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Abstract

We consider the problem of budget feasible mechanism design proposed by |Singer| (2010),
but in a Bayesian setting. A principal has a public value for hiring a subset of the agents
and a budget, while the agents have private costs for being hired. We consider both additive
and submodular value functions of the principal. We show that there are simple, practical,
ex post budget balanced posted pricing mechanisms that approximate the value obtained by
the Bayesian optimal mechanism that is budget balanced only in expectation. A main moti-
vating application for this work is crowdsourcing, e.g., on Mechanical Turk, where workers are
drawn from a large population and posted pricing is standard. Our analysis methods relate
to contention resolution schemes in submodular optimization of |Vondrak et al.| (2011)) and the
correlation gap analysis of [Yan| (2011)).

1 Introduction

Consider the problem of hiring workers to complete complex tasks on crowdsourcing platforms
such as Mechanical Turk. A principal must select a set of participants, henceforth agents, whose
contributions will be aggregated to complete the task. The principal’s value for the task is a
function of the set of participants selected and the principal’s budget limits the total payments
to participants. We assume that the principal’s value is submodular, i.e., it exhibits diminishing
returns to recruiting additional participants. The participants have a private cost for participating
and will choose to participate strategically to optimize their payments received relative to this cost.
The principal seeks a budget feasible mechanism for selecting participants so as to maximize the
value of the completed task.

The literature on budget feasible mechanism design initiated by |Singer| (2010)) studies this prob-
lem; however, it primarily considers sealed-bid mechanisms which do not tend to be seen on crowd-
sourcing platforms like Mechanical Turk. Instead, these platforms use posted pricing mechanisms.
We follow a traditional economics approach to this problem where agents’ costs are drawn from a
common prior distribution and a mechanism is sought to optimize the principal’s value function in
expectation. Note that this approach is especially relevant to the principal’s problem as the workers
on crowdsourcing platforms are drawn from a large population of available workers. We show that
posted pricing mechanisms give a good approximation to the optimal sealed-bid mechanism. Addi-
tionally, we give efficient algorithms for calculating the appropriate prices. In comparison to other
work in optimization of prices in crowdsourcing, our work focuses on the use of prices to control



participation and not the level of effort of participants. Controlling the level of effort of participants
was studied in online behavioral experiments by Ho et al. (2015), theoretically for crowdsourcing
contests by |Chawla et al. (2012), and for user generated content by Immorlica et al.| (2015]).

Overview of Approach. Our approach follows similarly to that of |Alaeil (2014) and Yan (2011)).
The starting point for our analysis is an upper bound on the performance of the optimal sealed
bid mechanism that relaxes the ex post budget constraint on the mechanism to hold ex ante, i.e.,
in expectation over the private costs of the agents. Via this ex ante relaxation and the Myerson
(1981)) theory of virtual values, we construct a posted price mechanism that is budget feasible in
expectation and a 1 — 1/e approximation to the optimal ex ante mechanism when the principal’s
value function exhibits decreasing returns, i.e., is submodular. For the special case where the
principal’s value function is additive, this posted pricing is optimal (for the ex ante relaxation).

We then consider posting the prices from the solution to the ex ante relaxation until the budget
runs out. The resulting mechanism is ex post budget feasible, but suffers a loss in performance
because the budget may run out early. The main technical contribution of this work is to show that
the performance of such a price posting mechanism compares favorably to the optimal sealed-bid
mechanism. Previous work in mechanism design gives techniques which are now well understood
to satisfy ex post allocation constraints. Ex post payment constraints require different techniques
and our analyses follow two basic approaches that combine optimization and mechanism design
concepts. To analyze the performance of the posted pricing under any arrival order of the agents,
we solve the ex ante relaxation with a slightly smaller budget and then, using results from the
Vondrak et al.| (2011) analysis of contention resolution schemes, show that it is unlikely for the
original ex post budget constraint to bind. Alternatively, we obtain better bounds for additive
value functions and when the order of agent arrivals can be specified by the mechanism via the
correlation gap approach of [Yan| (2011). As a corollary, we obtain new correlation gap results
for integral and fractional knapsack set functions. Moreover, when the environment is symmetric
(both in distribution of agent costs and the principal’s value function), the submodular case can
be reduced to the additive case.

The prices identified above can be computed or approximately computed in polynomial time.
In particular, for submodular value functions, we reduce the problem of finding the prices to the
well-known greedy algorithm for submodular optimization. The identified prices approximate the
optimal prices with relative loss in the value function that is within a factor of 1 — 1/e. For
additive value functions, the optimization problem simplifies to a monopoly pricing problem of
classic microeconomics. Similarly to the Myerson and Satterthwaite (1983) treatment of welfare
maximization subject to budget balance in a buyer—seller exchange, optimization in this context is
based on Lagrangian virtual surplus. These optimal prices can be approximated arbitrarily precisely
by solving this problem on a discretized instance.

Related work. The prior literature on budget feasibility primarily considers a worst-case design
and analysis framework that compares the performance of the designed mechanism to the first-best
outcome, i.e., the one that could be obtained if the agents’ costs were public. See [Singer| (2010)),
Bei et al| (2012)), Badanidiyuru et al|(2012), and Anari et al. (2014). Our analysis compares the
designed mechanism, in expectation for the known prior distribution, to the second-best outcome,
i.e., the one obtained by the Bayesian optimal mechanism.

The following results are for prior-free mechanisms in comparison to the first-best outcome.
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Figure 1: Our results are approximations to the Bayesian optimal mechanism. Bounds are param-
eterized by the market size k, a lower bound on the number of agents that can be simultaneously
selected with the given budget (see Definition . In large markets, k grows large. The given results
with the contention resolution approach require k > 4 and € € (2/k,1/2), a result for k < 4 is men-
tioned in Section[d]. For the symmetric submodular results, we also assume symmetric distributions
on costs. Our computational results also have an additional o(1) loss due to discretization.

Singer| (2010) obtained a randomized truthful budget feasible mechanism with a constant factor
approximation for submodular value functions, Chen et al.|(2011)) then improved the analysis of this
mechanism to a 0.13 approximation. In the Bayesian setting, |Bei et al.| (2012)) obtained a constant
approximation for subadditive functions. More recently, Anari et al.| (2014) obtained better bounds
by considering large markets, which we also consider in this paper. Finally, [Badanidiyuru et al.
(2012) also considered posted pricing mechanisms but when the agents arrive online. They obtained
a constant approximation for the class of symmetric submodular functions. They also obtained a
O(logn) mechanism for the case of submodular functions. In comparison to this last paper, we
give much better bounds when the prior distribution on costs is known.

The starting point for our analysis is the solution to the relaxed problem of budget balance in
expectation, i.e., ex ante. In the additive case, this problem was recently studied by [Ensthaler and
Giebe| (2014)). They show that posted pricing mechanisms solve the relaxed problem and remark
that the same performance can be obtained with ex post budget balance, but at the expense of
relaxing ex post individual rationality (for the bidders) and not with a posted pricing. This latter
observation follows, for example, by applying a general construction of [Eso and Futo (1999). Our
analysis of the relaxed problem gives a much simpler proof of their main theorem.

Budget feasibility has also been studied in the context of crowdsourcing. Among that line of
work, the model considered in |Anari et al. (2014)) is the closest to ours, and will be compared in
detail below. |Singla and Krause| (2013) and Singer and Mittal (2013) consider the special case
of our model where the principal’s value function is the number of tasks performed. The former
studies posted pricing for agents with i.i.d. costs from an unknown distribution, while the latter
studies sealed bid mechanisms without a prior.

Our results. Our results are summarized in Figure [ We consider two main classes of valu-
ation functions, additive and submodular. We use two different methods to satisfy the ex post
payment constraint, one is based on contention resolution schemes and the other on correlation



gap. Contention resolution schemes give an oblivious posted price mechanism, i.e., one that ob-
tains its proven bound under any arrival order of the agents. The correlation gap approach, for the
case where the principal has an additive value function, gives a sequential posted price mechanism.
Such a mechanism is specified by an ordering on agents and take-it-or-leave-it prices to offer each
agent. As a special case, we consider symmetric environments where both the value function and
the distribution is symmetric.

