
Automatically Improve Software Architecture Models
for Performance, Reliability, and Cost

Using Evolutionary Algorithms

Anne Martens?, Heiko Koziolek†, Steffen Becker‡, Ralf Reussner?‡
?Karlsruhe Institute of Technology, Karlsruhe, Germany

Email: {martens,reussner}@ipd.uka.de
†ABB Corporate Research, Ladenburg, Germany

Email: heiko.koziolek@de.abb.com
‡FZI Karlsruhe, Karlsruhe, Germany

Email: {becker,reussner}@fzi.de

ABSTRACT
Quantitative prediction of quality properties (i.e. extra-
functional properties such as performance, reliability, and
cost) of software architectures during design supports a sys-
tematic software engineering approach. Designing architec-
tures that exhibit a good trade-off between multiple qual-
ity criteria is hard, because even after a functional design
has been created, many remaining degrees of freedom in
the software architecture span a large, discontinuous design
space. In current practice, software architects try to find
solutions manually, which is time-consuming, can be error-
prone and can lead to suboptimal designs. We propose an
automated approach to search the design space for good
solutions. Starting with a given initial architectural model,
the approach iteratively modifies and evaluates architectural
models. Our approach applies a multi-criteria genetic algo-
rithm to software architectures modelled with the Palladio
Component Model. It supports quantitative performance,
reliability, and cost prediction and can be extended to other
quantitative quality criteria of software architectures. We
validate the applicability of our approach by applying it to
an architecture model of a component-based business infor-
mation system and analyse its quality criteria trade-offs by
automatically investigating more than 1200 alternative de-
sign candidates.

Categories and Subject Descriptors: C.4 [Computer
Systems Organization]: Performance of Systems – modelling
techniques; D.2.8 [Software Engineering]:Metrics – perfor-
mance measures; D.2.11 [Software Engineering]: Software
Architecture

General Terms: Design, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOSP/SIPEW’10, January 28–30, 2010, San Jose, California, USA.
Copyright 2009 ACM 978-1-60558-563-5/10/01 ...$10.00.

1. INTRODUCTION
One benefit of modelling software architectures is the

ability to quantitatively analyse extra-functional properties,
such as performance or reliability, based on the software
architecture model during early design stages. This ap-
proach avoids cost for late life-cycle performance/reliability
fixes and architectural redesigns. Several methods (e.g.,
UML [31], SySML [32], LQN [17], Palladio [3]) allow to
model a software architecture including static structure, dy-
namic behaviour and allocation to resources. Such models
can be annotated with estimated or measured quality anno-
tations (e.g., UML MARTE [30] for performance) and anal-
ysed for the different quality properties. For example, per-
formance can be analysed using numerical techniques from
queueing theory or simulation.

However, while many approaches allow to predict single
quality properties of a given design, they do not support
the software architect if the predictions indicate a viola-
tion of the requirements. For performance, the software
architect needs to understand the performance prediction
results, manually identify the root cause for the insufficient
performance and manually determine an improved architec-
ture model. An improved architecture model can for ex-
ample contain faster / more reliable software components,
a more powerful hardware environment, or a different allo-
cation of components to hardware nodes. Even if require-
ments are fulfilled, there might be potential for improve-
ment in the software architecture to save cost by reducing
over-provisioned resources. In general, improving one qual-
ity property can deteriorate another, thus, quality properties
cannot be improved in isolation.

Interpretation of prediction results, problem identifica-
tion, and improvement of the software architecture are man-
ual tasks in current practice [35]. Automation is desirable,
because the manual tasks (i) require vast architectural ex-
perience, (ii) are laborious and therefore cost-intensive, and
(iii) are error-prone due to the overwhelmingly complex de-
sign space for human beings.

Researchers have proposed rule-based and metaheuristic-
based solution approaches for the problem of automatically
finding architectural designs with improved performance or
reliability properties. Rule-based approaches (e.g., [38, 12,
33, 28] try to identify problems in the model (e.g. bottle-

105

necks) based on predefined rules and apply predefined solu-
tions for these problems. Existing rule-based approaches
only focus on performance analysis without considering
other quality criteria. They operate on the performance
model instead of the architectural model and are therefore
difficult to use for regular architects not familiar with perfor-
mance formalisms. These approaches cannot find solutions
for which no rule exists, thus, they cannot cover all possi-
ble solutions and might result in locally optimal solutions.
Metaheuristic-based approaches (e.g., [1, 8]) encode the chal-
lenge of improving architectures as an optimization problem
and use metaheuristic search techniques [4, 22] (e.g., genetic
algorithms, simulated annealing, etc.) to find better design
models. Existing metaheuristic approaches do not support
performance prediction and only study the effect on relia-
bility and cost of replicating components.

In this work, we present an approach which is capable to
automatically improve a given architecture model with re-
spect to performance, reliability, and cost. The approach
is best suited for component-based software architectures.
Components encapsulate functionality that can be indepen-
dently reused, and thus component-based software architec-
tures provide degrees of freedom to be exploited by our ap-
proach. In particular, we model architectures with the Palla-
dio Component Model (PCM) [3] in this work. Quality prop-
erty prediction is done using Layered Queueing Networks
(LQN) [17] (or SimuCom EQNs [3]) for performance met-
rics; Markov models for reliability metrics [25]; and a newly
introduced PCM cost extension for cost. The approach au-
tomatically searches the design space starting from a given
initial architectural model. Using existing multi-criteria evo-
lutionary algorithms, it iteratively modifies and evaluates ar-
chitecture models. It searches for Pareto-optimal [15] archi-
tecture models with respect to performance, reliability, and
cost. As metaheuristics are used, it is a best-effort approach
and cannot guarantee global optimality of the results.

With our approach, software architects do not have to
search for alternative solutions manually. Instead, they can
focus on good solutions automatically determined by our ap-
proach for trade-off decisions between multiple quality cri-
teria. As the approach works on the architectural model
level (as opposed to the performance model), architects can
directly understand and use the automatically found solu-
tions.

The contribution of this paper is a new approach to find
architectural design models with optimal performance, reli-
ability, and cost properties. So far, we explore four degrees
of freedom (processor speed, number of servers, component
allocation, and component selection), that together are not
supported by existing approaches. The approach supports
adding of more degrees in the future. Our approach works
on the architectural level and does not require knowledge on
quality criteria analysis models and methods (e.g. queueing
theory knowledge for performance). We have implemented
our approach in the PerOpteryx tool1. We present a case
study for a business reporting system (12 components, 40
tasks in LQN).

This paper is organized as follows. Section 2 compares
related approaches to our approach. Section 3 introduces
a running example to explain the problem in detail as well
as the used architecture model and quality prediction tech-

1palladio-approach.net/ PerOpteryx

niques. Section 4 describes the optimisation process. The
case study is presented in Section 5. Finally, Section 6
discusses assumptions and limitations before Section 7 con-
cludes.

2. RELATED WORK
Our approach is based on software performance predic-

tion [34, 2], architecture-based software reliability analy-
sis [18], and search-based software engineering [22]. We
categorize closely related approaches into (i) rule-based ap-
proaches and (ii) metaheuristic-based approaches.
Rule-based Approaches: Xu et al. [38] present a semi-
automated approach to find configuration and design im-
provement on the model level. Based on a LQN model, per-
formance problems (e.g., bottlenecks, long paths) are iden-
tified in a first step. Then, rules containing performance
knowledge are applied to the detected problems. The ap-
proach cannot detect improvement for which no rules have
been defined, and some of the suggested improvements re-
quire changing the implementation of components, which is
not desired when dealing with black box components. As the
approach suggests changes on the level of LQNs, it might not
be feasible to map suggested solutions back to the design.
For example, it might be impossible to speed-up a certain
component implementation to reach a certain service time
because of inherent algorithmic complexity.

