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Abstract. We present a new algorithm for the statistical model check-
ing of Markov chains with respect to unbounded temporal properties,
including full linear temporal logic. The main idea is that we monitor
each simulation run on the fly, in order to detect quickly if a bottom
strongly connected component is entered with high probability, in which
case the simulation run can be terminated early. As a result, our simu-
lation runs are often much shorter than required by termination bounds
that are computed a priori for a desired level of confidence on a large
state space. In comparison to previous algorithms for statistical model
checking our method is not only faster in many cases but also requires
less information about the system, namely, only the minimum transition
probability that occurs in the Markov chain. In addition, our method can
be generalised to unbounded quantitative properties such as mean-payoft
bounds.

1 Introduction

Traditional numerical algorithms for the verification of Markov chains may be
computationally intense or inapplicable, when facing a large state space or lim-
ited knowledge about the chain. To this end, statistical algorithms are used as
a powerful alternative. Statistical model checking (SMC) typically refers to ap-
proaches where (i) finite paths of the Markov chain are sampled a finite number
of times, (ii) the property of interest is verified for each sampled path (e.g. state
r is reached), and (iii) hypothesis testing or statistical estimation is used to in-
fer conclusions (e.g. state r is reached with probability at most 0.5) and give
statistical guarantees (e.g. the conclusion is valid with 99% confidence). SMC
approaches differ in (a) the class of properties they can verify (e.g. bounded or
unbounded properties), (b) the strength of statistical guarantees they provide
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Table 1. SMC approaches to Markov chain verification, organised by (i) the class
of verifiable properties, and (ii) by the required information about the Markov chain,
where pmin is the minimum transition probability, |S| is the number of states, and A is
the second largest eigenvalue of the chain.

LTL, mean payoff] X here [3] (LTL)
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(e.g. confidence bounds, only asymptotic convergence of the method towards the
correct value, or none), and (¢) the amount of information they require about
the Markov chain (e.g. the topology of the graph). In this paper, we provide an
algorithm for SMC of unbounded properties, with confidence bounds, in the set-
ting where only the minimum transition probability of the chain is known. Such
an algorithm is particularly desirable in scenarios when the system is not known
(“black box”), but also when it is too large to construct or fit into memory.

Most of the previous efforts in SMC has focused on the analysis of properties
with bounded horizon [27/20026/T2/T1l4]. For bounded properties (e.g. state r is
reached with probability at most 0.5 in the first 1000 steps) statistical guaran-
tees can be obtained in a completely black-box setting, where execution runs of
the Markov chain can be observed, but no other information about the chain is
available. Unbounded properties (e.g. state r is reached with probability at most
0.5 in any number of steps) are significantly more difficult, as a stopping crite-
rion is needed when generating a potentially infinite execution run, and some
information about the Markov chain is necessary for providing statistical guar-
antees (for an overview, see Table[I)). On the one hand, some approaches require
the knowledge of the full topology in order to preprocess the Markov chain. On
the other hand, when the topology is not accessible, there are approaches where
the correctness of the statistics relies on information ranging from the second
eigenvalue A of the Markov chain, to knowledge of both the number |S| of states
and the minimum transition probability pmin.

Our contribution is a new SMC algorithm for full linear temporal logic
(LTL), as well as for unbounded quantitative properties (mean payoff), which
provides strong guarantees in the form of confidence bounds. Our algorithm
uses less information about the Markov chain than previous algorithms that
provide confidence bounds for unbounded properties—we need to know only
the minimum transition probability pmin of the chain, and not the number of
states nor the topology. Yet, experimentally, our algorithm performs in many
cases better than these previous approaches (see Section 5). Our main idea is
to monitor each execution run on the fly in order to build statistical hypotheses
about the structure of the Markov chain. In particular, if from observing the
current prefix of an execution run we can stipulate that with high probability
a bottom strongly connected component (BSCC) of the chain has been entered,
then we can terminate the current execution run. The information obtained from



execution prefixes allows us to terminate executions as soon as the property is
decided with the required confidence, which is usually much earlier than any
bounds that can be computed a priori. As far as we know, this is the first SMC
algorithm that uses information obtained from execution prefixes.

Finding pmin is a light assumption in many realistic scenarios and often does
not depend on the size of the chain — e.g. bounds on the rates for reaction kinetics
in chemical reaction systems are typically known, from a PRISM language model
they can be easily inferred without constructing the respective state space.

Ezxample 1. Consider the property of reaching state r in the Markov chain de-
picted in Figure[Il While the execution runs reaching r satisfy the property and
can be stopped without ever entering any v;, the finite execution paths with-
out r, such as stuttutuut, are inconclusive. In other words, observing this path
does not rule out the existence of a transition from, e.g., v to r, which, if ex-
isting, would eventually be taken with probability 1. This transition could have
arbitrarily low probability, rendering its detection arbitrarily unlikely, yet its
presence would change the probability of satisfying the property from 0.5 to 1.
However, knowing that if there exists such a transition leaving the set, its transi-
tion probability is at least pmin = 0.01, we can estimate the probability that the
system is stuck in the set {t,u} of states. Indeed, if existing, the exit transition
was missed at least four times, no matter whether it exits ¢t or u. Consequently,
the probability that there is no such transition and {¢,u} is a BSCC is at least
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Fig.1. A Markov chain.

This means that, in order to get 99% confidence that {t,u} is a BSCC, we
only need to see both ¢ and u around 500 timedd on a run. This is in stark
contrast to a priori bounds that provide the same level of confidence, such as
the (1/pmin)!®! = 100°0™) runs required by [3], which is infeasible for large m.
In contrast, our method’s performance is independent of m. A

Monitoring execution prefixes allows us to design an SMC algorithm for com-
plex unbounded properties such as full LTL. More precisely, we present a new
SMC algorithm for LTL over Markov chains, specified as follows:

31— (1 = pmin)®° =1 —0.995% ~ 0.993



Input: we can sample finite runs of arbitrary length from an unknown finite-
state discrete-time Markov chain M starting in the initial state@, and we are
given a lower bound ppi, > 0 on the transition probabilities in M, an LTL
formula ¢, a threshold probability p, an indifference region € > 0, and two
error bounds «, 5 > OE

Output: if PIM = ¢| > p+ ¢, return YES with probability at least 1 — a, and

if PIM = ¢] < p — ¢, return NO with probability at least 1 — .

In addition, we present the first SMC algorithm for computing the mean payoff
of Markov chains whose states are labelled with rewards.

