
HAL Id: hal-02090618
https://amu.hal.science/hal-02090618v1

Submitted on 20 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Conflict History based Search for Constraint Satisfaction
Problem

Djamal Habet, Cyril Terrioux

To cite this version:
Djamal Habet, Cyril Terrioux. Conflict History based Search for Constraint Satisfaction Problem.
Proceedings of the 34th ACM/SIGAPP Symposium On Applied Computing (SAC), Apr 2019, Limas-
sol, Cyprus. �10.1145/3297280.3297389�. �hal-02090618�

https://amu.hal.science/hal-02090618v1
https://hal.archives-ouvertes.fr

Conflict History Based Search

for Constraint Satisfaction Problem∗

Djamal Habet, Cyril Terrioux
Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France

{djamal.habet,cyril.terrioux}@lis-lab.fr

Abstract

Branching heuristic is an important module in algorithms dedicated to solve Constraint Satisfaction Problems
(CSP). It impacts the efficiency of exploring the search space and exploiting the problem structure. In this paper,
we propose Conflict-History Search (CHS), a dynamic and adaptive branching heuristic for CSP solving. It is
based on the search failures and considers the temporality of these failures throughout the resolution process.

The exponential recency weighted average is used to estimate the evolution of the hardness of constraints
throughout the search. The experimental evaluation on XCSP3 instances shows that integrating CHS to solvers
based on MAC obtains competitive results and can improve those obtained by other heuristics of the state of
the art, such as dom/wdeg and ABS.

Keywords. CSP, Branching Heuristic, Conflict Based Search, Search History, Exponential Recency Weighted
Average

DOI. https://doi.org/10.1145/3297280.3297389

1 Introduction

The Constraint Satisfaction Problem (CSP) is a powerful framework to model and efficiently solve problems that
occur in various fields, both academic and industrial [21]. A CSP instance is defined on a set of variables which
must be assigned in their respective finite domains by satisfying a set of constraints which express restrictions
between different assignments. A solution is an assignment of each variable which satisfies all constraints.

CSP solving, based on search tree algorithms, has made significant progress in recent years thanks to research
on several aspects which receive considerable efforts such as global constraints, filtering techniques, learning and
restarts. An important component in CSP solvers is the variable branching rule. Indeed, the corresponding
heuristics define, statically or dynamically, the order in which the variables will be assigned and thus the way
that the search space will be explored and the size of the search tree.

Many heuristics have been proposed (e.g. [1, 2, 3, 4, 6, 7, 18, 20, 9]) and aim to satisfy the famous first-fail
principle [8] which advises ”to succeed, try first where you are likely to fail”. Nowadays, the most efficient
heuristics are adaptive and dynamic [3, 6, 18, 20, 9]. Indeed, the order of branchings is defined according to
the collected information since the beginning of the search. For instance, some heuristics consider the effect
of filtering when decisions and propagations are applied [18, 20]. Defined since 2004, the dom/wdeg heuristic
remains one of the simplest, the most popular and efficient one. It is based on the hardness of constraints to
reflect how often a constraint fails. It uses a weighting process to focus on the variables appearing in constraints
with high weights which are assumed to be hard to satisfy [3].

In this paper, we propose Conflict-History Search (CHS), a new dynamic and adaptive branching heuristic
for CSP solving. It is based on the history of search failures which happen as soon as a domain of a variable is
emptied after constraint propagations. The goal is to reward the scores of constraints that have recently been
involved in conflicts and therefore to favor the variables appearing in these constraints.

The scores of constraints are estimated on the basis of the exponential recency weighted average technique
which comes from reinforcement learning [24]. It was also recently used in defining powerful branching heuristics
for solving the satisfiability problem (SAT) [15, 16]. We have integrated CHS in solvers based on MAC (Main-
taining Arc Consistency) [22] and BTD (Backtracking with Tree Decomposition) [12]. The empirical evaluation
on XCSP3 instances (XCSP3, for XML-CSP version 3, is an XML-based format to represent instances of combi-
natorial constrained problems) shows that CHS is competitive and brings improvements to the heuristics of the
state of the art.

