
An Undergraduate Course on Software Bug Detection
Tools and Techniques

 Eric Larson
Seattle University
901 12th Avenue

Seattle, WA 98122-1090

elarson@seattleu.edu

ABSTRACT
The importance of software bug detection tools is high with the
constant threat of malicious activity. Companies are increasingly
relying on software bug detection tools to catch exploitable bugs
before the program is released. This paper describes a course on
software bug detection techniques that is aimed at undergraduates.
Courses in software verification are often taught at the graduate
level and too theoretical and research oriented for undergraduates.
A key component of the course is the programming assignments
where students gain practical experience in creating their own
software bug detection tools using a source to source converter for
a subset of C++.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education – Computer Science Education D.2.5
[Software Engineering]: Testing and Debugging – symbolic
execution, testing tools.

General Terms
Reliability, Security, Verification.

Keywords
software testing, software verification, computer security,
compilers, software engineering, computer science education

1. INTRODUCTION
Bugs in software can have devastating effects in today’s world.
Computer viruses and malicious users can exploit software bugs
to run harmful code or gain access to restricted data. In addition to
the threat of attacks, substantial time and money is spent keeping
software up to date. One report [4] estimates that software bugs
cost the United State economy $59.5 billion annually.

Software companies invest significant resources in software
testing and verification in both tools and manpower. Many
computer science graduates begin their careers as software testers

and part of their job is spent developing or maintaining software
bug testing tools.

This paper proposes a course on software bug detection tools and
techniques. It describes an overview of the course as well as an
infrastructure for programming assignments where students
develop their own bug detection tools. The course was taught at
Seattle University during the winter quarter of 2005.

After taking this course, students will have a better understanding
on why testing alone is inadequate, why software bug detection
tools are necessary, and gain experience writing their own tools.
As a result, students can be effective members on a software
testing team.

While producing software testers is not the primary goal of a
computer science degree, the course provides several other
benefits. Students will become better programmers as they will be
more cognizant of the issues that make software verification
difficult and can program in a manner that is less prone to bugs.
Software developers often work with software bug detection tools
and may need to annotate their source code to aid the tool.

Software verification is rich in computer science theory and the
course provides several applications of theoretical topics. While
the course does not attempt to overwhelm the students with
theory, several different algorithms are introduced, many (such as
Boolean satisfiability) of which have uses outside of software bug
detection. Static bug detection is a good example of an NP-
complete problem and students are able to explore how each
technique presented in class mitigates this problem and still finds
useful bugs. Model checking is a good example of how finite state
automata are used in modeling programs and brings some
practicality to a topic that students often dismiss as too
theoretical.

This paper makes two major contributions:

• A description of an undergraduate course on software bug
detection. While several courses in this area have been
taught on this subject at the graduate level, I am not aware of
a course geared toward undergraduates. Graduate courses in
software verification tend to be more theoretical and
research-oriented. The proposed course blends the
underlying theory with practical experience and examples
while exposing students to the open-ended research problems
associated with software bug detection.

• A set of assignments that could be used in a course to create
software bug detection tools. The infrastructure uses a source

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE’06, March 1-5, 2006, Houston, Texas, USA.
Copyright 2006 ACM 1-59593-259-3/06/0003…$5.00.

to source converter for a selected subset of C++ and could be
used for assignments in different courses.

2. COURSE OVERVIEW
The course on software bug detection was taught at Seattle
University in the Winter 2005 quarter as a senior elective course.
It met for ten weeks with five contact hours per week. The goal of
the course is to acquaint students with techniques for detecting
bugs in software with special emphasis on creating tools. A
course on algorithms was the only prerequisite to the course;
having prerequisites in compilers and automata theory may help
as time was spent on getting the students up to speed in these
areas.

This course is not to be confused with a course on software
testing. While testing is a commonly used method for finding
bugs in software, only one lecture was spent on the topic. The
course does not go into topics such as writing tests, creating a test
plan, or testing metrics. For example, when discussing dynamic
bug detection – it is mentioned that the effectiveness of such a
tool is dependent on how well the test suite exercises the code.
Very little time is discussed on how to create such a test suite. A
separate course on software testing would complement this
course. It is possible to use some of the ideas in this paper to
create units on software testing tools and/or software verification
within a software testing course.