McGregor et al. [28] have developed the ArchE frame-
work. ArchE assists the software architect during the design
to create architectures that meet quality requirements. It
helps to create architectural models, collects requirements
(in form of scenarios), collects the information needed to
analyse the quality criteria for the requirements, provides
the evaluation tools for modifiability or performance anal-
ysis, and suggests improvements. Compared to our work,
ArchE does not search the whole design space, but advances
step-wise based on rules. It does not support reliability and
only features a simple performance model. The architec-
ture model is not component-based, consequently, degrees
of freedom as presented later in this paper cannot be readily
identified.

Cortellessa et al. [12] propose an approach for auto-
mated feedback generation for software performance anal-
ysis, which aims at systematically evaluating performance
prediction results using step-wise refinement. The approach
relies on the (yet manual) detection of common performance
problem patterns (performance anti-patterns) in the perfor-
mance model. There is no support to automatically solve
a detected anti-pattern, and there is no suggestion of new
architecture candidates.

Bondarev et al. [6] introduce the DeepCompass frame-
work for design space exploration of embedded systems. The
framework relies on the ROBOCOP component model. It
uses a Pareto analysis to resolve the conflicting goals of op-
timal performance and low cost for different architecture
candidates. Therefore, performance metrics for each archi-
tecture candidate are plotted against the cost of each can-
didate. The approach requires a manual specification of all
architecture candidates and provides no support for suggest-
ing new candidates.

Parsons et al. [33] present a framework for detecting
performance anti-patterns in Java EE architectures. The
method requires an implementation of a component-based
system, which can be monitored for performance proper-

106

ties. It uses the monitoring data to construct a performance
model of the system and then searches for EJB-specific per-
formance antipatterns in this model. This approach cannot
be used for design space exploration in early development
stages, but only to improve existing systems.
Metaheuristic-based Approaches: Aleti et al.[1] present
a generic framework to optimise architectural models with
evolutionary algorithms for multiple arbitrary quality crite-
ria. So far, only component deployment is considered as a
degree of freedom so far, and data transmission reliability
and communication overhead are the only presented quality
criteria. In comparison, our approach supports four degrees
of freedom at once at this time. In addition, we study trade-
offs between three quality criteria (cf. Section 3). Both
approaches are extensible for more degrees of freedom and
more quality criteria.

Canfora et al. [8] optimise service composition cost using
genetic algorithms while satisfying SLA constraints. Ser-
vices are assumed to have fixed performance metrics that
do not change for changing composition. Only service se-
lection is considered as a degree of freedom, and trade-offs
with other quality criteria are not considered

Kavimandan et al. [24] presents an approach to optimise
component allocation in the context of distributed real-time
embedded component-based systems. They enhance pre-
existing bin packing algorithms with the consideration of
component consideration and deploy components together
that have a compatible configuration. In total, only alloca-
tion is considered as a degree of freedom, but the authors
also mention that their approach could be combined with
other approaches.

Grunske et al. [19] survey more related optimisation ap-
proaches with a focus on real-time embedded systems de-
sign. The presented approaches evaluate reliability, real-
time properties, and/or cost, and support various degrees of
freedom. In contrast to our work, none of the presented ap-
proaches considers the degrees of freedom of processor speed,
component selection, and component allocation at the same
time.

3. BACKGROUND AND
RUNNING EXAMPLE

To quickly convey our contributed concepts to the reader,
we provide a running example in the following and introduce
the existing quality analyses methods our approach is based
on.

Our approach requires a (preferably component-based) ar-
chitecture model with performance, reliability, and cost an-
notations as input. Balsamo et al. [2] have surveyed many
different methods for specifying performance models. UML2
extended with the MARTE profile is a popular example for
a performance modelling notation. A survey on reliability
prediction approaches is given in [18].

We have implemented our approach based on the Pal-
ladio Component Model (PCM). In principle, our ap-
proach could be applied to most known architectural per-
formance and reliability models and analysis methods. The
PCM is beneficial for our purposes as it is specifically de-
signed for component-based systems. It strictly separates
parametrized component performance models from the com-
position models and resource models, and it provides con-
figuration options of the models. Thus, the PCM naturally

supports many architectural degrees of freedom (e.g., sub-
stituting components, changing component allocation, etc.)
to be exploited by our approach. Additionally, the model-
driven capabilities of the PCM allow an easy generation of
alternative architecture candidates.

Consider the minimal PCM model example in Fig. 1,
which is realised using the Ecore-based PCM metamodel
and visualized here in UML-like diagrams for quick compre-
hension. The system model specified by the software archi-
tect consists of three connected software components C1 -
C3 deployed on three different hardware nodes. The soft-
ware components contain cost annotations, while the hard-
ware nodes contain annotations for performance (processing
rates), reliability (mean time to failure (MTTF), mean time
to repair (MTTR)), and cost (fixed and variable cost in an
abstract cost unit).

Server S1

Component C2

[Cost = 5 Units]

Server S2

Component C3

[Cost = 3 Units]

Server S3

Action

Resource Demand

= 4E+9 CPU Instr.

Failure Probability

= 0.0001

Call

Component 2

Call

Component 3

Processing Rate = 35E+9 Instr./Second

MTTF = 300.000 hours

MTTR = 6 hours

Cost = 12 + (1E-9 * Rate) Units

Processing Rate = 40E+9 Instr./Second

MTTF = 250.000 hours

MTTR = 3 hours

Cost = 10 + (5E-10 * Rate) Units

Processing Rate = 30E+9 Instr./Second

MTTF = 275.000 hours

MTTR = 4 hours

Cost = 20 + (2E-9 * Rate) Units

P=0.8

P=0.2

Action

Action

Action

Action

Component C1

[Cost = 4 Units]

<<implements>> <<implements>> <<implements>>

Resource Demand

= 3E+9 CPU Instr.

Failure Probability

= 0.0001

Resource Demand

= 2E+9 CPU Instr.

Failure Probability

= 0.0002

User Population

= 25

Think time = 5.0s

Failure Probability

= 0.0002

Resource Demand

= 3E+9 CPU Instr.

Failure Probability

= 0.0001

Resource Demand

= 4E+9 CPU Instr.

Failure Probability

= 0.0003

P=0.6P=0.4

Figure 1: Simple Example PCM Model

For each software component service, the component de-
velopers provide an abstract behavioural description called
service effect specification (SEFF). SEFFs model the ab-
stract control flow through a component service in terms of
internal actions (i.e., resource demands accessing the under-
lying hardware) and external calls (i.e., accessing connected
components). Modelling each component behaviour with
separate SEFFs enables us to quickly exchange component
specifications without the need to manually change system-
wide behaviour specifications (as required in e.g. UML se-
quence diagrams).

Component developers can specify resource demands for
their components (e.g., in terms of CPU instructions to be
executed), which can then be divided by the processing rate

107

of the modelled resource environment to determine the ac-
tual execution time demanded from the processors. They
can also specify failure probabilities for component internal
actions, which can be determined for example using software
reliability growth models [29], or code coverage metrics dur-
ing testing. The PCM also supports hard disk drive rates
and software resources such as thread pools.