∗This work has been funded by the french Agence Nationale de la Recherche, reference ANR-16-C40-0028.

1

The paper is organized as follows. Section 2 includes some necessary definitions and notations. Section 3
describes related work on branching heuristics for CSP and SAT. Section 4 presents and details our contribution
which is evaluated experimentally in Section 5. Finally, we conclude and give future work.

2 Preliminaries

We give some definitions including CSP and Exponential Recency Weighted Average (ERWA).

2.1 Constraint Satisfaction Problem

An instance of a Constraint Satisfaction Problem (CSP) is given by a triple (X,D,C), such that:

• X = {x1, · · · , xn} is a set of n variables,

• D = {D1, ..., Dn} is a set of finite domains, and

• C = {c1, · · · , ce} is a set of e constraints.

Each constraint ci is defined by S(ci) and R(ci), where S(ci) = {xi1 , · · · , xik} ⊆ X defines the scope of ci and
R(ci) ⊆ Di1 × · · · ×Dik is its compatibility relation. The constraint satisfaction problem asks for an assignment
of a value from Di to each variable xi of X that satisfies each constraint in C. Checking whether a CSP instance
has a solution (i.e. a consistent assignment of X) is NP-complete.

2.2 Exponential Recency Weighted Average

Given a time series of m numbers y = (y1, y2, · · · , ym), the simple average of y is
∑m

i=1
1
m
yi where each yi has

the same weight 1
m

. However, recent data may be more pertinent than the older ones to characterize the current
situation. The Exponential Recency Weighted Average (ERWA) [24] takes into account such considerations by
giving to the recent data higher weights than the older ones. In fact, the exponential moving average ȳm is
computed by: ȳm =

∑m
i=1 α.(1− α)m−i.yi, where 0 < α < 1 is a step-size parameter which controls the relative

weights between recent and past data. The moving average can also be calculated incrementally by the formula:

ȳm+1 = (1− α).ȳm + α.ym+1.

ERWA was used to solve the bandit problem to estimate the expected reward of different actions in non-stationary
environments [24]. In bandit problems, there is a set of actions and the agent must select the action to play in
order to maximize its long term expected reward.

3 Related Work

We present the most efficient branching heuristics for CSP and SAT. The recalled heuristics share the same
behavior. Indeed, the variables and/or constraints are weighted dynamically throughout the search by considering
the collected information since the beginning of the search. Also, some heuristics smooth (or decay) these weights
as it will be explained further.

3.1 Impact-Based Search (IBS)

This heuristic selects the variable which leads to the largest search space reduction [20]. This impact on the
search space size is approximated as the reduction of the product of the variable domain sizes. Formally, the
impact of assigning the variable xi to the value vi ∈ Di is defined by :

I(xi = vi) = 1− Pafter

Pbefore

Pafter and Pbefore are respectively the products of the domain cardinalities after and before branching on xi = vi
and applying constraint propagations.

3.2 Conflict-Driven Heuristic

A popular branching heuristic for CSP solving is dom/wdeg [3]. It guides the search towards the variables
appearing in the constraints which seem to be hard to satisfy. For each constraint cj , the dom/wdeg heuristic
maintains a weight w(cj) (initially set to 1) counting the number of times that cj has led to a failure (i.e. the
domain of a variable xi in S(cj) is emptied during propagation from cj). The weighted degree of a variable xi
is defined as:

2

wdeg(xi) =
∑

cj∈C | xi∈S(cj)∧|Uvars(cj)|>1

w(cj)

with Uvars(cj) the set of unassigned variables in S(cj). The dom/wdeg heuristic selects the variable xi to
branch on with the smallest ratio |Di|/wdeg(xi), such that Di is the current domain of xi (potentially, the size
of Di may be reduced by the propagation process in the current step of the search). The constraint weights are
not smoothed in dom/wdeg. Variants of dom/wdeg were introduced (for example, see [9]).