Our results can most directly be compared to those of|Anari et al.[(2014), but with the following
caveats. Their results are for sealed bid mechanisms while ours are for posted pricings; their
mechanism is prior-free while ours is parameterized by the prior distribution on agent costs; their
results compare performance to the first-best outcome, i.e., without incentive constraints, while
ours compare to the second-best outcome, i.e., that of the Bayesian optimal mechanism (with
incentive constraints). They obtain approximation ratios of 1 — 1/e, 1/3 and 1/2 in large markets
respectively for additive, submodular (computational), and submodular (non-computational) value
functions. Moreover, they show that no truthful mechanism can achieve an approximation ratio
better than 1 — 1/e with respect to the first-best outcome for additive value functions.

Discussion about posted pricing mechanisms and benchmarks. Following a line of liter-
ature in mechanism design that was initiated by (Chawla et al. (2010]), the goal of this work is to
show that there exists simple posted pricing mechanisms that approximate the optimal sealed-bid
mechanism. Two quantities of interest therefore need to be separated. The first is the cost of
incentive compatibility in budget feasible settings, i.e., the gap between the first-best and second-
best benchmarks. The second is the cost of simplicity, i.e., the loss of a posted pricing mechanism
compared to the Bayesian optimal mechanism. Prior work with comparisons to a first-best bench-
mark has approximations that are a combination of both of these quantities. Our comparison
to the second-best outcome isolates the loss from a simple decentralized pricing over the optimal
centralized mechanism as the quantity of interest.

Paper Organization. We start with preliminaries in Section [2| to introduce the model and
different concepts used in this paper. We then describe posted price mechanisms for the ex ante
relaxation, where the budget holds in expectation, in Section [3, We explain how to go from an ex
ante posted price mechanism to an ex post posted price mechanism using two different methods,
one inspired by contention resolution schemes in Section [4| and another based on a correlation gap
analysis in Section We tackle the computation issues of finding a good ex ante mechanism in
Section [6] In Section [} we study symmetric environments. Up to Section [7] cost distributions
are assumed to be regular and Section [§| considers the case where some distributions might be
irregular. Throughout the paper, we assume that the principal’s valuation function is monotone
and submodular.

2 Preliminaries

There are n agents N = {1,...,n}. Agent i has a private cost ¢; for providing a service that is drawn
from a distribution F; (denoting the cumulative distribution function) with density f;. Indicator
variable x; denotes whether or not ¢ provides service and p; denotes the payment 7 receives. Agent
i aims to optimize her utility given by p; — ¢;z;. The cost profile is denoted ¢ = (cy, ..., ¢, ); the



joint distribution on costs is the product distribution F' = Fj X --- X F,; the payment profile is
denoted p = (p1,...,pn); and the allocation profile is denoted & = (x1,...,2y,).

The principal has a value function v : {0,1}" — R,. For allocation profile & € {0,1}" or set
of agents S = {i : x; = 1} who provide service, the value to the principal is v(x) = v(S). The
principal has a budget B and requires the payments to the agents not to exceed the budget, i.e.,
>;Pi < B. The following mathematical program captures the principal’s objective.

max E.[v(x(e))] (1)

s.t. Z,pi(c) <B Ve,

x(-) and p(-) are incentive compatible.

We consider only mechanisms that are incentive compatible. A mechanism is incentive compat-
ible (IC), if truthful reporting of the agents is a dominant strategy equilibrium.lﬂ We will consider
the budget constraint both ex ante, i.e., in expectation over realizations of agents’ costs and random
choices of the mechanism, and ex post, i.e., the payments to the agents never exceed the budget.
The main goal of this paper is to approximate the optimal ex ante budget feasible mechanism
with an ex post budget feasible posted pricing mechanism. Posted pricing mechanisms are trivially
incentive compatible.

Definition 1. The posted pricing (¢, o), for prices ¢ and ordering on agents o, is:
1. The remaining budget is initially B.
2. The agents arrive in order o.

3. If agent i arrives with cost ¢; below her offered price ¢; which is below the remaining bud-
get, then select this agent for service, pay her ¢;, and deduct ¢ from the remaining budget.
Otherwise, discard this agent.

For (implicit) distribution on costs F', we can equivalently specify a posted pricing (¢,0) as
(q,0) where §; = F;(¢;) is the marginal probability that agent i with cost ¢; ~ F; would accept the
price ¢&;

Note that the prices ¢ are non-adaptive, i.e., fixed before the agents arrive. We consider posted
pricing mechanisms under two different models for agent arrival. In the sequential posted pricing
model, the ordering o can be fixed in advance by the mechanism and, without computational
considerations, our analysis is for the best case ordering of the prices. In the oblivious posted
pricing model, the ordering o is unconstrained and our analysis is worst case with respect to this
ordering. An oblivious posted pricing is denoted ¢. We compare our mechanisms to an ex ante
posted pricing &€ where the budget constraint holds in expectation, i.e., >, ¢ ¢; < B. The value of
an ex ante posted pricing is Eg.4[v(S)] where S ~ ¢ adds each agent i to S independently with
probability ¢;.

!The restriction to dominant strategy mechanisms over Bayesian incentive compatible mechanisms is without loss
for the budget feasibility objective.

It is common in Bayesian mechanism design to consider the agents’ private costs in quantile space where #’s
quantile ¢; = Fji(c;) is the measure of cost lower than ¢; according to F;. Agent quantiles are always uniformly
distributed on [0, 1]. From this perspective, §; is agent i’s price in quantile space.



The paper focuses on value functions that are monotone and submodular (Definition . An
important special case, which we will treat separately, is that of additive value functions where each
agent has a value v; and the value function is v(S) = >, g vi.

Definition 2. A set function v : {0,1}" — R4 is monotone submodular if
e (monotonicity) v(T) < v(S) for allT C S, and

o (submodularity) for all T C S the marginal contribution of i € S to T is at least its marginal
contribution to S. In other words,

V(T U{i}) — o(T) = v(S U {i}) — v(S).

Our analysis is based on the relationship between a set function and two standard extensions of
a set functions from the domain {0, 1}" to the domain [0, 1]". For submodular set functions, these
extensions were studied by (Calinescu et al. (2007) and |Agrawal et al.| (2010).

Definition 3. Given a set function v : {0,1}" — R4,

e its concave closure V() (a.k.a., correlated value) is the smallest concave function that upper
bounds the set function. Alternatively, V1 (q) = maxp Eg.p[v(S)] with the mazimization
taken over all distributions D with marginal probabilities ¢ = (41, .. .,q4n); and

e its multilinear extension V(-) (a.k.a., independent value) is the expected value of the set
function when each element i is drawn independently with marginal probability ;. In other
words, V(q) = Eg4[v(9)].

For any set function, the concave closure is clearly an upper bound on the multilinear extension.
For submodular functions the inequality approximately holds in the opposite direction as well. By
the interpretation of the multilinear extension as the expected value of the set function for indepen-
dent distribution and the concave closure as the expected value of the set function for correlated
distributions, their worst case ratio over marginal probabilities g is known as the correlation gap
(Agrawal et al., 2010]).

Theorem 1 (Calinescu et al., 2007, Agrawal et al., 2010). For monotone submodular set function
v(-), the correlation gap is

Theorem 2 (Yan, 2011). For a k-highest-value-elements set function v(-), which is additive with
value v; for element i up to a capacity of at most k elements, the correlation gap is

min 9 11/ /orE.
a V*(q)

Our analysis is parameterized by a measure of the size of the market. This notion of market
size is standard in the literature, e.g., see Bei et al. (2012) and Anari et al. (2014). A large
market analysis considers the market size in the limit. Although large markets are described as an
assumption by |Anari et al.|(2014]), the market size k is a parameter in our analysis and we obtain
results for any market size.



Definition 4. A market is k-large for prices ¢ and budget B if B/¢; > k for all agents i.

Note that the market size depends on prices and therefore on the mechanism, which is inherent
to our analysis. These prices can trivially be upper bounded by the maximum cost that can be
drawn from the distributions.

3 The Ex Ante Budget Feasible and Concave Closure Relaxations

In this section we relax the objective function and the budget constraint to make the problem more
amenable to optimization. We first relax the budget constraint so that it only holds in expectation,
making it an ex ante feasibility constraint. We then upper bound the value function by its concave
closure. With an ex ante feasibility constraint, the objective is to optimize the following ex ante
program over allocation rule x(-) and payment rule p(-) with ¢ ~ F.

Ig.:&;)x E.[v(x(c))] (2)

s.t. Zl E.[pi(c)] < B,
x(-) and p(-) are IC.