Related work. To the best of our knowledge, we present the first SMC al-
gorithm that provides confidence bounds for unbounded qualitative properties
with access to only the minimum probability of the chain pp,, and the first SMC
algorithm for quantitative properties. For completeness, we survey briefly other
related SMC approaches. SMC of unbounded properties, usually “unbounded
until” properties, was first considered in [9] and the first approach was proposed
in [2I], but observed incorrect in [8]. Notably, in [25] two approaches are de-
scribed. The first approach proposes to terminate sampled paths at every step
with some probability pierm- In order to guarantee the asymptotic convergence
of this method, the second eigenvalue A of the chain must be computed, which is
as hard as the verification problem itself. It should be noted that their method
provides only asymptotic guarantees as the width of the confidence interval con-
verges to zero. The correctness of [I5] relies on the knowledge of the second eigen-
value A, too. The second approach of [25] requires the knowledge of the chain’s
topology, which is used to transform the chain so that all potentially infinite
paths are eliminated. In [8], a similar transformation is performed, again requir-
ing knowledge of the topology. The (pre)processing of the state space required
by the topology-aware methods, as well as by traditional numerical methods for
Markov chain analysis, is a major practical hurdle for large (or unknown) state
spaces. In [3] a priori bounds for the length of execution runs are calculated from
the minimum transition probability and the number of states. However, without
taking execution information into account, these bounds are exponential in the
number of states and highly impractical, as illustrated in the example above.
Another approach, limited to ergodic Markov chains, is taken in [19], based on
coupling methods. There are also extensions of SMC to timed systems [6]. Our
approach is also related to [7JI7], where the product of a non-deterministic sys-
tem and Biichi automaton is explored for accepting lassos. We are not aware
of any method for detecting BSCCs by observing a single run, employing no
directed search of the state space.

Experimental evaluation. Our idea of inferring the structure of the Markov
chain on the fly, while generating execution runs, allows for their early termina-
tion. In Section 5 we will see that for many chains arising in practice, such as

4 We have a black-box system in the sense of [20], different from e.g. [27] or [19], where
simulations can be run from any state.

5 Except for the transition probability bound pmin, all inputs are standard, as used in
literature, e.g. [27].



the concurrent probabilistic protocols from the PRIsM benchmark suite [I4], the
BSCCs are reached quickly and, even more importantly, can be small even for
very large systems. Consequently, many execution runs can be stopped quickly.
Moreover, since the number of execution runs necessary for a required precision
and confidence is independent of the size of the state space, it needs not be very
large even for highly confident results (a good analogy is that of the opinion
polls: the precision and confidence of opinion polls is regulated by the sample
size and is independent of the size of the population). It is therefore not surpris-
ing that, experimentally, in most cases from the benchmark suite, our method
outperforms previous methods (often even the numerical methods) despite re-
quiring much less knowledge of the Markov chain, and despite providing strong
guarantees in the form of confidence bounds. In Section [} we also provide theo-
retical bounds on the running time of our algorithm for classes of Markov chains
on which it performs particularly well.

2 Preliminaries

Definition 1 (Markov chain). A Markov chain (MC) is a tuple M = (S, P, ),
where

— S is a finite set of states,
— P : Sx S —10,1] is the transition probability matriz, such that for every
s€ S it holds Y, .gP(s,s") =1,

— w18 a probability distribution over S.

We let pmin := min({P(s,s’) > 0| s, € S}) denote the smallest positive
transition probability in M. A run of M is an infinite sequence p = sgs1 -+ of
states, such that for all i > 0, P(s;, si+1) > 0; we let p[i] denote the state s;. A
path in M is a finite prefix of a run of M. We denote the empty path by A and
concatenation of paths 71 and 7o by 71 . m2. Each path 7 in M determines the
set of runs Cone(r) consisting of all runs that start with 7. To M we assign the
probability space (Runs, F,P), where Runs is the set of all runs in M, F is the o-
algebra generated by all Cone(r), and P is the unique probability measure such
that P[Cone(sgsy - - sk)] = u(so) - Hle P(s;-1,8;), where the empty product
equals 1. The respective expected value of a random variable f : Runs — R is
E[f] = fRunsf dP.

A non-empty set C C S of states is strongly connected (SC) if for every
s,s" € C there is a path from s to s’. A set of states C' C S is a bottom strongly
connected component (BSCC) of M, if it is a maximal SC, and for each s € C
and s’ € S\ C we have P(s,s’) = 0. The sets of all SCs and BSCCs in M are
denoted by SC and BSCC, respectively. Note that with probability 1, the set of
states that appear infinitely many times on a run forms a BSCC. From now on,
we use the standard notions of SC and BSCC for directed graphs as well.



3 Solution for reachability

A fundamental problem in Markov chain verification is computing the probability
that a certain set of goal states is reached. For the rest of the paper, let M =
(S,P, 1) be a Markov chain and G C S be the set of the goal states in M. We
let OG := {p € Runs | 3i > 0 : p[i] € G} denote the event that “eventually a
state in G is reached.” The event (G is measurable and its probability P[QG]
can be computed numerically or estimated using statistical algorithms. Since no
bound on the number of steps for reaching G is given, the major difficulty for any
statistical approach is to decide how long each sampled path should be. We can
stop extending the path either when we reach GG, or when no more new states
can be reached anyways. The latter happens if and only if we are in a BSCC
and we have seen all of its states.

In this section, we first show how to monitor each simulation run on the fly,
in order to detect quickly if a BSCC has been entered with high probability.
Then, we show how to use hypothesis testing in order to estimate P[0OG].

3.1 BSCC detection

We start with an example illustrating how to measure probability of reaching a
BSCC from one path observation.

Ezample 2. Recall Example [Tl and Figure [Il Now, consider an execution path
stuttutu. Intuitively, does {t,u} look as a good “candidate” for being a BSCC
of M? We visited both ¢ and u three times; we have taken a transition from
each ¢ and u at least twice without leaving {¢,u}. By the same reasoning as in
Example [Tl we could have missed some outgoing transition with probability at
most (1 — pmin)?. The structure of the system that can be deduced from this
path is in Figure B and is correct with probability at least 1 — (1 — pmin)?. A

Now we formalise our intuition. Given a finite or infinite sequence p =
8081 -+, the support of p is the set p = {sp,s1,...}. Further, the graph of p
is given by vertices p and edges {(s;,si+1) |4 =0,1,...}.

O—(I_®
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Fig. 2. A graph of a path stuttutu.

Definition 2 (Candidate). If a path 7 has a suffix k such that & is a BSCC
of the graph of w, we call § the candidate of w. Moreover, for k € N, we call
it a k-candidate (of 7) if each s € K has at least k occurrences in x and the
last element of k has at least k + 1 occurrences. A k-candidate of a run p is a
k-candidate of some prefix of p.



Note that for each path there is at most one candidate. Therefore, we write K ()
to denote the candidate of 7 if there is one, and K (7) = L, otherwise. Observe
that each K(7) # L is a SC in M.

