1703.10446v2 [cs.DC] 18 Jan 2018

arxXiv

Gelly-Scheduling: Distributed Graph Processing for
Service Placement in Community Networks

This document merely serves the purpose of timely dissemination. Copyrights belong to original holders.

Miguel E. Coimbra
INESC-ID/IST, Universidade de Lisboa
Lisbon, Portugal
miguel.e.coimbra@tecnico.ulisboa.pt

Felix Freitag
Universitat Politécnica de Catalunya
Barcelona, Spain
felix@ac.upc.edu

Abstract

Community networks (CNs) have seen an increase in the last
fifteen years. Their members contact nodes which operate In-
ternet proxies, web servers, user file storage and video stream-
ing services, to name a few. Detecting communities of nodes
with properties (such as co-location) and assessing node eligi-
bility for service placement is thus a key-factor in optimizing
the experience of users. We present a novel solution for the
problem of service placement as a two-phase approach, based
on: 1) community finding using a scalable graph label prop-
agation technique and 2) a decentralized election procedure
to address the multi-objective challenge of optimizing service
placement in CNs. Herein we: i) highlight the applicability
of leader election heuristics which are important for service
placement in community networks and scheduler-dependent
scenarios; ii) present a parallel and distributed solution de-
signed as a scalable alternative for the problem of service
placement, which has mostly seen computational approaches
based on centralization and sequential execution.

1 Introduction

Community networks (CNs) are owned and managed by vol-
unteers and offer various services to their members. Seamless
computing and service sharing in CNs have gained momen-
tum due to the emerging technology of CN micro-clouds. One
such network is guifi.net, located in the Catalonia region of
Spain. It is a successful example of this paradigm. Guifi.net
is defined as an open, free and neutral CN built by its mem-
bers pooling resources. Guifi.net was born in 2004, and until
today, has grown into a network of more than 34,000 oper-
ational nodes. Previous work on guifi.net classified services
into network-oriented and user-oriented. For these two types
in the Catalonia region, the three most prevalent occurrences
were [15]: a) network-oriented services (558 in this region) — net-
work graph-servers (39.24%), DNS servers (35,48%) and NTP
servers (17.20%); b) user-oriented services (514 in this region) —
proxy servers for Internet access (53.50%), web pages (11.08%)

Mennan Selimi
University of Cambridge
Cambridge, UK
ms2382@cam.ac.uk

Alexandre P. Francisco
INESC-ID/IST, Universidade de Lisboa
Lisbon, Portugal
aplf@inesc-id.pt

Luis Veiga
INESC-ID/IST, Universidade de Lisboa
Lisbon, Portugal
luis.veiga@inesc-id.pt

L
Bagnéres-dejLuchon

[OTE S
* Viella
T,

Ax-les-Thermes
o .

3 Perpégnan
/" Parcnaturel \
régional des

RS nal Argeles-sur-Me
? o % _eAAndorra Pyrénées 7 2
i o :
&° o, gyvetiaz &, Catalanes 0% i3
i ° <) 2
BENREE DU i)
L] 2 4 B i . <
n°: - p b g 5
o ! @ o
° b i °
| Foea s
m *' s °
. 3 l.-_ F L 'ul
% ~e Balaguer .
'\efa_r a A0 2 o ¢

S TR ey

Figure 1. Depiction of guifi.net’s Osona region.

and communication applications such as VoIP, audio, video
and instant messaging (9.33%). Nodes in guifi.net are exclusive
to specific geographical zones (there are no overlays) such
as what is depicted in Figure 1. There are special-purpose
nodes called graph-servers, which are responsible for perform-
ing network measurements between nodes and have an API
for querying node states [14]. These graph-servers comprise
a distributed hierarchical monitoring system which records
the network’s link data traffic properties. Guifi.net is thus a
relevant testbed for developing and validating techniques to
enhance service placement and system scheduling by explor-
ing their requirement of leader election. In turn, these may be
extrapolated to more complex scenarios, such as placement in
P2P networks (typically irregular), industrial contexts and IoT
scenarios. A simple web proxy would most likely have node
latency as its most relevant parameter. On the other hand, a
mission-critical quality-of-service proxy could place the fo-
cus on node availability. Heuristics may encompass network
features such as topology, as well as domain attributes (such
as availability and quality of specific resources). While one
may intuitively define one heuristic as absolute, this could
produce scenarios which are locally optimal but globally unde-
sirable. What if the node with the highest availability happens

to be on the outer rims of the network? Aspects of network
topology are as relevant for system efficiency as the service-
level heuristics which traditionally guide leader election for
placements.

Our objective is to devise an efficient, scalable solution
which is easy to fine-tune regarding domain-specific attributes,
and that provides seamless scalability for increasing network
size and number of services. For this, we propose a platform
that enables incremental processing in a scenario where infor-
mation continuously arrives: changes in network, node and
service quality are continuously monitored. Our solution is a
two-phased approach which optimizes the definition of com-
munities (Phase One) and election of leaders (Phase Two)
in a community communications network. The paper is orga-
nized as follows. Section 2 explains the two main phases of our
algorithm. Section 3 details our evaluation methodology and
obtained results. Section 4 highlights relevant studies on com-
munity networks and service placement. Section 5 summarizes
our contribution’s highlights.

