
Evaluating Invariances in Document Layout Functions

Alexander J. Macdonald
Document Engineering Lab
School of Computer Science

University of Nottingham
Nottingham, NG8 1BB, UK

ajm@cs.nott.ac.uk

David F. Brailsford
Document Engineering Lab
School of Computer Science

University of Nottingham
Nottingham, NG8 1BB, UK

dfb@cs.nott.ac.uk

John Lumley
HP Labs

Filton Road, Stoke Gifford
Bristol, BS34 8QZ, UK

john.lumley@hp.com

Abstract
With the development of variable-data-driven digital presses -
where each document printed is potentially unique there is a
need for pre-press optimization to identify material that is
invariant from document to document. In this way raster-
isation can be confined solely to those areas which change
between successive documents thereby alleviating a potential
performance bottleneck.

Given a template document specified in terms of layout func-
tions, where actual data is bound at the last possible moment
before printing, we look at deriving and exploiting the invari-
ant properties of layout functions from their formal speci-
fications. We propose future work on generic extraction of
invariance from such properties for certain classes of layout
functions.

Categories and Subject Descriptors
E.1 [Data]: Data Structures Trees; I.7.2 [Document and Text
Processing]: Document Preparation Markup Languages; I.7.4
[Document and Text Processing]: Electronic Publishing.

General Terms
Algorithms, Documentation

Keywords
XML, XSLT, SVG, Document Layout, Optimisation

1. INTRODUCTION
This research is concerned with optimising the rendering of
template-based documents as exemplified in the DDF ap-
proach [1] [2] in which the placement of items in the doc-
ument is defined by nested layout functions. An Example of
such a function is an X Flow, which places each item in the
flow to the right of the previous item.

FINAL DRAFT of paper accepted for:
DocEng’06, October 10–13, 2006, Amsterdam, The Netherlands.
Copyright 2006 Macdonald, Brailsford and Lumley.

In every case the geometric bounding box of an item is of
crucial importance to the overall layout

In what follows we may assume, without loss of generality,
that the final rendering paradigm will be SVG, which com-
bines sophisticated graphics with the advantage that its XML
syntax participates smoothly in an all-XML approach to the
overall document. Our view of a document is then a very
simple one. The Items that make up the document are ei-
ther a LayoutFunction or an Atom.

A simplifed BNF grammar for these types can be written as
follows. Note that, for brevity, not all of the types are fully
defined. It can be assumed that the types for position and
dimension all reduce to a floating point numerical represen-
tation. Note that an Atom can consist of a partially- or
fully-parameterised SVG document component.

WidthBounds =(MinWidth, MaxWidth?)

HeightBounds =(MinHeight, MaxHeight?)

SVG =(Xpos, Ypos, Width, Height)

Unbound =(Xpos, Ypos, ((Width, HeightBounds)

|(WidthBounds, Height)

|(WidthBounds, HeightBounds))?)

Atom =Unbound|SVG

Item =Atom|LayoutFunction

The use of such a simple document definition makes it easier
to define the various layout functions that need to be exam-
ined and to prove where invariances, if any, exist. Since a
layout function can be used anywhere an atom can be used
it is possible to build up arbitrarily complex layouts. It is
anticipated that certain combinations of layout functions will
give rise to invariances that might not exist in the individual
functions.

Given that a document might contain partially bound atoms
it is not always possible to evaluate it to a fully grounded state
(i.e. where there are only SVG atoms). However there may
exist invariant parts of the document that can be evaluated
and encapsulated[3], and this research begins to investigate
just how much of this invariance can be identified and ex-
tracted.

2. IMPLEMENTATION
The system is implemented as an XSLT program which takes
as its input a mixed namespace document containing both
SVG and elements in its own layout namespace. It then pro-
cesses this document, possibly with some extra data, and
produces another mixed content document as the output. By
successively re-evaluating the resultant document with addi-
tional data it reaches a stage where there is no more work to
be done and the output is a fully grounded document which
can be rendered by an SVG renderer.