A software architect composes component specifications
by various component developers into an application model.
With an additional usage model describing user arrival rates
(open workload) or user population and think time (closed
workload) of the system, and an additional model of the
resource environment and the allocation of components to
resources, the model is complete and can be transformed
into analytical or simulation-based models for quality anal-
yses. For the PCM, we briefly explain the analysis methods
for the three considered quality criteria performance, relia-
bility, and cost. For each architectural candidate, we eval-
uate the quality property (e.g. “response time 5 sec”) for
each quality criterion (e.g. criterion “performance” with the
metric “response time of a service”).

• Performance: For performance analysis, the PCM
supports a transformation into a discrete-event sim-
ulation (SimuCom [3]) or LQNs to derive response
times, throughputs, and resource utilizations. Simu-
Com is based on model-to-code transformations and
the SSJ simulation framework. It is in the class of ex-
tended queueing networks and allows analysing mod-
els containing resource demands specified as arbitrary
distribution functions, but can be time-consuming
to derive stable results. The LQN transformation
PCM2LQN [26] generates an LQN instance from a
PCM instance. The LQN solver [17] provides a heuris-
tic performance analysis and can often quickly produce
results. However, it does only support mean values as
prediction results and does not support arbitrary dis-
tribution functions. In the remainder of this paper, we
report results obtained using the LQN solver.

• Reliability: For reliability analysis, the PCM sup-
ports a transformation into absorbing discrete time
Markov chains (DTMC) [25] or a reliability simulation
to derive the probability of failure on demand (PO-
FOD) for an usage scenario. The Markov chain gener-
ator combines all behavioural models and creates fail-
ure states for hardware resources based on the MTTF
/ MTTR values in a PCM instance. The reliability
simulator is based on SimuCom and emulates the exe-
cution of the system. It generates exceptions based on
the failure probabilities specified in the PCM and sim-
ulates hardware crashes based on the MTTF / MTTR
values of modelled hardware resources. In the remain-
der of this paper, we report results obtained using the
analytic DTMC solver.

• Cost: For cost analysis, we have developed a PCM
cost solver for this paper. It relies on a static anal-
ysis of a PCM model instance. It calculates the cost
for each component and resource based on the anno-
tations specified in the PCM instance and then adds
these cost to derive the overall expected cost for the
architecture. Cost can include both initial and oper-
ational cost. If a server specified in the model is not

used, i.e. no components are allocated to it, its cost
do not add to the overall cost. The goal of this sim-
plistic model is to allow cost to be considered, not to
provide a sophisticated cost estimation technique. For
the latter, existing cost estimation techniques such as
COCOMO II [5] could be integrated here to obtain
more accurate values.

The predicted quality properties for the example shown
in Fig. 1 are depicted in Tab. 1. Although the example in
Fig. 1 is simple, it is not obvious on how to change the ar-
chitectural model efficiently to improve the quality proper-
ties. For example, the software architect could increase the
processing rate of server S1, which would result in better
performance but higher cost. The software architect could
also change the component allocation (33 = 27 possibilities)
or incorporate other component specifications with different
QoS attributes.

Quality Criterion Metric Value

Performance
Avg. Resp. Time 4.6 sec
Utilization S1 42 %
Utilization S2 37 %
Utilization S3 10 %

Reliability POFOD 7.36E-4 %
Cost Overall Cost 54 units

Table 1: Quality Property Prediction Results

The design space even for such a simple example is huge.
Manually checking the possible design alternatives in a trial-
and-error approach is laborious and error-prone. The soft-
ware architect cannot easily create design alternatives that
are even locally optimal for all quality criteria, and finding
global optima is practically impossible because it requires
modelling each alternative. In practice this situation is of-
ten mitigated by overprovisioning (i.e., incorporating fast
and expensive hardware resources), which can lead to un-
necessary high cost.

4. OPTIMISATION PROCESS
To automatically improve software architectural models

for performance, reliability and cost, we propose an auto-
mated optimisation process that takes an initial architec-
tural model as an input and searches for Pareto-optimal [15]
candidate solutions. With the results of our process, soft-
ware architects can focus on good solutions for their trade-off
decisions between multiple quality criteria.

To present our optimisation process, we first give an
overview on the process in Section 4.1. Then, we describe in
detail the considered degrees of freedom (Section 4.2), the
resulting search problem formulation (Section 4.3) and the
evolutionary optimisation (Section 4.4).

4.1 Overview and Example
Figure 2 shows an overview of our optimisation process.

Input is an initial architectural model of the system, named
initial candidate. In our case, this is a complete PCM model
instance as shown in Figure 1. In addition, generic degrees
of freedom to be considered by the approach must be defined
in advance. An example generic degree of freedom is com-
ponents reallocation to other servers. The optimisation pro-
cess starts with the search problem formulation. The initial

108

1. Search problem formulation

Initial candidate

System-specific

degrees of freedomInitial candidate

Resulting candidates QoS metrics

Generic degrees of freedom

2. Evolutionary Optimisation

3. Present results

Sec. 4.2

Sec. 4.3

Sec. 4.4

Sec. 4.5

Sec. 3

Figure 2: Optimisation Process Overview

candidate is analysed for occurrences of the generic degrees
of freedom, resulting in system-specific degrees of freedom.
An example system-specific degree of freedom is allocating
component C1 to server S1, S2 or S3.

In the second step, evolutionary algorithms iteratively
search for better solutions, by applying the main steps of
(a) reproduction, (b) evaluation, and (c) selection to a pop-
ulation of candidate solutions in each iteration.

The results of the optimisation phase is a set of Pareto-
optimal candidate solutions, probably superior to the initial
candidate. The Pareto-optimal candidates are presented to
the software architect, who can study the remaining optimal
trade-offs between possibly conflicting objectives.

4.2 Generic Degrees of Freedom
The system cannot be changed arbitrarily in an auto-

mated approach. A human designer cannot be replaced.
But to our advantage, software architectural models contain
a number of explicit degrees of freedom for variation that
affect quality properties, but do not affect the functionality
of the system. In particular, we only consider degrees of
freedom that do not modify the interfaces used in the ar-
chitecture. We further assume that components providing
the same interface provide the same functionality. From this
it follows that the variation along the considered degrees of
freedom retains functionality.

In the following, we present the generic degrees of freedom
that we have identified so far in software architectural mod-
els and which can be exploited by our approach. We start
our list with four generic degrees of freedom that are already
exploited by our current optimisation process implementa-
tion. We continue with three degrees of freedom currently
available in the PCM and similar models but not yet ex-
ploited in our implementation. Finally, we present further
three envisioned degrees of freedoms.

Allocation of components to servers can be changed, this is
an integral part of most performance-prediction mod-
els and has large effects on the performance of a sys-
tem.

Processing rates of the available hardware resources
(CPU, HDD, ...) can be changed in a certain range.
Here, a discrete set of CPU types all having a defined
processing rate and cost could be modelled. Currently,
we model processing rates as a continuous range, as-
suming that a CPU model for virtually any processing

rate within a range is available (e.g. by considering en-
ergy saving states (P-state) with resulting lower cost).

Number of servers: Servers can be added to provide
more processing capacity or can be removed to save
cost.

Selection of components and services: If functionally-
equivalent components with different non-functional
properties are available, they can be exchanged. Cur-
rently, we deem that a component B can replace a com-
ponent A if B provides (i.e. implements) all interfaces
provided by A and if B requires at most the interfaces
required by A. Similarly, external services such as web
services in a SOA system can be exchanged.