2 Gelly-Scheduling Service Placement

The challenges inherent to service placement for large scale
geo-distributed networks (such as community networks) are
usually addressed in the literature with a batch-oriented non-
scalable approach. The typical approach consists of performing
a search (exhaustive or via heuristics) in a centralized comput-
ing unit. All the information about network links and nodes
is centrally and sequentially processed, in order to determine
the best network configurations as far as service placement
is concerned. While the unit responsible for this search may
benefit from hardware improvements, they are merely a form
of vertical scaling (which is limited). This approach does not
prioritize reaction to changes in the network and its nodes, in
order to make service placement more dynamic in a context of
continuous monitoring. It also doesn’t scale in the context of
larger networks. We present a novel method capable of both
achieving scale-out processing for optimizing community net-
work topology as well as electing service placement targets
within communities in a decentralized approach. We employ
community detection as a parallel technique which enables the
partitioning of the problem space to optimize node placement
in communities. This allows for an efficient leader election to
execute concurrently (each community being responsible for
its leader) and in parallel within each community. This work
aims to improve service placement for networks in a way that
users and processing tasks are balanced regarding bandwidth
restrictions and data sources.

Phase One: Community Finding. We use two definitions
of community: default — the zone-based node distributions,
provided in the dataset as-is (insignificant preprocessing is
performed in this case); custom — a state-of-the-art label prop-
agation technique [11] applied for detecting communities. We
build an undirected graph G = (V, E) by defining a set of n

nodes V and a set of m edges E such that an edge e € E will
be created if and only if there is a corresponding link element
between two working devices (each belonging to a working
node) in the dataset. Single-leaf nodes were discarded as part
of preprocessing. The goal of this phase is to rapidly partition
the problem space into a configuration that promotes scalabil-
ity of computation and efficient resource usage. We provide
the pseudo-code for the most relevant actions of Phase One
in Algorithm 1, where C is an upper bound on the number
of iterations to execute (a default limit of C = 10 iterations
is common in the literature for convergence [1]). Phase One
thus becomes an important instrument in efficiently defin-
ing groups of network nodes by employing a state-of-the-art
technique in community detection. These groups aid the opti-
mization process of service placement, effectively serving as
a useful blueprint for Phase Two of our algorithm. The two
phases form a technique to harness current platforms and in-
frastructures to tackle service placement. Conceptually, there
is a top-tier master node which is responsible for: 1) querying
the graph-servers for all of the network’s node information; 2)
executing Phase One of our algorithm to obtain a definition of
communities; 3) informing each node of its community’s com-
position. This is depicted in Figure 2, where in the middle there
is a centralized entity consisting of one or (potentially many)
more computational workers. It initially queries graph-servers
(or whatever network visibility mechanisms are in place) to
obtain a snapshot of the network’s nodes. Then it executes
Phase One of our algorithm, decomposing the network into
communities. A major computational advantage of Phase One
is that this master can be a single machine or a set of workers in
a cluster, effectively scaling with the computational capability

Algorithm 1 Phase One: Community Finding
1: INPUT: G =(V,E),C =10

22 OUTPUT: Z » Set of graphs representing communities
3: forallv € V do

4 v.generateUniqueLabel()

5: end for
6
7
8
9

: G’ «— G.setUndirectedEdges()

cle—1
: fori < Cdo
forallv e V do

10: M «— v.getInboundMessages()
11 L «— M.getMostFrequentLabels()
12: v.updateLabel(L.filterHighestLabel())
13: end for
14: ie—i+1
15: if not G’ labelsChanged() then
16: break
17: end if
18: end for

—=

9: return Z «— G’.groupByLabels()

Table 1. Frequency of per-node device count categories. The Algorithm 2 Phase Two: Leader Election

most frequent services are Internet proxies, a consequence of
guifi.net existing as an alternative to the standard ISP model.

Nodes 23,468 (100%) Bs

i) Strong 337 (1.436%) 1
i) Medium | 1,666 (7.099%) | 0.5
iii) Weak 21,465 (91.465%) 0.1

available to this top-tier master. Each community member is
then informed of the elements of its own community: required
to proceed to Phase Two.

Phase Two: Leader Election. Phase Two receives a set
of communities and elects a leader for each one. This elec-
tion phase is self-contained for each community, in the sense
that a distributed implementation of this phase can be carried
out concurrently with respect to communities and in parallel
within each community with our graph-based approach. The
right-side of Figure 2 illustrates this. There may be more than
one connected component in geographical zones of guifi.net.
Due to this, for every community network G, only the nodes
belonging to the largest connected component of G are used
to choose a leader for service placement. This election consists
of Phase Two of our algorithm and is detailed in Algorithm 2.
This phase serves the purpose of identifying the best node
for service placement. Leadership is attributed through a scor-
ing, where the score of each node i lies in defining a linear
combination of two sets of heuristics. One set is based on
system-centric values: availability f; and latency S, as defined
by graph-servers [2], as well as computational class S5 as per
Table 1 and defined as part of this work; the other is calculated
as part of this algorithm and consists of betweenness a; and
closeness a, centralities. We defined heuristic fi5 as a score in
three computational categories for nodes: i) server-type nodes
which typically have stronger computational power to sup-
port more demanding services; ii) non-server nodes with more
than one device; iii) non-server nodes with a single device.
Table 1 shows the representation of 5 for each category for
the data we analyzed. The values we attribute to 3 were se-
lected arbitrarily to represent computational power of a given
node. This categorization serves the purpose of approximating
realistic tiers of computational capabilities for nodes in the
network — information which, as far as the authors know, is
not readily-available in the guifinet CNML dataset. Thus, as
an example, the initial score of a node i will be defined as:

