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ABSTRACT
In this paper, we propose Personalized Markov Embedding (PME),
a next-song recommendation strategy for online karaoke users. By
modeling the sequential singing behavior, we first embed songs and
users into a Euclidean space in which distances between songs and
users reflect the strength of their relationships. Then, given each
user’s last song, we can generate personalized recommendations
by ranking the candidate songs according to the embedding. More-
over, PME can be trained without any requirement of content infor-
mation. Finally, we perform an experimental evaluation on a real
world data set provided by ihou.com which is an online karaoke
website launched by iFLYTEK, and the results clearly demonstrate
the effectiveness of PME.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—Information filtering

Keywords
Music Recommendation; Personalization; Markov Embedding

1. INTRODUCTION
Advances in the Internet and mobile technologies have exposed

people to the massive amount of online multimedia entertainment.
Among them, online karaoke has attracted significant attention, s-
ince everybody can sing along with the recorded music anytime and
anywhere, or even with a music video like a professional singer.
As a trend, much more music are becoming available, and thus the
demand for intelligent karaoke services, i.e., personalized song rec-
ommendation, is expected to increase dramatically.

Actually, music recommendations have been widely studied and
applied in the literature. For instance, since music is rich in both
textual and acoustic information (e.g., artists, genres and pitch-
es), several recommendation algorithms[4, 8, 12, 15] exploited it
and modeled users or user behaviours based on extracted features.
However, content information cannot be easily extracted in many
cases. Thus, collaborative filterings have become the most popular
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Figure 1: A screenshot of ihou.com, where a user is singing.

music recommendation techniques. Methods such as neighborhood
based methods[14], matrix factorization[9] and Markov model[5]
are commonly adopted. These technical achievements further se-
cured the success of many music station websites, such as Pando-
ra1 and douban.fm2. In summary, most of the existing works try
to predict the possible ratings from a given user to each song (or
other multimedia items such as videos and movies), and then gen-
erate the candidate songs (or videos) for users to listen to (or to
watch). However, the above strategies cannot be directly applied to
the next-song recommendation for karaoke users due to the domain
and technical challenges.

To illustrate the first challenge, we will take ihou.com3 as an ex-
ample. ihou.com is a famous online karaoke website launched by
iFLYTEK4, the leading provider of Chinese speech and language
technology. Figure 1 is a screenshot of ihou.com, where a user is
singing a Chinese song and just got an 80 out of 100 for the lat-
est performed sentence. Thus, different from traditional online en-
tertainment (e.g., music listening and movie watching[10]) where
users passively experience items and give ratings to the items and
systems, the users in karaoke systems like ihou.com are usually be-
ing evaluated by the system, based on their singing performances.
This leads to the challenge that we cannot refer to the explicit us-
er ratings for representing user preferences. However, we could
assume that every choice of a song indicates a strong interest of
the karaoke user in that music, since the user has to spend minutes
performing himself and meanwhile take the risk of being judged.

The second challenge lies in the sequential behavior of users’s
singing[11]. Similar to web searches[3], where user’s preceding
queries can help to capture his/her search intents, the recent choic-
es of karaoke users also reflect their current moods and interests[2].
For instance, it is not likely for you to sing “My Heart Will Go On”,
1http://www.pandora.com
2http://douban.fm
3http://www.ihou.com/
4http://www.iflytek.com/english/



when the cheerful “Uptown Girl” is just sung, even if you do like
these two songs. Thus, besides capturing the general (long-term)
preference of each user, it is also important to model the sequential
nature of singing lists for the user’s contextual (short-term) prefer-
ence[13] when making personalized next-song recommendations.

To address the above challenges, in this paper, we extend the
existing Logistic Markov Embedding (LME)[5] algorithm and pro-
pose Personalized Markov Embedding (PME), a next-song recom-
mendation strategy for online karaoke users. Specifically, we first
embed songs and users into a Euclidean space in which distances
between songs and users reflect the strength of their relationship-
s. This embedding could efficiently combine users’ long-term and
short-term preferences together. Then, given each user’s last song,
we can generate recommendations by ranking the candidate songs
according to the embedding. Moreover, our PME can be trained
without any content information of songs, namely just with the in-
teraction history of users’ singing. Finally, we perform an experi-
mental evaluation on a real world data set, and the results demon-
strate that the PME algorithm outperforms several state-of-the-arts,
including the non-personalized LME algorithm.