When payments are part of the principal’s objective or constraints, the Bayesian mechanism
design problem will typically rely on the Myerson (1981) theory of virtual values or, in our case
where the agents are sellers, virtual costs. The wirtual cost of agent ¢ with cost ¢; drawn from

distribution Fj is ¢i(c;) = ¢; + FZ((?)) . The wvirtual surplus of an agent i with virtual cost ¢;(c;) and

allocation indicator z; is ¢;(¢;) x;.

Lemma 3 (Myerson and Satterthwaite), [1983). In any incentive compatible mechanism, any agent
i’s expected payment is equal to her expected virtual surplus, i.e., for ¢ ~ F,

Ec[pi(c)] = Ec[pi(c) zi(c)] .

The definition of virtual costs and Lemma [3| allows the ex ante program to be rewritten in
terms of the allocation rule only. To do so, we invoke the following characterization of incentive
compatible mechanisms of Myerson| (1981)).

Lemma 4 (Myersonl 1981). There ezists an incentive compatible mechanism with allocation rule
x(-) if and only if x(-) is monotone in the cost of any agent.

We now rewrite the optimization program by substituting in virtual costs for payments to
obtain the following virtual surplus program,

max Ec[v(z(c))] (3)

5.t Zi E.[¢i(c) zi(c)] < B,

x(-) is monotone in the cost of any agent.

For the general case of submodular value functions, the expected value of the set function
v(+) is upper bounded by its concave closure (Definition [3) as follows. The allocation rule x(-)

7



that optimizes this virtual surplus program induces, for ¢ ~ F', a distribution over sets of winning
agents. Denote this distribution by D and denote by @ the profile of marginal probabilities, i.e., with
gi = Prg.pli € S]. By the definition of the concave closure of the set function v(-), Ec[v(x(c))] =
Esp[v(5)] <V (q).

The payment to an agent is lower bounded by the payment from price posting. As above,
the optimal mechanism selects agent ¢ with probability ¢;. When virtual costs are monotonically
increasing, i.e., in the case of reqular distributions, the expected payment to an agent ¢ selected
with probability §; is minimized if agent ¢ is served if and only if ¢; < F* (¢;) by Lemma |3 I 3| since

these costs minimize ¢;(c E| Thus, the mechanism that minimizes expected payments and serves
each agent ¢ with probability ¢; is the mechanism that posts price ¢; = F;~ (ql) to each agent 1.

Lemma 5. For any agent with cost drawn from reqular distribution F; and any incentive compatible
mechanism that selects agent i with probability ¢;, the expected payment of agent i is at least §;¢;
where & = F; 1 (q;).

Combining the relaxation of the value function and the relaxation of the payments we obtain
the following concave closure program,

max V*(q) (4)

s.t. qu ) < B.

Lemma 6. Let ¢ be the optimal solution to the concave closure program , then V*(fﬁ) upper
bounds the performance of the optimal ex ante mechanism in the case of reqular cost distributions.

Posted price mechanisms are trivially incentive compatible. Since the distributions of agents’
costs are independent, the set of agents who will accept their offer with a posted price mechanism
is a set which will contain each agent with some probability ¢; independently. Therefore the
performance of a posted price mechanism where agents accept their offer with probabilities q is the
multilinear extension V(g). This motivates us to rewrite the concave closure program as the
following multilinear extension program,

max V(q) (5)

s.t. qu ) < B.

Maximizing the multilinear extension program gives us an ex ante posted price mechanism that is
approximately optimal.

Theorem 7. In the case of monotone submodular value functions and regqular cost distributions,
the ex ante mechanism that posts price ¢; = Fi_l((ji) to each agent i is an 1 — 1/e approzimation
to the optimal ex ante mechanism, where q is the optimal solution to the multilinear extension

program .

Proof. Let g% be the optimal solution to the concave closure program . By Theorem Vigh) >
(1—1/e)V*(g"). By the optimality of ¢, V(g) > V(g"). Since the performance of posting price
F;1(g;) to each agent 4 is V(q) and since V¥ (g" ) upper bounds the performance of the optimal
ex ante mechanism by Lemma |§|, posting price F- (ql) to each agent is an 1 — 1/e approximation
to the optimal ex ante mechanism. O

3The case of irregular distributions is considered in Section



Note that in the additive case where each agent has value v;, V(q) = V1 (q) = Y, vigi and we
get the following corollary.

Corollary 8. In the case of additive value functions and regular cost distributions, the ex ante
mechanism that posts price ¢; = F;l((ji) to each agent i is an optimal mechanism, where q is the
optimal solution to the multilinear extension program .

We discuss the computational issues of finding a good solution q to the multilinear extension
program (5)) in Section @ For the case of submodular functions, we reduce the problem to submod-
ular function maximization (with a cardinality constraint) for which the greedy algorithm gives an
1 —1/e approximation. In the additive case, we will show that the optimal ex ante budget feasible
mechanism can be found by taking the Lagrangian relaxation of the virtual surplus program .

4 Submodular Value and Oblivious Posted Pricing

In the previous section, we obtained an ex ante mechanism by optimizing the multilinear extension
program . In this section we analyze the performance of oblivious posted pricing (with an ex
post budget constraint).

The approach of this section is the following: lower the budget by some small amount and
optimize the multilinear extension program so that the lowered budget is satisfied ex ante.
With the budget sufficiently lowered, with high probability the cost (sum of prices) of the set of
agents who would accept their offer is under the original budget (regardless of their arrival order
and ex post).

This approach is a special case of that taken by the contention resolution schemes of [Vondrak
et al. (2011) and we first review some known bounds. The first comes from the submodularity of
the value function; the second comes from the Chernoff bound.

Theorem 9 (Bansal et al. 2010). Given a non-negative monotone submodular function v(-), a
random set R which contains each agent i independently with probability §;, and a (possibly ran-
domized) procedure m that maps (possibly infeasible) sets to feasible sets such that,

e (marginal property) for all i, Prp.g.-[i € 7(R) | i € R] >, and
e (monotonicity property) for allT C S and i € T, Pry[i € n(T)] > Prr[i € n(5)],
then Egvgx[v(m(R))] = 7 - Ervglv(R)].

Theorem 10 (Vondrak et al., 2011 E[) Given € € (0,1/2), budget B, independent variables p; that
are the payments to each agent such that,

e (scaled ex ante budget constraint) >, E[p;] < (1 —¢€) B,
o (k-large market) p; is bounded by [0, B/k| for all i, and
o k> 2/e,

then the probability that the sum of costs of selected agents does not exceed the budget less the cost
of any agent, i.e., Pr]> . p; < (1 —1/k)B], is at least 1 — e (1-ak/12,

“The formulation of this theorem is slightly different than in [Vondrak et al. (2011) but follows easily from their
analysis.



We now connect these two results by relating the probability that the sum of costs does not
exceed (1 — 1/k)B of Theorem [10| to v of Theorem |§| and then show that posted pricings satisfy
the conditions of Theorem [9l

Lemma 11. For sequential posted pricing (¢, o) that satisfy the scaled ex ante budget constraint
and k-large market conditions, the probability that an agent is offered her price is lower bounded
by Prp4 [ZieR ¢ < (1-— 1/1{:)3}, the probability that the sum of the prices of agents who would
accept their offered price is at most (1 —1/k)B.

Proof. If the total cost of all agents who would accept their price is at most (1 — 1/k)B then this
budget remains at the time an agent i is considered in the sequence o. By the definition of & > B/¢;
it is feasible to serve this agent and so she is offered her price ¢; by the sequential posted pricing
mechanism. O

Lemma 12. For sequential posted pricing (q, o), if each agent is offered her price with probability
at least 7y, then the expected value of the mechanism is at least YV (q).

Proof. Tt suffices to show, for sequential posted pricing (g, o) with an ex post budget constraint B,
that the marginal and monotonicity properties of Theorem [9] hold.

In our case, R ~ q is the random set of agents who would accept their offer if the budget never
runs out. Given a set of agents R who accept their offer, define 7(R) to be the set of agents who
accept their offer and who arrive before the budget runs out. In our case, 7 is deterministic given
the ordering . Note that Prr.4..[i € 7(R) | i € R] is equal to the probability that an agent gets
offered her price, meaning that she arrives before the budget runs out. Thus, by the assumption of
the lemma the marginal property holds.

For the monotonicity property, consider two sets T' C S. When an agent ¢ arrives in the posted
price mechanism, the mechanism has spent less if the set of agents who accept their offer is T" than
if this set is S. Therefore i € 7(.S) implies that ¢ € 7(7T") and the monotonicity property holds. [

By combining the previous results, we obtain the main theorem for this section.

