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ABSTRACT
Hardware accelerators are common in embedded systems that have
high performance requirements but must still operate within strin-
gent energy constraints. To facilitate short time-to-market and re-
duced non-recurring engineering costs, automatic systems that can
rapidly generate hardware bearing both power and performance in
mind are extremely attractive. This paper proposes the BLADES
(Better-than-worst-case Loop Accelerator Design) system for auto-
matically designing self-tuning hardware accelerators that dynami-
cally select their best operating frequency and voltage based on en-
vironmental conditions, silicon variation, and input data characteris-
tics. Errors in operation are detected by Razor flip-flops, and recov-
ery is initiated. The architecture efficiently supports detection, roll-
back, and recovery to provide a highly adaptable and configurable
loop accelerator. The overhead of deploying Razor flip-flops is sig-
nificantly reduced by automatically chaining primitive computation
operations together. Results on a range of loop accelerators show
average energy savings of 32% gained by voltage scaling below the
nominal supply voltage.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and Design Styles—Micropro-
cessors and microcomputers

General Terms
Design, Performance

Keywords
Low power, Voltage scaling, Frequency scaling, Embedded systems,
High-level synthesis

1. INTRODUCTION
As silicon technologies enter deep sub-micron realms, circuit level

techniques are increasingly employed in conjunction with architec-
tural techniques to achieve the stringent performance and power goals
of embedded applications. Dynamic voltage and frequency scaling
(DVFS) are widely used to reduce the overall energy consumption of
a computer system, particularly for workloads with high variation in
processing requirements. DVFS can either be used to push the oper-
ating conditions of a circuit beyond the nominal operating conditions
assumed during design time to achieve improved clock frequency, or
to reduce energy consumption at times when the full capabilities of
the hardware are not required.

A critical issue for DVFS-enabled computer systems is determin-
ing the safe operating voltage at which maximum execution effi-
ciency is achieved, while still guaranteeing correct operation of all
components. Traditional techniques for DVFS utilize a delay chain
or a lookup table to determine the minimum voltage necessary to
guarantee error-free operation at a particular frequency [2]. Design-
time characterization of the critical paths determines the margins that
need to be added in order to ensure that the synthetic delay path is
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guaranteed to fail before the actual paths in the presence of worst-
case operating conditions, process variation, temperature hot spots,
and supply voltage uncertainties.

Razor [3, 1] is a cost-effective, circuit-level timing speculation
technique that allows detection and correction of speed-path fail-
ures. In the traditional worst-case design technique, safety margins
are added during design time to ensure computation correctness even
under the worst-case combination of input vectors and operating con-
ditions (process, voltage and temperature conditions). Razor is able
to exploit these margins when operating under more typical condi-
tions by aggressively scaling voltage and frequency and relying on
a combination of in-situ architectural and circuit-level techniques to
suitably flag any resultant timing errors and recover from them.

In large designs, the Razor shadow latch cannot be used if com-
plex control signals are on the critical path. For example, if critical
clock-enable signals going into clock-gating cells are too slow, the
affected flip-flops will not be able to restore to their correct state
as they will have been clocked incorrectly and their shadow latches
will not have the correct data either. In situations like this, the most
suitable way to recover from Razor errors is to add extra storage ele-
ments for checkpointing the microarchitectural state from which the
processor can be restored to a point before the error. Leaving data
in flight in this manner complicates a processor’s control and for-
warding logic which is often on the critical path. Checkpointing for
Razor error recovery requires techniques specific to the microarchi-
tecture under consideration. This technique is invasive and, as such,
requires careful analysis of individual microarchitectures before Ra-
zor can be employed.

Another difficulty of deploying this technology is that the Razor
flip-flop’s hold-time is much larger than that of a conventional flip-
flop. Any fluctuations shortly after the rising clock edge are treated
as timing errors. As a result, short paths to a Razor flip-flop must
be lengthened by adding buffers to ensure the hold-time constraint
is met on all paths. This can be costly in terms of area and energy
consumption, thereby impacting the gains achieved through DVFS.