2. NEXT-SONG RECOMMENDATION
2.1 Problem Formalization

Given the songs that have been performed previously by each
karaoke user, our goal is to recommend a ranked list of songs to
a given user for the current context (the last song). We formal-
ize this problem as follows. Let S =

{
s1, s2, · · · , s|S |

}
be the song

set and U =
{
u1, u2, · · · , u|U |

}
be the user set. The neighbouring

song records, which are usually similar, performed by the same us-
er during short time intervals form a session. For instance, the j-th

session of user u is represented by pu, j =

(
p(1)

u, j, p
(2)
u, j, · · · , p

(|pu, j|)
u, j

)
where p(k)

u, j is the k-th song in session pu, j. All sessions produced

by user u is pu =
(
pu,1, pu,2, · · · , pu,|pu |

)
. Thus, the entire data set

can be represented as D = {(u, pu) |u ∈ U }. In other words, given
D, the current user u and the last song s performed by user u, we
want to train a model to generate a candidate song list for user u
to choose from for his/her next performance. Along this line, we
should estimate the transition probabilities between songs for each
user (session) by measuring user preferences.

2.2 Personalized Markov Embedding
In this subsection, we describe the way to simultaneously mea-

sure users’ long-term and short-term preferences and the relation-
ships between users and songs by PME. Thus, the next-song rec-
ommendation list can be generated naturally.

To this end, we map songs and users into points in a Rd space,
and use vector x (s) and vector y (u) to denote song s’s and user u’s
coordinates in this space, respectively. The Euclidean distance be-
tween two points reflects the relation between corresponding user-
s/songs. If two songs stay apart from each other, it is not likely that
they will show up in the same session. Also, if a user stays close to
a song, he/she may often sing it. Worth noting that the relations are
asymmetric, and this can be inferred from the later illustration.

First, we assume the probability Pr (sb|sa, u) of a transition from
song sa to song sb made by user u is related to the Euclidean dis-
tances ∥x (sa) − x (sb)∥2 and ∥y (u) − x (sb)∥2, which can be viewed
as user u’s short-term and long-term preferences. Straightforward-
ly, it can be described as:

Pr (sb |sa, u) ∝ e−∥x(sa)−x(sb)∥22−∥y(u)−x(sb)∥22 (1)

Note that Pr (sb|sa) is proportional to e−∥x(sa)−x(sb)∥22 in LME[5].
Thus, the user information is ignored by LME, while being consid-
ered by our PME.

Since
∑|S |

b=1 Pr (sb|sa, u) = 1, we add a denominator to the expo-
nential value for normalization, and Equation (1) becomes:

Pr (sb |sa, u) =
e−∥x(sa)−x(sb)∥22−∥y(u)−x(sb)∥22∑

s∈S e−∥x(sa)−x(s)∥22−∥y(u)−x(s)∥22
(2)

And now, we can get the coordinate mappings through a likelihood
maximization approach:

(X,Y) = arg max
X,Y

∏
(u,pu)∈D

|pu |∏
j=1

|pu, j |∏
k=2

Pr
(
p(k)

u, j

∣∣∣∣p(k−1)
u, j , u

)
(3)

where the song-mapping matrix X =
[
x (s1) , x (s2) , · · · , x (s|S |)]

and the user-mapping matrix Y =
[
y (u1) , y (u2) , · · · , y (u|U |)].

Then, we could transform Equation (3) into its equivalent form
by applying the ln function:

(X,Y) = arg max
X,Y

∑
(u,pu)∈D

|pu |∑
j=1

|pu, j |∑
k=2

ln Pr
(
p(k)

u, j

∣∣∣∣p(k−1)
u, j , u

)
= arg max

X,Y

∑
u∈U

∑
sa∈S

∑
sb∈S

cu,sa ,sb ln Pr (sb |sa, u )

= arg max
X,Y

∑
u∈U

∑
sa∈S

∑
sb∈S

cu,sa ,sb

− ∥x (sa) − x (sb)∥22

− ∥y (u) − x (sb)∥22 − ln
∑
s∈S

e−∥x(sa)−x(s)∥22−∥y(u)−x(s)∥22


def
= arg max

X,Y
L1 (D |X,Y )

(4)

where cu,sa ,sb is the number of occurrence of song sb after song sa by
user u in the whole data set D. While both ∂L1(D|X,Y )

∂x(i) and ∂L1(D|X,Y )
∂y(i)

are non-convex, we find that gradient descent algorithm can still
find proper solutions. However, both of the partial derivatives are
so complex that the time complexity of a single iteration is as high
as O
(
|U | |S |2

)
even after optimization.