(1)

Table 2 details the specifics of each heuristic, namely their
meaning and how they are obtained. Notation-wise, i is the
node to be scored while u and v represent arbitrary nodes
in the community graph G with n nodes, o, , is the number
shortest paths from u to v, 0y, ., (i) is the number of those that
pass through i, and d(i, v) is the geodesic distance between i

sl-=w1a1+w2a2+w3,51+w4ﬁ2+w5ﬁ3

3

. INPUT: G =(V, E), W
: OUTPUT: R

@ —[1p—I]

: forallv e Vdo
alv]«— v.calculateAlphas()
Blv]e— v.getBetas()
v.setScore(W = [a[v]
: end for

R «— G.getVertices().orderByScore()
: return R

> Heuristic weight array
> Decreasing-order ranks

plol)

h A A A R o A

=
(=1

and v. Phase Two was designed under two types of evaluation
based on configuration of heuristics: Absolute heuristics -
in this case, leader selection is guided exclusively by exactly
one of the heuristics. We analyze the impact of each individual
heuristic, setting the weights of others to zero. Combined
heuristics - we consider a linear combination of two heuris-
tics. We set unbalanced weights in order to better determine
the more significant contributions, in the sense that for two
heuristics m; and mj,, we may define the node score to be
vs = (1 — f)my + fmy, or the reverse. If one heuristic weights
in for 60% of the score, the other will account for the remaining
40%.

Table 2. Algorithm’s heuristic symbols and meanings.

Betweenness Centrality
Tuo(i)

ar | Dyzizo oo fraction of shortest paths from u to
v, for all nodes u and v, passing through node i.
Closeness Centrality [9]

(n-1)/2, d(i,v), where d(v, i) is the geodesic
distance from node i to node v.

Availability

Percentage of ping responses received by a graph-
-server (%) over a specific time period.

Latency

Ping response timing, measured by a graph-server
(ms) over a specific time period.

Computational Class

Defined by the number of devices handled by the

node, as well as its role.

a

23

P2

Ps

2.1 Implementation

Scores of heuristics «; and a; were obtained for each commu-
nity G using the Python NetworkX library, for use in Phase
Two. Overall, the time to calculate them is negligible when
compared to the total amount of time required to compute
Phase One plus Phase Two. There are common aspects to gen-
erating samples for bandwidth and round-trip time, but each
was based on different statistical artifices.

graph-servers

Phase One
Generate communities

Community 1 Phase Two
¥
¢ @
Community 2 Phase Two
_________ »
______ @

Community M

Figure 2. The graph-servers on the left send the network heuristics to the master node; the master node in the middle decides
on the community configuration through Phase One; communities concurrently elect an internal leader during Phase Two.

Bandwidth. Let BW ~ K(k, h, £, @) represent the empiri-
cal bandwidth distribution. K stands for the four-parameter
Kappa distribution [5], where k and h denote the shape of the
distribution, ¢ denotes its location and « is a scaling factor.
These four parameters were estimated using L-moment statis-
tics, namely through the 1moms function which computes the
sample L-moments and the parkap function which estimates
the four parameters of K based on the sample L-moments.
Both functions are part of the R 1momco library. The four-
parameter Kappa distribution is used for simulating additional
samples based on the empirical distribution made by using
the rkappa4 function of the R FAdist library for random
generation purposes.

Round-trip time. Let RTT ~ GEV(y, 0, &) represent the em-
pirical round-trip time distribution. GEV is the generalized
extreme value distribution. It has four parameters: y, which is
the location of the distribution, o which represents the scale
and ¢ which represents the shape of GEV (influencing the
behavior of the distribution tail). The previously-referenced
1moms function was used as well, with pargev now being the
function (also present in library 1momco) responsible for esti-
mating the GEV parameters based on the sample L-moments.
Additional round-trip time samples were simulated using the
rgev function. GEV exists as a family of continuous probability
distributions, stemming from extreme value theory [3].

The method of L-moments is used to understand insights
of analyzed data and to estimate distributions [6, 7] using
efficient techniques [4]. Figure 3 shows the log,, plot of the
bandwidth, while Figure 4 shows the same for round-trip time.