Theorem 13. For ¢ € (0,1/2), if the oblivious posted pricing ¢ corresponding to the optimal
solution q to the multilinear extension program with budget (1 —¢€)B (i.e., with ¢ = F;l((ji) for
each agent i) satisfies 2/e < k < B/ max; ¢;, then this posted pricing mechanism is a (1 —1/e)(1 —
€)1 — 6_62(1_5)k/12) approzimation to the optimal mechanism for submodular value functions and
(1= €)(1 — e~ U=Ik/12) for additive value functions in the case of regular cost distributions.

Proof. The proof starts with the ex ante mechanism from the previous section and then applies
results from this section to modify it into an ex post mechanism.

Let @ be the optimal solution to the multilinear extension program with budget (1 — €)B,
(}a_e)B be the optimal solution to the concave closure program with budget (1 — €)B, and QE
be the optimal solution to the concave closure program with budget B.

By the optimality of ¢ and Theorem

V(@) > V(afi_op) = (1= DVT@i_yp):

Note that the solution (1 — €)g5 has cost at most (1 — ¢)B since F; '(-) is increasing. So by the
optimality of (}a VB and by the concavity of the concave closure V*(-),

—€

)
V@l op) 2 V(L - 0a) > (- 9V (ah).
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Since V' (i]jg) is an upper bound on the performance of the optimal ex ante mechanism by Lemma@,
the ex ante posted pricing mechanism defined for each agent by ¢ = F; *(g;) is a (1 — 1/e)(1 — )
approximation to the optimal mechanism.

We now consider the posted pricing mechanism defined by ¢ that is no longer ex ante. Since
the budget has been lowered by a factor 1 — e, each agent is offered her price with probability
at least Prpg [ZieR ¢ < (1-— 1/1{:)3] by Lemma regardless of the ordering o of agents. By

Theorem this probability is at least 1 — e~ (1=e)k/12, Therefore, by Lemma the expected
value of this mechanism is at least (1 — e~ (1=9%/12)}/(g) and this mechanism is a (1 — €)(1 —
1/e)(1 — e~<*(0=9*/12) approximation to the optimal mechanism in the case of submodular value
functions. In the case of additive functions, there is no loss from the multilinear extension to the
concave closure, so the mechanism is a (1 — €)(1 — e~¢ (179*/12) approximation. O

Note that as the size of the market &k grows to infinity, this approximation ratio approaches
1 —1/e. Also note that this mechanism requires the market to be at least 4-large. Using another
result from Vondrak et al| (2011) and a similar analysis to the one from this section, a (1 —1/¢e)/8
posted pricing mechanism can easily be obtained for any market size. This posted pricing attains
its performance guarantee when agents with cost at least B/4 arrive before all others, but otherwise
the order is oblivious.

5 Additive Value and Sequential Posted Pricing

In this section we give improved bounds for sequential posted pricing, i.e., where the mechanism
orders the agents, and when the value function is additive, i.e., v(S) = > ;. gv;. In particular, we
analyze the sequential posted pricing (¢, o) with ¢ = Ffl((ji) from the solution to the multilinear
extension program with the full budget B and the ordering o by decreasing bang-per-buck, i.e.,
v; /¢; for agent i.

Our results in this section are based on the analysis of the correlation gap of fractional and
integral-knapsack set functions (to be defined subsequently). The fractional-knapsack set function
is a submodular function, so a correlation gap of 1 — 1/e can be directly obtained (Theorem . In
this section, we improve this bound to 1 — 1/\/% for k-large markets, i.e., with k = B/ max; ¢;.
From this bound we observe that the correlation gap for fractional-knapsack in large market is
asymptotically one. We show that the integral-knapsack correlation gap is nearly the same. Fol-
lowing the approach of [Yan| (2011)), the factor by which sequential posted pricing approximates the
ex ante relaxation is equal to the integral-knapsack correlation gap.

Definition 5. The fractional-knapsack set function corresponding to additive set function v(S) =
Y icg Vi, sizes €, and capacity B is denoted vp(S) and equals the maximum value solution to the
corresponding fractional-knapsack problem on elements S E| The integral-knapsack set function can
be defined analogously to the fractional one, but it cannot add elements fractionally.

Most of this section analyzes the ratio of the independent value of fractional-knapsack to the
correlated value of v(-) (see Definition [3| for the definition of independent and correlated values) in
the case where the budget constraint is met ex ante, i.e., Eg4[vp(S)] /Es~p[v(S)] when ), ¢;¢; <
B. We then show that this ratio is equal to the approximation ratio of the sequential posted pricing

This value is given by sorting the elements of S by v;/é; and admitting them greedily until the first element that
does not fit with the remaining capacity, that element is admitted fractionally (providing a fraction of its value).
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mechanism. Finally, we use this ratio to bound the integral, and fractional, knapsack correlation
gap.

The main idea to derive a bound on this ratio is to show that it is minimized when all agents
have equal cost B/k, in which case, when the budget constraint is met ex ante, we can then apply
the result from Yan| (2011)) for the correlation gap of the k-highest-value-elements set function.

Lemma 14. For any additive value function v(-) and budget B, over marginal probabilities q¢ and
prices ¢ that (a) satisfy the ex ante budget constraint, i.e., > ;¢ ¢; < B, and (b) satisfy the k-large
market condition, i.e., ¢; < B/k, the ratio of the independent value of the fractional-knapsack and
the correlated value of v(-) is minimized when ¢; = B/k for all i.

Proof. For the first part of the proof, we assume that v = ¢, i.e., that the bang-per-buck is one
for all elements. The last step of the proof is to generalize this special case to any values. Observe
that with this assumption, vp(S) = min(B,>_ ¢4 ¢;).

Assume that there is some ¢; such that ¢; < B/k. We show that when v; = ¢;, increasing ¢; to
any ¢; > ¢ and decreasing §; to ¢, = ¢;/¢, preserves the correlated value while only lowering
the independent value. Let & = ¢; and ¢; = §; for j # i. The correlated value of v(-) is
Es.plv(S)] = >2;¢;4; = >, ¢;q; so it is preserved. Similarly, the ex ante budget constraint is
still satisfied.

The argument for the independent value decreasing is the following. Let v3(S) be defined
similarly as vp(S), but where agents have values and costs equal to ¢'. Condition on the subset
of other agents S who accept their prices and consider the marginal contribution to the expected
value of vp(-) and vj(+) from agent i. In the case that C' =3, s ¢; > B, this contribution is zero
for both ¢; and ¢&,. When C' < B, these contributions are ¢; min(B —C, &) and ¢, min(B—C, &,). By
the definition of ¢ = ¢;¢;/¢; and concavity of min(B — C,-), the former is greater than the latter.
This inequality holds for all sets S, so removing the conditioning on S, it holds in expectation and
the independent value of fractional-knapsack is lowered.

It remains to extend this result to any v. Fix v and assume without loss of generality that
v1/¢é1 > -+ > v, /é,. Then the fractional-knapsack set function can be rewritten as

vp(9) = Z(Ui/éi — Vit1/Ci41) min(B, Z &)

ieN jeSN{l,....i}

and the additive set function as

v(S) = Z(Uz/éz — Vit1/Ciy1)( Z ¢)

Sy JjESN{1,...,5}

since these sums telescope.

So the ratio of independent value of v (.S) to the correlated value of v(.S) is minimized when the
ratios of the independent value of min(B, deSﬁ{l i) ¢;) to the correlated value of deSm{l, LG
are minimized for all i. We conclude by observing that min(B, 3 e, G) and 3 iegnn iy 6
are the fractional-knapsack set function and the additive set function when v; = ¢ over ground set
{1,...,i}, and that their ratio is minimized when ¢; = B/k for all agents 1. O

Next, we use the result from Yan|(2011) to bound the ratio of the independent value of fractional-
knapsack to the correlated value of v(-).
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Lemma 15. For any distribution over sets D with marginal probabilities q satisfying the exr ante
budget constraint, i.e., >, ¢ ¢; < B, the ratio of the independent value of fractional-knapsack to
the correlated value of v(-) is at least 1 — 1/v/ 2wk when the market is k-large.