A textbook was not used in the course as there was no book that
encompassed everything I wanted to cover in the course. Instead,
a series of research papers that discussed the topics was carefully
chosen. The key papers are listed as references throughout this
section. Though research papers were used, the class used a
traditional lecture format rather than a research seminar.
However, throughout the course there were several class
discussions and class participation contributed to the overall
grade. One memorable discussion explored the ethical
implications of malicious people using bug detection tools to find
exploits in open-source software.

The course consisted of four distinct units: program analysis,
dynamic bug detection, static bug detection, and assorted topics.
The program analysis section focused on standard algorithms for
creating a control flow graph and performing data flow analysis.
This unit also illustrated that the compiler is the first bug
detection tool that programmers use and explored what bugs the
compiler is capable of finding. The program analysis section
concluded with lectures on interprocedural analysis and alias
analysis, both are necessary for high quality static bug detection
and both serve as good examples of why it is difficult to obtain
precise information about a program.

The second unit was on dynamic bug detection. In this unit, we
focused on memory access violations, a common target for
dynamic bug detection tools. The unit commenced with a lecture
on testing with a focus on the different types of testing, why
testing is hard [13], and where bug detection tools enter the
picture. Then we explored the designs of Purify [7] and the work
done by Jones and Kelly [9]. The designs are similar in that they
both use additional state to track interesting behavior of a
program but they differ in granularity and how they are
implemented. After this section, students should have a good

understanding of the tradeoffs associated with dynamic bug
detection.

The static bug detection unit is the largest unit in the course and
exposed students to three different approaches to detecting
software faults statically: symbolic execution, constraint analysis,
and model checking. Prefix [2] was used as the representative
symbolic execution system and the paper discussed many of the
key issues with symbolic execution: path explosion, unknown
values, and pruning infeasible paths.

Constraint analysis explored the work done by Zhang and Wang
[14]. While their system only deals with constraints on a single
path, the paper describes an elegant algorithm for generating
constraints. It also presents a solution for solving the constraints
that contain both numerical constraints (such as x < 4) and
Boolean constraints such as (a || b && y) using a linear
programming solver and a Boolean satisfiability algorithm. While
we stepped through the satisfiability algorithm, the class did not
delve into the internals of the linear programming solver.

Model checking is arguably best explained using automata theory
but I did not think that was the best approach for undergraduates.
Instead, I gave a simplified example of how a finite state
automata that represents the program could be created and
explained that model checking is largely a graph reachability
problem. I also described different abstraction techniques used by
model checkers and why they are necessary. This section
concluded with an overview of the SLAM system [1].

A unifying theme throughout the static bug detection unit
explored the different ways correctness properties can be
specified. Some tools, such as Prefix [2], build correctness into
the system. Zhang and Wang [14] system’s rely on programmer
pre/post conditions and assertions. SLAM [1] uses properties that
can be specified as a finite state automata using a special
modeling language.

During the last two and a half weeks, assorted miscellaneous
topics related to the course were covered. In one class, we
discussed verifying interactive web and concurrent programs and
how they are more difficult to verify than sequential programs.
Another topic was the use of type systems and safe programming
languages. The last topic in the course was on security and
described how a buffer overflow bug can be exploited and some
techniques [3] to prevent this from happening.

Many other topics are possible for this course such as software
engineering approaches (coding standards, code reviews, team
organizations that lead to better reliability), debugging (the art of
debugging, providing enough feedback to the user when a bug is
detected, debugging optimized code), and inferring bugs based on
anomalies in the code [6].

For homework, the students had to complete three programming
assignments (described in Section 3) while working in pairs. They
also were assigned a written homework problem each class period
that was due the next period. Problems varied from “manually
execute the algorithm” to relatively short open-ended design
problems. Exams and class participation rounded out the grading.

3. PROGRAMMING ASSIGNMENTS
The programming assignments in the course all used SUDSE, a
source to source conversion infrastructure. In the first assignment,
the students created analyses that were used in the later two
assignments. The second assignment had students create a
dynamic array checker using instrumentation. Students designed
and constructed a static null dereference checker in the third
assignment. While the last two assignments are both dependent on
the first assignment, they are independent of each other. This
section first describes the infrastructure used by the students to
complete their assignments and then outlines each of the
assignments in more detail.