Evaluation occurs in two depth-first passes over the docu-
ment. The first pass replaces unbound items in the source
document with any provided arguments that make these items
become more fully bound. The result of this first phase of
evaluation is then used as the input for the second phase. The
second phase again recursively descends the document copy-
ing through, unchanged, anything in the SVG namespace and
attempting to evaluate items in the layout namespace. Note
that given the nature of the processing these two passes could
be combined into one pass however they have been seperated
out for reasons of code tidyness and ease of debugging.

The template matching system in XSLT is ideal for the above
process because the code to evaluate each different layout
function can be written as a matching template for that func-
tion e.g. < layout : xflow/ >. These templates are sepa-
rated out from the main program and included using the ‘im-
port’ instruction in XSLT which allows different files to be
included and executed as though they were a single program.

The semantics of this system are such that each layout func-
tion in a document is self contained and its ultimate geometric
size is in no way affected by either its siblings or ancestors.
This benefits the evaluation code because it is guaranteed
that once a layout function has been passed through the lay-
out processor and partially evaluated there is nothing more
that can be done unless more unbound items become bound.
Also, from a performance point of view, this allows for a high
degree of parallelisation.

3. LAYOUT FUNCTIONS
Although the various layout functions that are implemented
in this system take different types as their inputs they all
evaluate to a single Item. If the function is fully invariant
and capable of evaluation then the Item returned will actu-
ally be an Atom of sub-type SVG, otherwise it will be a
(possibly modified) copy of the original LayoutFunction.

The first layout functions investigated here are linear flows.
To evaluate a Linear Flow, where each item is fully bound,
one would place each item adjacent to the preceding item in
the flow. Interestingly even if there are unbound items within
the flow there is still much that can be evaluated.

A Linear Flow exhibits associativity:

linearflow(x, linearflow(y, z)) ≡
linearflow(linearflow(x, y), z)

This is important when extracting invariance because it means
that adjacent, fully bound, elements can be evaluated as
though they are a sub-flow, and grouped together.

In the following example b represents a fully bound item and
u an unbound item:

linearflow(u, b, b, b, u, b, u) ≡
linearflow(u, linearflow(b, b, b), u, b, u) ≡
linearflow(u, b

′
, u, b, u)

where b ′ now represents a bigger bound component composed
from the three inner bs. It is also easy to see that a Linear
Flow with a fully bound item at the head can be turned into
a fully-bound item followed by a shorter Linear Flow’ which
starts from a translated origin.

linearflow(b, u, u, u) ≡ b, linearflow
′(u, u, u)

With these two ways of extracting invariance we can see that
the children of a Linear Flow will always end up following
the regular expression pattern:

u (b? u)* b?

where it is now understood that some of the bs may actually
correspond to composite, merged, items (i.e. the b ′ of the
discussion above).

Our investigation of linear flows has focused on two special
cases, one where items are aligned with the X axis (an X Flow
) and the other where items are aligned with the Y axis (a Y
Flow). In the next section we examine a simple compound
of these, and show how its evaluation proceeds as unbound
items are replaced by fully bound items. Each diagram rep-
resents the state of the document after a certain number of
passes through the layout processor.

It should be noted that the diagrams do not come from ren-
dering a given file, but from passing the file in question through
the layout processor in debug mode. This highlights the ex-
istence of layout functions and binds a wildcard element (in
this case a rectangle with a question mark inside it) to any
unbound item so the whole document can be fully evaluated
for the purposes of visualisation.

In the following diagrams the rectangles containing question
marks represent unbound Atoms. All other items are fully-
bound pieces of SVG. To illustrate where the layout func-
tions are – and what state of boundedness they are in – various
styles of rounded rectangles will be used, as explained in the
following table:

Dashed Shows a part of the document where a layout
function exists, still to be evaluated

Dotted Represents a group of items which are all po-
sitioned but not yet fully invariant and which
may change into a solid group as more data
becomes available.

Solid Represents a fully invariant section of the doc-
ument.