Proof. Consider the case where each agent ¢ has cost ¢; = B/k and assume that the ex ante
budget constraint is satisfied, so >, ¢; < k. Since any set of size at most k is feasible and since
> @i < k, there is a distribution such that the budget constraint is always met ex post. Therefore,
the correlated value of v(+) is equal to the correlated value of fractional-knapasck. The ratio of
the independent value of fractional-knapsack to the correlated value of v(-) is thus equal to the
correlation gap of fractional-knapsack. Since all agents have cost B/k, the fractional-knapsack
set function is equal to the k-highest-value-elements set function. By Theorem [2] the ratio of the
independent value of fractional-knapsack to the correlated value of v(-) is therefore 1 — 1/+/27k.
By Lemma the ratio of the independent value of fractional-knapsack to the correlated value
of v(-) when the ex ante budget constraint is satisfied is minimized when all agents have cost B/k,
so this ratio is at least 1 — 1/\/ﬂ ]

We now prove the main theorem of this section which relates the approximation factor of
sequential posted pricing (with ex post budget feasibility) to the optimal mechanism with ex ante
budget feasibility.

Theorem 16. The sequential posted pricing mechanism (q,o), where q is the solution to the
V.

multilinear extension program and where the order o is decreasing in g, is a (1 — 1/vV2rk) (1 —
1/k) approximation to the optimal mechanism in the case of reqular cost distributions.
Proof. Denote q the optimal solution to the multilinear extension program . For additive value
functions, linearity of expectation implies that the multilinear extension is equal to the concave
closure and the optima of the multilinear extension program and concave closure program
are the same. Their performance upper bounds that of the optimal mechanism that satisfies ex
post budget feasibility by Lemma [6] The objective value of these programs with optimal solution
q is >, v;g;, which is equal to the correlated value of the additive set function v(-) on distributions
with marginals q. So by Lemma the ratio of the independent value of fractional-knapsack to
the upper bound of the optimal mechanism is at least 1 — 1/ Vork

The random set of agents who accept their offer in the sequential posted pricing is equal to the
set of agents who are admitted by the fractional-knapsack set function on an independent random
set of agents with marginals q, without including the fractional agent. The loss from this fractional
agent is at most a factor 1 — 1/k. This posted pricing mechanism therefore has an approximation

ratio of (1 — 1/v27k)(1 — 1/k). O

As a corollary of Lemma we get new correlation gap results for the fractional, and integral,
knapsack set functions.

Theorem 17. The correlation gaps of fractional-knapsack and integral-knapsack are at least 1 —
1/V27k and (1 — 1/v27k)(1 — 1/k) respectively, in a k-large market.

Proof. We first show the correlation gap of fractional-knapsack, the correlation gap of integral-
knapsack will then follow easily. We start by showing that the correlation gap is minimized when
the budget constraint is satisfied. Then, we upper bound the fractional-knapsack correlated value
by the correlated value of v(-). Finally, we apply Lemma .
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Figure 2: Comparison of the approximation ratios obtained for additive value functions by the two
different approaches. On the horizontal axis is k, the size of the market.

We claim that the correlation gap of fractional-knapsack is minimized when the budget con-
straint is satisfied. Observe that if the budget constraint is not satisfied, then it is possible to
decrease some ¢; such that the correlated value of fractional-knapsack remains the same. Since
decreasing some §; only decreases the independent value of fractional-knapsack, the ratio of the
independent value to the correlated value also decreases.

Clearly, the fractional-knapsack correlated value is upper bounded by the correlated value of
v(+). Therefore, the correlation gap of fractional-knapsack is at least the ratio of the independent
value of fractional-knapsack to the correlated value of v(-) when the budget constraint is satisfied,
so at least 1 — 1/y/27k by Lemma

Finally, observe that the correlated value of fractional-knapsack upper bounds the correlated
value of integral- knapsack and that the independent value of integral-knapsack is a 1 — 1/k ap-
proximation to the independent value of fractional-knapsack. Therefore, the correlation gap of
integral-knapsack is at least (1 — 1/v/27k)(1 — 1/k). O

Comparison of Sequential and Oblivious posted pricing. We now compare the approxi-
mation ratio for additive value functions achieved using the sequential posted pricing mechanism
with the bang per buck order, (1 — 1/v/27k)(1 — 1/k), and using oblivious posted pricing where
the budget is lowered, (1 —€)(1 — e~<*(1=9k/12) ' Figure 2 shows that the approximation ratio with
the sequential ordering approaches 1 much faster than with the oblivious ordering as the size of
the market increases. To obtain these results for oblivious posted pricing, we numerically solved
for the best e. We emphasize that we are comparing the theoretical bounds of these approaches,
and not empirical performances.

6 Computing Prices

In the two previous sections, we gave conditions under which optimal prices from the multilinear
extension program perform well when offered sequentially or obliviously. In this section, we
consider the computational problem of finding these prices. For submodular value functions, we
reduce the problem to the well-known greedy algorithm for submodular optimization. For addi-
tive value functions, we use a simple method based on the Lagrangian relaxation of the budget
constraint.
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6.1 The Lagrangian Relaxation for Additive Value Functions

Consider the case of additive value functions where the principal has a value v; for each agent ¢
and the value function is v(S) = > ;. g vi. Recall the virtual surplus program from Section

max Ec[v(z(c))] (2

s.t. Zi E.[¢i(c) zi(c)] < B,

which can be rewritten for additive value functions as:
max ZZ Ec[v; z;(c)] (6)
s.t. Zi E.[¢i(c) zi(c)] < B.

We show that the ex ante optimal mechanism can be found directly by taking the Lagrangian
relaxation of the budget constraint (with parameter \) of the following Lagrangian program:

max AB + Zi E.[(vi — Ai(ci)) zi(c)] . (7)

For any Lagrangian parameter A, this objective can be optimized by pointwise optimizing
> (i — Agi(c)) zi(e), ak.a., the Lagrangian virtual surplus. This pointwise optimization picks
all the agents such that v; > Ag;(c¢;). If the virtual cost functions are monotone, i.e., in the so-
called regular case, then this optimization gives a monotone allocation rule where an agent is picked
whenever ¢; < ¢; ! (vi/\)

Notice that as the Lagrangian parameter increases, the payments of the agents, as represented
by virtual costs, become more costly in the objective of the lagrangian program . Thus, the
expected payment of the mechanism is monotonically decreasing in the Lagrangian parameter.
With A = 0 the Lagrangian virtual surplus optimizer simply maximizes v(x) and pays each agent
selected the maximum cost in the support of her distribution. If this payment is under budget then
it is optimal, otherwise, we can increase A until the budget constraint is satisfied. For example,
with A = oo the empty set of agents is selected and no payments are made. The optimal mechanism
is the one that meets the budget constraint with equality. In the case that the expected payment
is discontinuous then mixing between the least over-budget and least under-budget mechanism is
optimal. For further discussion of Lagrangian virtual surplus optimizers, see |Devanur et al.| (2013)).

Proposition 18. The Lagrangian virtual surplus optimizer (or appropriate mizture thereof) that
meets the budget constraint with equality is the Bayesian optimal ex ante budget feasible mechanism.

Lagrangian virtual surplus optimization suggests selecting an agent 7 when her private cost ¢;
is below ¢; *(v;/)). The mechanism that achieves this outcome posts the price of ¢; = ¢; ' (v;/\)
to agent i. Denote by ¢; = F;(¢;) the probability that i accepts the price ¢;. For the prices ¢, the
total expected payments are ) . ¢; ¢;. When the virtual cost functions are monotone and strictly
increasing, there is a Lagrangian parameter for which the budget constraint is met with equality,
i.e., with ), ¢ ¢; = B. The optimal ex ante mechanism is therefore the posted price mechanism
that posts ¢; to each agent ¢ for the Lagrangian parameter X that satisfies ) . ¢; ¢; = B. Note that
such a Lagrangian parameter A can be arbitrarily well approximated since ), ¢; ¢; is decreasing as
a function of .
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Example 1. Consider n agents with costs drawn uniformly and i.i.d. from [0,1] and uniform
additive value {‘unction v; = 1 for all i, i.e., the cardinality function. The virtual cost function is

o(c) = c+ 1;((5) = 2c. The Lagrangian parameter X = %\/n/B duces a uniform posted price of

¢ = \/B/n which is accepted with probability ¢ = \/B/n for an expected payment of B/n. Summing
over all n agents, the budget is balanced ex ante.

6.2 A Reduction to the Greedy Algorithm for Submodular Optimization

For general submodular value functions we reduce the optimization of the multilinear extension
program , restated below, to the problem of optimizing a submodular function subject to a
cardinality constraint. This problem of optimizing a submodular function under cardinality, knap-
sack, or matroid constraints is well studied and the greedy algorithm gives a 1 —1/e approximation
for knapsack and cardinality constraints; see [Nemhauser et al. (1978)), Khuller et al| (1999), and
Sviridenko (2004]).

max V(q) ()

q
s.t. Zl giF; H(q:) < B.