3.3 Activity-Based Heuristic (ABS)

This heuristic is motivated by the prominent role of filtering techniques in CSP solving [18]. It exploits this
filtering information and maintains measures of how often the variable domains are reduced during the search.
Indeed, at each node of the search tree, constraint propagation may filter the domains of some variables after
the decision has been made. Let Xf be the set of such variables. Accordingly, the activities A(xi) (initially set
to 0) of the variables xi ∈ X are updated as follows:

• A(xi) = A(xi) + 1 if xi ∈ Xf and

• A(xi) = γ ×A(xi) if xi 6∈ Xf .

γ is a decay parameter, such that 0 ≤ γ ≤ 1. The ABS heuristic selects the variable xi with the highest ratio
A(xi)/|Di|.

3.4 Branching Heuristics for SAT

In the context of the satisfiability problem (SAT), modern solvers based on Conflict-Driven Clause Learning
(CDCL) [5, 17, 19] employ variable branching heuristics correlated to the ability of the variable to participate in
producing learnt clauses when conflicts arise (a conflict is a clause falsification). The Variable State Independent
Decaying Sum (VSIDS) heuristic [19] maintains an activity value for each Boolean variable. The activities are
modified by two operations: the bump (increase the activity of variables appearing in the process of generating
a new learnt clause when a conflict is analyzed) and the multiplicative decay of the activities (often applied at
each conflict). VSIDS selects the variable with the highest activity to branch on.

Recently, a conflict history based branching heuristic (CHB) [15], based on the exponential recency weighted
average, was introduced. It rewards the activities to favor the variables that were recently assigned by decision
or propagation. The rewards are higher if a conflict is discovered. The Learning Rate Branching (LRB) heuristic
[16] extends CHB by exploiting locality and introducing the learning rate of the variables.

Dedicated to constraint programming, Gecode solver implements CHB since version 5.1.0 released in April
2017 [23]. Indeed, in this version of Gecode, the variables are weighted in the same manner as in the SAT context
following ERWA [15, 16].

As we will describe it in the next sections, the branching heuristic that we propose (CHS) uses ERWA to
weight the constraints and not the variables. The constraint weights are then used in a next phase to calculate
the variable scores which are used to select the branching variable.

4 Conflict-History Search for CSP

Inspired by the CHB heuristic for SAT, we define a new branching heuristic for CSP solving which we call
Conflict-History Search (CHS). The central idea is to consider the history of constraint failures and favor the
variables that often appear in recent failures.

So, the conflicts are dated and the constraints are weighted on the basis of the exponential recency weighted
average. These weights are coupled to the variable domains to calculate the Conflict-History scores of the
variables.

4.1 CHS Description

Formally, CHS maintains for each constraint cj a score q(cj) which is initialized to 0 at the beginning of the
search. If cj leads to a failure during the search because the domain of a variable in S(cj) is emptied by
propagation then q(cj) is updated by the formula below derived from ERWA:

q(cj) = (1− α)× q(cj) + α× r(cj)

The parameter 0 < α < 1 is the step-size and r(cj) is the reward value. It defines the importance given to the
old value of q at the expense of the reward r. The value of α decreases over time as it is applied in ERWA [24].

3

Indeed, starting from its initial value α0, α decreases by 10−6 at each constraint failure to a minimum of 0.06.
Decreasing the α value amounts to giving more importance to the last value of q and considering that the values
of q are more and more relevant as the search progresses.