Ezample 3. Counsider a path m = stuttutu, then K(m) = {¢,u}. Observe that {¢}
is not a candidate as it is not maximal. Further, K (7) is a 2-candidate (and as
such also a 1l-candidate), but not a 3-candidate. Intuitively, the reason is that
we only took a transition from u (to the candidate) twice, cf. Example A

Intuitively, the higher the k the more it looks as if the k-candidate is indeed a
BSCC. Denoting by Candy(K) the random predicate of K being a k-candidate
on a run, the probability of “unluckily” detecting any specific non-BSCC set of
states K as a k-candidate, can be bounded as follows.

Lemma 1. For every K C S such that K ¢ BSCC, and every s € K, k € N,
P[Candy(K) | Os] < (1 — pmin)* .

Proof. Since K is not a BSCC, there is a state t € K with a transition to ¢’ ¢ K.
The set of states K is a k-candidate of a run, only if ¢ is visited at least k times
by the path and was never followed by ¢’ (indeed, even if ¢ is the last state in the
path, by definition of a k-candidate, there are also at least k previous occurrences
of ¢ in the path). Further, since the transition from ¢ to ¢’ has probability at least
Dmin, the probability of not taking the transition k times is at most (1 — pmin)k.

O

Ezxample 4. We illustrate how candidates “evolve over time” along a run. Con-
sider a run p = spSpS150 - -+ of the Markov chain in Figure [3l The empty and
one-letter prefix do not have the candidate defined, spsp has a candidate {so},
then again K(sosps1) = L, and K (sos0s150) = {S0, $1}. One can observe that
subsequent candidates are either disjoint or contain some of the previous candi-
dates. Consequently, there are at most 2|.S| — 1 candidates on every run, which
is in our setting an unknown bound. A

e a0
)

—( So S1 52

05 \__/J 05 \__J 05 05 \__/ 05

Fig. 3. A family (for n € N) of Markov chains with large eigenvalues.

While we have bounded the probability of detecting any specific non-BSCC
set K as a k-candidate, we need to bound the overall error for detecting a
candidate that is not a BSCC. Since there can be many false candidates on a
run before the real BSCC (e.g. Figure[3)), we need to bound the error of reporting
any of them.



In the following, we first formalise the process of discovering candidates along
the run. Second, we bound the error that any of the non-BSCC candidates
becomes a k-candidate. Third, we bound the overall error of not detecting the
real BSCC by increasing k every time a different candidate is found.

We start with discovering the sequence of candidates on a run. For a run
p = SoS1- -, consider the sequence of random variables defined by K (s ...s;)
for 7 > 0, and let (K;);>1 be the subsequence without undefined elements
and with no repetition of consecutive elements. For example, for a run o =
$081515150818282 - - -, we have K1 = {s1}, K2 = {s0, 1}, K3 = {s2}, etc. Let K;
be the last element of this sequence, called the final candidate. Additionally, we
define K, := K for all £ > j. We describe the lifetime of a candidate. Given a
non-final Ki; we write P = azﬂzbzﬂyzdﬁz so that O[_ZQKZ = @, ﬂ1b171 = Ki, dl ¢ Ki,
and K(«; ;) # K;, K(;0:b;) = K;. Intuitively, we start exploring K; in 8;; K;
becomes a candidate in b;, the birthday of the ith candidate; it remains to be
a candidate until d;, the death of the ith candidate. For example, for the run
0 = 5051515150515252-+- and i = 1, oy = 50, 1 = 51, by = 51, 71 = 51, d1 = S0,
01 = $152820[8]0[9] - - -. Note that the final candidate is almost surely a BSCC
of M and would thus have «y; infinite.

Now, we proceed to bounding errors for each candidate. Since there is an un-
known number of candidates on a run, we will need a slightly stronger definition.
First, observe that Candy(K;) iff K; is a k-candidate of 3;b;v;. We say K; is a
strong k-candidate, written SCandy (K;), if it is a k-candidate of b;y;. Intuitively,
it becomes a k-candidate even not counting the discovery phase. As a result,
even if we already assume there exists an ith candidate, its strong k-candidacy
gives the guarantees on being a BSCC as above in Lemma [l

Lemma 2. For every i,k € N, we have

P[SCandy(K;) | K; ¢ BSCC] < (1 — pmin)* .

Proof.
1
= PKZZC,blZSPSCCLndkC Ki:C,biZS
PIK, ¢ BSCC] Cescz\;scc [ ]-P[ @) ]
seC
1
= PIK; = C,b; = s] - P[Candi(C) | O3]
P[K; ¢ BSCC] CESCZ\BSCC
seC
(by Markov property)
1
< PK; =C,b; = s] - 1—pmink by Lemma
P[K; ¢ BSCC] CGSCZ\BSCC | h : ( D
seC
= (1 — pmin)* (by P[K; € SC,b; € K;] = 1)

O



Algorithm 1 REACHEDBSCC

Input: path ™ = s081 -+ Sn, Pmin, 0 € (0,1]
Output: Yes iff K(7) € BSCC
C«+ 1,1« 0
for j =0 ton do
if K(so---s;)# L and K(so---s;) #C then
C(—K(S()"'Sj)
1+ 1+1
ki - lc:g(lloifmin)
if ¢ > 1 and SCANDy, (K (7), 7) then return Yes
else return No

Since the number of candidates can only be bounded with some knowledge
of the state space, e.g. its size, we assume no bounds and provide a method to
bound the error even for an unbounded number of candidates on a run.

Lemma 3. For (k;)32; € NN, let Err be the set of runs such that for somei € N,
we have SCandy, (K;) despzte K; ¢ BSCC. Then

o0

PlErr] < Z(l —pm;n)’“ )

=1

Proof.

PlErr] = [j (SCandk K)NK; ¢ BSCC)]

IN
.Mg |

N
Il
-

P[SCandy, (K;) N K; ¢ BSCC] (by the union bound)

P[SCandy, (K;) | K; ¢ BSCC| - P[K; ¢ BSCC]

o

s
Il
-

o,

-
Il
-

o

N
Il
-

(1 — prin)* (by Lemma [2))

a

In Algorithm [Il we present a procedure for deciding whether a BSCC inferred
from a path 7 is indeed a BSCC with confidence greater than 1 — §. We use no-
tation SCANDy, (K, 7) to denote the function deciding whether K is a strong k;-

candidate on 7. The overall error bound is obtained by setting k; = ﬁ.



Theorem 1. For every 6 > 0, Algorithm [0 is correct with error probability at
most 6.

