
Improving Reinforcement Learning with Context Detection

Bruno C. da Silva, Eduardo W. Basso, Filipo S. Perotto, Ana L.C. Bazzan, Paulo M.
Engel

Instituto de Informática, UFRGS
Caixal Postal 15064 CEP 91.501-970

Porto Alegre, Brazil

{bcs,ewbasso,fsperotto,bazzan,engel}@inf.ufrgs.br

ABSTRACT
In this paper we propose a method for solving reinforcement
learning problems in non-stationary environments. The ba-
sic idea is to create and simultaneously update multiple
partial models of the environment dynamics. The learn-
ing mechanism is based on the detection of context changes,
that is, on the detection of significant changes in the dy-
namics of the environment. Based on this motivation, we
propose, formalize and show the efficiency of a method for
detecting the current context and the associated model of
prediction, as well as a method for updating each of the
incrementally built models.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms

Keywords
Reinforcement learning, non-stationary environments, multi-
model learning

1. INTRODUCTION
Dealing with non-stationary environments has always been

a difficult task for learning algorithms. Specifically, non-
stationarity affects standard reinforcement learning (RL)
methods in a way that forces them to continuously relearn
the policy from scratch. Our goal in this paper is to comple-
ment model-based RL algorithms with a method for dealing
with a class of non-stationary environments in which the
dynamics obeys a set of restrictions.

The non-stationary environments that we deal with con-
sist of those composed by several different stationary dy-
namics. We call each type of dynamics a context and assume
that it can only be estimated by observing the transitions

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’06May 8–12 2006, Hakodate, Hokkaido, Japan.
Copyright 2006 ACM 1-59593-303-4/06/0005 ...$5.00.

and rewards. Our method creates models for these contexts
and determines how to switch to the most appropriate model
on-the-fly. Partial models have been used for this purpose
by other authors, such as Choi [1] and Doya [2]. However,
their approaches require a fixed number of models, and thus
implicitly assume that the approximate number of different
environment dynamics is known a priori. Since this assump-
tion is not always realistic, our method tries to overcome it
by incrementally building new models.

2. MULTIPLE PARTIAL MODELS
Most RL problems are modeled as Markov Decision Pro-

cesses (MDPs). MDPs are described by a set of states, S,
a set of actions, A, a reward function R(s, a) → < and a
probabilistic state transition function T (s, a, s′)→ [0, 1]. An
experience tuple 〈s, a, s′, r〉 denotes the fact that the agent
was in state s, performed action a and ended up in s′ with
reward r. Given a MDP, the goal is to calculate the optimal
policy π∗, which is a mapping from states to actions such
that the future reward is maximized. In the next sections we
assume that the reader is familiar with Q-Learning, a simple
model-free RL algorithm, and with model-based Prioritized
Sweeping. For more information, please refer to [3].

When dealing with non-stationary environments, both the
model-free and the model-based RL approaches need to con-
tinuously relearn everything from scratch, since the policy
which was calculated for a given environment is no longer
valid after a change in dynamics. This causes a performance
drop during the readjustment phase, and also forces the al-
gorithm to relearn policies even for environment dynamics
which have been previously experienced. Our hypothesis is
that the use of multiple partial models makes the learning
system capable of partitioning the knowledge into models,
each model automatically assuming for itself the responsibil-
ity for “understanding” one kind of environment behavior.
To each model, we assign a policy and a trace of prediction
error of transitions and rewards.

3. RL WITH CONTEXT DETECTION
We propose that the creation of new models should be

controlled by a continuous evaluation of the prediction er-
rors generated by each partial model. In the following sub-
sections we first describe how to learn contexts (i.e, esti-
mate partial models), and then we show how to detect and
switch to the most adequate model given a sequence of ob-
servations. Our method is called RL-CD, or Reinforcement
Learning with Context Detection.

 810

The class of non-stationary environments that we deal
with is similar to the one studied by Hidden-Mode MDPs re-
searchers [1]. We assume that the following properties hold:
1) environmental changes are confined to a small number
of contexts, which are stationary environments with dis-
tinct dynamics; 2) the current context cannot be directly
observed, but can be estimated according to the types of
transitions and rewards observed; 3) environmental context
changes are independent of the agent’s actions; and 4) con-
text changes are relatively infrequent.