The reward value r(cj) is based on how recently cj occurred in conflicts. The goal is to give a higher reward
to constraints that fail regularly over short periods of time during the search space exploration. The reward
value is calculated according to the formula:

r(cj) =
1

#Conflicts− Conflict(cj) + 1

Initialized to 0, #Conflicts is the number of conflicts which have occurred since the beginning of the search.
Also initialized to 0 for each constraint cj ∈ C, Conflict(cj) stores the last #Conflicts value where cj led to a
failure. Once r(ci) and q(ci) are updated, #Conflicts is incremented by 1.

At this stage, we are able to define the Conflict-History score of the variables xi ∈ X, which will be used in
selecting the branching variable as follows:

chv(xi) =

∑
cj∈C | xi∈S(cj)∧|Uvars(cj)|>1

q(cj)

|Di|
CHS keeps the variable to branch on with the highest chv value. In this manner, CHS focuses branching on

the variables with small size of domain while belonging to constraints which appear recently and repetitively in
conflicts.

One can observe that at the beginning of the search, all the variables have the same score equal to 0. To
avoid random selection of the branching variable, we reformulate the calculation of chv as given below, where δ
is a positive real number close to 0.

chv(xi) =

∑
cj∈C | xi∈S(cj)∧|Uvars(cj)|>1

(q(cj) + δ)

|Di|
Thus, at the beginning of the search, the branching will be oriented according to the degree of the variables

without having a negative influence on the ERWA-based calculation later in the search.

4.2 CHS and Restarts

Nowadays, restart techniques are important for the efficiency of solving algorithms (see for example [13]).
Restarts may allow to reduce the impact of irrelevant choices done during search according to heuristics such as
variable selection.

As it will be detailed in the next section, CHS is integrated into CSP solving algorithms which include
restarts. In the corresponding implementations, the Conflict(cj) value of each constraint cj is not reinitialized
when a restart occurs. It is the same for q(cj) (however, a smoothing may be applied and will be explained
later). Keeping this information unchanged reinforces learning from the search history.

Concerning the step-size α, which defines the importance given to the old value of q(cj) at the expense of the
reward r(cj), CHS reinitializes the step-size value α to α0 at each restart. This may guide the search through
different parts of the search space.

4.3 CHS and Smoothing

At each conflict and as in the dom/wdeg heuristic, CHS updates the chv score of one constraint at a time: the
constraint cj which is used to wipe out the domain of a variable in S(cj). As long as they do not appear in new
conflicts, some constraints can have their weights unchanged for several search steps. These constraints may
have high scores while their importance does not seem high for the current part of the search. To avoid this
situation, we propose to smooth the scores q(cj) of all the constraints cj ∈ C at each restart by the following
formula:

q(cj) = q(cj)× 0.995#Conflicts−Conflict(cj)

Hence, the scores of constraints are decayed according to the date of their last appearances in conflicts. Decaying
is also used in other heuristics such as ABS [18] for CSP and VSIDS [19] for SAT. However, it is applied to the
score of the variables and not that of the constraints (or clauses).

4

5 Experimental Evaluation

5.1 Experimental Protocol

We consider 10,785 instances from the XCSP3 repository1, including notably structured instances and discarding
fully random instances. This latter restriction is quite natural since adaptive heuristics aim to exploit the
underlying structure of the instances to solve.

Regarding the solving step, we exploit MAC with restarts [14] before assessing the impact of our approach
on a structural solving method, namely BTD-MAC+RST+Merge [10]. MAC uses a geometric restart strategy
based on the number of backtracks with an initial cutoff set to 100 and an increasing factor set to 1.1. In order
to make the comparison fair, the lexicographic ordering is used for the choice of the next value to assign.

We have written our own code to implement all the compared branching heuristics in this section (dom/wdeg,
ABS, CHS, CHB, ABS and dom/wdeg), as well as the solvers that exploit them (MAC and BTD). All the
algorithms are written in C++.

The experiments are performed on Dell PowerEdge M610 blade servers with Intel Xeon E5620 processors
under Ubuntu 18.04. Each solving process is allocated a slot of 30 minutes and at most 12 GB of memory per
instance. In the following tables, #solv denotes the number of solved instances by a given solver and time is the
cumulative runtime.