3.1 Assignment Infrastructure
SUDSE is a source to source converter of a subset of C++ and
was written using code from gcc [10] and ctool [4]. The subset of
C++ was chosen to allow the students to encounter and explore
the issues that make software bug detection difficult without
having the coding burden of implementing the entire language. To
this end, pointers and dynamic memory are included in the subset
but classes, structs, templates, floating point values, and
enumerated types are omitted. The only allowed types are
integers, arrays (of integers or pointers), and pointers (to any of
the three types).

With the exception of cin and cout, the subset could represent
C. The use of cin and cout was chosen over scanf and
printf because the students are taught using C++ in our
computer science program and to avoid unnecessary aggravation
caused by scanf when parsing the format string and dealing
with pointer variables.

SUDSE is written in C++ using classes to represent different
programming constructs. It starts by parsing in a C++ program
and creates data structures that store the variables, functions, and
the statements in program order. To simplify the analysis, SUDSE
goes through a simplification phase that removes side effects such
as increment (++) and short-circuited operators (such as &&).
Many software bug detection tools and compilers go through a
similar simplification phase using a simplified IR [8] or a tool
such as CIL [11]. Since this course is not a compiler course, the
parsing code is provided to the students and requires no
modification. The data structures largely remain intact; students
will need to add their own data members and functions to the
various classes.

After parsing the program, SUDSE simply traverses the program
and writes the content back to a file. The printing routines, which
are also given to the class, serves as an example of how to
traverse the abstract representation of the program.

The work that the students do is largely done between and is
separate from these two phases. The one exception is a
modification to the printing routines when instrumenting the
program for the dynamic bug detection assignment. During the
course, two hours of lecture time was devoted to the simplified
C++ language and the internals of SUDSE.

SUDSE is also suitable for assignments in other courses. Clearly,
it would be suitable for compiler courses, especially those that

focus on classical back-end optimizations such as common
subexpression elimination and loop invariant code motion. It
would also be suitable for assignments in software testing. One
example would be to create a statement coverage tool using an
instrumentation approach similar to the dynamic array checker.

3.2 Assignment 1: Program Analysis
The first assignment had students implement standard program
analyses that would be used for the latter two programming
assignments.

The assignment has three parts. The first step was to identify
basic blocks and create a control flow graph. In the second part,
students implemented a data flow analysis for reaching
definitions. In the third part of this assignment, they had to use
the reaching definitions information to detect uses of uninitialized
variables. This was accomplishing by creating definitions for each
declaration (recall that initializers are forbidden on declaration)
and marking them as uninitialized. If this definition was ever used
in a statement (and not killed by an intervening statement), an
error is signaled.

This assignment demonstrated that standard data flow analyses is
suitable for catching bugs. One test case was constructed to show
where data flow analysis breaks down. This test exposes an
uninitialized use on a path through the program that is invalid and
illustrates the need for distinguishing different paths of a program
during testing and verification.

If the students in your course have background in back-end
compiler algorithms, this assignment could be skipped and future
assignments could start with a version of the tool where control
and data flow is provided. Other suggestions include pointer
analysis or a data flow version of the static null dereference
checker.

3.3 Assignment 2: Dynamic Array Checker
The goal of the second assignment was to have students create
their own dynamic array checker that validates that any array
reference are within the bounds of the array. The checker also
checks pointer dereferences which are equivalent to an array
reference.

The design uses a pointer table that keeps track of all the pointers
and arrays in the program at run time. Each table entry stores the
size of the object the pointer points to and the current offset from
the beginning of the object. Array variables are treated like
pointers and always have an offset of zero. The table is similar to
the object table described by Jones and Kelly [9]. When certain
events occur in the program, the pointer table is accessed and/or
updated. The pointer table can be indexed by address or by using
a mangled name if you add the requirement that pointers must
have names and cannot reside on the heap or within arrays.

The assignment has two distinct parts. In the first part, students
modify SUDSE to add instrumentation to interesting statements.
Part of the assignment was to figure out what statements needed
instrumentation. Instrumentation is added using strings. If a
statement needed instrumentation, the program should create a
string that contains a function call with the appropriate arguments.
The printing routines must be modified to actually print the
instrumentation.