Proof. Since M is finite, the Algorithm [ terminates almost surely. The proba-
bility to return an incorrect result can be bounded by returning incorrect result
for one of the non-final candidates, which by Lemma [Blis as follows:

i(l —pmin)ki = i(l — Pmin) logZiIZii) = Z g—itlogd _ i 5/21' .y
=t =1 i=1

O

We have shown how to detect a BSCC of a single path with desired confidence.
In Algorithm Bl we show how to use our BSCC detection method to decide
whether a given path reaches the set G with confidence 1 — §. The function
NextState(w) randomly picks a state according to p if the path is empty (7 = \);
otherwise, if ¢ is the last state of 7, it randomly chooses its successor according
to P(¢,-). The algorithm returns Yes when 7 reaches a state in G, and No when
for some ¢, the ith candidate is a strong k;-candidate. In the latter case, with
probability at least 1 — §, m has reached a BSCC not containing GG. Hence, with
probability at most J, the algorithm returns No for a path that could reach a
goal.

3.2 Hypothesis testing on a Bernoulli variable observed with
bounded error

In the following, we show how to estimate the probability of reaching a set of
goal states, by combining the BSCC detection and hypothesis testing. More
specifically, we sample many paths of a Markov chain, decide for each whether it
reaches the goal states (Algorithm[2]), and then use hypothesis testing to estimate
the event probability. The hypothesis testing is adapted to the fact that testing
reachability on a single path may report false negatives.

Let Xg be a Bernoulli random variable, such that Xg = 1 if and only if
SINGLEPATHREACH(G, pmin, 8) = Yes, describing the outcome of Algorithm
The following theorem establishes that X g estimates P[OG] with a bias bounded
by 6.

Algorithm 2 SINGLEPATHREACH
Input: goal states G of M, pmin,d € (0,1]
Output: Yes iff a run reaches G
T A
repeat
s < NextState()
T4 T.S
if s € G then return Yes > We have provably reached G
until REACHEDBSCC(7, pmin, 9)
return No > By Theorem [I] P[K(7) € BSCC] >1—4

10



Theorem 2. For every § > 0, we have P[0G] — 6 < E[Xg] < P[OG].

Proof. Since the event OG is necessary for X3 = 1, we have P[0G | X3 = 1] = 1.
Therefore, ]P’[Xg = 1] = P[0G, Xg = 1] < P[OG], hence the upper bound. As for
the lower bound, again P[X{ = 1] = P[0G, X = 1] = P[0G] —P[0G, X§ = 0] >
P[OG] — &, where the last inequality follows by Theorem [Il and the definition of
BSCC. O

In order to conclude on the value P[QG], the standard statistical model
checking approach via hypothesis testing [27] decides between the hypothesis
Hy : P[OG] > p+ ¢ and Hy : P[OG] < p — ¢, where ¢ is a desired indifference
region. As we do not have precise observations on each path, we reduce this
problem to a hypothesis testing on the variable X g with a narrower indifference
region: H{ : E[X3] > p+ (¢ — §) and H{ : E[XJ] <p — ¢, for some § < ¢.

We define the reduction simply as follows. Given a statistical test 7" for
H{, H| we define a test T that accepts Hp if T’ accepts H{,, and H; otherwise.
The following lemma shows that 7 has the same strength as 7.

Lemma 4. Suppose the test T' decides between H|, and Hy with strength (o, ).
Then the test T decides between Hy with Hy with strength («, ).

Proof. Consider type I error of T. Assume that Hy holds, which means P[0G] >
p + . By Theorem it follows that P[X3 = 1] > P[0G] — § > p + (¢ — §), thus
H{, also holds. By assumption the test 7’ accepts Hj with probability at most
«, thus, by the reduction, 7 also accepts H; with probability < a. The proof
for type II error is analogous. ad

Lemma [ gives us the following algorithm to decide between Hy and Hy. We
generate samples xqg, Ty, , Ty ~ Xg from SINGLEPATHREACH(G, pmin, 9), and
apply a statistical test to decide between H{; and Hj. Finally, we accept Hy if
H{, was accepted by the test, and H; otherwise. In our implementation, we used
the sequential probability ration test (SPRT) [24l23] for hypothesis testing.

4 Extensions

In this section, we present how the on-the-fly BSCC detection can be used for
verifying LTL and quantitative properties (mean payoff).

4.1 Linear temporal logic

We show how our method extends to properties expressible by linear temporal
logic (LTL) [18] and, in the same manner, to all w-regular properties. Given a
finite set Ap of atomic propositions, a labelled Markov chain (LMC) is a tuple
M = (S,P,pu, Ap, L), where (S,P, u) is a MC and L : S — 247 is a labelling
function. The formulae of LTL are given by the following syntax:

o = al-ploNe|Xe|Up

11



for a € Ap. The semantics is defined with respect to a word w € (247)%. The

ith letter of w is denoted by w[i], i.e. w = w[0]w[1]--- and we write w; for the
suffix wliw[i + 1]--- . We define
wkEa < a € w|0]

wE-9 <<ntwkEe

wie gAY = w g and w =

wEXpe <= w Ee

wEeUY <= JkeN:wyFvandV0<j<k:w;fEp

The set {w € (24P)¥ | w |= ¢} is denoted by L(p).

Given a labelled Markov chain M and an LTL formula ¢, we are interested
in the measure PIM = ¢| := P[{p € Runs | L(p) = ¢}], where L is naturally
extended to runs by L(p)[i] = L(p[i]) for all i.

For every LTL formula ¢, one can construct a deterministic Rabin automaton
(DRA) A = (Q,247,7, q,, Acc) that accepts all runs that satisfy ¢ [2]. Here Q
is a finite set of states, 7 : Q x 24?7 — @ is the transition function, ¢, € Q is the
initial state, and Acc C 29 x 29 is the acceptance condition. A word w € (24P)«
induces an infinite sequence A(w) = sps1--- € Q¥, such that s = ¢o and
v(si,wli]) = s;41 for i > 0. We write Inf(w) for the set of states that occur
infinitely often in A(w). Word w is accepted, if there exists a pair (E, F) € Acc,
such that ENInf(w) = § and F NInf(w) # (). The language L(A) of A is the set
of all words accepted by A. The following is a well known result, see e.g. [2].

Lemma 5. For every LTL formula ¢, a DRA A can be effectively constructed
such that L(A) = L(p).

Further, the product of a MC M and DRA A is the Markov chain M ®
A= (5 xQ,P ), where P'((s,q),(s',q")) = P(s,s') if ¢ = (¢, L(s")) and
P'((s,q),(s',q")) = 0 otherwise, and p'(s,q) = u(s) if v(qgo, L(s)) = ¢ and
1 (s,q) = 0 otherwise. Note that M ® A has the same smallest transition prob-
ability pmin as M.