5.2 Impact of CHS Settings

In this part, we assess the sensitivity of CHS with respect to the chosen values for α or δ. First, we fix δ to
10−4 (to start the search by considering the variable degrees then quickly exploit ERWA-based computation)
and vary the value of α0 between 0.1 and 0.9 with a step of 0.1. Figure 1 presents the number of instances solved

 8800

 8900

 9000

 9100

 9200

 9300

 9400

 9500

 9600

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 VBS
 440

 450

 460

 470

 480

 490

 500

 510

 520

in

sta
nc

es

ru
nt

im
e

(h
)

#solved instances cumulative runtime

Figure 1: Number of instances solved by MAC+CHS depending on the initial value of α and cumulative runtime
in hours for all the instances.

by MAC depending on the value of α and the corresponding cumulative runtime. We also provide the results
of the Virtual Best Solver (VBS) which counts the number of the instances solved (and the cumulative running
time) at least one time when varying the value of α.

We observe that the value α0 = 0.4 allows MAC to solve more instances (9,525 solved instances with a
cumulative solving time of 493 hours) than the other considered values. The worst case is α0 = 0.7 with 9,515
solved instances in 496 hours. This shows the robustness of CHS w.r.t. the α parameter.

Regarding the Virtual Best Solver (VBS), we note that it can solve 64 additional instances than MAC+CHS
when α0 = 0.4. Among these instances, some of them seem to be hard. Indeed, often, only one of the checked
values of α allows MAC to solve them and the required runtime generally exceeds several minutes. Therefore, a
finer adjustment of the value of α0 or its adaptation to the treated instance would allow MAC+CHS to perform
even better.

Now, we set α0 to 0.4 and evaluate different values of δ. From Table 1, the observations are similar to those
presented previously, showing the robustness of CHS regarding δ.

Also, it is interesting to highlight that MAC+CHS with δ = 0 solves 9,517 instances while it solves 9,525
instances if δ = 10−4. This illustrates the relevance of introducing δ in CHS while it allows to solve 8 more

1http://www.xcsp.org/series

5

Table 1: Impact of δ value on MAC+CHS regarding the number of solves instances and the cumulative runtime in
hours

δ #solv. time (h)

0 9,517 498.17
10−5 9,520 494.07
10−4 9,525 493.41
10−3 9,524 493.91

instances with this last setting.

Finally, Table 2 gives the results of MAC+CHS (α0 = 0.4, δ = 10−4) with smoothing (+s) or not (-s) the
constraint scores and/or with resetting (+r) or not (-r) the value of α to 0.4 at each new restart.

Table 2: Number of instances solved by MAC with CHS with/without smoothing and reset of α and cumulative
runtime in hours

Solver #solv. time (h)

MAC+CHS (+s+r) 9,525 493.41
MAC+CHS+s-r 9,509 498.80
MAC+CHS-s-r 9,482 514.73
MAC+CHS-s+r 9,478 518.05

The observed behaviors clearly support the importance of smoothing and restarts for CHS. For example,
MAC+CHS+s-r solves 16 less instances than MAC+CHS, while MAC+CHS-s+r solves 47 instances less.

5.3 CHS vs. Other Search Heuristics

Now, we compare CHS (the settings are : α0 = 0.4, δ = 10−4) to other search strategies: dom/wdeg, ABS and
CHB as implemented in Gecode. For ABS, we fix the decay parameter γ to 0.999 as in [18]. For CHB, we use
the value parameters as given in [23]. We add a variant dom/wdeg+s which is dom/wdeg but the weights of
constraints are smoothed exactly as in CHS.

