vk‖ versus iterations and CPU times respectively, where
(n, r, µ) = (500, 5, 0.8). Right: Synthetic data: plots of ‖vk‖ versus iterations and CPU times
respectively, where ‖vk‖ is the norm of search direction, data matrix A ∈ R

400×40 is from the
synthetic data, µ is set to be 0.8, r is set to be 5. Note that the blue circle indicates the use of the
new direction uk.

Instead, two typical runs for demonstrating the computational times are shown in Figure 6. We
conclude that RPN-G converges faster in the sense of both computational time and the number of
iterations.

Table 2: An average result of 5 random runs for random data with different settings of (n, µ, r).
The subscript k indicates a scale of 10k. iter-v denotes iterations to reach the optimal ‖vk‖ for the
first time, for example, in the second row, 818 denotes the number of iterations that make ‖vk‖
firstly attain the order of 10−7. iter-u denotes the number of using the new search direction uk.

(n, µ) r Algo iter iter-v iter-u f sparsity ‖vk‖
(200,0.6) 3 ManPG 3000 818 - −7.930 0.54 3.76−7
(200,0.6) 3 RPN-G 612 - 3 −7.930 0.54 8.09−15
(300,0.8) 5 ManPG 3000 384 - −9.160 0.68 6.17−7
(300,0.8) 5 RPN-G 245 - 4 −9.160 0.68 2.71−14
(500,0.6) 8 ManPG 3000 1131 - −4.901 0.45 1.03−7
(500,0.6) 8 RPN-G 577 - 3 −4.901 0.45 4.57−14
(800,0.8) 10 ManPG 3000 868 - −7.181 0.50 3.11−7
(800,0.8) 10 RPN-G 787 - 3 −7.181 0.50 8.31−14

6 Conclusion and Future Work

In this paper, we proposed a Riemannian proximal Newton method for solving optimization prob-
lems with separable structure, f + µ‖x‖1, over an embedded submanifold. It is proven that the
proposed algorithm achieves quadratic convergence under certain reasonable assumptions. We fur-
ther proposed a hybrid method that combines a Riemannian proximal gradient method and the
Riemannian proximal Newton method. The hybrid method has been proven to have global conver-
gence and the local quadratic convergence rate. Numerical results demonstrate the effectiveness of
the proposed methods.

There are several directions for future research. In this paper, we have only considered a
specific type of optimization problem, namely f(x) + h(x) with h(x) = µ‖x‖1, on an embedded
submanifold. It would be natural to extend the Riemannian proximal Newton method to handle
more general nonsmooth functions h(x) and more general manifolds. Additionally, we have only
proposed a hybrid method for achieving global convergence, where the global convergence relies on
the empirical selection of parameters. Therefore, it would be valuable to further investigate the
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globalization of the Riemannian proximal Newton method. The current analyses rely on solving
Subproblem (3.1) and the linear system (3.2) exactly. Proposing an inexact Riemannian proximal
Newton method is also a valuable future research direction.
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A Semismooth Implicit Function Theorem

The implicit function theorem for semismooth function comes from [Gow04, Theorem 4], it relies
on the inverse function theorem for G-semismooth function [Gow04, Theorem 2], we first restate
the result in Lemma A.1.

Lemma A.1 (G-semismooth Inverse Function Theorem). Suppose that f : Ω → R
n be G-(strongly)

semismooth function with respect to Kf on Ω, where Ω ⊂ R
n be an open set. Fix a point x0 ∈ Ω

and suppose that

(i) If f is differentiable at x ∈ Ω, then ∇f(x) ∈ Kf (x).

(ii) the multivalued mapping x 7→ Kf (x) is compact valued and upper semicontinuous at each
point of Ω.

(iii) Kf (x
0) consists of positively (negatively) oriented matrices.

(iv) the topological index of f at x0 is 1 (respectively, -1), i.e., index(f, x0) = 1(respectively, -1).

Then there exists an open neighborhood U of x0 and an open neighborhood V of f(x0) such that
f : U → V is bijective and f has an inverse h : V → U that is locally Lipschitz, and h is G-(strongly)
semismooth at each v ∈ V with respect to Kh(v) = {A−1 : A ∈ Kf (u)} and v = f(u), where the
map v 7→ Kh(v) is compact valued and upper semicontinuous at each point of V.
Remark A.2. In [Gow04], the author mainly consider a class of H-differentiable function, and
it follows from the definition of H-differentible [Gow04, Definition 1], G-(strongly) semismooth
function belong to H-differentible functions, we refer interested reader to [Gow04] for more detail..

Note that Lemma A.1 requires the notion of positively (negatively) oriented matrices and the
notion of a topological index of a function. A matrix is said to be positively (negatively) oriented
if it has a positive (negative) determinant sign. The topological index is, however, not easy to
verify. Fortunately, a sufficient condition has been given in [PSS03, Theorem 6] and we give it in
Lemma A.3.