The crux of LTL probabilistic model checking relies on the fact that the
probability of satisfying an LTL property ¢ in a Markov chain M equals the
probability of reaching an accepting BSCC in the Markov chain M ® A,. For-
mally, a BSCC C of M ® A, is accepting if for some (E,F) € Acc we have
CN(SxE)=0and CN(SxF)# 0. Let AccBSCC denote the union of all
accepting BSCCs in M. Then we obtain the following well-known fact [2]:

Lemma 6. For every labelled Markov chain M and LTL formula ¢, we have
PIM = ¢] = P[OAccBSCC].
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Algorithm 3 SINGLEPATHLTL

Input: DRA A = (Q,2%%,7, o, Acc), Pmin,d € (0,1]
Output: Yes iff the final candidate is an accepting BSCC
Q4 Qo, T A
repeat
s < NextState(r)
q < (g, L(s))
m < m.(s,q)
until REACHEDBSCC(7, pmin, ) > P[K(r) € BSCC]>1—-9§
return 3(E,F) € Acc: K(mr)N(SX E)=0AK(m)N(Sx F)#0

Since the input used is a Rabin automaton, the method applies to all w-
regular properties. Let X:Z be a Bernoulli random variable, such that Xf, =1
if and only if SINGLEPATHLTL(Ay, pmin,d) = Yes. Since the BSCC must be
reached and fully explored to classify it correctly, the error of the algorithm can
now be both-sided.

Theorem 3. For every § > 0, PIM |= o] — § <E[X]] <P[M = ¢] + 6.

Further, like in Section [3.2] we can reduce the hypothesis testing problem for
Hy:PMEypl>p+e and H :PMEyp|<p-—c¢

for any § < € to the following hypothesis testing problem on the observable X f;

Hi:E[X)]>p+(e—06) and H{ :E[X)]<p—(e—96).

4.2 Mean payoff

We show that our method extends also to quantitative properties, such as mean
payoff (also called long-run average reward). Let M = (S, P, ) be a Markov
chain and r : S — [0,1] be a reward function. Denoting by S; the random
variable returning the i-th state on a run, the aim is to compute

. RS
MP := lim E lﬁ ;r(si)l .
This limit exists (see, e.g. [16]), and equals )~ cgscc P[OC] - MP¢,where MP¢ is
the mean payoff of runs ending in C'. Note that MP& can be computed from r and
transition probabilities in C' [16]. We have already shown how our method esti-
mates P[OC]. Now we show how it extends to estimating transition probabilities
in BSCCs and thus the mean payoff.

First, we focus on a single path 7 that has reached a BSCC C = K () and
show how to estimate the transition probabilities P(s, s') for each s,s’ € C. Let
X, s be the random variable denoting the event that NextState(s) = s'. X, o
is a Bernoulli variable with parameter P(s, s’), so we use the obvious estimator
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P(s,5") = #45 () /#4(7), where #4(m) is the number of occurrences of a in .
If 7 is long enough so that #4(w) is large enough, the estimation is guaranteed
to have desired precision ¢ with desired confidence (1 — d5 ). Indeed, using
Hoffding’s inequality, we obtain

P[P(s,s) — P(s,s)| > €] < 8,9 = 2 2#+(M € (1)

Hence, we can extend the path 7 with candidate C until it is long enough so that
we have a 1 — §¢ confidence that all the transition probabilities in C' are in the
&-neighbourhood of our estimates, by ensuring that ) .~ ds s < dc. These

estimated transition probabilities P induce a mean payoff MPC. Moreover, MP¢&
estimates the real mean payoff MP¢. Indeed, by [5122],

2:|C|
IMP¢ — MP¢| < ¢ = (1+ ¢ ) —1. (2)

min

Note that by Taylor’s expansion, for small £, we have ¢ = 2|C|¢.

Algorithm 4 SINGLEPATHMP
Input: reward function r, pmin, ¢, ¢ € (0,1],
Output: MP¢ such that |MPC — MP¢| < ¢ where C is the BSCC of the generated
run
T A
repeat
7 <— m . NextState()
if K(7) # L then
€ = pmin((1 + O)V/2IE™I 1) > By Equation (2
k —1[1(2\1((#)2\;)71[1(5/2) > By Equation ()

until REACHEDBSCC(7, pmin, 6/2) and SCAND (K (), )
return MP g () computed from P and r

Algorithm M extends Algorithm [2 as follows. It divides the confidence param-
eters ¢ into dpsce (used as in Algorithm [2] to detect the BSCC) and d¢ (the
total confidence for the estimates on transition probabilities). For simplicity, we
set dpscc = 0c = /2. First, we compute the bound £ required for (-precision
(by Eq. ). Subsequently, we compute the required strength & of the candidate
guaranteeing dc-confidence on P (from Eq. ). The path is prolonged until the
candidate is strong enough; in such a case MP¢ is ¢-approximated with 1 — é¢
confidence. If the candidate of the path changes, all values are computed from
scratch for the new candidate.

Theorem 4. For every § > 0, the Algorithm [§] terminates correctly with proba-
bility at least 1 — 4.
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Proof. From Eq. [ by the union bound, we are guaranteed that the probability
that none of the estimates f’“/ is outside of the (-neighbourhood doesn’t exceed
the sum of all respective estimation errors, that is, d¢ = ZS,S/GC 0s,s. Next, from
Eq. Pl and from the fact that C is subject to Theorem [ with confidence dgscc,

P(IMP¢(r) = MPo(r)| > ¢) =
=P(C e BSCC)P(IMP(r) — MP(r)| > ¢ | C € BSCC)+
P(C ¢ BSCC)P(]MP(r) — MP(r)| > ¢ | C' ¢ BSCC)
<1-éc +dBscc-1=0dc +dpscc < 6.

O

Let random variable X,\C,l’g denote the value SINGLEPATHMP (7, pmin, ¢, ). The
following theorem establishes relation between the mean-payoff MP and the ex-
pected value of X ,\Cﬂ’g.

Theorem 5. For every 0, >0, MP—-( —4§ < E[Xl\c,,’g] < MP+ (¢ +9.
Proof. Let us write X ’\gﬂ,g as an expression of random variables Y, W, Z
X3h =YA-W)+WwWz,

where 1) W is a Bernoulli random variable, such that W = 0 iff the algorithm cor-
rectly detected the BSCC and estimated transition probabilities within bounds,
2) Y is the value computed by the algorithm if W = 0, and the real mean payoff
MP when W = 1, and 3) Z is any random variable with the range [0, 1]. The
interpretation is as follows: when W = 0 we observe the result Y, which has
bounded error ¢, and when W = 1 we observe arbitrary Z. We note that Y, W, Z
are not necessarily independent. By Theorem F] E[W] < ¢ and by linearity of
expectation: E[X,\C,,’g] = E[Y] — E[YW] + E[W Z]. For the upper bound, observe
that E[Y] < MP + ¢, E[Y W] is non-negative and E[W Z] < 4. As for the lower
bound, note that E[Y] > MP — ¢, E[YW] < ¢ and E[W Z] is non-negative. O

As a consequence of Theorem[f] if we establish that with (1 —«) confidence X ,\C,,’g
belongs to the interval [a, b], then we can conclude with (1 — «) confidence that
MP belongs to the interval [a — ¢ — §,b + ¢ + 4]. Standard statistical methods

can be applied to find the confidence bound for X ,\Cﬂ’g.