// Original code (Fig. 1A) // Instrumented code (Fig. 1C)

int bar(int x) #include "ptr_table.h"

{ int bar(int x)

 int a[5]; {

 int i; int a[5];

 for (i = 0; i < 5; i++) { create_array_entry((void *) a, sizeof(int)*5);

 a[i] = i * i; int i;

 } int T1, T2;

 return a[x]; i = 0;

} T1 = i < 5;

 while (T1) {

// Simplified code (Fig. 1B) check_array_bounds((void *) a, i, __FILE__, __LINE__);

int bar(int x) a[i] = i * i;

{ i = i + 1;

 int a[5]; T1 = i < 5;

 int i; }

 int T1, T2; check_array_bounds((void *) a, x, __FILE__, __LINE__);

 i = 0; T2 = a[x];

 T1 = i < 5; delete_array_entry((void *) a);

 while (T1) { return T2;

 a[i] = i * i; }

 i = i + 1;

 T1 = i < 5; // ptr_table.h (Fig. 1D)

 } void create_array_entry(void *addr, size_t size);

 T2 = a[x]; void check_array_bounds(

 return T2; (void *) a, int element, const char *file, int line);

} void delete_array_entry(void *addr);

Figure 1: Example of instrumented program for assignment 2. Variables T1 and T2 are temporary variables created during the
simplification process. The instrumented code in Fig. 1c includes the code of ptr_table.h, listed in Fig. 1D.

Figure 1 shows an example of an instrumented program. The
original program and program after simplification are shown in
Figures1A and 1B respectively. Figure 1C shows the
instrumented program. Instrumentation is added to create an
entry in the pointer table for the array a. The starting address of
the table is used to access the table. Later the array is indexed
twice. The first check will never result in an error but the second
check will trigger an error if the value x passed into the function
is not constrained. Finally, the array is removed from the table
when the function exits because the array is no longer in scope.
The file includes a header file (ptr_table.h) containing the
prototypes for the instrumentation routines. A partial list of
prototypes is shown in Figure 1D.

The second part of the assignment involves writing the
instrumentation routines themselves. This consists of coding the
functions that are listed in ptr_table.h using the pointer table
design described earlier. The instrumentation routines are
compiled separately to create an object file. This object file is
linked when the instrumented source code is compiled to form an
instrumented executable.

3.4 Assignment 3: Static Null Dereference
Checker
The final assignment in the course was more open ended than the
previous two assignments. Their task was to create a null
dereference checker that was static. They could use any technique
they liked but had to be more sophisticated than simply using
data-flow analysis.

While the utopian goal of no missed bugs and no false alarms is
infeasible, they had to develop a design and make intelligent
decisions in order to minimize the number of missed bugs and
false alarms (bug reports that are not actually bugs). Time
constraints were also present - their design had to be implemented
within the three weeks they had for the assignment. Students
submitted a design report a week after this assignment was
handed out for approval by the instructor. It forced students to
think about the design up front and recognize where it was
deficient. Students had to describe potential solutions to address
their shortcomings. Another reason for the report was to allow me
to give feedback on their design and make sure the project was
adequate given the time constraints.

4. EXPERIENCES AND FEEDBACK
To gauge the effectiveness of the course, students filled out an
extensive survey. The results from this survey along with my own
observations form the basis of this section. Overall, the feedback
was positive with virtually all of the students felt they had learned
the major course objectives.

Opinions varied on the written homework assignments as some
students felt that the directions were vague and unclear and there
were not enough similar examples in class. The open-ended
problems had some level of vagueness intentionally built into the
problems. The examples in class were intended to be similar but
different than the homework problems. Having a book with
additional examples to fall back on would help.

The first programming assignment (program analysis)
demonstrated the varied backgrounds the students had in the
course. A couple of students, who likely had some compiler
experience, thought the assignment was easy and not very
instructional. Most everyone thought the assignment was time
consuming, primarily due to the time it took to get accustomed to
the source code. All of the teams, with the exception of one team
that did not finish, did well on this assignment. In the future, I
would likely scale this assignment back by providing the control
flow graph code and having students do the data flow. I also may
consider making this a pointer analysis assignment instead to give
students who have compiler experience something they likely
have not done before.