Component replication: In addition to servers, software
components can be replicated and distributed to sev-
eral servers. For example, large scale web applications
will have several web servers and application servers.
Here, constraints can be formulated for software com-
ponents that are not ready for replication, for example
because of component state.

Component configuration parameters: If components
and their performance models provide configuration
parameters, their values can be varied during the
search. For example, a component can have a pa-
rameter to choose from several available compression
algorithms.

Passive resources multiplicity, such as thread pool size
or database connection pool size, can be varied to find
a good balance for the utilisation of underlying re-
sources. Of course, multiplicity of locks for mutual ex-
clusion regions (which can also be modelled with pas-
sive resources with capacity of 1) must not be varied
by our approach.

Further configuration of the software stack could be
available in the architectural model. Models have been
proposed for operating system (OS) scheduler config-
uration [20], message-oriented-middleware configura-
tion [21]; and can be envisioned for other configurable
OS properties or JVM configuration of for example
garbage collection. In addition, selection of software
stack elements can be explored by the optimisation
if models are available: JVM selection (Sun’s JVM,
Oracle’s JRockit JVM, ...), OS selection (Windows,
Linux, ...), possibly also the choice of hypervisors in
virtualised environments. These options can either
be explicitly provided in software architectural model
as suggested by [23], or their effects can be added to
the performance model as completions, as suggested
by [36] and realised in e.g. [21].

Priorities: For several usage scenarios with different qual-
ity requirements, the system could prioritise requests
with tight response time requirements. For example,
business-relevant transactions can be assigned a higher
priority than maintenance functions. Priority optimi-
sation as presented by [16] could be included here.

Custom degrees of freedom could be specified by the
software architect by annotating any model element

109

Generic degree of
freedom

System-specific
degree of free-
dom

Design option set

Processing rate
of CPU Server1 {x ∈ N | 25E+9

≤ x ≤ 50E+9 }
of CPU Server2 {x ∈ N | 25E+9

≤ x ≤ 50E+9 }
of CPU Server3 {x ∈ N | 25E+9

≤ x ≤ 50E+9 }

Allocation
of C1 {S1, S2, S3}
of C2 {S1, S2, S3}
of C3 {S1, S2, S3}

Component
selection

Alternatives for
C2

{C2, C2a}

Table 2: Degrees of freedom in the example

with a range of possible values and possibly the re-
lated performance, reliability and cost effects. For ex-
ample, if a component-internal algorithm is designed,
software architects could identify possibilities for tun-
ing the algorithm, resulting in lower resource demand
of a component’s internal action but higher cost of the
component. A language for specifying such custom de-
grees of freedom would be required.

In any case, to exploit a degree of freedom, it has to be
available in the software architectural model and meaning-
ful transformations to performance models, reliability mod-
els and for cost calculation have to be available. For our
running example, we consider three generic degrees of free-
dom in the following: 1. “Change CPU speed of a server”,
2. “Component allocation” and 3. “Component selection”.

4.3 Search Problem Formulation
As a first step in the optimisation process for a specific

system, we analyse which system-specific degrees of freedom
are available in the given software model based on the given
general degrees of freedom. For the three generic degrees
of freedom used in our motivating example, seven system-
specific degrees of freedom can be identified as shown in
Table 2. We identify three system-specific degrees of free-
dom to change a processing speed of a CPU, one for each
concrete CPU in the model, as well as three allocation de-
grees. For the third generic degree of freedom, assume a
fourth available component C2a, that is faster, more reli-
able but also more expensive than C2, exists as shown in
Figure 3. Then, for the component selection, one system
specific degree of freedom exists for C2, whereas C1 and C3
have no alternatives available.

Component C2a

[Cost = 6 Units]

Action Action

Resource Demand

= 15E+8 CPU Instr.

Failure Probability

= 0.0001

Resource Demand

= 15E+8 CPU Instr.

Failure Probability

= 0.00015

<<implements>>

Figure 3: Alternative Implementation of C2
For each system-specific degree of freedom, we can deter-

mine a range of options. For example, the system-specific
degree of freedom of where to allocate C1 has the three op-
tions {S1, S2, S3}. CPU speed of available CPU models
might range from 25E+9 to 50E+9 instructions / sec.

In general, for each system-specific degree of freedom Di

(with an index set I and i ∈ I), we can derive the set of pos-
sible choices: the design option set Oi, as exemplary shown
in the last column of Table 2. Constraints on the system-
specific degrees of freedom can be formulated at this point
by reducing the design option set of a system-specific degree
of freedom. For example, it could be excluded that C1 can
be allocated to S3 in our example, resulting in the remaining
options {S1, S2}.

The design space DS in which the search problem is the
Cartesian product of the design option sets of all system-
specific degrees of freedom: DS = Πi∈IOi. The design
space DS is at the same time the set of all possible can-
didate solutions. Each candidate c can be expressed as
a vector of chosen design options: c ∈ DS with c =
[o1 ∈ O1, ..., on ∈ On] , n = |I|. In our example, the initial
candidate c0 can be expressed as [35, 40, 30, S1, S2, S3, C2
] with the ordering of degrees of freedom as given in Table 2
and omitting the E notation part.

With these definitions, the problem is suited for evolution-
ary algorithms. A candidate is represented by a vector of
chosen design options, which is named the candidate’s geno-
type. The genotype is varied in the reproduction phase,
where it is ensured that each gene has a value within the
design option set. Based on a candidate c’s genotype, a
software architecture model for c can be derived by insert-
ing the chosen design options in the initial candidate model.
The resulting model is named the phenotype of c. For this
phenotype of c, quality properties can be predicted in the
evaluation phase, in our case with the PCM.

With this problem formulation, every newly generated
genotype is valid, as long as there are no further constraints
on combinations of degrees of freedom. An example for a
constraint on combinations is that C1 and C2 must not be
deployed on the same server because of e.g. conflicting sys-
tem library version requirements. This does not limit the
design options for each degree of freedom, but does con-
strain the set of all candidates DS. Checks must be made
in the selection phase of the metaheuristic, or the reproduc-
tion phase has to take constraints into account. Note that
such a constraint is only formulated if a candidate is (1)
functionally infeasible or (2) infeasible for quality criteria
that cannot be automatically quantitatively evaluated, such
as maintainability.

4.4 Evolutionary Optimisation
Candidate solutions can be evaluated for optimal trade-

offs, i.e. for Pareto-optimality. A candidate architecture is
Pareto-optimal, if it is superior to any candidates evaluated
so far in at least one quality criterion. More formally: Let
a be a candidate solution, let DS be the set of all possible
candidates, let C ⊆ DS be a set of candidate solutions eval-
uated so far, and let q be a quality criterion with a domain
Dq, an evaluation function fq : C → Dq so that fq(c) de-
notes the quality property of a c ∈ C for the quality criterion
q, and an order ≤q on Dq so that c1 ≤q c2 means that c1 is
better than or equal to c2 with respect to quality criterion
q. Then, candidate solution a is Pareto-optimal with respect
to a set of evaluated candidate solutions C, iff

∀b ∈ C ∃q : fq(a) ≤q fq(b)

If a candidate solution is not Pareto-optimal, then it is
Pareto-dominated by at least one other candidate solution in

110

Set of candidates

Set of candidates with

QoS metrics

S
e

t
o

f
c
a

n
d

id
a

te
s

Mutation Crossover

Reproduction:

Generate new candidates

Initial candidate

Random

a

b

QoS requirements

constraint checks

Pareto-

optimality check

c

Performance Reliability Cost

Selection: Choose candidates for

next generation

 Evaluation of each candidate

Stop?
Set of Pareto-optimal

candidates

System-specifc degrees of freedom

2. Evolutionary Optimisation

Figure 4: Evolutionary optimisation process

C that is better or equal in all quality criteria. Analogously,
a candidate is globally Pareto-optimal, if it is Pareto-optimal
with respect to the set of all possible candidates DS.