Define the cost curve of agent i to be the expected payment to agent i, i.e., tii_l(Qi) in our
case. The main difference between the multilinear extension program and the knapsack setting
considered in the literature is that the cost curves in the knapsack setting are linear in ¢g;. Our
reduction to the greedy algorithm is the following. We divide each agent i, called a big agent, in
cost space into m discrete agents i; of equal cost, called the small agents. An agent i; corresponds
to the jth increase of ¢;, starting from ¢; = 0, that has cost B/m. We set 1/m as a fraction of
the total budget B which fixes the number of steps in the algorithm to be m. With large m, the
reduction becomes a finer discretization.

Before formally describing the reduction, we introduce some notation. For each 7 and 7,
let 6;; be the jth increase in ¢;, starting from ¢; = 0, that has cost B/m, i.e., d;; satisfying
B/m = Fi_l(zkgj dik) - (Dk<j Oik) — Fi_l(qu dik) - (Dok<;0ik). Given a set S of small agents,
the continuous solution corresponding to S is g(S) with ¢;(S) =>_ jiiyes 0ij-

The reduction.

1. For each agent i, create m small agents i; where 1 < j < m so that the reduced instance has
mn agents.

2. For each small agent i;, its cost is B/m.

3. For each small agent ij, its marginal contribution Vs(i;) in value to a set S is the marginal
contribution of increasing the fraction of agent i corresponding to S by d;;, i.e., V(q')—V (q(5))
where ¢; = ¢;(S) + di; and ¢} = ¢;(5) for j # i.

We show that the solution to the reduced problem that we obtained with the greedy algorithm
for cardinality constraint corresponds to a solution for the multilinear extension program that
isal—1/e— o(l) approximation, almost matching the performance of the greedy algorithm for
knapsack constraint with integral agents and linear cost curves. We start by showing that if a
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solution is feasible in the reduced problem, then the continuous solution corresponding to it is a
feasible solution to the multilinear extension program . Then, with access to exact values of the
increases d;; and of the marginal contributions Vs(i;), the approximation ratio is 1 — 1/e — o(1).
Finally, we show that it is possible to approximate d;; and Vs(i;) with estimates that cause an
additional loss of o(1) to the approximation ratio.

From a set of small agents to a continuous solution for the big agents. Previously, we
defined a distribution to be regular if the virtual cost function is monotonically increasing. An
alternate definition is that a distribution F is regular if the cost curve ¢ - F~1(q) is convex. This
definition is the analogue to the revenue curve being concave for regular distributions when the
agents are buyers, and not sellers, from [Bulow and Roberts| (1989).

Recall that given a set S of small agents, the continuous solution corresponding to S is q(S)
with ¢;(S) = > jiyes d;; and that d;; is the jth increase in ¢; that has cost B/m. Therefore, given
a set S of small agents of size at most m such that for any d;; € S, d; € S for all £ < j, then
q(S) has cost at most B. The condition that if d;; € S, then d;, € S for all k < j, is equivalent to
the condition that greedy always picks small agents corresponding to lower quantiles before small
agents corresponding to higher quantiles, which we show formally.

Lemma 19. Given two small agents i, and i; such that k < j, the greedy algorithm with a
cardinality constraint picks iy before i; for reqular distributions F;.

Proof. Since all small agents have equal cost, we need to show that i, has a larger marginal
contribution than i; to any set S of small agents such that iy,i; ¢ S. Since V(-) is monotone,
it suffices to show that d;; > d;;. In quantile space, the cost of increasing some quantile ¢; by
a fix amount is increasing in ¢; since ¢; - F~1(g;) is convex by definition of regular distributions.
Therefore, in cost space, the increase in quantile J; that is obtained by increasing the cost curve by
a fix amount is decreasing, so d;; > 0;;. O

The case of irregular distributions is considered in Section

With exact values of §;; and Vg(ij). We consider the case where the exact values of the
increases in g and marginal contributions are given by an oracle. We show that finding a good
solution to this reduced problem with small agents gives us a good solution to the problem with
big agents.

Lemma 20. The optimal solution S* to the reduced problem satisfies V(q(S*)) > (1 —o(1))V(q)
where q is the optimal solution to the multilinear extension program .

Proof. We pick the step size to be m = n?. The proof shows that there exists a set S that is close to
a feasible solution in the reduced problem and such that q(S) is a better solution than q. Let S be
the set of small agents such that q(S) is maximized subject to q(S) < g. Define S*! to be the set
containing all small agents in S and one additional small agent for each big agent 7. Observe that
V(g(St1)) > V(q) since V(-) is non-decreasing. So there is a feasible solution to the discretized
problem such that if we add one small agent for each big agent i, then we obtain a better solution
than the optimal solution to the original problem.

Greedily remove agents by minimal marginal contribution from S*! until we get a feasible
solution S. The number of small agents who need to be removed is n since S is feasible. Since S
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contains n? small agents, by the greediness and the fact V(-) is concave along any line of positive

direction, (1 +1/n)V(q(S)) > V(q(STh)).
Therefore,

(1+0(1)V(g(5%)) = (1+0(1))V(q(5)) = V(a(S™)) > V(@)

Next, we show that the reduced problem can be optimized.

Lemma 21. Let S be the set returned by the greedy algorithm for submodular functions under a
cardinality constraint on the reduced problem, then V(q(S)) > (1 —1/e)V(q(S*)) where S* is the
optimal solution to the reduced problem.

Proof. Observe that the objective function in the reduced problem is a submodular function. This
follows directly from the concavity of V(-) along any positive line of direction. In addition, since all
small agents have cost B/m, the constraint is a cardinality constraint. Since the greedy algorithm
for submodular functions under a cardinality constraint is a 1 — 1/e approximation for submodular
functions, we get the desired result. O

We now have the tools to show that if we had an oracle for the increases and marginal contribu-
tions, the greedy algorithm on the reduced instance would give us a 1 — 1/e — o(1) approximation.

Lemma 22. Let S be the output of the greedy algorithm on the reduced instance, where exact values
of 0i5 and Vs(ij) are given by an oracle at each iteration, then V(q(S)) > (1 —1/e —0o(1))V(q),
where q is the optimal solution to the multilinear extension program .

Proof. We combine the results from the discretization that causes a o(1) loss with the greediness
of the algorithm that is a 1 — 1/e approximation to obtain the desired result.
By Lemma [21] and Lemma

V(gq(9)) = (1 -1/¢)V(q(57)) = (1 —1/e = o(1))V(g)

where S* is the optimal solution to the reduced problem. O

With estimates of 0;; and Vs(i;). We now show that we can use the greedy algorithm with
estimates of the increases and the marginal contributions, that we can compute. Let g(S) be
defined similarly to g(S) but with estimates Slj The first lemma shows that the value of the
optimal solution to the reduced problem has almost the same value as when the increases d;; are
estimated. The second lemma extends Lemma [21] to the case where greedy is run with estimated
marginal contributions Vg(ij) and any SZJ We defer the proofs of these two lemmas to the appendix.

Lemma 23. Let S* be the optimal solution to the reduced problem with exact value of 6;; and
Vs(ij), then V(q(S™)) = (1 —o(1))V(g(5™)).

Lemma 24. Let S be the set returned by the greedy algorithm on the reduced problem with estimates
d;; and Vs(ij), then V(q(S)) > (1 — 1[6 —0o(1))V(q(S*)) w.h.p., where S* is the optimal solution
to the reduced problem with estimates §;; and evact values Vs (ij).

Combining the previous results, we obtain the main result of this section.
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Theorem 25. Let S be the output by the greedy algorithm on the reduced instance with estimates

of 8ij and Vs(ij), then V(q(S)) > (1 —1/e —o(1))V(q) w.h.p., where q is the optimal solution to
the multilinear extension program .

Proof. This proof follows similarly to the one for Lemma [22] the difference is that this proof adds
the loss from the estimates.
By Lemma 23] and Lemma [24]

V(@(9)) > (1 - 1/e —o(1))V(@(5*)) > (1 = 1/e — o(1))V(q(S5*))
where S* is the optimal solution to the reduced problem. Using Lemma that connects the
discretized reduced instance to the original continuous problem, we conclude that

V(@(9)) = (1 - /e —o(1))V(q(5%)) = (1 = 1/e = o(1))V(@)-
O

Note that in the case of additive value functions, the greedy algorithm is optimal when the
optimization is subject to a cardinality constraint and the marginal contributions can be computed
exactly. We therefore get the following result.