5 Experimental evaluation

We implemented our algorithms in the probabilistic model checker Prism [I3],
and evaluated them on the DTMC examples from the PRiSM benchmark suite
[14]. The benchmarks model communication and security protocols, distributed
algorithms, and fault-tolerant systems. To demonstrate how our method per-
forms depending on the topology of Markov chains, we also performed experi-
ments on the generic DTMCs shown in Figure Bland Figure [ as well as on two
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CTMCs from the literature that have large BSCCs: “tandem” [I0] and “gridworld”

126].

Table 2. Experimental results for unbounded reachability. Simulation parameters: a =
B =¢=0.01, § =0.001, pterm = 0.0001. TO means time-out, and MO means memory-
out. Our approach is denoted by SimAdaptive here. Highlights show the best result the
among topology-agnostic methods.

Example BSCC SimAdaptive|SimTermination[25] || SimAnalysis[25] | MC
name size Pmin  NO., Max. size time analysis| time
bluetooth(4) 149K 7.8-10° 3K, 1 8325 80.4s |78.2s
bluetooth(7) 569K 7.8-10"%  5.8K, 1 284.4s 281.1s |261.2s
bluetooth(10) >569K 7.8 107 >5.8K, 1 TO - TO
brp(500,500) 4.5M 0.01 1.5K, 1 35.6s  30.7s |103.0s
brp(2K,2K)  40M 0.01 4.5K, 1 824.4s 789.9s | TO
brp(10K,10K) >40M  0.01 45K, 1 TO . TO
crowds(6,15) 7.3M  0.066 >3K, 1 2.0s  0.7s [19.4s
crowds(7,20)  17M 0.05 >3K, 1 2.6s 1.1s |347.8s
crowds(8,20) 68M 0.05 >3K, 1 4.0s 1.9s TO
eql(15,10) 616G 0.5 1,1 151.8s 145.1s |110.4s
eql(20,15) 1279T 0.5 1,1 762.6s 745.4s |606.6s
eql(20,20) 1719T 0.5 1,1 TO . TO
herman(17) 129M 7.6-107° 1, 34 21.6s 0.1s | 1.2s
herman(19) 1162M 1.9-1076 1,38 86.2s 0.1s | 1.2s
herman(21)  10G 4.7-1077 1,42 505.2s 0.1s | 1.4s
leader(6,6) 280K 2.1-107° 1,1 536.6s 530.3s [491.4s
leader(6,8) >280K 3.8-107° 1,1 MO - MO
leader(6,11) >280K 5.6 - 107" 1,1 MO - MO
nand(50,3) 11M 0.02 51,1 36.2s  31.0s |272.0s
nand(60,4) 29M 0.02 61,1 60.2s  56.3s | TO
nand(70,5) 67M 0.02 71,1 148.2s 144.2s | TO
tandem(500) >1.7M 2.4-10° 1, 501K 16s  3.0s | 3.4s
tandem(1K) 1.7M 9.9-107° 1, 501K 17.0s  12.7s | 13.0s
tandem(2K) >1.7M 4.9 - 107° 1, >501K 62.4s  59.8s | 59.4s
gridworld(300) 162M 1-10~° 598, 80K MO - | MO
gridworld(400) 384M 1-107% 798, 160K MO - MO
gridworld(500) 750M 11073 998, 250K MO - | MmO
Figl(16) 37 05 L1 234s  0.4s | 2.0s
FighBl(18) 39 0.5 1,1 74.8.0s 1.8s 2.0s
Fig3)(20) 41 0.5 1,1 513.6s 11.3s | 2.0s
FigH(1K,5) 4022 0.5 2,5 3.2s 0.5s 1.2s
FigH(1K,50) 4202 0.5 2, 50 36s  0.7s | 1.0s
FigH(1K,500) 6002 0.5 2, 500, 3.6s 1.0s 1.2s
FigH(10K,5) 40K 0.5 2,5 42.2s  25.4s | 25.6s
FigH(100K,5) 400K 0.5 2,5 TO - TO

All benchmarks are parametrised by one or more values, which influence their
size and complexity, e.g. the number of modelled components. We have made
minor modifications to the benchmarks that could not be handled directly by
the SMC component of PRisM, by adding self-loops to deadlock states and fixing
one initial state instead of multiple.

Our tool can be downloaded at [I]. Experiments were done on a Linux 64-bit
machine running an AMD Opteron 6134 CPU with a time limit of 15 minutes
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and a memory limit of 5GB. To increase performance of our tool, we check
whether a candidate has been found every 1000 steps; this optimization does
not violate correctness of our analysis. See Appendix [B for a discussion on this
bound.

Reachability. The experimental results for unbounded reachability are shown in
Table[2l The PrisM benchmarks were checked against their standard properties,
when available. We directly compare our method to another topology-agnostic
method of [25] (SimTermination), where at every step the sampled path is ter-
minated with probability prem. The approach of [3] with a priori bounds is not
included, since it times out even on the smallest benchmarks. In addition, we
performed experiments on two methods that are topology-aware: sampling with
reachability analysis of [25] (SimAnalysis) and the numerical model-checking al-
gorithm of PRisM (MC). Appendix [A] contains detailed experimental evaluation
of these methods.

The table shows the size of every example, its minimum probability, the
number of BSCCs, and the size of the largest BSCC. Column “time” reports the
total wall time for the respective algorithm, and “analysis” shows the time for
symbolic reachability analysis in the SimAnalysis method. Highlights show the
best result among the topology-agnostic methods. All statistical methods were
used with the SPRT test for choosing between the hypothesis, and their results
were averaged over five runs.

Finding the optimal termination probability pierm for the SimTermination
method is a non-trivial task. If the probability is too high, the method might
never reach the target states, thus give an incorrect result, and if the value is too
low, then it might sample unnecessarily long traces that never reach the target.
For instance, to ensure a correct answer on the Markov chain in Figure Bl pierm
has to decrease exponentially with the number of states. By experimenting we
found that the probability pierm = 0.0001 is low enough to ensure correct results.
See Appendix [A] for experiments with other values of pierm.

On most examples, our method scales better than the SimTermination method.
Our method performs well even on examples with large BSCCs, such as “tan-
dem” and “gridworld,” due to early termination when a goal state is reached.
For instance, on the “gridworld” example, most BSCCs do not contain a goal
state, thus have to be fully explored, however the probability of reaching such
BSCC is low, and as a consequence full BSCC exploration rarely occurs. The
SimTermination method performs well when the target states are unreachable or
can be reached by short paths. When long paths are necessary to reach the target,

Fig.4. A Markov chain with two transient parts consisting of N strongly connected
singletons, leading to BSCCs with the ring topology of M states.
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the probability that an individual path reaches the target is small, hence many
samples are necessary to estimate the real probability with high confidence.
Moreover, it turns out that our method compares well even with methods
that have access to the topology of the system. In many cases, the running
time of the numerical algorithm MC increases dramatically with the size of the
system, while remaining almost constant in our method. The bottleneck of the
SimAnalysis algorithm is the reachability analysis of states that cannot reach the
target, which in practice can be as difficult as numerical model checking.