The optimisation problem can be formulated as follows
for a set of quality criteria Q = {q1, ..., qm}:

min
c∈DS

[fq1(c), ..., fqm(c)]

Constraints on combinations can be added to the optimisa-
tion problem at this point.

For the optimisation, we face a non-linear combinatorial
optimisation problem [4, Def. 1.1]. We cannot apply classic
techniques such as Branch-And-Bound [13]. Metaheuristics
have been successfully applied to similar problems in soft-
ware engineering [22]. In this work, we use evolutionary
algorithms, as for example described in [4, p. 284], as they
are found useful for multi-objective problems [10]. Other
metaheuristics such as simulated annealing or stochastic hill-
climbing could be used as well.

We chose not to use a rule-based approach (which is a
local search technique) as other work do [38, 12, 33, 28], as
they are restricted to limited degrees of freedom each. No a-
priori knowledge about the effects of many of the degrees of
freedom is available. For example, rules for the exchange of
components would require a numerical solution for optimal
component composition, which is not possible in general be-
cause of the parametrisation of the component SEFFs. For
other degrees of freedom, such as allocation, rules can give
guidance, but cannot foresee the complexity of performance
metrics introduced by software resources and contention ef-
fects. For example, if passive resources such as thread pools
are involved, allocation of components to servers cannot be
solved by a bin-packing algorithm based on the resource de-
mand of components only. Metaheuristic can search regions
of the search space for which no prior knowledge about the

[27,50,50,S3,
S1,S2,C2]

c0

c2c1 c3 c4

c5
c7

[35,40,30,S1,
S2,S3,C2]

[35,40,30,S1,
S2,S2,C2] [26,45,44,S3,

S2,S1,C2a]
[36,35,28,S2,
S3,S2,C2]

[55,40,30,S1,
S2,S3,C2] [35,45,44,S1,

S2,S2,C2a]

[26,45,44,S1,
S2,S1,C2a]

[29,40,50,S2,
S3,S3,C2a]

c8
c6

C
re

a
te

d
 i
n

 i
te

ra
ti
o

n
 n

u
m

b
e

r

Random

Mutation

Crossover

Removed

Input population for:

Iteration 1

Iteration 2

Iteration 3

1

2

Figure 5: The beginning of an exemplary optimisa-
tion run

relation between choices and resulting quality properties ex-
ists. Only a quantitative evaluation function for each quality
criterion based on an architectural model is required.

Figure 4 shows the process model of our method. The
method is described here exemplary for our current reali-
sation with the PCM and the NSGA-II evolutionary algo-
rithm [14] as implemented in the Opt4J framework [27], but
can as well be used for other software architecture mod-
elling languages and other population-based metaheuristic
search techniques. The process starts with an initial model
of a component-based software architecture (initial candi-
date) and modifies it along the system-specific degrees of
freedom. As the software model contains all required anno-
tations, all steps of the search can be completely automated.
Figure 5 shows the first two iterations of an exemplary run,
starting with an initial given candidate c0 (we left the E
notation out and rounded to E+9 for brevity).

a© Reproduction: Based on the currently available can-
didates in the population, new candidate solutions are
derived by “mutation” or “cross-over” or they are ran-
domly created. With mutation, one or several design
options are varied. In our exemplary run, based on the
initial candidate c0, a new candidate c2 with changed
allocation is derived in the first iteration that allocates
C3 on S2. Candidate c7 derives from c3 in the sec-
ond iteration by reallocating C2a to S1. With cross-
over, the genotypes of two good candidate solutions
are merged into one, by taking some of each candi-
dates design option values for the cross-over. For ex-
ample, candidate c2 and candidate c3 are combined by
cross-over in the second iteration to produce c6. In ad-
dition, candidates can be randomly generated based on
the available design options. For example, candidate
c1 is randomly created here in the first iteration.

Performance domain specific heuristics could be inte-
grated here to guide the search. For example, a heuris-
tic mutation could move a component from an over-
utilised server to a lightly utilised server.

b© Evaluation: In the second step, each newly derived
candidate is evaluated for each quality criterion of in-
terest. In our case, performance, reliability and cost
metrics are predicted as described in sections 3. As

111

Server S1

Component C2a

[Cost = 6 Units]

Server S2

Component C3

[Cost = 3 Units]

Server S3

Rate = 35E+6 Instr./Second

MTTF = 300.000 hours

MTTR = 6 hours

Cost = 12 + (3E-6 * Rate) Units

Rate = 45E+6 Instr./Second

MTTF = 300.000 hours

MTTR = 6 hours

Cost = 12 + (3E-6 * Rate) Units

X
Cost = 0

Component C1

[Cost = 4 Units]
Arrival

Rate

= 0.2 per

second

x : differ-

ences to c0

 : not in

 use
x

Figure 6: Example PCM Model for Pareto-optimal
candidate c6

a result, each candidate is annotated with the deter-
mined QoS properties. In our example, candidates c1
to c4 are evaluated in the first iteration, and candi-
dates c5 to c8 are evaluated in the second iteration.
Candidate c0 has been evaluated before the actual op-
timisation starts. The results for each candidate are
depicted in Figure 7 in the next section.

c© Selection: After the reproduction phase, the popu-
lation has grown. In the selection phase, the pop-
ulation is again reduced by removing less promising
candidates. Here, we first remove candidates that vi-
olate quality requirements. Second, we filter Pareto-
dominated candidates and only keep Pareto-optimal
ones. In our example, candidates c0, c1 and c4 are
removed in the selection phase of iteration 1, and can-
didates c5 and c7 are removed in the selection phase of
iteration 2. Possible future selection strategies could
also keep a number of dominated or violating candi-
dates to keep a diverse “gene pool” and avoid over-
specialisation in local optima.

Over several iterations, the combination of reproduction
and selection lets the population converge towards the front
of globally Pareto-optimal solutions. If the search also keeps
a good diversity of candidates, we can find solutions near
to the global optima. In our example, a resulting solution
with a good tradeoff is c6, shown in Figure 6. It is superior
to the initial candidate in average response time (3.23 sec)
and cost (43), and has just as slightly higher probability of
failure on demand (74E-04).

We currently use a predefined number of iterations to de-
termine the end of the search. More sophisticated stop crite-
ria could use convergence detection and stop when the global
optimum is probably reached.

4.5 Present Results
Finally, the resulting set of Pareto-optimal solutions is

presented to the software architect. The software architect
can identify interesting solutions and make well-informed
trade-off decisions between the multiple quality criteria and
the candidates that feature optimal tradeoffs. An example
visualisation considering only response time and cost after
two iterations is shown in Figure 7. A visualisation for all
three considered quality criteria can be found in Section 5
for the case study. In future work, more dimensions could
be visualised with Radar-charts [9].

c0

c1

c2

c3

c4

c5c6

c7

c8

2

3

4

5

6

7

40 42 44 46 48 50 52 54 56

A
ve

ra
ge

 R
e

sp
o

n
se

 t
im

e
 in

 s
e

c

Cost

Figure 7: Resulting candidates after 2 iterations
(Pareto-optimal candidates: 3, initial candidate: 4,
others ×)

In an optional last step, interesting candidates, i.e. re-
sulting Pareto-optimal candidates and candidates that are
close to them, can be automatically examined more closely.
For example, a more detailed performance analysis of the
interesting candidates can be conducted to obtain more pre-
cise performance metrics, for example by conducting long-
running simulations.