In essence, Razor would be more easily deployed in architectures
that have predictable control logic to quickly compute a restore point;
storage structures for checkpointing where data is guaranteed to not
be overwritten for several cycles; and a regular microarchitecture
with predictable path lengths to enable the easy application of Razor.
Further, it is important to have an automated system to insert Razor
flip-flops and the supporting hardware in order to reduce design time.

The focus of this paper is an automated system to synthesize Razor-
enabled loop accelerators (LAs) from high-level specifications. LAs
are ideal for applying Razor technology due to their regularity, queue-
based storage structures, and simple control. BLADES (Better-than-
worst-case Loop Accelerator Design) is an energy-efficient, applic-
ation-specific solution that adapts its operation to the environmental
conditions, including silicon variation, temperature, and data preci-
sion. The inputs to BLADES are the target application expressed
in C and the desired performance. Compiler analyses and scheduling
are used to synthesize a minimum cost LA for the application to meet
the given performance target [5].

We extend a baseline LA system with an application specific error
recovery mechanism that is automatically derived. The LA is aug-
mented with additional registers to enable efficient rollback and re-
execution when a timing violation is detected. Further, we augment
the system to automatically chain primitive computation operations
together to reduce the overhead of ensuring that flip-flop hold-time
constraints are met.

Across a large set of media and signal processing loops, LAs with
Razor technology achieved an average energy savings of 32% with
voltage scaling.
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Figure 1: Hardware schema of a loop accelerator.
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Figure 2: Structural modifications to a loop accelerator to support Razor.
Data signals are dotted lines and control signals are solid lines.

2. THE BLADES ARCHITECTURE
2.1 Loop Accelerator Architecture

The LA used in this work is a hardware realization of a modulo-
scheduled loop. Modulo-scheduling is a software pipelining tech-
nique that achieves high levels of parallelism by overlapping suc-
cessive iterations of a loop [8]. The template for the baseline LA
architecture is shown in Figure 1 [5]. The LA is designed to exploit
the high degree of parallelism available in modulo-scheduled loops
with a large number of functional units (FUs). Each FU writes to a
dedicated shift register file (SRF); in each cycle, the contents of the
registers shift downwards to the next register. The entries in a SRF
therefore contain the values produced by the corresponding FU in the
order they were computed. In addition, a central register file (CRF)
holds static live-in (live-out) register values received from (sent to)
the host processor which cannot be stored in the SRFs.

The synthesis system for this architecture takes an application loop
in C and generates behavioral Verilog for a hardware accelerator that
implements the loop within a given performance constraint. The per-
formance requirement is specified as an Initiation Interval (II), the
number of cycles between the start of execution of subsequent itera-
tions of the loop.

2.2 Applying Razor
Razor flip-flops are employed in LAs to facilitate aggressive DVFS

beyond the point of erroneous operation. To ensure proper opera-
tion, errors must be dynamically detected and the erroneous opera-
tions must be re-executed. Razor is supported in the LA architecture
with three important changes as illustrated in Figure 2: extending the
shift register files, adding roll-back multiplexers and incorporating
an error-cognizant controller.

First, all SRFs are extended to keep data values live for more cy-
cles. Each SRF need only be extended as per the roll-back penalty,
R, of the design – the number of clock cycles spent detecting timing
errors and restoring all the registers to a previously-known state.

The second extension is a set of “roll-back multiplexers” that are
added in order to support restoration of prior state. When an error
occurs, an SRF entry is restored to its value stored R cycles earlier
using the additional entries in the SRF. In this manner, all FUs are re-
executed with their inputs from R prior cycles. Similarly, the memory
units in the BLADES architecture write their outputs to store queues
first and these values are only committed to main memory after R
cycles, when the addresses and values are known to be error-free. In
the event of a Razor error, the pipeline state in the FUs is disregarded
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Figure 3: The effect of using CFUs

and execution resumes from an older state.
The final extension for a Razor LA is in the controller and its sup-

porting logic. As stated earlier, the LA is a hardware implementation
of a modulo-scheduled loop and is, as such, statically scheduled and
control signal values for all cycles of executions are all statically de-
termined. This makes reverting back to a prior state simple – if an
error was detected while the LA is executing, the controller reverts
to a state R cycles earlier.

