
DynamicAdaptiveVirtualCoreMappingto
ImprovePower,Energy,andPerformance in

Multi-socketMulticores
Chang Bae, Lei Xia, Peter Dinda, John Lange

{cbae@u.,lxia@,pdinda@}northwestern.edu, jacklange@cs.pitt.edu

Virtual Core Mapping Prob.
Consider a multithreaded parallel application
running inside a multicore VM context that is
itself hosted on a multi-socket multicore physi-
cal machine. How should the VMM map virtual
cores (vcores) to physical cores? We compare a
local mapping, which compacts virtual cores to
processor sockets, and an interleaved mapping,
which spreads them over the sockets.

System Overview

Three key components of the system: Map-
per, Aggregator, and vcore/pcore mapping.
Vcore/pcore mapping provides the core mech-
anism. The Aggregator and mapping compo-
nents are controlled and called by the Mapper
component.

References
[1] LANGE et al. An introduction to the palacios vir-

tual machine monitor release 1.3., Tech. Rep. NWU-
EECS-11-10, Depart. of EECS, Northwestern Univ.
(2011).

[2] LANGE et al. A. Minimal-overhead virtualization of
a large scale supercomputer, In Proceedings of the
2011 ACM SIGPLAN/SIGOPS International Con-
ference on Virtual Execution Environments (2011).

[3] LANGE et al. Palacios and kitten: New high perfor-
mance operating systems for scalable virtualized and
native supercomputing.. In Proceedings of the 24th
IEEE International Parallel and Distributed Process-
ing Symposium (2010).

Acknowledgements
This project is made possible by support from the Na-
tional Science Foundation (NSF) via grant CNS-0709168
and the Department of Energy (DOE) via grant DE-
SC0005343.

Dynamic Adaptive Vcore Mapping for Various Objectives
We have demonstrated the opportunity for optimizing for performance, power, and energy presented
by being able to simply choose between local and interleaved mappings of virtual cores to physical
cores. This opportunity is leveraged in an automatic adaptive system that chooses between these two
mappings. We implemented and evaluated in the context of the Palacios VMM [1, 2, 3] to do this.
We demonstrate that the performance of SPEC and PARSEC benchmarks can be increased by as
much as 66%, energy reduced by as much as 31%, and power reduced by as much as 17%, depending
on the optimization objective. The overhead of system is concentrated in page table scanning and
vcore remapping; the worst case we observed takes 4.6 ms and 5.3 ms for each. The overall overhead
in one execution is clearly negligible even in the worst case that has less than 0.05 % overhead.

VMM-base Measurement
We took several measures to arrive at our set of
metrics. First, we used architecture-level anal-
ysis. Secondly, we considered only metrics that
could be quickly captured in a VMM, which gen-
erally means operating at the page granularity.
Finally, we selected a minimally correlated set.

Flow of measurement mechanism: In each vcore,
(1) Hardware triggers the interval after a spec-
ified number of memory ops or write ops. (2)
VMM scans page table to find page access or
page writes generating bitmap(s). (3) Aggrega-
tor collects bitmaps across vcores, and computes
the metrics

Vcore Mapping Policy
Our approach is based on modeling, in which we
run diverse workloads on the machine. As the
machine runs, we continue to collect the metrics,
and use their values, plus the models, to make
predictions of the relative utility of the two map-
pings, deciding between them in pursuit of the
currently chosen goal.

Migration Mechanism
vcore mapping in Palacios is changed only on
explicit request(s) from Mapper. Steps in the
request: 1) Forces all vcores to exit. 2) Rebinds
host kernel threads, with virtualization states to
the new locations. 3) Synchronizes threads and
reenters the guest.