3.1 Learning contexts
The mechanism for detecting context changes relies on a

set of partial models for predicting the environment dynam-
ics. A partial model m contains functions which estimate
transition probabilities (T̂m) and rewards (R̂m). Standard
model-based RL methods such as Prioritized Sweeping and
Dyna can be used to compute the locally optimal policy
πm(s).

Given an experience tuple ϕ ≡ 〈s, a, s′, r〉, we update the
current partial model m by adjusting its model of transi-

tion and rewards by ∆T̂
m,ϕ and ∆R̂

m,ϕ, respectively. These
adjustments are computed as follows:

∆T̂
m,ϕ(κ) = 1

Nm(s,a)+1

„
τs′

κ − T̂m(s, a, κ)

«
∀κ ∈ S

∆R̂
m,ϕ = 1

Nm(s,a)+1

„
r − R̂m(s, a)

«
such that τ is the Kronecker Delta:

τs′
κ =

1, κ = s′

0, κ 6= s′

The effect of τ is to update the transition probability
T (s, a, s′) towards 1 and all other transitions T (s, a, κ), for
all κ ∈ S, towards zero. The quantity Nm(s, a) reflects
the number of times, in model m, action a was executed
in state s. We compute Nm considering only a truncated
(finite) memory of past M experiences:

Nm(s, a) = min

„
Nm(s, a) + 1, M

«
(1)

A truncated value of N acts like a learning coefficient
for T̂m and R̂m, causing transitions to be updated faster in
the initial observations and slower as the agent experiments

more. Having the values for ∆T̂
m,ϕ and ∆R̂

m,ϕ, we update the
transition probabilities:

T̂m(s, a, κ) = T̂m(s, a, κ) + ∆T̂
m,ϕ(κ), ∀κ ∈ S (2)

and also the model of expected rewards:

R̂m(s, a) = R̂m(s, a) + ∆R̂
m,ϕ (3)

3.2 Detecting context changes
In order to detect context changes, the system must be

able to evaluate how well the current partial model can pre-
dict the environment. Thus, an error signal is computed for
each partial model. The instantaneous error is proportional

to a confidence value, which reflects the number of times the
agent tried an action in a state. Given a model m and an
experience tuple ϕ = 〈s, a, s′, r〉, we calculate the instanta-
neous error em,ϕ and the confidence cm(s, a) as follows:

cm(s, a) =

„
Nm(s, a)

M

«2

(4)

em,ϕ = cm(s, a)

„
Ω(∆R̂

m,ϕ)2 + (1− Ω)
X
κ∈S

∆T̂
m,ϕ(κ)2

«
(5)

where Ω specifies the relative importance of the reward and
transition prediction errors for the assessment of the model’s
quality. Once the instantaneous error has been computed,
the trace of prediction error Em of the partial model is up-
dated:

Em = Em + ρ

„
em,ϕ − Em

«
(6)

where ρ is the adjustment coefficient for the error.
The error Em is updated after each iteration for every

partial model m, but only the active model is corrected ac-
cording to equations 2 and 3. A plasticity threshold λ is
used to specify until when a partial model should be ad-
justed. When Em becomes higher than λ, the predictions
made by the model are considered sufficiently different from
the real observations. In this case, a context change is de-
tected and the model with lowest error is activated. A new
partial model is created when there are no models with trace
error smaller than the plasticity. The mechanism starts with
only one model and then incrementally creates new partial
models as they become necessary. Pseudo-code for RL-CD
is presented in algorithm 1.

Algorithm 1 RL-CD algorithm

Let mcur be the currently active partial model.
Let M be the set of all available models.
1: mcur ← newmodel()
2: M← {mcur}
3: s← s0, where s0 is any starting state
4: loop
5: Let a be the action chosen, considering model mcur

6: Observe next state s′ and reward r
7: Update Em, for all m, according to equation 6
8: mcur ← arg minm (Em)
9: if Emcur > λ then

10: mcur ← newmodel()
11: M←M∪ {mcur}
12: end if
13: Update T̂mcur and R̂mcur (equations 2 and 3)
14: Nm(s, a)← min(Nm(s, a) + 1, M)
15: s← s′

16: end loop

The newmodel() routine is used to create a new partial
model and initializes all estimates and variables to zero, ex-
cept Tm, initialized with equally probable transitions. The
values of parameters M , ρ, Ω and λ must be tunned accord-
ing to the problem. Formal analytical investigation of these
parameters is being developed but detailed discussions are
not presented due to lack of space.