5. CASE STUDY
This section describes a case study to demonstrate the

applicability and usefulness of our approach and is organ-
ised as follows. Section 5.1 introduces the architecture and
the Palladio model of the system under study, the so-called
business reporting system. Section 5.2 describes the degrees
of freedom in this system and formulates the search prob-
lem. Section 5.3 details on an optimisation run performed
on the model. Finally, Section 5.4 presents and discusses
the results of the automatic optimization.

Notice that we do not compare our prediction results from
the models with actual measurements from the system im-
plementation. For our validation, we assume that the un-
derlying modelling and prediction methods are sound and
deliver accurate prediction results as demonstrated in other
papers [3, 7].

5.1 Business Reporting System
The system under study is the so-called business reporting

system (BRS), which lets users retrieve reports and statisti-
cal data about running business processes from a data base.
It is loosely based on a real system [37]. Fig. 8 shows some
parts of the PCM instance of the BRS visualised using an-
notated UML diagrams. It is a 4-tier system consisting of
several software components.

The WebServer component handles user requests for gen-
erating reports or viewing the plain data logged by the sys-
tem. It delegates the requests to a Dispatcher component,
which in turn distributes the requests to four replicated
ReportingServers. The replication helps balancing the load
in the system, because the processing load for generating re-
ports from the database contents is considered significant.
Each ReportingServer component is a composite compo-
nent consisting of an inner ReportingEngine and a Cache

component. The ReportingServers access two replicated
Databases for the business data.

Besides the static view of the system, Fig. 8 also contains
a behavioural view in form of service effect specifications in
the upper half of the figure. The SEFFs contain the resource

112

Web Server

Dispatcher

Reporting

Engine
Cache

Data

base

ReportingServer

Reporting

Engine
Cache

ReportingServer

Reporting

Engine
Cache

ReportingServer

Reporting

Engine
Cache

ReportingServer Data

base

<<implements>> <<implements>> <<implements>>

Processing Rate = 10E+9 Instr./Second

MTTF = 292.000 hours

MTTR = 6 hours

Cost = 10 Units

Processing Rate =

10E+9 Instr./Second

MTTF = 219.000

hours

MTTR = 6 hours

Cost = 10 Units

Processing Rate = 10E+9 Instr./Second

MTTF = 175.200 hours

MTTR = 6 hours

Cost = 10 Units

User

Population

= 50

Think time

= 10.0 s

Processing Rate = 10E+9 Instr./Second

MTTF = 438.000 hours

MTTR = 8 hours

Cost = 10 Units

InternalAction

rd=2E+08

fp=0.00012

InternalAction

rd=4E+09

fp=0.0005

ExternalCall

report

ExternalCall

view

p=0.3 p=0.7

InternalAction

rd=5.2E+08

fp=0.00034

InternalAction

rd=1.0E+08

fp=0.00050

InternalAction

rd=3.3E+08

fp=0.00098

InternalAction

rd=2.5E+08

fp=0.0037

ExternalCall

getSmallReport

ExternalCall

getCachedData

ExternalCall

getBigReport

p=0.1
p=0.9

loopCount = 7

loopCount = 2

InternalAction

rd=1.0E+08

fp=0.00055

getSmallReport

InternalAction

rd=3.0E+08

fp=0.00050

getBigReport

InternalAction

rd=3.0E+07

fp=0.00021

getCachedData

Cost =

7 Units

Cost =

4 Units

Cost =

12 Units
Cost =

5 Units

serveRequest

report

Figure 8: Business Reporting System: PCM instance of the case study system

demands, failure probabilities, and call propagations later
predictions will be based on. The components are allocated
on eight different servers connected by different network de-
vices. Our case study analyses a usage scenario, where 50
users access the system concurrently. Each user requests a
report or view from the system and then looks at the re-
sults for 10 seconds before issuing the next request (closed
workload).

For the performance prediction, we transform the model
into a LQN using PCM2LQN [26] (Fig. 9. The LQN model
contains multiple dummy processors and tasks, which were
added to make the transformation from PCM more straight-
forward. The average response time for this model as pre-
dicted by the LQNS tool is 2.2 seconds.

For the reliability prediction, we use the PCM Markov
translator [7], which predicts a probability of failure on de-
mand for the system of 0.0605 percent. This means that
each user request will be successful with a probability of
99.9395 percent. The cost for the system calculated by the
PCM cost solver are 98 units.

5.2 Search Problem Formulation
To formulate the search problem for the business reporting

system, first the system specific degrees of freedom have to
be determined. For our case study, we consider the following
degrees of freedom: component selection, server processing
rates, and component allocation.

Component selection is possible in this system as it con-
tains several replaceable standard components. The Web

Server as well as the Database can be realised using third

Figure 9: Layered Queueing Network of the Busi-
ness Reporting System generated from PCM in-
stance

113

party components. The software architect can choose among
multiple functional equivalent components with different
non-functional properties and cost. For the BRS, we have
modelled two additional web servers and one additional
database which have different performance and reliability
properties, but also higher or lower cost than the compo-
nents in the initial system.

Server processing rates can be adjusted at multiple loca-
tions in the model as it contains 8 servers. It is expected
that the overall performance of the system increases most
significantly when using faster processing rates for highly
utilised components. We assume here that the bounds for
the processing rate are 1/2 of the initial rate (lower bound)
and 2 times the initial rate (upper bound). Currently, the
processing rate is modelled as a continuous variable.

Component allocation can be crucial for the non-
functional properties and cost of the system. It could be
possible to allocate multiple components on the same server
without affecting the performance or reliability significantly.
This could allow to remove some servers to save cost.

The genome of the initial candidate determined by Per-
Opteryx looks as follows: [1, 1, 1, 1, 1, 1, 1, 1, DB, Web-
Server, DB, server1, server2, server4a, server4b, server3a,
server3b, server3c, server3d]. It reflects the processing rates,
the alternatively used components as well as the component
allocation to different servers (e.g., WebServer is deployed
on server 1 and Dispatcher is deployed on server 2).

5.3 Evolutionary Optimisation
For the evolutionary optimisation of the model, our pro-

totype PerOpteryx tool follows the process described in
Section 4.4. We configured Opt4J to run for 40 iterations
and to produce 60 candidates per iteration. The LQN solver
was configured with a convergence value of 0.001 and an it-
eration limit of 200 (see [26] for details). The PCM Markov
model solver was used in a standard configuration.

The automatic improvement process took 8 hours, pro-
duced more than 1235 valid architectural candidates and
made performance, reliability, and cost predictions for them.
The average creation, transformation, and prediction time
per candidate was 24 seconds. 58 of the candidates were
deemed Pareto-optimal by the evolutionary algorithm.

The evolution process run time could be shortened sig-
nificantly by executing the candidate analyses per candi-
date concurrently (e.g., on multicore processors or in a dis-
tributed environment). We consider this enhancement to
our tool as future work.

5.4 Present Results
The results of the evolutionary optimisation run are de-

picted in Figures 10 to 12.
Figure 10 visualizes the three dimensional Pareto front

for performance, reliability, and cost. Figure 11 shows the
response time in seconds over the cost per candidate, while
Figure 12 shows the probability of failure on demand over
the cost per candidate. The software architect can use these
results to make an informed trade-off decision among the
different quality criteria.