3 Experimental Evaluation

There are 23,391 nodes identified as working and, for the whole
guifinet, there are 878 nodes defined as servers. This implies
that, at most, 3.75% of the working nodes could actually be
sustaining full fledged services. We believe guifi.net, while it
is in fact an open community network, has a type of topol-
ogy which allows for extrapolating results into other sorts

4

B/Wloglo

4000 —

3000 —

2000 —

Frequency

1000

o L] nI'II'n_rn‘ |

0.01 0.1 1

10 100

bandwidth (Mbit/s)

Figure 3. Bandwidth (B/W) in logarithmic scale.

of networks. This claim is made based on previous research
work in the literature [14], which both analyzed the impact
of prioritizing different heuristics on the computational and
network resources available [16] and studied practical issues
with micro-service architectures [13]. We used available sta-
tistical processing tools to attempt to fit several distributions
and compare them. For the bandwidth, we present plots of
the distribution fitting and Empirical Cumulative Distribution
Function in Figures 5 and 6. In the same order, we also present
the aforementioned plots for round-trip time in Figures 7 and 8.

We then modeled the ECDF of both network properties with
the use of the Imomco and FAdist libraries in R.

RTTiog10

8000

6000 — M

Frequency
ey
[=]
o
o
I

2000 —

0 f f f f

100 1'000 10'000

time (ms)

Figure 4. Round-trip time (RTT) in logarithmic scale.

BAWV Distribution Fitting

0.07 o distribution GOF
— 0.0097 kap 0.0397 wei
— 0.0329 gpa 0.0426 pe3
0.06 — 0.0329 wak 0.0431 gam
o 0.0385 exp —— 0.0488 In3
g
= 0.05
=
g
w 0.04 h
=
I |
= 0.03 — .
=
3 h b
2 0.02 i
o
0.01 \ |
; e
Eaﬂ%
0.00 _._/ H Hﬁ 11 T |
0 50 100 150

Bandwidth (Mbit/s)

Figure 5. Bandwidth (B/W) observation comparison and
goodness-of-fit of different candidate distributions. Lower
goodness-of-fit is better.

Network Characteristics. Part of guifi.net exists as an in-
stance of the Quick Mesh Project (QMP!), a system for easily
deploying MESH/MANET networks using Wi-Fi technology.
QMP is an urban mesh network in Barcelona and it is a subset

Thttp://qmp.cat/

B/W (E)CDF
10] A
i 08
a
2
=
g
2 0.6 — distribution GOF
ﬁ — 0.0097 kap
2 0.0329 gpa
3 osd — 0.0329 wak
]
<
E
Y 02
0.0
T T T T
0 50 100 150

Bandwidth (Mbit/'s)

Figure 6. Bandwidth (B/W) Top 3 Empirical Cumulative Dis-
tribution Function (ECDF).

RTT Distribution Fitting

0.20 |
[I_

o
& 0.15
=2 distribution GOF
s — 0.0106 gev
g — 0.0123 glo
s 0.0142 kap
2 010 1 0.0200 wak
5 0.0205 gno
2 0.0205 in3
= 0.0287 gpa
= — 0.0402 wei
S
& 0.05

0.00 - _){i'| M.L’;

0 10 20 0 40

Time (ms)

Figure 7. Round-trip time (RTT) observation comparison and
goodness-of-fit of different candidate distributions. Lower
goodness-of-fit is better.

of the guifi.net community network sometimes called Sants-
UPC network. It was designed for use in scenarios such as free
community networks, of which guifi.net is a rich example [13].
We use measurements of round-trip time (RTT) and bandwidth

RTT (E)CDF
1.0
i 08
a
2
=
g
2 0.6 — distribution GOF
2 — 0.0106 gev
E 0.0123 glo
3 o4 — 0.0142 kap
@
5
E
£ 02 o
0.0
T T T T T
0 10 20 30 40
Time (ms)

Figure 8. Round-trip time (RTT) Top 3 Empirical Cumulative
Distribution Function (ECDF).

(B/W) from the Sants-UPC wireless mesh QMP instance to es-
tablish a model of these telecommunication heuristics for the
remainder of the network. It would be through a hierarchy of
graph-server nodes that one would acquire a view of all the
nodes in the network. However, due to privacy and mainte-
nance issues, many of these graph-server types fail to provide
any type of information about queried nodes. Due to this, we
employed a one-week snapshot of this seventy-node QMP
instance to establish ground-truth relevance for our work. The
measurements were taken for seven days from the 1st to the
8th of March 2017, with a snapshot taken every hour [2]. The
measurement period and frequency produced enough samples
for evaluating guifi.net in light of the results of our method.
We remark that node links in QMP and guifi.net, in general,
are not symmetrical: the bandwidth and round-trip time from
node u to node v isn’t necessarily the same from v to u.
Firstly, although QMP has a more uniform set of nodes
compared to guifi.net, it is also subject to the same behav-
ioral user factors which influence the whole network [19].
This means that it may be considered as a representative sam-
pling of guifi.net. Secondly, the obtained number of samples
is high enough to enable us to apply statistical techniques to
define empirical models of bandwidth and round-trip time.
This allows us to fit different distributions to the measure-
ments and evaluate the resulting goodness-of-fit (GOF) values.
Selecting the most fitting distributions, we then synthesize
their parameters in order to generate functions to produce
artificial observations. Qualitatively, these simulated values
are representative of the behavior of the QMP network (and
thus of guifi.net) and were used to populate the bulk of our

dataset (guifi.net snapshot of January, 2017) nodes, which were
missing data.