Then, to overcome the time-consuming problem, we propose E-
quation (5) to simulate Equation (2). In this way, the two types of
Euclidean distances can be decoupled:

Pr (sb |sa) Pr (sb |u) =
e−∥x(sa)−x(sb)∥22∑
s∈S e−∥x(sa)−x(s)∥22

e−∥y(u)−x(sb)∥22∑
s∈S e−∥y(u)−x(s)∥22

(5)

where Pr (sb|sa) is the transition probability from song sa to song sb

and Pr (sb|u) is the probability of user u singing song sb. Note that
Equation (5) is not simply an assembled model, since all parameters
will be trained simultaneously.

Following a similar process of Equation (3) and Equation (4), we
could get:

(X,Y) = arg max
X,Y

∑
u∈U

∑
sa∈S

∑
sb∈S

cu,sa ,sb ln Pr (sb |sa) Pr (sb |u)

= arg max
X,Y

∑
u∈U

∑
sa∈S

∑
sb∈S

cu,sa ,sb

− ∥x (sa) − x (sb)∥22

− ln
∑
s∈S

e−∥x(sa)−x(s)∥22 − ∥y (u) − x (sb)∥22

− ln
∑
s∈S

e−∥y(u)−x(s)∥22


def
= arg max

X,Y
L2 (D |X,Y )

(6)

It can be found that the time complexity of one iteration has de-
creased to O (|U | |S |), if

∑
s∈S e−∥x(sa)−x(s)∥22 and

∑
s∈S e−∥y(u)−x(s)∥22 are

cached for approximate calculation.
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Figure 2: Top-k comparisons of Bigram, PBigram, LME, LME+UE and our PME in R20 (a) and R50 (b) with k ∈ [1, 20].

Further, we apply regularization of Frobenius norm to Equa-
tion (6), and our target becomes:

(X,Y) = arg max
X,Y

[
L2 (D |X,Y ) − λ ∥X∥2Frob − λ ∥Y∥

2
Frob

]
(7)

where λ is the regularization coefficient, and we can get the updat-
ing rules through partial derivations:

x (s)← x (s) +
τ

n

∂L2 (D |X,Y )
∂x (s)

−
∂λ ∥X∥2Frob

∂x (s)

 (8)

y (u)← y (u) +
τ

n

∂L2 (D |X,Y )
∂y (u)

−
∂λ ∥Y∥2Frob

∂y (u)

 (9)

where τ is the learning rate and n is the total number of song tran-
sitions in data set D.

Finally, after the embedding, given the current user u and his/her
last song sa, we could generate the next-song recommendation by
ranking the candidate songs based on Equation (5). Meanwhile, we
can figure out why Pr (sb|sa, u) and Pr (sa|sb, u) are not symmetric.

3. EXPERIMENTAL RESULTS
Table 1: Statistics of the data set.

#Users #Items #Sessions #Training
Transitions

#Test
Transitions

13,452 943 105,743 332,640 58,687

In this section, we evaluate PME on the real world karaoke da-
ta provided by ihou.com from July 2011 to April 2012. To reduce
noise, we only consider the users who have sung more than 10 d-
ifferent songs and the songs which have been sung by more than
3 different users. For the singing session segmentation, we let the
songs to be in the same session, if the user’s inactive intervals be-
tween adjacent songs are less than 1 hour. We put the last transition
of songs from each session into the test set, the rest for training, and
ensure that every test song exists in the training set. The statistical
information of the final data can be found in Table 1.

Evaluation Metrics. To measure the ranking accuracy, we adopt
Precision, Recall, F1-score and Mean Average Precision (MAP) as
our evaluation metrics[7]. These metrics pay more attention to the
first several candidates in the ranked list, and try to characterize the
recommendation results from different perspectives.