In Figures 11 to 12, the 58 Pareto-optimal points are high-
lighted as thick squared marks. These points are not located
at the borders of the candidate sets, as it would be the case
for a two-dimensional set. Pareto-optimal points located
within the set are superior to others in the third quality cri-

Figure 10: BRS system: 3D-Pareto front Perfor-
mance vs. Reliability vs. Cost

0

2

4

6

8

10

12

14

16

18

20

0 20 40 60 80 100 120 140 160

A
ve

ra
ge

 R
e

sp
o

n
se

 T
im

e
 (

Se
co

n
d

s)

Costs (Units)

All candidates

Pareto-optimal candidates

Initial Candidate

Example
Pareto-optimal
Candidate

Figure 11: BRS system: Performance vs. Cost
Tradeoff

terion not shown in the respective diagram (i.e., reliability
in the first case and performance in the second case). For
example, the highlighted candidate in Figure 11 has a higher
response time and higher cost than some other candidates,
but its reliability is superior to these other points.

We describe one of the found Pareto-optimal solutions in
more detail. It is highlighted in Fig. 11 and Fig. 12 using
circles. The response time of this solution is 1.34 seconds
(initial candidate: 2.2 seconds), its POFOD is 0.0526 per-
cent (initial candidate: 0.0605), and its cost are 69.83 units
(initial candidate: 98 units). Therefore it is superior to the
initial candidate in all quality criteria.

The genome of this solution is: [1.76, 1.19, 1.01, 0.53,
1.02, 2, 1.62, 1.71, DB, WebServer3, DB, server1, server1,
server4a, server3d, server2, server1, server4a, server3d].
This means that the evolutionary algorithm has increased
the processing rates of almost all CPUs. Server1 was for-
merly fully utilised by the WebServer component, but now
can also host the Dispatcher component, because of the in-
creased processing rate. Therefore an additional server for
the Dispatcher can be saved lowering the overall cost.

The algorithm has also selected the component Web-

Server3 instead of WebServer, because of its better per-
formance with only slightly higher cost. Furthermore, the
optimization run deemed the DB2 component as too expen-
sive and continued to use the DB component. Two of the

114

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0 20 40 60 80 100 120 140 160

P
ro

b
ab

ili
ty

 o
f

Fa
ilu

re
 o

n
 D

e
m

an
d

Costs (Units)

All candidates

Pareto-optimal candidates

Initial Candidate

Example
Pareto-optimal
Candidate

Figure 12: BRS system: Reliability vs. Cost Trade-
off

ReportingServers have been allocated to the same server,
thereby saving the cost for an additional server while still
providing adequate performance and reliability.

Our main contribution in this work is to formulate the
search problem and allow automatic search, and not the
particular chosen optimisation strategy. Thus, we have not
compared our optimisation run with random search in this
work. Such a comparison can be found at2.

To conclude, the optimisation run of our case study was
able to reduce the amount of over-provisioning present in the
initially modelled system and presented a solution candidate
with improved performance and reliability for lower cost.
The software architect does not have to use this solution
exactly as produced by the optimization run. However, it is
now known that faster processors within the system can help
to reduce the amount of needed servers, and that buying the
WebServer2 component justifies its higher cost.

6. LIMITATIONS AND FUTURE WORK
Besides inheriting all limitations of the underlying qual-

ity prediction techniques (see [3] for performance, [25] for
reliability), our approach exhibits the following limitations:

• No guaranteed optimality: The approach itself is a
best-effort approach and does not guarantee to find the
real Pareto-front, i.e. the globally optimal solutions,
because metaheuristics are used.

• Questionable efficiency: As the evaluation of each
candidate solution, mainly due to the performance
evaluation, takes several seconds, the overall approach
is considerably time consuming. Here, software archi-
tects should run it in parallel to other activities or
over night. A distribution of the analyses on a clus-
ter of workstations could lead to significant improve-
ments. It could also be possible to split the optimisa-
tion problem into several independent parts that are
solved separately and thus quicker. Problem-specific
heuristics allowing faster convergence and thus requir-
ing less evaluations are a crucial extension.

• No regard for uncertainties: For the results, uncer-
tainty of estimations, uncertainty of the workload, and
the resulting risks are not taken into account. Here,
sensitivity metrics could be an additional quality cri-
terion.

2palladio-approach.net/ PerOpteryx

• Limited degrees of freedom: Currently, design op-
tions that offer new degrees of freedom are not yet
considered. For example, adding a new server results
in further options to configure that server. Such de-
sign options could be integrated by formulating the
genotype as a tree structure rather than a vector.

• Simplistic cost model: The cost model used here
is simplistic, as we only wanted to demonstrate the
approach. We do not want to devise a new cost esti-
mation technique. However, more sophisticated cost
estimations techniques such as COCOMO II [5] could
be integrated.

• Limited genetic encoding: So far, the genetic en-
coding is an array of choices. More complex degrees of
freedom like replacement of subsystem, which opens up
more degrees of freedom for inner components, cannot
be expressed yet.

An important aspect of future work is to combine our
approach with subordinate heuristics to make use of perfor-
mance domain knowledge. For example, heuristics to im-
prove allocation based on the resource demands of compo-
nents and utilisation of servers could be introduced. In ad-
dition, rules as presented in [38, 12, 28] could be integrated
in specialised mutation operators. Performance antipattern
detection and solution as suggested in [11] could comple-
ment this approach. Such subordinate heuristics can help
the approach to find good solutions more quickly.

7. CONCLUSIONS
This paper presents an approach to automatically improve

software architectures with respect to performance, reliabil-
ity, and cost. Using this approach, the design space spanned
by different design options (e.g. available components and
configuration options) can be systematically explored using
metaheuristic search techniques. Based on an initial archi-
tectural model of a system, new candidates are automati-
cally generated and evaluated for the quality criteria. The
process is extensible for different modelling notations, analy-
sis methods, and quality criteria. We provide a prototypical
implementation of our approach with the PerOpteryx tool
based on the PCM as well as a case study to demonstrate
the feasibility and the benefits.

Our work saves software architects effort to manually ex-
plore the design space of their software architecture under
study, and instead allows them to focus on Pareto-optimal
solutions for their trade-off decisions between multiple qual-
ity criteria. In addition, software architecture alternatives
can be found that might have escaped human attention.
Thus, our approach can reduce development cost and result
in software architectures with better quality properties.

The next steps to extend our work will be the integra-
tion of subordinate heuristics to include performance domain
knowledge. Here, we plan to integrate our metaheuristic ap-
proach with existing rule-based approaches to leverage the
advantages of both. Furthermore, we will enhance our ap-
proach to allow the specification and checking of quality cri-
teria requirements as well as manually specified constraints
on the architectural model, which can help avoid undesired
or infeasible design alternatives.

115

8. REFERENCES
[1] A. Aleti, S. Bjornander, L. Grunske, and I. Meedeniya.

Archeopterix: An extendable tool for architecture optimization
of AADL models. International Workshop on Model-Based
Methodologies for Pervasive and Embedded Software
(MOMPES), pages 61–71, 2009.

[2] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni.
Model-Based Performance Prediction in Software
Development: A Survey. IEEE Transactions on Software
Engineering, 30(5):295–310, May 2004.

[3] S. Becker, H. Koziolek, and R. Reussner.a The Palladio
component model for model-driven performance prediction. J.
of Systems and Software, 82:3–22, 2009.

[4] C. Blum and A. Roli. Metaheuristics in combinatorial
optimization: Overview and conceptual comparison. ACM
Computing Surveys, 35(3):268–308, 2003.