Figure 1 shows the source document before any evaluation
has taken place. The document contains an X Flow with five
children, one of which is itself a Y Flow with three children.
Some of the children are fully bound pieces of SVG but there
are also two unbound items.

In Figure 2 we pass the source document through the lay-
out processor with no additional data. This shows that even

Figure 1: The source document.

Figure 2: Document after processing with no addi-
tional data

though the document is not complete there is still a signifi-
cant amount that can be evaluated. Note how adjacent bound

items such as (,) are grouped together. Also note that
the first fully bound item in both the X Flow and Y Flow is
moved outside the flow.

In Figure 3 the unbound item in the Y Flow becomes bound
causing the whole Y Flow to become bound. And because
the Y Flow is adjacent to the circle in the X Flow both of
them are encapsulated. This leaves a document with one X
Flow which contains an unbound and a bound child.

Figure 4 shows the final step of processing which occurs when
the last unbound item is replaced. This allows the remaining
X Flow to be evaluated which leaves the document in a fully-
bound ground state where no more evaluation can take place.

4. CONCLUSION AND FUTURE WORK
This work shows very clearly the possibilities for pre-press op-
timisation of advanced template-based documents in a variable-
data-driven workflow. If for example a retail company wanted
to customise its catalogue based on its subscribers’ tastes and
preferences they might create a variable data document which
uses the information in their database to drive a digital press.

By analysing the document before printing begins it will be
possible to take advantage of the bound and invariant sections
(the b items in the foregoing discussion) which can be iden-
tified as fully-bound SVG and possibly pre-rasterised. Even
the late-bound sections (u), with customer-specific informa-
tion, may still benefit from an analysis of the properties of
each unbound item with respect to ranges of values of the
missing arguments.

The underlying premise of our work is that each layout func-
tion operates on axis-aligned rectangles so, in principle, the
layout process only requires to know the relative x and y co-
ordinates of any given item and the relative coordinates of
its bounding box. It may be possible to determine that some
properties of a given rectangle’s contents (e,g, fill colour, line

Figure 3: Document after first unbound item has
been replaced

Figure 4: Final document after last unbound item
has been replaced

width) are to be late bound and yet whatever values they
eventually acquire cannot possibly affect the bounding box.
Under these circumstances the layout process can still go
ahead for later items in that particular flow and, if desired, a
PPML job specification could be drawn up to help a digital
press to optimise the rendering[4].

At the moment the code to evaluate invariances is hand-
generated for each function. A formal standardisation and
declaration of the interface to each function (including re-
sources used, graphical and combinatorial properties e.g. as-
sociativity and an indication of the as-yet-unbound argu-
ments) would enable SVG code generation to take place based
simply on the values in the interface and without having to
know the internal details of the function’s coding.

5. ACKNOWLEDGEMENTS
Thanks are due to Hewlett Packard (UK) and EPSRC for
supporting Alexander Macdonald’s PhD studentship.

6. REFERENCES
[1] John Lumley, Roger Gimson, and Owen Rees. A

Framework for Structure, Layout and Function in
Documents. In Proceedings of the 2005 ACM symposium
on Document engineering, pages 32–41. ACM Press,
November 2005.

[2] John Lumley, Roger Gimson, and Owen Rees. Extensible
Layout in Functional Documents. In SPIE/EI 2006
Digital Publishing Conference, January 2006.

[3] Alexander J. Macdonald, David F. Brailsford, and
Steven R. Bagley. Encapsulating and Manipulating
Component Object Graphics (COGs) using SVG. In
Proceedings of the 2005 ACM symposium on Document
engineering, pages 61–63. ACM Press, November 2005.

[4] Steven R. Bagley and David F. Brailsford. Page
Composition using PPML as a Link-editing Script. In
Proceedings of the 2004 ACM symposium on Document
engineering, pages 134–136. ACM Press, 2004.

	Introduction
	Implementation
	Layout Functions
	Conclusion and Future Work
	Acknowledgements
	REFERENCES -9pt