The different aspects of the design that determine the value of R
are illustrated in Figure 2:

1. FU pipeline: Values in pipeline registers are not saved. There-
fore, on an error, all data in a FU’s pipeline registers have to
be discarded, and the corresponding operations re-executed. In
this work, the maximum pipeline depth for any FU is 2 cycles,
but this number may vary between designs.

2. Error OR-tree: The error signals from all the Razor flip-flops
across the design are OR’d together to create one unified error
signal. If the design has a very large number of Razor flip-
flops, the fan-in to this OR gate can be quite large, requiring
the gate to be pipelined. This is never the case in this work.

3. Error stabilization: In some corner cases, it is possible for the
OR’d error signal to be metastable. To overcome this, the sig-
nal is passed through 2 flip-flops.

4. Error processing and roll-back generation: The control sees
the error signal, prepares to revert to a previous state and sends
a “roll-back” signal to the SRFs.

5. Roll-back pipeline: The “roll-back“ signal is pipelined in order
to prevent the recovery process from being timing critical. A
cycle after it is generated by the controller, all the error flags
in the Razor flip-flops are reset.

6. Roll-back: A cycle after the error flags are reset, the old data
is restored. If the restoration process fails, error flags are set
again and the process restarts.

In the designs presented in this work, R is 6 cycles (2 cycle-deep
FU pipeline + 2 cycle error stabilization + 2 cycle error reset and
roll-back).

2.3 Overheads of Using Razor
One of the main challenges to overcome when deploying Razor is

the increased hold-time constraint. During the speculation window
(the period of time after the rising clock edge where a change in the
input signal is treated as a timing error), if the outputs of short paths
in the design change correctly due to changing inputs, their change
in value might be misinterpreted as a timing error. To avoid this,
the shortest path in the design should be longer than the speculation
window. To ensure this, extra buffers are inserted by the synthesis
and place and route tools along the short paths.

For example, in Figure 3(a), the different paths connecting point A
to point B would have several buffers inserted on them since there are
very few gates on these paths. Based on the size of the design and
the number of short paths, the energy overhead can be quite large;
over 20% if the speculation window is 40% of the clock period.
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Figure 4: Dataflow graph for a portion of the fsed loop kernel. Operations
chained to form COPs are in the numbered, shaded regions. Some operations
that were not selected to be combined are shown within dotted lines.

There are a few different ways to circumvent the Razor hold-fixing
problem. One way is to not issue back-to-back operations on the
same FU. This would prevent the inputs to the FU from changing ev-
ery cycle provided each FU’s inputs are gated. However, this would
halve the performance and would not be an appropriate solution in
most situations. The performance need not be hurt if the number of
FUs was doubled, each executing a new operation every 2 cycles.
This would preserve the throughput of the LA. This method would
not double the area since only the number of FUs would have to dou-
ble and not the controller or the number of SRFs and CRFs, but this
technique would certainly have a noticeable area cost for reducing
the dynamic energy consumption. Another technique is a hybrid so-
lution – identifying opportunities to create multiple-operation FUs
that require no hold fixing latches; and, when that is not possible,
resorting to using buffers to fix the increased hold time.

2.4 Shaving the Overheads of Razor
To address the hold-fixing problem, we propose to combine multi-

ple FUs into 2-cycle “custom functional units” (CFUs). A CFU uses
2 cycles to execute 2 or more operations back-to-back. Its inputs are
only changed every 2 cycles and the values computed after 1 cycle
are stored in a register. This way, the values that fan-in to Razor flip-
flops are guaranteed not to change during the speculation window
unless there is a timing error, thereby eliminating the need to insert
extra buffers, as shown in Figure 3(b). A 2-operation CFU is illus-
trated in Figure 3(b), but a third operation could also be executed, in
parallel to op 1 and feeding op 2.

These CFUs are identified by the compiler after analyzing the
dataflow between different instructions. The input to the compiler
are custom operation (COP) graphs of different dataflow patterns and
opcodes; each node in the graph represents an input, an output or an
opcode and each edge represents dataflow. The compiler finds sub-
graphs in the loop kernel that are isomorphic to the input CFU graphs
and converts these subgraphs to COPs.