[5] B. W. Boehm, C. Abts, A. W. Brown, S. Chulani, B. K. Clark,
E. Horowitz, R. Madachy, D. J. Reifer, and B. Steece. Software
Cost Estimation with Cocomo II. Prentice Hall, Upper Saddle
River, NJ, USA, 2000.

[6] E. Bondarev, M. R. V. Chaudron, and E. A. de Kock.
Exploring performance trade-offs of a JPEG decoder using the
DeepCompass framework. In Proc. of WOSP’07, pages
153–163, New York, NY, USA, 2007. ACM Press.

[7] F. Brosch and B. Zimmerova. Design-Time Reliability
Prediction for Software Systems. In Proceedings of the
International Workshop on Software Quality and
Maintainability (SQM’09), pages 70–74, March 2009.

[8] G. Canfora, M. D. Penta, R. Esposito, and M. L. Villani. An
approach for qoS-aware service composition based on genetic
algorithms. In H.-G. Beyer and U.-M. O’Reilly, editors, Proc.
of Genetic and Evolutionary Computation Conference 2005,
pages 1069–1075. ACM, 2005.

[9] J. M. Chambers, W. S. Cleveland, B. Kleiner, and P. A. Tukey.
Graphical Methods for Data Analysis. Wadsworth Internat.
Group, 1983.

[10] C. A. C. Coello. A comprehensive survey of evolutionary-based
multiobjective optimization techniques. Knowledge and
Information Systems, 1:269–308, 1999.

[11] V. Cortellessa, A. Di Marco, R. Eramo, A. Pierantonio, and
C. Trubiani. Approaching the model-driven generation of
feedback to remove software performance flaws. In Proc. of
Euromicro Conference on Software Engineering and
Advanced Applications, to appear, 2009.

[12] V. Cortellessa and L. Frittella. A framework for automated
generation of architectural feedback from software performance
analysis. In K. Wolter, editor, Proc. of Fourth European
Performance Engineering Workshop, volume 4748 of Lecture
Notes in Computer Science, pages 171–185. Springer, 2007.

[13] R. Dakin. A tree search algorithm for mixed integer
programming problems. Computer Journal, 8:250–255, 1965.

[14] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast
elitist non-dominated sorting genetic algorithm for
multi-objective optimization: NSGA-II. In Parallel Problem
Solving from Nature PPSN VI, volume 1917/2000, pages
849–858. Springer-Verlag, Berlin, Germany, 2000.

[15] M. Ehrgott. Multicriteria Optimization. Springer-Verlag, New
York, USA, 2005.

[16] H. El-Sayed, D. Cameron, and M. Woodside. Automation
support for software performance engineering. In Proc. of the
2001 ACM SIGMETRICS international conference on
Measurement and modeling of computer systems, pages
301–311, New York, NY, USA, 2001. ACM.

[17] G. Franks, T. Omari, C. M. Woodside, O. Das, and S. Derisavi.
Enhanced modeling and solution of layered queueing networks.
IEEE Trans. Software Eng, 35(2):148–161, 2009.

[18] S. S. Gokhale. Architecture-based software reliability analysis:
Overview and limitations. IEEE Trans. on Dependable and
Secure Computing, 4(1):32–40, January-March 2007.

[19] L. Grunske, P. A. Lindsay, E. Bondarev, Y. Papadopoulos, and
D. P. 0002. An outline of an architecture-based method for
optimizing dependability attributes of software-intensive
systems. In R. de Lemos, C. Gacek, and A. B. Romanovsky,
editors, WADS, volume 4615 of Lecture Notes in Computer
Science, pages 188–209. Springer-Verlag, Berlin, Germany,
2006.

[20] J. Happe. Predicting Software Performance in Symmetric
Multi-core and Multiprocessor Environments. Dissertation,
University of Oldenburg, Germany, August 2008.

[21] J. Happe, S. Becker, C. Rathfelder, H. Friedrich, and R. H.
Reussner. Parametric Performance Completions for
Model-Driven Performance Prediction. Performance
Evaluation, 2009. Accepted for publication in 2009.

[22] M. Harman. The Current State and Future of Search Based
Software Engineering. Proc. of Future of Software
Engineering, pages 342–357, May 23-25 2007.

[23] M. Hauck, M. Kuperberg, K. Krogmann, and R. Reussner.
Modelling Layered Component Execution Environments for
Performance Prediction. In Proc. of the International
Symposium on Component Based Software Engineering,
number 5582 in LNCS, pages 191–208. Springer, 2009.

[24] A. Kavimandan and A. S. Gokhale. Applying model
transformations to optimizing real-time QoS configurations in
DRE systems. In Proc. of Quality of Software Architectures,
pages 18–35, 2009.

[25] H. Koziolek and F. Brosch. Parameter dependencies for
component reliability specifications. In Proc. of Workshop on
Formal Engineering approaches to Software Components and
Architectures. Elsevier, 2009.

[26] H. Koziolek and R. Reussner. A Model Transformation from
the Palladio Component Model to Layered Queueing Networks.
In Performance Evaluation: Metrics, Models and
Benchmarks, SIPEW 2008, volume 5119 of Lecture Notes in
Computer Science, pages 58–78. Springer-Verlag Berlin
Heidelberg, 2008.

[27] M. Lukasiewycz. Opt4j - the optimization framework for java.
http://www.opt4j.org, 2009.

[28] J. D. McGregor, F. Bachmann, L. Bass, P. Bianco, and
M. Klein. Using arche in the classroom: One experience.
Technical Report CMU/SEI-2007-TN-001, Software
Engineering Institute, Carnegie Mellon University, 2007.

[29] J. D. Musa, A. Iannino, and K. Okumoto. Software Reliability
– Measurement, prediction, application. McGraw-Hill, New
York, 1987.

[30] Object Management Group (OMG). UML Profile for Modeling
and Analysis of Real-Time and Embedded systems (MARTE)
RFP (realtime/05-02-06), 2006.

[31] Object Management Group (OMG). Unified Modeling
Language: Superstructure Specification: Version 2.1.2, Revised
Final Adopted Specification (formal/2007-11-02), 2007.

[32] Object Management Group (OMG). OMG Systems Modeling

Language (OMG SysMLTM).
http://www.sysmlforum.com/docs/specs/OMGSysML-v1.1-08-
11-01.pdf, 11
2008.

[33] T. Parsons and J. Murphy. Detecting performance antipatterns
in component based enterprise systems. Journal of Object
Technology, 7(3):55–90, Mar. 2008.

[34] C. U. Smith and L. G. Williams. Performance Solutions: A
Practical Guide to Creating Responsive, Scalable Software.
Addison-Wesley, 2002.

[35] M. Woodside, G. Franks, and D. C. Petriu. The Future of
Software Performance Engineering. In Proceedings of ICSE
2007, Future of SE, pages 171–187. IEEE Computer Society,
Washington, DC, USA, 2007.

[36] M. Woodside, D. C. Petriu, and K. H. Siddiqui.
Performance-related Completions for Software Specifications.
In Proc. of the International Conference on Software
Engineering, pages 22–32. ACM, 2002.

[37] X. Wu and M. Woodside. Performance Modeling from Software
Components. SIGSOFT Softw. Eng. Notes, 29(1):290–301,
2004.

[38] J. Xu. Rule-based automatic software performance diagnosis
and improvement. In Proc. of WOSP’08, pages 1–12, New
York, NY, USA, 2008. ACM.

116