 811

4. EMPIRICAL RESULTS
We now present some experiments which evaluate how

well our system performs in non-stationary environments.
The scenario used consists of a non-stationary toroidal grid
of 15x15 cells. The agent is a cat whose goal is to catch a
moving ball, which starts in a random column and row and
can take one of following behaviors: 1) moves to the left; 2)
moves to the right; 4) moves down; or 3) moves up.

The first experiment performed aims at testing the rel-
ative efficiency of classic model-free and model-based algo-
rithms: Q-Learning (QL) and Prioritized Sweeping with Fi-
nite Memory (PS-M)1. The agent is trained for one of the
ball behaviors at a time, until the algorithm converges to the
optimal policy. After that, we change the environment dy-
namics by modifying the ball behavior and measure how fast
each algorithm converges. It can be seen in figure 1 that, as
the context changes, the time needed to recalculate the op-
timal policies, both in the model-free and the model-based
approaches, is much superior to the convergence time of RL-
CD. Even though PS-M performs better than Q-Learning,
it still has to reestimate T̂ after every context change. Our
method, on the other hand, takes only a few steps until
realizing that the context has changed. After that, it auto-
matically selects the appropriate partial model for the new
dynamics.

Figure 1: A comparison of convergence times for
Q-Learning, PS-M and our approach.

It is also important to measure the average time the cat
takes to catch the ball while the policy is being learned in a
context. In order to implement this experiment, we runned
the learning algorithms and changed the ball behavior 8
times. For each one of these, we performed 5 batches of
100 episodes, each episode corresponding to the cat being
placed in a random place and running after the ball. We
measured the average time of a batch as the average num-
ber of iterations needed to catch the ball during all episodes.
The results are shown in figure 2.

In figure 2, vertical stripes are colored with different levels
of gray, each indicating a different context. Each time the

1We verified that standard PS requires exponential time to
converge in non-stationary environments, and thus we de-
signed and used PS-M, a modified PS with truncated mem-
ory instead of maximum likelihood estimation.

Figure 2: A comparison of performance for Q-
Learning, PS-M and our approach.

ball behavior changes, the average steps per episode grows
(peaks in the graph), indicating that the algorithms take
some time to relearn how to behave. During the first 4 con-
texts, our method is actually very similar to PS-M. However,
as soon as the contexts begin to repeat, RL-CD is capable
of acting optimally all the time, while the other algorithms
present periods of relearning and suboptimal acting.

From the empirical results discussed in this session we can
imply that: 1) our approach converges to the optimal policy
much faster than classic model-free and model-based meth-
ods in non-stationary environments; and 2) in our approach
the readapting time is very small, which implies that the
period of time with suboptimal acting is short.

5. CONCLUSIONS AND FUTURE WORK
In this paper we have introduced and formalized a sim-

ple method, called RL-CD, for solving reinforcement learn-
ing problems in non-stationary environments. We presented
empirical results which show that both the classic model-free
and model-based approaches have worse convergence times.

Formal analytical analysis of the RL-CD parameters is be-
ing developed, as well as a more detailed study regarding the
trade-off between memory requirements and model quality
in highly non-stationary environments. We are also study-
ing the possibility of using context detection as a method for
dimensionality reduction, since partial models might sum-
marize the impact of a subset of hidden sensors which cause
non-stationarity due to partial observations.

6. REFERENCES
[1] S. P. M. Choi, D.-Y. Yeung, and N. L. Zhang.

Hidden-mode markov decision processes for
nonstationary sequential decision making. In Sequence
Learning - Paradigms, Algorithms, and Applications,
pages 264–287, London, UK, 2001. Springer-Verlag.

[2] K. Doya, K. Samejima, K. ichi Katagiri, and
M. Kawato. Multiple model-based reinforcement
learning. Neural Computation, 14(6):1347–1369, 2002.

[3] L. P. Kaelbling, M. Littman, and A. Moore.
Reinforcement learning: A survey. Journal of Artificial
Intelligence Research, 4:237–285, 1996.

 812