Phase One: Network Impact. We present in Figure 9 the
distribution of maximum and average degree versus the size
of the communities. The left side pertains guifi.net zone-based
communities (from the dataset as-is), while the right side is
related to the configuration of network node groups obtained
with Phase One of our algorithm. We derive from this that
our algorithm produces groupings with a tendency for greater
node inter-connectivity.

Moving on, we further evaluate this derivation by produc-
ing a visualization of the average number of hops-to-leader for
each community versus community size. Figure 10 presents
this with respect to natural geographical zones of guifinet in
the left, with our algorithm’s results on the right side. Our
algorithm led to an overall reduction in the number of hops,
in particular for smaller and more frequent communities. Fig-
ure 11 highlights interesting tendencies with regard to the
impact of absolute heuristic weights and their influence on
the average number of hops. In particular, we achieve this by
isolating the range of community sizes to a maximum size of
250 members. Plotting these ranges over a logarithmic scale,
it can be seen that the contained communities exhibit a lower
number of hops. This tendency is particularly manifested with
heuristics @; and 5 (betweenness centrality and computa-
tional class of the node, respectively). We extrapolate from
this finding that the fixed-region geographical definition of
guifi.net may be too rigid and that it may in fact provide a user
experience which is probably below-optimal regarding typical
services offered in CNMCs. Usage of the Phase One technique
shows promise with respect to optimizing the length of the
path taken from each community’s node to the community
leader, a sure benefit for many services.

Phase Two: Leader Election Results. It is relevant to
note that after Phase Two of our algorithm, the application of
heuristics over the propagation-based node sets (right side)
yielded more outliers than the geographical zones (left side).
While there were more outliers in the results of Phase One of
our algorithm, lower values were achieved when compared
to the geographical node groups. We presented obtained re-
sults evaluated under different criteria. Our focus is not on
producing a one-size-fits-all hierarchy of heuristics: other real-
world scenarios upon which to test our algorithm will have
specific objective functions, bound by application needs. The
results are promising as they highlight that our algorithm is a
valid alternative to traditional computational approaches to
optimizing responsibility assignment to network nodes. We
present Figures 12 and 13, which depict the number of aver-
age hops-to-leader in decreasing order. Orthogonally to node
group definitions, the tendencies in the influence of the heuris-
tics remain valid, with the same patterns appearing for each
of the cases. It is interesting to note that, for the right side
(based on Phase One of our algorithm), heuristics a; and f;
produced greater differences between them. Accounting for

Avg/Max degree + Maximum degree Average degree
500 <
Pl
L
+* : N :
+
400 *} = *
+* * f o
*
*
¥
300 " *
L 3 * *
b - : *
e * -
200 e *,,, N
L 4
4
T T —— - |+ T
200 250 300 0 50 100 150 200 250 300

Figure 9. Plot of maximum and average degree distributions for each community. The left image is the geographical configu-

Community size

ration of node sets, while the right side is based on Phase One of our algorithm.

Avg. A 1.0B > 1.0a, o 108
#hops 1.0 m 1.0B; ¢ 10as
4.0

3.5

3.0

2.5 @54

0.5

100

250

150 200 250

Community size

Figure 10. Average number of hops-to-leader plotted against each community’s size. The left image is the geographical
configuration of node sets, while the right side is based on Phase One of our algorithm.

the computational class of nodes in the case of the right side
led to a lower number of hops-to-leader compared to simply
electing leaders based on centrality.

SLA Assessment. We also evaluate the quality of leaders
in the context of the sampling performed for the QMP network.
Namely, we modeled round-trip time (RTT) in milliseconds
and bandwidth B/W in Mbit/s distributions based on around
70,000 samples (of bandwidth and round-trip time) obtained
from QMP in guifi.net over a period of seven days. These two

features are relevant to types of SLAs inherent to services such
as (RTT) web caching, web content requests, NoSQL cloud
storage as well as (B/W) streaming and file download services.
From these two features, we modeled their distribution and
simulated their values for all of the guifi.net network snapshot
mentioned earlier. Figures 14, 15, 16, and 17 were produced
using the Python statsmodel package [12], which has a set
of utilities to automate statistical processing tasks.

Avg.
#hops

1.0 B>
1.0as

0.5

10° 10!

10°

Community size

Figure 11. Average number of hops-to-leader plotted against a logarithmic scale of each community’s size. The left image is
the geographical configuration of node sets, while the right side is based on Phase One of our algorithm.

—— 1.0 B1
=-+= 1.0a1

—— 10,
-<- 1.08;

—— 1.0 8,
-H- 10a3

~
L

o

Average #hops
w

w EN
R
17

200 300 500

Community

400

Figure 12. Average number of hops-to-leader against commu-
nity in decreasing order for the original geographical configu-
ration.