Table 3: Number of instances solved by MAC with dom/wdeg, dom/wdeg + s, ABS, CHB and CHS and cumu-
lative runtime in hours

Solver #solv. time (h)

MAC+CHS 9,525 493.41
MAC+dom/wdeg 9,501 507.17
MAC+dom/wdeg+s 9,500 505.13
MAC+ABS 9,476 515.17
MAC+CHB 9,458 525.38

¿From Table 3, it is clear that MAC with CHS performs better than with the other heuristics. Indeed, it
solves 24 instances more than MAC+dom/wdeg, 49 instances more than MAC+ABS and 67 instances more
than MAC+CHB. Interestingly, whatever the value of α0, MAC with CHS remains better than all its competi-
tors. Indeed, the worst case is when α0 = 0.7 where MAC+CHS solves 9,515 instances. Moreover, the results
obtained by MAC+CHB show that the calculation of weights by ERWA on the constraints (as done in CHS)
is more relevant than its calculation on the variables (as done in CHB). Furthermore, the smoothing phase
introduced in dom/wdeg allows MAC+dom/wdeg+s to reduce slightly the computation time when compared
to MAC+dom/wdeg, while solving one less instance.

dom/wdeg and ABS are two powerful and popular branching heuristics. In particular, dom/wdeg is widely
used in the literature and integrated in many solvers. A careful reading of the results of Table 3 shows that
dom/wdeg solves 25 instances more than ABS. This remark is to highlight the improvement brought by our
heuristic CHS. Indeed, it allows MAC to solve 24 additional instances compared to dom/wdeg.

Finally, Table 4 provides the results of MAC variants on some instance families chosen from a representative
panel of the used benchmark in order to show the different trends we observed. First, we note that no heuristic is

6

Table 4: Number of instances solved by MAC with dom/wdeg, ABS, CHB and CHS and cumulative runtime in
seconds for some instance families.

Family dom/wdeg ABS CHB CHS
Origin Name #inst. #solv. time (s) #solv. time (s) #solv. time (s) #solv. time (s)

Academic

AllInterval-m1-s1 32 25 15,406 32 9 32 9 32 9
Blackhole-xcsp2-s04 10 10 5.51 10 4.82 10 5.15 10 5.46
Dubois-m1-s1 30 10 38,249 16 28,639 10 38,111 11 37,234
GracefulGraph-m1-s1 104 17 160,007 16 160,090 16 160,355 18 155,667
Kakuro-sumdiff-hard 187 187 285 185 4,216 180 15,044 187 811
Nonogram-table-s1 176 167 1,991 168 34.56 168 35.19 168 331.67
PigeonsPlus-m1-s1 38 37 4,860 29 20,120 37 5,192 37 4,878
Sat-xcsp2-bmc 24 24 1,816 24 518 20 51 24 4,708
Subisomorphism-m1-LV 1,176 1,100 151,661 1,108 136,868 1,101 147,664 1,109 134,787
SuperSolutions-Taillard-os05 30 23 14,102 19 20,036 26 11,125 21 16,386
TravellingSalesman-xcsp2-s20a4 15 15 64.29 15 60.77 15 311.45 15 116.59

Real-world
OpenStacks 76 40 4,663 40 6,342 41 5,757 41 5,007
RenaultMod-m1-s1 50 50 1.70 50 0.61 50 0.99 50 0.52
SocialGolfers-xcsp2-s1 12 4 14,576 4 16,300 5 14,030 6 11,404

always better than the others. However, if we sort the heuristics with respect to the number of solved instances
per family, CHS is ranked at the first place for 88% of the 141 considered families, by performing better or
similarly than the two other heuristics. This percentage exceeds respectively 93% and 99% if we consider the
first two places or the first three places. Hence, CHS is clearly competitive.

Also, one might think that dom/wdeg performs worse than ABS and CHB. This impression is explained by
the fact that, when MAC+dom/wdeg is better on a given family, it solves only few additional instances. In
contrast, when it is outperformed, this is done by several additional solved instances. Finally, if we compare
the results on the instances labeled real-world in the XCSP3 repository, we observe that MAC with CHS solves
more instances and performs faster, between 10% and 30%, than any other combination.