The second assignment (dynamic array checker) was the most
successful assignment. Most students felt they learned from the
assignment and the assignment was average in terms of difficulty
and time. All of the teams did well on this assignment (each team
received at least a B).

The third assignment had a mixed response. On the survey
questions pertaining to amount learned, difficulty, and time
commitment, the responses varied from average to a lot (or hard).
Again, there were a subset of students that did not like the open-
ended nature of the assignment and thought the directions were
unclear. Most of the designs used some sort of symbolic
execution. While most of the groups did what they were supposed
to do, I felt that the designs and implementations could have
better if they had more time. In the future, I would allow more
than three weeks to complete this assignment. This can be
accomplished by shortening the first assignment.

The students were also asked which topics they found the most
interesting. There was no general consensus. One interesting
tidbit is that students either tended to really like or really dislike
the program analysis section with respect to the rest of the course.
Students were also asked if there were any topics they would have
liked to see but were absent from the course. A few people
mentioned debugging and I agree that this a topic that should be
covered in more depth as one goal of a software bug detection
tool is to simplify the debugging process once a bug is detected.

5. CONCLUSION
This paper describes an undergraduate course on software bug
detection tools and techniques. The course explore the underlying
algorithms used by many software bug detection tools today. By
using SUDSE, a source to source conversion tool for a subset of

C++, students gain practical experience in developing their own
software bug detection tools. Overall, the course experience was
positive based on instructor observations and student feedback.

6. ACKNOWLEDGMENTS
I would like to thank the anonymous reviewers for their insightful
comments on the paper and the Seattle University students that
took the course in winter 2005 for their valuable feedback.

7. REFERENCES
[1] T. Ball and S. Rajamani. Automatically Validating Temporal

Safety Properties of Interfaces. Workshop on Model
Checking of Software, May 2001.

[2] W. Bush, J. Pincus, and D. Sielaff. A static analyzer for
finding dynamic programming errors. Software Practice and
Experience, July 2000.

[3] C. Cowan, C. Pu, D. Maier, H. Hinton, P. Bakke, S. Beattie,
A. Grier, P. Wagle, and Q. Zhang. StackGuard: Automatic
Adaptive Detection and Prevention of Buffer-Overflow
Attacks. Proceedings of the 7th USENIX Security
Conference, January 1998.

[4] Ctool. http://sourceforge.net/projects/ctool/
[5] The Economic Impacts of Inadequate Infrastructure for

Software Testing. National Institute of Standards and
Technology report, prepared by RTI (project 7007.011), May
2002.

[6] D. Engler, D. Chen, S. Hallem, A. Chou, B. Chelf. Bugs as
Deviant Behavior: A General Approach to Inferring Errors in
Systems Code. Symposium on Operating System Principles,
Oct. 2001.

[7] R. Hastings and B. Joyce. Purify: Fast Detection of Memory
Leaks and Access Errors. 1992 Winter USENIX Conference,
Jan. 1992.

[8] L. Hendren, C. Donawa, M. Emami, G. Gao, Justiani, and B.
Sridharan. Designing the McCAT Compiler Based on a
Family of Structured Intermediate Representations.
International Workshop on Languages and Compilers for
Parallel Computing, Aug. 1992.

[9] R. Jones and P. Kelly. Backwards-compatible bounds
checking for arrays and pointers in C programs. Proc. of the
3rd International Workshop on Automated Debugging, May
1997.

[10] J. Merrill. GENERIC and GIMPLE: A New Tree
Representation for Entire Functions. GCC Developer’s
Summit, May 2003.

[11] G. Necula, S. McPeak, S. P. Rahul, W.Weimer. Cil:
Intermediate Language and Tools for Analysis and
Transformation of C Programs. International Conference on
Compiler Construction, Apr. 2002

[12] N. Nethercote and J. Fitzhardinge. Bounds-Checking Entire
Programs Without Recompiling. Workshop on Semantics,
Program Analysis, and Computing Environments for
Memory Management, Jan. 2004.

[13] J. Whittaker. What is Software Testing? And Why Is It So
Hard? IEEE Software, Jan/Feb 2000.

[14] J. Zhang and X. Wang. A constraint solver and its
application to path feasibility analysis. International Journal
of Software Engineering and Knowledge, Volume 11, 2001.