Figures 14 and 15 show the empirical cumulative distribu-
tion function of the bandwidth for the original guifi.net zones
and for communities produced by Phase One of our algorithm,
respectively. Interestingly, the bandwidth interval for [10; 30]
Mbit/s in Figure 14 shows that Phase Two of our algorithm
(the stage of leader election within a community - in this test
case there is a one-to-one mapping between guifi.net zones
and communities) fared better by using singular heuristics
for electing the leader. That is, heuristics f3 (computational
class) and a; (betweenness centrality) produced, on average,
more efficient bandwidth paths from a community’s nodes to

8

—#— 1.0 B1
=+= 1.0a;

—— 1.0,
-<- 1.08;

—— 1.08;
-H- 10a3

bl
]

B
o
.

w
5}

w
=}
.

N
w»

Average #hops

g
=]
,

=
w
L

N
\
L S

0 200

Iy
=]

400 600 800

Community

1000

Figure 13. Average number of hops-to-leader against commu-
nity in decreasing order for Phase One’s communities.

their leader. This tendency was also reproduced in the execu-
tion of Phase Two of our algorithm after Phase One (custom
communities generated by Algorithm 1 instead of one-to-one
mapping to guifi.net’s original zones), which can be seen in
Figure 15.

For the round-trip time, the same two heuristic weights
fared better than the others as well. All combinations seem-
ingly max out (in terms of cumulative distribution) at around
125 milliseconds. However, up to about 100 milliseconds, heuris-
tics f3 (computational class) and «; (betweenness centrality)
produced lower round-trip time. This occurs for the zone-
based communities in Figure 16 and also the communities

— B — B
o === RND

— 0.4a; +0.68;
——- 0.601 +0.48;

95% g%_i
90% Sas
\‘..\\\\
Mo
80% =
o
\\:\
70% 3

1.0

o
o
L

o =4
S =}
L L

(Empirical) Cumulated Density (CDF)
o
N
N

0.0

T T
100 80 60 40 20 0
bandwidth (Mbit/s)

Figure 14. Zone-based bandwidth ECDF.

— B — B
ay —--- RND

—— 0.4a,+0.68;
——- 0.6a1 +0.4p;

1.0

95% .
90%

oy,
N
70% \ \

o
o
L

o o
S o
L L

(Empirical) Cumulated Density (CDF)
o
N
)

0.0

100 80 60 40 20 0
bandwidth (Mbit/s)

Figure 15. Community-based bandwidth ECDF.

— B — B —— 0.401+0.662
ax -=- RND —=- 0.6a; +0.48;
1.0 e
95%
& Vi / -
T =
F?
@ 0.8 A 80%
z [F
i 70%
2
o
[s) 0.6 4
h-]
3
=
g
S 0.4
(&)
5
o
a 1
go2
-
0.0 4
; : T ; : r
0 50 100 150 200 250

time (ms)

Figure 16. Zone-based round-trip time ECDF.

— B — B —— 0.4a1 +0.66:
@ --- RND ——- 0.6a1+0.482
1.0
.
90%

& /
S 08 80%
z / /
z 70%
a
[
S 06
-l
z
©
2
S 0.4
W)
=
ki
2 o4
g 02
=

0.0 1

. ‘ . . ‘ . . ‘
0 25 50 75 100 125 150 175

time (ms)

Figure 17. Community-based round-trip time ECDF.

resulting from Phase One of our algorithm, as illustrated in
Figure 17. Curiously, we observe, as far as round-trip time is
concerned, that the random leader election yielded practically
the same results as the combined usage of betweenness cen-
trality a; and latency f, (alternating between 0.4a; +0.6; and
0.6a; + 0.4f3;). We did not perform an exhaustive analysis of
all possible combinations of heuristics and their weights. The
combinations we present herein are relevant in terms of what
the heuristics represent. Bandwidth samples were modeled as a
four-parameter Kappa distribution, while round-trip time was
modeled as a generalized extreme value (GEV) distribution.
It is relevant to say that the empirical distributions of these
two metrics exhibited a considerable degree of independence.
In fact, corr(BW, R)= —0.134 for the sampled values, which
means they appear to be only slightly inversely related. We
assumed them to be independent with respect to results.

Summary. The method we present is inherently parallel
and distributed, a break from traditionally-centralized often ex-
haustive optimization-driven solutions, opening possibilities
for scalability. Phase Two of our algorithm was designed to be
distributed with the purpose of executing concurrently among
all communities. This implies that the computational time
of this phase has an upper bound associated to the slowest-
computing community. As far as the authors are aware, this
work is the first that attempts to optimize service placement by
defining communities using an analysis based purely on net-
work theory and distributed graph processing. The guifi.net
telecommunications network is one upon which different re-
search projects have been executed [2, 19].

4 Related Work

Herein we go over alternative approaches to Phase One and
Phase Two of our solution as a whole. We note that our work
is novel, as far as we know, in the sense that it combines these
two multidisciplinary phases, whose literature we analyze.