LTL and mean payoff. In the second experiment, we compared our algorithm
for checking LTL properties and estimating the mean payoff with the numerical
methods of PRISM; the results are shown in Table Bl We compare against PRISM,
since we are not aware of any SMC-based or topology-agnostic approach for
mean payoff, or full LTL. For mean payoff, we computed 95%-confidence bound
of size 0.22 with parameters § = 0.011, ¢ = 0.08, and for LTL we used the same
parameters as for reachability. Due to space limitations, we report results only on
some models of each type, where either method did not time out. In general our
method scales better when BSCCs are fairly small and are discovered quickly.

Table 3. Experimental results for LTL and mean-payoff properties. Simulation pa-
rameters for LTL: o = 8 = ¢ = 0.01, § = 0.001, for mean-payoff we computed 95%-
confidence bound of size 0.22 with § = 0.011, ¢ = 0.08.

LTL Mean payoff
name property  SimAdaptive time MC time name SimAdaptive time MC time
bluetooth(10) 0o bluetooth(10)
brp(10K,10K) o0 brp(10K,10K)
crowds(8,20) o0 crowds(8,20)
eql(20,20) 0o eql(20,20)
herman(21) 0o herman(21)
leader(6,5) 0o leader(6,6)
nand(70,5) 0o nand(70,5)
tandem(2K) 0o tandem(500)
gridworld(100) OO — 0O gridworld(50)
FigBI(20) 0o — 00 FigBi(20)
FigHl(100K,5) 0o FigHY(100K,5)
FigHl(1K,500) 0o Fig Y 1K,500)

6 Discussion and conclusion

As demonstrated by the experimental results, our method is fast on systems
that are (1) shallow, and (2) with small BSCCs. In such systems, the BSCC is
reached quickly and the candidate is built-up quickly. Further, recall that the
BSCC is reported when a k-candidate is found, and that k is increased with each
candidate along the path. Hence, when there are many strongly connected sets,
and thus many candidates, the BSCC is detected by a k-candidate for a large k.
However, since k grows linearly in the number of candidates, the most important
and limiting factor is the size of BSCCs.
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We state the dependency on the depth of the system and BSCC sizes formally.

We pick 0 := 5 and let

B 1-8 .
sim = —— log 15 108 5 and = 989 log o
= _ - ;=
log 5+§f§ log Lﬁéf? —10g(1 — pmin)

denote the a priori upper bound on the number of simulations necessary for
SPRT [24]23] and the strength of candidates as in Algorithm 2] respectively.

Theorem 6. Let R denote the expected number of steps before reaching a BSCC
and B the maximum size of a BSCC. Further, let T := maxcegpscc:s,s'ec E[time to
reach s’ from s]. In particular, T € O(B/pZ. ). Then the expected running time
of Algorithms[2 and[3 is at most

(’)(szm . kR-i—B -B- T) .

Proof. We show that the expected running time of each simulation is at most
kr+p - B -T. Since the expected number of states visited is bounded by R + B,
the expected number of candidates on a run is less than 2(R + B) — 1. Since k;
grows linearly in i it is sufficient to prove that the expected time to visit each
state of a BSCC once (when starting in BSCC) is at most B - T. We order the
states of a BSCC as sy, ..., sp, then the time is at most Z?:l T, where b < B.
This yields the result since R € O(krtp - B-T).

It remains to prove that 7' < B/pZ. . Let s be a state of a BSCC of size at
most B. Then, for any state s’ from the same BSCC, the shortest path from s to
s’ has length at most B and probability at least pﬁin. Consequently, if starting
at s, we haven’t reached s’ after B steps with probability at most 1 — pﬁin, and
we are instead in some state s” # s’, from which, again, the probability to reach
s’ within B steps at least pZ. . Hence, the expected time to reach s’ from s is at
most

oo
Z B- Z(l _pﬁin)lilpﬁinv
1=1

where 7 indicates the number of times a sequence of B steps is observed. The
series can be summed by differentiating a geometric series. As a result, we obtain
a bound B/p”. O

Systems that have large deep BSCCs require longer time to reach for the required
level of confidence. However, such systems are often difficult to handle also for
other methods agnostic of the topology. For instance, correctness of [25] on the
example in Figure[@relies on the termination probability pierm being at most 1—\,
which is less than 27" here. Larger values lead to incorrect results and smaller
values to paths of exponential length. Nevertheless, our procedure usually runs
faster than the bound suggest; for detailed discussion see Appendix

Conclusion. To the best of our knowledge, we propose the first statistical
model-checking method that exploits the information provided by each simula-
tion run on the fly, in order to detect quickly a potential BSCC, and verify LTL

19



properties with the desired confidence. This is also the first application of SMC
to quantitative properties such as mean payoff. We note that for our method to
work correctly, the precise value of pyi, is not necessary, but a lower bound is
sufficient. This lower bound can come from domain knowledge, or can be inferred
directly from description of white-box systems, such as the PRISM benchmark.

The approach we present is not meant to replace the other methods, but
rather to be an addition to the repertoire of available approaches. Our method
is particularly valuable for models that have small BSCCs and huge state space,
such as many of the PRISM benchmarks.

In future work, we plan to investigate the applicability of our method to
Markov decision processes, and to deciding language equivalence between two
Markov chains.
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Appendix
A Detailed experiments

Table [ shows detailed experimental result for unbounded reachability. Com-
pared to Table Pl we included: 1) experiments for the SimTermination method
with two other values of prerm, 2) we report the number of sampled paths as
“samples,” and 3) we report the average length of sampled paths as “path length.”
Topology-agnostic methods, such as SimAdaptive and SimTermination, cannot be
compared directly with topology-aware methods, such as SimAnalysis and MC,
however for reader’s curiosity we highlighted in the table the best results among
all methods.

We observed that in the “herman” example the SMC algorithms work unusu-
ally slow. This problem seems to be caused by a bug in the original sampling
engine of PRISM and it appears that all SMC algorithms suffer equally from this
problem.
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Table 4. Detailed experimental results for unbounded reachability. Simulation parameters: « = 8 = ¢ = 0.01, 6 = 0.001. TO means
a timeout or memory out, and WRONG means that the reported result was incorrect. Our approach is denoted by SimAdaptive here.
Highlights show the best result among all methods.