When the hardware for these different CFUs is generated, CFUs
that implement different opcodes, but have the same COP graph, can
be combined into a single FU. For example, the operations

r0 = (r1 * r2) - (r3 + r4)
r5 = (r6 + r7) - (r8 + r9)

can be executed on the same FU. Adding an extra adder and some
simple control logic can extend an MPY/ADD/SUB CFU to also ex-
ecute ADD/ADD/SUB operations. Overlapping similar COPs in this
manner reduces the overall number of FUs and therefore reduces the
number of SRFs in the design at the cost of a few more muxes. For
the purpose of this paper, the opcodes supported by each COP are
limited to binary arithmetic operations since these make up the vast
majority of opcodes used in loop kernels.

Figure 4 shows an example of the COPs identified in a portion of
the fsed benchmark’s inner-loop. The operations in shaded areas 1,
2, 3, 5 and 6 are combined to form 3-operand, 2-operation CFUs and
the ones in shaded areas 4 and 7 are combined to form 4-operand,
3-operation CFUs. Depending on the schedule, COPs 4 and 7 could
potentially be assigned to the same CFU due to their dataflow and
functional similarities. Similarly, COPs 1, 2, 3, 5, and 6 could also
be combined.
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Figure 5: Energy savings and slowdown with voltage-scaling for the sobel
benchmark.

A loop kernel may have several different COPs that are not chosen
to be implemented as a CFU. Examples of some of these are shown
inside dotted lines in Figure 4. The selection algorithm used in this
paper is a greedy algorithm that selects the largest possible subgraphs
searching upwards from the bottom of the loop. The final goal is to
try to encompass as many operations into CFUs as possible while
minimizing the number of unique individual opcodes, giving priority
to fewer, larger CFUs over many, smaller CFUs.

COP 5, for example, could have been expanded to include the ad-
dition operation in COP 6. However, this would leave the left-shift
operation in COP 6 alone and a separate left-shift FU would be re-
quired to implement it. The ADD/AND COP circled at the bottom of
the figure could be selected but priority would be given to the larger
COP 7. Further, since an AND FU would still be required to im-
plement the one remaining AND operation, creating an ADD/AND
CFU would not necessarily have any benefit.

An optimal branch-and-bound-based algorithm was also imple-
mented to select subgraphs, but was not used because it resulted in
no noticeable difference in quality-of-result (QoR) but required sig-
nificantly more time to execute.

3. EXPERIMENTS
3.1 Setup

The designs in this paper were synthesized at their maximum pos-
sible frequencies (i.e at the point where increasing the target fre-
quency did not lead to improved QoR) with Design Compiler 2007-
03, and Galaxy ICC 2007-03 using a 65nm process with a nominal
supply voltage of 1 Volt. Simulations to observe error rates were per-
formed in Nanosim 2005-09. Energy numbers were obtained using
Nanosim and PrimeTime-PX 2006-12. The synthesis target assumed
slow conditions (0.9V, slow silicon, 125◦C) and simulations assumed
typical conditions (1.0V, typical silicon, 25◦C).

LA hardware was synthesized for ten compute-intensive loop ker-
nels from various application domains. In the designs presented in
this paper, every FU was followed by a Razor flip-flop - i.e. all the
bits in all the top entries in SRFs were Razor flip-flops and all the oth-
ers were normal D-flip-flops. This would likely be too conservative
at mature process nodes, but in the worst-case scenario where pro-
cess variation is a significant problem, it is reasonable. In a mature
process, only the the most critical paths need to terminate in Razor
flip-flops.

3.2 Proof of Concept
A simple experiment illustrates that an LA’s behavior matches that

of a general purpose processor when applying DVFS with Razor. An
LA for sobel – an edge detection kernel often seen in image pro-
cessing applications – was run at various voltage levels and at the
nominal clock frequency. Whenever an error occurred, the LA was
rolled-back 6 cycles, the clock frequency was halved, and the offend-
ing operation was re-executed. The frequency was restored after the
offending instruction completed. Figure 5 shows the energy savings
obtained using Razor and the slowdown from re-executing opera-
tions that cause an error. Energy savings continue to increase until
approximately 70% of the nominal operating voltage. The similarity
of this graph to data presented in prior Razor work [3, 1] that used
general purpose processors verifies that it is just as effective when
applied to LAs.