Lemma 26. Assume v(-) is an additive value Junction. Let S be the set returned by the greedy
algorithm on the reduced problem with estimates 0;;, then V(q(S)) > (1 —o(1))V(q) w.h.p., where
q is the optimal solution to the multilinear extension program .

Therefore, all the results in previous sections suffer an extra 1 —1/e — o(1) factor in the general
case of submodular value function and an extra 1 —o(1) factor in the case of additive value function
that are due to computational constraints.

7 Symmetric Costs and Values

In this section we study symmetric environments where both the distribution of costs and the
value function are symmetric. A submodular value function is symmetric if the value of a set only
depends on the cardinality of that set, i.e., v(S) = g(|S]) for some function g(-). In this setting, we
obtain an oblivious posted pricing that achieves an approximation ratio of (1 — 1/v/27k)(1 — 1/k)
where k is the size of the market, which is identical to the approximation obtained in the additive
case with sequential posted pricing. We assume that the distribution of costs is regular.

The following technicalities are used for this section only. We overload the notation and denote
by v(:) : Rt — Ry the concave hull of the points {(z,v(S;))}l_, where S; is any set of size i. The
posted prices in this section are symmetric and are defined by a single price ¢, i.e., ¢ = (¢, ,¢)
and ¢ = (¢,--- ,qG). Note that the market size k in such a symmetric setting is k = B/¢.

We start with two lemmas that highlight symmetric properties of the optimal solution to the
concave closure program in this symmetric setting.

Lemma 27. For symmetric submodular value function v(-) and symmetric distributions of costs,
the optimal solution q to the concave closure program s symmetric, i.e., cji+ = cjf for alli,j.

Proof. By the concavity of the concave closure and the convexity of cost curves (since the distribu-
tion of costs is regular), the program we wish to optimize is symmetric and convex, so the optimal
solution is symmetric. O
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Lemma 28. For symmetric monotone submodular value function v(-) and symmetric distributions
of costs, there exists a distribution D over sets of agents with marginals g* = (¢*,---,4T) such
that Esp[v(S)] = V(q") and such that all sets S and T that can be drawn from D have size
either k| or [k].

Proof. First, note that B = é-n-¢" since ¢ is the optimal solution to the concave closure program
and since v(-) is monotone, which implies that k = n - ¢+ since k = B/¢.

The expected value of a set of expected size n-¢" drawn from a distribution is at most v(n-4™")
by the definition of concave hull. By taking a distribution D that is a mixture of sets of size
In-¢*t| = |k| and [n-¢"T| = [k] such that the marginals are %, the expected value of a set
drawn from D is v(n - ¢7) since v(S) is submodular. Combining the two previous observations,
Esp[v(S)] = VT(g") since the concave closure is the maximum expected value over distributions
with some marginals q. O

Given quantiles ¢ = (¢, - - , G), the value of the concave closure V' (g) can be computed easily
by Lemma and symmetricity. The concave closure program can therefore be approximated
arbitrarily well and efficiently when there is symmetry, by using binary search to get arbitrarily
close to the optimal quantile §. Our approach for obtaining the desired approximation is to construct
an additive function that lower bounds the symmetric submodular function on feasible sets and
that upper bounds it otherwise.

Theorem 29. In the case of symmetric monotone submodular value functions and symmetric
regular cost distributions, the oblivious posted pricing & = (&,--- ,é) with ¢ = F~Y(¢") is an (1 —
1/V27k)(1 — 1/k) approzimation to the optimal ex ante mechanism, where g* = (G+,--- ,¢") is
the optimal solution to the concave closure program and k is the size of the market.

Proof. By Lemma there exists a distribution D over sets of agents with marginals ¢* such that
Es.p[v(S)] = V*(g") and such that sets drawn from D have size |k| or [k]. We consider the
additive value function v®(.) defined as follow:

add( gy — g V(LKD)
(5) = [5] k]

similarly as for v(-). We make the following observations

and overload the notation for v
about v244(.)

add(_)
e v94(3) < v(i) for i < |k| and v®%(i) > v(i) otherwise, by submodularity.
e Eg p[v™(S)] > Egup[v(S)], since v*®([k]) > v([k]) and v®¥(|k]) = v(|k]).

e v(-) is an additive set function with values v; = Llev(UfJ) for each element.

Since the feasible sets are sets of size at most |k| and by the first observation on v®44(.), the
performance of the posted pricing mechanism is at least the independent integral knapsack value
of v®(.). The independent integral knapsack value of v?%(.) is at most a factor (1 — 1/k) away
from its independent fractional knapsack value, Eg g+ [v%dd(S)]. By Lemma and the third

add (., Eg g4+ [v54(S)] > (1— \/;Tk)ESND [v994(S)]. By the second observation on

v29(.), Egop [v9%(S)] > VT (gT). Since V*F(g™) is an upper bound on the optimal mechanism by
Lemma [6] we get the desired result. O

observation on v
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Note that in previous settings, we used the solution to the multilinear extension program to
define the posted pricing mechanisms. In this setting, we used the solution to the concave closure
program in order to take advantage of the concavity of the objective function for computational
purposes. Finally, note that in the symmetric case, sequential posted pricing offers no advantage
compared to oblivious posted pricing.

8 Irregular Distributions

In this section, we consider irregular distributions. Recall that a distribution F' is regular if the
virtual cost function is increasing, or equivalently, if the cost curve ¢- F~1(q) is convex. The ironing
method introduced by |[Myerson| (1981)) gives monotone ironed virtual costs and convex cost curves.
With these convex cost curves, we construct randomized posted pricing mechanisms that enjoy the
same approximation ratios as the deterministic mechanisms, albeit with a generalized definition of
the market size k for randomized posted pricings. Additionally, in the case of additive objective
functions, the sequential posted pricing is derandomized.

Denote the cost curve of agent i by C;(q;) = ¢;F; '(¢;). Bulow and Roberts (1989) observed
that the derivative of the cost curve with respect to quantile is equal to the virtual cost function,
C!(q;) = ¢i(c;). The ironing method constructs the convex hull C;(g;) of the cost curve C;(+). For
¢ = Fi(c;), the ironed virtual costs are ¢;(c;) = Cl(g;). By taking the convex hull of the cost
curves, we have convex cost curves and monotone ironed virtual costs as desired. The next two
lemmas show that expected payments C;(g;) are feasible while serving each agent with probability
di, and that no incentive compatible mechanism can do better.

Lemma 30 (Myerson, (1981, Bulow and Roberts, 1989). For any agent with cost drawn from
distribution F; and any incentive compatible mechanism that selects agent i with probability q;, the
expected payment to agent i is at least Ci(g;).

We give the proof of the following known lemma since it exhibits how to pick the prices and
the probabilities of the randomized mechanisms.

Lemma 31 (Myerson, [1981). Expected payment C;(g;) while serving agent i with probability §; is
achievable using a randomized posted pricing with at most two prices.

Proof. Fix a seller ¢ and an ex ante sale probability ¢;. If ¢; = C;(§;), then it suffices to post price
F;'(g;). Otherwise, let a be the largest quantile smaller than ¢; such that C;(a) = Cj(a). Similarly,
let b the smallest quantile larger than ¢; such that C;(b) = C;(b). The interval [a, b] corresponds to
the ironed interval in which ¢; falls in. By the definition of convex hull, we get

~

1Ci) = (1= B2 N0 a) + (- =T,

Cb—d
b—a

Cila) = (1 - 2=2)Cy + (1

Therefore, posting price F;l(a) with probability 1 — %"_é; and F;l(b) with probability 1 — %
has expected payment C;(§;) and the ex ante probability that seller ¢ accepts the price is ¢;. ]

By Lemma 30| and Lemma the ex ante results also hold for the irregular case using random-
ized posted pricing. The following definition generalizes the notion of posted prices to allow for
randomization.
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Definition 6. For a randomized posted pricing q,
e Prices ¢;1 and ¢;o with probabilities of picking each price are induced by §;.
o Randomly pick ¢;1 or ¢;2.

e In the case of sequential posted pricing, set the ordering to be in decreasing order of bang-per-
buck.

Definition 7. With randomized posted pricing, a market is k-large if B/¢;; > k for all agents 1
and j € {1,2}.