Example SimAdaptive SimTermination, peerm = 10> [SimTermination, peerm = 10~ *[SimTermination, peerm = 10> SimAnalysis MC
name time samples path length| time samples path length| time samples path length | time samples path length || time samples path length analysis| time
bluetooth(4) 243 499 185.0s 43764 387 16.4s 3389 484 6.4s 463 495 83.2s 219 502 80.4s | 78.2s
bluetooth(7) 243 946 697.4s 106732 604 50.2s 6480 897 10.2s 792 931 284.4s 219 937 281.1s |261.2s
bluetooth(10) 243 1391 TO - - 109.2s 9827 1292 15.0s 932 1380 TO - - - TO
brp(500,500) | 7.6s 230 3999 258 963 13.8s 258 9758 107.2s 258 104033 35.6s 207 3045 30.7s |103.0s
brp(2K,2K) [20.4s 230 13000 258 1029 17.2s 258 9127 115.0s 258 98820 824.4s 207 12167 789.9s | TO
brp(10K,10K) | 89.2s 230 61999 258 960 15.8s 258 10059 109.4s 258 96425 TO - - - TO
crowds(6,15) | 3.6s 395 879 29.2s 7947 878 253.2s 7477 8735 TO - - 400 85 0.7s | 19.4s
crowds(7,20) | 4.0s 485 859 32.6s 9378 850 283.8s 8993 8464 TO - - 473 98 1.1s [347.8s
crowds(8,20) | 5.6s 830 824 38.2s 11405 821 340.0s 10574 8132 TO - - 793 110 1.9s TO
eql(15,10) 1149 652 303.2s 28259 628 TO - - TO - - 151.8s 1100 201 145.1s |110.4s
eql(20,15) 1090 1299 612.8s 44048 723 TO - - TO - - 762.6s 999 347 745.4s 606.65
eql(20,20) 1071 1401 TO 11408 156 TO - - TO - - TO - - - TO
herman(17) |23.0s 243 30 257.6s 2101 30 33.6s 381 32 29.0s 279 31 21.6s 219 30 0.1s
herman(19) | 96.8s 243 40 TO - - 134.0s 355 38 254.4s 279 40 86.2s 219 38 0.1s
herman(21) |570.0s 243 46 MO - - TO - - MO - - 505.2s 219 48 0.1s
leader(6,6) 243 7 7.6s 437 7 5.4s 258 7 258 7 536.6s 219 7 530.3s |491.4s
leader(6,8) 243 7 62.4s 560 7 26.0s 279 7 26.2s 258 7 MO - - - MO
leader(6,11) 243 7 TO - - 174.8s 279 7 776.8s 258 7 MO - - - MO
nand(50,3) 899 1627 570.6s 140880 846 231.2s 21829 4632 TO - - 36.2s 1002 1400 31.0s [272.0s
nand(60,4) 522 2431 TO - - 275.2s 25250 4494 TO - - 60.2s 458 2160 56.3s TO
nand(70,5) 391 3343 TO - - 370.2s 30522 4643 TO - - 148.2s 308 3080 144.2s | TO
tandem(500) | 2.4s 243 501 59.6s 43156 394 6.4s 3318 489 - 412 500 4.6s 219 501 3.0s | 3.4s
tandem (1K) 243 1001 328.4s 114288 632 19.2s 6932 954 3.4s 858 995 17.0s 219 1001 12.7s | 13.0s
tandem (2K) 243 2001 TO - - 72.4s 14881 1811 6.6s 1093 1985 62.4s 219 2001 59.8s | 59.4s
gridworld(300) 1187 453 214.4s 46214 349 81.6s 18678 437 T7.4s 16663 449 MO - - - MO
gridworld (400) 1047 543 274.8s 53152 399 100.6s 18909 531 93.0s 16674 548 MO - - - MO
gridworld(500) 480 637 277.4s 57263 431 109.4s 18025 605 104.4s 15684 627 MO - - - MO
FigBl(16) 58.6s 128 140664 TO - - TO - - TO - - 23.4s 115 141167 0.4s
FigBl(18) TO - - 2.8s 258 1015 TO - - TO - - 74.8s 115 537062 1.8s
FigBi(20) TO - - WRONG - - TO - - TO - - 513.6s 119 2195265 11.3s
FigH(1K,5) 7.8s 1109 2489 TO - - 218.2s 23968 5916 TO - - 3.2s 896 1027 0.5s
Fighl(1K,50) | 12.4s 1115 4306 TO - - 211.8s 23908 5880 TO - - 3.6s 881 1037 0.7s
Figl(1K,500) |431.0s 1002 177777 TO - - 218.6s 23951 5903 TO - - 3.6s 968 1042 1.0s
Fighl(10K,5) | 52.2s 1161 20404 258 1072 TO - - TO - - 42.2s 1057 10100 25.4s | 25.6s
Figl(100K,5) |604.2s 1331 200399 - 258 981 5.4s 258 9939 TO - - TO - - - TO




B Implementation details

In our algorithms we frequently check whether the simulated path contains a
candidate with the required strength. To reduce the time needed for this opera-
tion we use two optimization: 1) we record SCs visited on the path, 2) we check
if a candidate has been found every C, > 1 steps. Our data structure records
the sequence of SCs that have been encountered on the simulated path. The
candidate of the path is then the last SC in the sequence. We also record the
number of times each state in the candidate has been encountered. By using
this data structure we avoid traversing the entire path every time we check if a
strong k-candidate has been reached.

To further reduce the overhead, we update our data structure every C} steps
(in our experiments C, = 1000). Figure Bl shows the impact of C, on the running
time for two Markov chains. The optimal value of Cj varies among examples,
however experience shows that Cj, ~ 1000 is a reasonable choice.
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Fig. 5. Total running time and time for processing candidates for a Markov chain in
Figure [3] depending on the check bound Cj.
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Fig. 6. Total running time and time for processing candidates for the ’eql(20,20)’ bench-
mark depending on the check bound Cj,.

C Theoretical vs. empirical running time

In this section, we compare the theoretical upper bound on running time given
in Theorem [6] to empirical data. We omit the number of simulation runs (term
sim in the theorem), and report only the logarithm of average simulation length.
Figures [7 B and [ present the comparison for different topologies of Markov
chains. In Figure [7] we present the comparison for the worst-case Markov chain,
which requires the longest paths to discover the BSCCs as a k-candidate. This
Markov chain is like the one in Figure Bl but where the last state has a single
outgoing transition to the initial state. Figure [§] suggests that the theoretical
bound can be a good predictor of running time with respect to the depth of the
system, however, Figure [0 shows that it is very conservative with respect to the
size of BSCCs.
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Fig. 7. Average length of simulations for a Markov chain like in Figure [3] but where
the last state has a single outgoing transition to the initial state.
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Fig. 8. Average length of simulations for the MC in Figure @ where M = 5 and N
varies.
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Fig. 9. Average length of simulations for the MC in Figure [ where N = 1000 and M
varies.
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