Baselines. We choose the following four baseline methods:

• Bigram Model (Bigram)[1] is a first-order Markov model
which considers the probability of the appearance of songs
separately for different preceding songs, in other words, it
calculate Pr (sb|sa) based on statistics. We adopt Witten-Bell
discounting [6] for smoothing.

• Personalized Bigram Model (PBigram) is an assembled al-
gorithm which combines two bigrams Pr (sb|sa) and Pr (sb|u)
together by multiplying their results, and Witten-Bell dis-
counting is also used.

• Logistic Markov Embedding (LME)[5] is similar to PME.
However, it outputs the same Pr (sb|sa) for all users.

• LME with User Embedding (LME+UE) includes person-
alization into LME by a two-phased training approach, where
song-embeddings are first trained and fixed before the train-
ing of user-embeddings are conducted.

All of the aforementioned four baselines can be seen as the relat-
ed methods for PME. Worth noting that similar to bigram model,
uniform model and unigram model [5] are also popular models for
Natural Language Processing. However, their performances are no
better than the selected baselines.

Performance Comparison. Parameters such as τ and λ in cer-
tain methods are determined experimentally, and all iterative meth-
ods are run until convergence. The performances under different
dimensionalities are tested for LME, LME+UE and PME. For in-
stance, the results of models trained in R20 and R50 are shown in
Figure 2. From both Figure 2(a) and Figure 2(b), we could observe
that our personalized methods (PBigram, LME+UE and PME) are
better than their corresponding benchmark methods (Bigram and
LME). More importantly, PME performs best in all cases. Another
interesting observation is that LME performs very similarly to Bi-
gram under the ranking metrics, which is different from that in [5]
where the likelihood metric is adopted.

Also, we compare the efficiency difference between LME and
PME. For instance, under the same platform, when the dimen-
sionality equals to 50, it takes 1.3s for LME and 16.5s for PME
to run a single iteration, whose time complexities are O

(
|S |2
)

and
O (|U | |S |), respectively.

Deep Understanding. For comparing the performance of the al-
gorithms under different sparsity, we conduct another experiment.



Specifically, we first separate transitions in the test set into 5 dif-
ferent splits according to their occurrence time in the training data,
with each split having roughly the same amount of transitions. For
instance, the transitions in the test set that didn’t occur or occurred
only once in the training set and transitions in the test set that oc-
curred 2 to 5 times are evaluated separately. We calculate the Recall
value on Top-10 recommendations of three typical algorithms (Bi-
gram, LME and PME) for all 5 splits in R50, and the final results
are shown in Figure 3.
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Figure 3: Comparisons of the Recall value on Top-10 recom-
mendations of Bigram, LME and PME with different splits.

From Figure 3 we can see that for the transitions that don’t occur
many times (less than 17) in the training set, PME performs much
better than Bigram and LME. However, the advantage of PME be-
comes smaller with the increase of the occurrence. Specifically,
PME achieves an average lead of 7.6% over the first three ranges,
which take up about 60% percent of the test data, and Bigram is
slightly better than PME only on the last range. Since most of the
transitions have comparably low occurrence rate, PME could out-
performs LME and Bigram in real applications, i.e., PME is better
at predicting the unseen and sparse data.
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Figure 4: Visualization of PME in R2.
Case Study. Figure 4 is a visualization of the trained PME model

in R2 where all songs are represented by blue dots and 3 randomly
picked users are represented by circles with different colors. We
find out the songs sung by these 3 users in the training set, and then
highlight them by semitransparent circles with their sizes propor-
tional to the singing frequency of the corresponding user.

It shows that PME can successfully extract user preferences, s-
ince the embedding position of each user is near to his/her previous
actions. In the stage of recommendation, the songs that are close
to the given user, or in other words close to the songs which the
given user have sung, are more likely to be recommended to this
user according to Equation (5).

4. CONCLUSIONS
In this paper, we presented Personalized Markov Embedding, a

next-song recommendation strategy for online karaoke users. We
first proposed to embed the songs and users into a Euclidean space
in which distances between songs and users reflect the strength of
their relationships. We also used a simulation to ensure that the em-
bedding process can converge in time. In this way, the short-term
and long-term preferences of each user can be captured without
requiring any content information. Then, the next-song recommen-
dations are conducted according to the embedding. Finally, the
performance of the proposed PME are evaluated on a real world
data set, and the experimental study delivers encouraging results.
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