8.1 From Ex Ante to Ex Post with Additive Value Functions

For the additive case, we first show that the ex post randomized posted pricing performs well and
then derandomize the mechanism.

Theorem 32. The randomized sequential posted pricing mechanism (q, o (-)) that serve agents with
probability q, where q is the solution to the multilinear extension program and where the order
o(-) is decreasing in &, is a (1 — 1/V27k)(1 — 1/k) approzimation to the optimal mechanism in a
k-large market.

Proof. We show that the randomized sequential posted pricing performs better than a deterministic
sequential posted pricing with the same ex ante performance and a market that is k-large. Consider
a randomized agent ¢ who is offered ¢; = ¢é;; with probability p and ¢; = ¢ otherwise. Remove
agent ¢ and replace it with two deterministic agents ¢1 and 2 with value v;, who are offered ¢;;
and ¢ and who accept their price with probability pF;(¢;1) and (1 — p)F;(é;2) respectively. Call
this new posted pricing the deterministic instance and the original posted pricing the randomized
instance.

Both instances have the same ex ante performance since the expected total cost remains the
same and since agent i accepts his offer with probability equal to the sum of the probabilities that
agents ¢1 and i3 accept their offer. Fix a set S of agents who accept their offer that does not include
1 and fix these offers. Notice that in both the randomized and deterministic instance, there is an
expected increase in the total cost of ¢;1pF;(¢;1) + ¢ia(1 — p) Fi(¢2) caused by agent i to S. However,
in the randomized instance, this increase in cost is either ¢;; or ¢;2 and in the deterministic instance,
this increase in cost can also be ¢;1 + ¢;2. Since agents are ordered by decreasing bang-per-buck,
the loss from agents that do not fit in the ex post budget constraint is greater in the deterministic
case. Therefore, the loss of the fractional knapsack value with respect to the ex ante performance
of the mechanism is greater in the deterministic instance.

Now note that this argument can be repeated inductively until all the agents left are determin-
istic. So the approximation ratio obtained by the randomized mechanism is (1 —1/v27k)(1—1/k),
by combining Lemma [15| and the 1 — 1/k loss from dropping the fractional agent. O

We now show that the mechanism can be derandomized.

Theorem 33. Any sequential randomized posted pricing (q,o(+)) can be modified into a sequential
deterministic posted pricing in the case of additive value functions.
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Proof. The proof proceeds in two steps. The first reduces the number of randomized agents until
there is one left by using properties of ironed intervals. The second step is to simply pick the best
of the two prices that are offered to the last randomized agent.

Consider a randomized posted pricing (g, o (-)) with at least two agents ¢ and j that are ran-
domized. The marginal cost per unit value of these two agents are C(g;)/vi = ¢i(c;)/v; and
¢;(cj)/vj. Without loss of generality, assume ¢;(c;)/v; < ¢;(c;)/v;. Since both of these agents are
randomized, ¢; and ¢; are within ironed intervals and their ironed virtual costs are constants within
these intervals. With no loss in the objective function, we can therefore increase ¢; and decrease
¢; such that the budget still binds and such that either ¢; or ¢; is at the extremity of the ironed
interval it is in, and therefore not randomized anymore. This construction can be repeated until
one randomized agent is left.

Consider a randomized posted pricing with a unique randomized agent ¢ who is offered ¢; = é;;
with probability p and ¢ = ¢;2 otherwise. The proof of Theorem shows that the ratio between
the performance of the optimal mechanism and the expected fractional knapsack value is at least
1-1/ V2rk. Agent i is either offered ¢ or &g, so by expectations, with at least one of these two
offers, the previous ratio is at least 1 —1/ V27k. Dropping the fractional agent and keeping the best
price to offer to agent i, we therefore get a (1 —1/v/27k)(1—1/k) approximation for a deterministic
mechanism. O

Corollary 34. Any sequential randomized posted pricing (q,o(-)) can be modified with high prob-
ability into a sequential deterministic posted pricing in the case of additive value functions with an
additional o(1) loss in polynomial time.

Proof. We need to compute which offered price between ¢;1 and ¢;5 performs better in terms of
fractional knapsack value. Fractional-knapsack is a submodular function and the multilinear ex-
tension of submodular functions can be approximated arbitrarily well by sampling using Chernoff
bounds. Therefore, with high probability, it is possible to compare arbitrarily well the fractional
knapsack value obtained with the two offered prices to agent 3. O

8.2 From Ex Ante to Ex Post with Submodular Value Functions

With submodular value functions, the analysis for the oblivious randomized posted pricing is iden-
tical as the analysis for the oblivious deterministic posted pricing. In Section [4, Theorem [I0] shows
that by lowering the budget by some small amount, we get that the sum of the costs does not
exceed the budget with high probability. Note that this results does not only hold for deterministic
agents but also for randomized agents since the payment p; to an agent ¢ only need to be bounded
by B/k and is not restricted to be either 0 or ¢;. Therefore, the sum of the costs does not exceed
the budget with high probability in the randomized case as well and the remaining of the analysis
of section [ also holds.

Theorem 35. For € € (0,1/2), if the randomized oblivious posted pricing q, where q is the op-
timal solution to the multilinear extension program with budget (1 — €)B, satisfies 2/e < k <
B/ max; é&;, then this posted pricing mechanism is a (1—1/e)(1—€)(1— e~ 1=9%/12) gpprozimation
to the optimal mechanism for submodular value functions and (1 — €)(1 — e~ 1=9%/12) for qdditive
value functions.
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9 Conclusion

We consider questions of budget feasibility in a Bayesian setting. We show that simple posted
pricing mechanisms are ex post budget feasible and approximate the Bayesian optimal mechanism.
Our analysis first considers the ex ante relaxation where the budget constraint is allowed to hold
in expectation. Good approximations are obtained when this ex ante relaxation is optimized for a
slightly reduced budget or when the agents are ordered by bang-per-buck (value divided by offered
price). The latter approach, in the case of additive value functions when it applies, gives better
bounds.

Another method for designing posted pricing mechanisms from the literature comes from the
generalized magician’s problem from|Alaei (2014). Unfortunately, this approach does not satisfy the
monotonicity property of Theorem [9 needed to apply known results that give a good approximation
in the case of submodular functions. Thus, it is unclear whether this approach can be adapted to
budget feasibility questions.
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APPENDIX

Missing proofs from section [6]

Proof of Lemma[23. We need to find the increase satisfies B/m = Fi_l(qu Si) * (Xk<j Oir) —
Fifl(qu 6i.) - (Xk<j i, ). To approximate it, we find Sl-j such that (1—1/n?)8;, < Sij < 0;, which
can be done easily since the weight functions are increasing.

Recall that q(5) is defined similarly to g(S) but with estimates SZ] Let S* be the optimal

solution of the problem with small agents without noise. Since (1 —1/ n3)(5,;j < Sij < 0y, for all 4, j,
we get that g(S*) > (1 —1/n)q(S*). By the concavity of V(-) along positive lines of direction, we
get that V(q(S*)) > (1 —1/n)V(q(S*)). O

Proof of Lemma[24 First note that the objective function for the reduced instance is a submodular
function regardless of the values of Sz] So since we are comparing ourselves with g(5*), it remains
to show that the greedy algorithm with a noisy oracle on marginal contribution of agents performs
well.

Let g(-) be the objective function of the reduced instance. The marginal contributions are
estimated by taking %(1 +1nn) samples of the random set with independent marginal probabilities
g. By using basic Chernoff bounds as in |Calinescu et al.| (2011), we get that with high probability,
all the estimates that are computed during the algorithm have an additive error of at most §2g(S*).

Let S be the set of small agents returned by the algorithm. Let S; = {e1,...,e;} be the value
of S after 7 iterations. Now since g(-) is submodular,

g(S") < g(Sic)+ D gsia(e)
665*\51‘_1

By the greediness of the algorithm, gg, ,(e;) > gs, ,(e) for all e € S*\ S;_1. So, gs, ,(ei) +
26%9(5*) > gs,_, (e), and

1

9(5™) < 9(Si-1) + 5(gs, (e) + 20%9(5™))

(1 - 20)9(8%) < g(Si1) + 595, (€1

Then, by following identically the remaining of the proof for the e/(e — 1) approximation for

greedy subject to a cardinality constraint, but by replacing g(S*) by (1 — 20)g(S*), we get that
(1—-1/e)g(S) > (1 —20)g(S*), which concludes the proof. O
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