Lemma A.3. Let Φ : Rn → R
n be Lipschitz continuous in an open neighborhood D of a vector x0.

Consider the following statements:

(a) every matrix in ∂Φ(x0) is nonsingular;

(b) for every V ∈ ∂BΦ(x
0), sgn detV = index(Φ, x0) = ±1.

It holds that (a) ⇒ (b).

We present and prove the semismooth implicit function theorem in Corollary A.4, which is a
rearrangement of Lemma A.1 and Lemma A.3.

Corollary A.4 (Restatement of Corollary 2.6). Suppose that F : Rn × R
m → R

m is a (strongly)
semismooth function with respect to ∂BF in an open neighborhood of (x0, y0) with F (x0, y0) = 0.
Let H(y) = F (x0, y). If every matrix in ∂H(y0) is nonsingular, then there exists an open set
V ⊂ R

n containing x0, a set-valued function K : V ⇒ R
m×n, and a G-(strongly) semismooth

function f : V → R
m with respect to K satisfying f(x0) = y0,

F (x, f(x)) = 0

for every x ∈ V and the set-valued function K is

K : x 7→ {−(Ay)
−1Ax : [Ax Ay] ∈ ∂BF

(
x, f(x)

)
},

where the map x 7→ K(x) is compact valued and upper semicontinuous.
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Proof. Since every matrix in ∂H(y0) is nonsingular, where H : Rm → R
m : y 7→ H(y) = F (x0, y),

then it follows Lemma A.3, for every V ∈ ∂BH(x0), sgn detV = index(H,x0) = ±1. Note that H
is also G-(strongly) semismooth at y0 with respect to

KH(y0) = {Ay : [Ax Ay] ∈ ∂BF
(
x0, y0

)
},

where the map y 7→ KH(y) is compact valued and upper semicontinuous. Define F : D → R
n×R

m

by
F(x, y) = (x, F (x, y)) ,

where D ⊂ R
n × R

m is an open set including (x0, y0). It is easily seen that F is G-(strongly)
semismooth at (x0, y0) ∈ D with respect to

KF (x
0, y0) =

{[
In 0
Ax Ay

]

: [Ax Ay] ∈ ∂BF
(
x0, y0

)}

,

where the map (x, y) 7→ KF (x, y) is compact valued and upper semicontinuous.
We now verify conditions (i)-(iv) of Lemma A.1 for F . Since KF (x, y) is defined with the

∂BF
(
x, y
)
, then conditions (i) and (ii) are clearly satisfied for F and KF . As for conditions (iii)

and (iv), it involves the property of topological index and the verification process of conditions (iii)
and (iv) is exactly the same as that proof of [Gow04, Theorem 4], we omit it and refer interested
reader to [Gow04] for more detail.

According to Lemma A.1, there exist a neighborhood U of (x0, y0) and a neighborhood V ×W
of F(x0, y0) such that for every v ∈ V and w ∈ W, there is a unique z = (x, y) ∈ U such that

F(z) = (v,w).

Since F(x0, y0) = (x0, 0), we can fix ω to be 0. Thus, for each v ∈ V, there is a unique z = (x, y) ∈ U
with

(x, F (x, y)) = F(z) = (v, 0),

which implies that x = v and F (x, y) = 0. Thus, for every x ∈ V, there is a unique y such that
(x, y) ∈ U and F (x, y) = 0. Therefore, y is the function of x, we let y = f(x), where x ∈ V, then
F(x, f(x)) = 0 for any x ∈ V. Furthermore, let H : V × W → U denote the inverse of F on U .
According to Lemma A.1, H is also G-(strongly) semismoooth at any (v,w) ∈ V ×W with respect
to KH(v,w) = {M−1 : M ∈ KF (x, y)}, where F(x, y) = (v,w) and the map (v,w) 7→ KH(v,w) is
compacted valued and upper semicontinuous at each point of V ×W.

Now f can be written as
f = P2 ◦ H ◦ φ,

where φ is the inclusion map φ : Rn → R
n×R

m : x 7→ φ(x) = (x, 0) and P2 is the projection map
P2 : R

n×R
m → R

m : (x, y) 7→ P2(x, y) = y. Thus, f is also G-(strongly) semismooth with respect
to

K(x) =

{

[0 Im]
[
In 0
Ax Ay

]−1 [
In
0

]

: [Ax Ay] ∈ ∂BF
(
x, f(x)

)
.

}

= {−(Ay)
−1Ax : [Ax Ay] ∈ ∂BF

(
x, f(x)

)
},

where the map x→ K(x) is compacted valued and upper semicontinuous.
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