3.3 Dynamic Frequency Scaling
To simulate behavior under reduced voltages, the LA was run with

dynamically changing frequencies, shown in Figure 6. When several
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Figure 6: Dynamic execution of a sobel BLADES processor.
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Figure 7: Dynamic energy savings when using DVS. The top portion is the
contribution to this number by using CFUs.

cycles of error-free operation are observed, the clock period is grad-
ually decreased. When a timing error does occur, the supplied clock
frequency remains unchanged during the error recovery process but
every 2 clock cycles are gated, effectively halving the frequency in
the LA. The frequency is only reduced after several consecutive er-
rors are observed.
3.4 Effect of CFUs

Figure 7 shows the savings in energy from using DVS across four
application domains. The contributions of the CFU technique pre-
sented in this paper make up the top portion of each bar. On average,
there is a 32% savings in energy, of which 8% was due to the CFU
technique.

The benchmarks idct, sharp and dct had not only multiple
CFUs, but also a reduction in the total number of FUs in the design
since some FU types were entirely subsumed into CFUs. In idct,
for example, none of the multiply units required extra hold-fixing
since they were all within CFUs. The same was true in sharp, but
for subtract units. The CFUs contributed to approximately 33% of
the energy savings observed in these benchmarks.

However, the benchmarks viterbi and dequant did not do as
well; the CFUs contributed to only 9% and 10% to the overall en-
ergy savings, respectively. The primary reason for this is that both of
these benchmarks have a significant amount of control flow within
the inner-loop. These results can be improved by adding better pred-
icate support to the CFUs. Currently, all the operations within a
CFU are guarded by the same predicate; allowing different opera-
tions within a CFU to execute independently would add some com-
plexity to the replacement algorithm and the hardware generated but
would result in more energy savings.

4. RELATED WORK
Frequency scaling applied to ASICs has been researched by dif-

ferent groups. Dhar et al. [4] proposed an adaptive voltage scaling
scheme that utilized several blocks of logic around the main ASIC
to dynamically change the voltage as is needed for the desired sys-
tem speed. Their work, however, is purely external to the processor’s

design and is not interacting with it in any way unlike the scheme
proposed in this paper. In [11], the authors propose several modifi-
cations built in to the main logic of the design for the purposes of
scaling the voltage. Their technique, however, utilizes no knowledge
of the application itself - what the constraints are on data, when spe-
cific values will actually be used, etc., and as such have a limited
field of view.

Razor-style flip-flops have been used in the past for different rea-
sons, the most significant of these [3] being for the purpose of reduc-
ing the supply voltage of a processor and in turn reducing the overall
energy consumption. Razor flip-flops, or more generically, flip-flops
which are able to detect changes in the input data near the clock edge,
have also been used for reliability reasons in [7].

Opcode chaining was previously used in [10, 6, 9]. However, prior
work focuses on chaining multiple simple operations into a single
cycle to improve performance by performing a single complex com-
putation instead of multiple simple ones.

5. CONCLUSION
In this paper, we propose the automatic design of adaptive loop

accelerators. The designs leverage Razor technology that consists of
a delay-error tolerant flip-flop placed on critical paths to identify tim-
ing errors in circuits. Razor enables a design to dynamically adjust its
supply voltage and operating frequency to an optimal point based on
the environmental conditions and characteristics of the computation.
Adaptive loop accelerators consist of strategically deployed Razor
flip-flops at the vulnerable locations of the loop accelerator as well as
additional flip-flops to enable rollback and re-execution in the event
of a timing error. Our loop accelerators utilize a stylized architecture
template that allows highly customized designs to be automatically
adapted to detect and recover from errors. These accelerators can be
used to reduce energy consumption, increase performance, or pro-
vide adaptability in the presence of process variation. For our exper-
iments, we show the clock frequency and voltage can easily be scaled
in accelerators by adding a small number of Razor flip-flops. Specif-
ically, voltage can be reduced to below 70% of the nominal supply
voltage resulting in over 50% energy savings with negligible perfor-
mance penalty, 32% on average. Further, by fusing primitive opera-
tions into custom operations, the hold-fixing requirement of Razor is
relaxed and the associated energy overhead is reduced by as much as
33%, 24% on average.
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