Community Networks. Different studies on guifi.net have
drawn several insights: the network is not homogeneous -
rural areas have topology properties different from those of
metropolitan areas, such as density; the topology observed in
rural areas is not scale-free (degree distribution does not fit
a power law) due to the high number of terminals connected
to some nodes; removing terminal nodes (with degree one)
from the graphs in rural areas, however, reveals a scale-free
core-network as in [19]. On the one hand, it is necessary to be
aware of the challenges inherent to service allocation in dif-
ferent types of networks in the context of distributed systems.
On the other hand, we highlight the existence of community
detection techniques (in network theory) as a novel approach
to these challenges. In recent years, metrics have been pro-
posed for evaluating the quality of calculated communities
have emerged: the most notorious one being that of modu-
larity. However, focusing exclusively on modularity incurs
community resolution penalties with smaller communities
often not being detected. Considering this and focusing on
scalability, other methods in the literature which do not use
domain-specific heuristics were devised, such as the class of
label propagation algorithms [8, 11]. These algorithms are
inherently parallel and work well in practice for real world
networks [1].

Service Placement. Typically, by monitoring all the phys-
ical and virtual resources on a system, service placement aims
to balance load through the allocation, migration and replica-
tion of tasks. This can take place in cloud data-centers and in
wireless networks that power a significant part of CNs. Most of
the work in the data center environment, including distributed
data centers, is not applicable to our case because we have a
strong heterogeneity given by the limited capacity of nodes
and links, as well as asymmetric quality of wireless links. The
authors in [20] introduce a service allocation algorithm that
provides near-optimal overlay allocations without the need to
verify the whole solution space. They use static data from the
network to identify node traits and minimize the coordination
and overlay cost along a network. The work in [10] analyzes
network topology and service dependencies, and combined
with set of system constraints determines the placement of
services within the wireless network. The authors use a multi-
layer model to represent a service-based system embedded in
a network topology and then apply an optimization algorithm
to this model to find where best to place or reposition the ser-
vices as the network topology and workload on the services
changes.

In distributed micro-cloud environment (i.e., similar to our
case), the work of Elmroth [18] takes into account rapid user
mobility and resource cost when placing applications in Mobile
Cloud Networks (MCN). A recent work of Tantawi [17] uses
biased statistical sampling methods for cloud workload place-
ment. Regarding the service placement through migration, the
authors in [21] study the dynamic service migration problem
in mobile edge-clouds that host cloud-based services at the

10

network edge. They formulate a sequential decision making
problem for service migration using the framework of Markov
Decision Process (MDP) and illustrate the effectiveness of their
approach by simulation using real-world mobility traces of
taxis in San Francisco. As a whole, mostly, service placement
approaches are predominantly based on resource (CPU, mem-
ory) and node availability, and when they are network-aware,
they are able just to employ static network information or
at most process historical network data for availability pre-
dictions. Moreover, they are batch-oriented and execute se-
quentially in centralized settings and therefore cannot scale to
larger network sizes, number of services, or greater network
dynamism. Our approach is the first, to the best of our knowl-
edge, that is dynamic, parallel and distributed, and therefore
able scale seamlessly, by employing distributed graph process-
ing systems, such as the Gelly library of Apache Flink. Thus,
we are able to continually monitor service quality and per-
form service placement decisions continually/incrementally
based on data gathered from the network (e.g., graph-servers
in guifi.net).

5 Conclusion

In this paper, we presented a novel take on the processing steps
that underlie service placement, a multi-objective problem.
Compared to traditional system techniques (which, as far as
we know, have not seen developments regarding parallel imple-
mentations and scalability with network size), our algorithm is
expressed purely over state-of-the-art graph techniques which
have inherent parallelism. This makes our algorithm a very
competitive alternative, able to scale for networks which are
orders of magnitude greater, when compared to other tradi-
tional techniques in the field.

Acknowledgments

This work was partly supported by the Portuguese government through
FCT - Fundagéao para a Ciéncia e Tecnologia, under projects PTDC/EEI-
SCR/6945/2014 and UID/CEC/500021/2013, by the ERDF through COMPETE
2020 Programme, within project POCI-01-0145-FEDER-016883, by the Euro-
pean H2020 project LightKone (H2020-732505), and by the Spanish govern-
ment under contract TIN2016-77836-C2-2-R.

References

[1] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. 2011.
Layered Label Propagation: A Multiresolution Coordinate-free Ordering
for Compressing Social Networks. In Proceedings of the 20th International
Conference on World Wide Web (WWW ’11). ACM, New York, NY, USA,
587-596. DOI: https://doi.org/10.1145/1963405.1963488
L. Cerda-Alabern. 2012. On the topology characterization of Guifi.net. In
2012 IEEE 8th International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob). 389-396. DOI: https://doi.
org/10.1109/WiMOB.2012.6379103
Stuart Coles, Joanna Bawa, Lesley Trenner, and Pat Dorazio. 2001. An
introduction to statistical modeling of extreme values. Vol. 208. Springer.
[4] JRM Hosking. 2000. FORTRAN routines for use with the method of
L-moments, Version 3.04. IBM Research (2000).

[2

—

(3]

https://doi.org/10.1145/1963405.1963488
https://doi.org/10.1109/WiMOB.2012.6379103
https://doi.org/10.1109/WiMOB.2012.6379103

[5] Jonathan RM Hosking. 1994. The four-parameter kappa distribution.

[6

[11

[12

[13

(14

(15

[16

(17

(18

[19

[20

]

]

= =

[l

—

—

]

[t

—

[t

—

IBM Journal of Research and Development 38, 3 (1994), 251-258.

J. R. M. Hosking. 1990. L-Moments: Analysis and Estimation of Distri-
butions Using Linear Combinations of Order Statistics. Journal of the
Royal Statistical Society. Series B (Methodological) 52, 1 (1990), 105-124.
http://www.jstor.org/stable/2345653

Jonathan Richard Morley Hosking and James R Wallis. 2005. Regional fre-
quency analysis: an approach based on L-moments. Cambridge University
Press.

Ian X. Y. Leung, Pan Hui, Pietro Lio, and Jon Crowcroft. 2009. Towards
real-time community detection in large networks. Phys. Rev. E 79 (Jun
2009), 066107. Issue 6. DOI : https://doi.org/10.1103/PhysRevE.79.066107
Mark Newman. 2010. Networks: An Introduction. Oxford University Press,
Inc., New York, NY, USA.

Petr Novotny, Rahul Urgaonkar, Alexander L Wolf, and Bongjun Ko. 2015.
Dynamic placement of composite software services in hybrid wireless
networks. In Military Communications Conference, MILCOM 2015-2015
IEEE. IEEE, 1052-1057.

Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. 2007. Near
linear time algorithm to detect community structures in large-scale
networks. Phys. Rev. E 76 (Sep 2007), 036106. Issue 3. DOI: https://doi.
org/10.1103/PhysRevE.76.036106

Skipper Seabold and Josef Perktold. 2010. Statsmodels: Econometric and
statistical modeling with python. In 9th Python in Science Conference.
Mennan Selimi, Lloren¢ Cerda-Alabern, Marc Sanchez Artigas, Felix
Freitag, and Luis Veiga. 2017. Practical Service Placement Approach for
Microservices Architecture. In IEEE/ACM 17th International Symposium
On Cluster, Cloud And Grid (CCGRID 2017). ACM/IEEE.

Mennan Selimi, Felix Freitag, Lloren¢ Cerda-Alabern, and Luis Veiga.
2016. Performance Evaluation of a Distributed Storage Service in Com-
munity Network Clouds. Concurrency and Computation: Practice and
Experience 28, 11 (Aug. 2016), 3131-3148.

Mennan Selimi, Amin M Khan, Emmanouil Dimogerontakis, Felix Fre-
itag, and Roger Pueyo Centelles. 2015. Cloud services in the Guifi. net
community network. Computer Networks 93 (2015), 373-388.

Mennan Selimi, Davide Vega, Felix Freitag, and Luis Veiga. 2016. To-
wards Network-Aware Service Placement in Community Network Micro-
Clouds. In Euro-Par 2016: Parallel Processing - 22nd International Confer-
ence on Parallel and Distributed Computing. Springer.

A. N. Tantawi. 2016. Solution Biasing for Optimized Cloud Workload
Placement. In 2016 IEEE International Conference on Autonomic Comput-
ing (ICAC). 105-110. DOI : https://doi.org/10.1109/ICAC.2016.34
William Térneberg, Amardeep Mehta, Eddie Wadbro, Johan Tordsson,
Johan Eker, Maria Kihl, and Erik Elmroth. 2017. Dynamic application
placement in the Mobile Cloud Network. Future Generation Computer
Systems 70 (2017), 163 — 177. DOI: https://doi.org/10.1016/j.future.2016.
06.021

D. Vega, L. Cerda-Alabern, L. Navarro, and R. Meseguer. 2012. Topology
patterns of a community network: Guifi.net. In 2012 IEEE 8th International
Conference on Wireless and Mobile Computing, Networking and Commu-
nications (WiMob). 612-619. DOI: https://doi.org/10.1109/WiMOB.2012.
6379139

Davide Vega, Roc Meseguer, Guillem Cabrera, and Joan Manuel Marqueés.
2014. Exploring local service allocation in community networks. In Wire-
less and Mobile Computing, Networking and Communications (WiMob),
2014 IEEE 10th International Conference on. IEEE, 273-280.

Shiqiang Wang, Rahul Urgaonkar, Ting He, Kevin Chan, Murtaza Zafer,
and Kin K. Leung. 2017. Dynamic Service Placement for Mobile Micro-
Clouds with Predicted Future Costs. IEEE Transactions on Parallel and
Distributed Systems 28, 4 (April 2017), 1002-1016. DOI: https://doi.org/
10.1109/TPDS.2016.2604814

11

http://www.jstor.org/stable/2345653
https://doi.org/10.1103/PhysRevE.79.066107
https://doi.org/10.1103/PhysRevE.76.036106
https://doi.org/10.1103/PhysRevE.76.036106
https://doi.org/10.1109/ICAC.2016.34
https://doi.org/10.1016/j.future.2016.06.021
https://doi.org/10.1016/j.future.2016.06.021
https://doi.org/10.1109/WiMOB.2012.6379139
https://doi.org/10.1109/WiMOB.2012.6379139
https://doi.org/10.1109/TPDS.2016.2604814
https://doi.org/10.1109/TPDS.2016.2604814

	Abstract
	1 Introduction
	2 Gelly-Scheduling Service Placement
	2.1 Implementation

	3 Experimental Evaluation
	4 Related Work
	5 Conclusion
	Acknowledgments
	References