5.4 CHS and Tree-Decomposition

We now assess the behavior of CHS when the search is guided by a tree-decomposition. Studying this question
is quite natural since CHS aims at exploiting the structure of the instance, but in a way different from what the
tree-decomposition does. With this aim in view, we consider BTD-MAC+RST+Merge [10]. The parameters
of BTD-MAC+RST+Merge are set like in [11] except the variable heuristic which can be one of the two best
heuristics considered previously, namely dom/wdeg or CHS.

Like for MAC, the solving is more efficient with CHS than with dom/wdeg. Indeed, BTD-MAC+RST+Merge
with CHS solves 9,525 instances (in 485 h) against 9,495 instances (in 501 h) for dom/wdeg: 30 additional
instances are solved. This observation shows that exploiting both CHS and tree-decomposition may be of
interest and that these two strategies can be complementary.

6 Conclusion

We have proposed CHS, a new branching heuristic for CSP based on the search history and designed following
techniques coming from reinforcement learning. The experimental results confirm the relevance of CHS which is
competitive with the powerful heuristics dom/wdeg and ABS, when implemented in solvers based on MAC or
tree-decomposition exploitation.

The experimental study suggests that the α parameter value could be refined. We will explore the possibility
of defining its value depending on the instance to be solved. For example, we will look for probing techniques to
fix the appropriate value of α. Furthermore, similarly to the ABS heuristic, we will also consider to include infor-
mation provided by filtering operations in CHS. Finally, we will extend CHS to deal with constraint optimization
problems.

References

[1] Christian Bessière, Assef Chmeiss, and Lakhdar Säıs. Neighborhood-based variable ordering heuristics for
the constraint satisfaction problem. In CP, pages 565–569, 2001.

[2] Christian Bessière and Jean-Charles Régin. MAC and Combined Heuristics: Two Reasons to Forsake FC
(and CBJ?) on Hard Problems. In CP, pages 61–75, 1996.

[3] Frédéric Boussemart, Fred Hemery, Christophe Lecoutre, and Lakhdar Säıs. Boosting systematic search by
weighting constraints. In ECAI, pages 146–150, 2004.

7

[4] Daniel Brélaz. New Methods to Color Vertices of a Graph. Communications of the ACM, 22(4):251–256,
1979.

[5] Niklas Eén and Niklas Sörensson. An Extensible SAT-solver. In SAT, pages 502–518, 2003.

[6] Pieter A. Geelen. Dual viewpoint heuristics for binary constraint satisfaction problems. In ECAI, pages
31–35, 1992.

[7] Solomon W. Golomb and Leonard D. Baumert. Backtrack programming. Journal of the ACM, 12:516–524,
1965.

[8] Robert M. Haralick and Gordon L. Elliot. Increasing tree search efficiency for constraint satisfaction prob-
lems. AIJ, 14:263–313, 1980.

[9] Emmanuel Hebrard and Mohamed Siala. Explanation-based weighted degree. In CPAIOR, pages 167–175,
2017.

[10] Philippe Jégou, Hanan Kanso, and Cyril Terrioux. Towards a Dynamic Decomposition of CSPs with
Separators of Bounded Size. In CP, pages 298–315, 2016.

[11] Philippe Jégou, Hanan Kanso, and Cyril Terrioux. BTD and miniBTD. In XCSP3 Competition, 2017.

[12] Philippe Jégou and Cyril Terrioux. Hybrid backtracking bounded by tree-decomposition of constraint
networks. AIJ, 146:43–75, 2003.

[13] Christophe Lecoutre, Lakhdar Sais, Sébastien Tabary, and Vincent Vidal. Nogood recording from restarts.
In IJCAI, pages 131–136, 2007.

[14] Christophe Lecoutre, Lakhdar Säıs, Sébastien Tabary, and Vincent Vidal. Recording and Minimizing No-
goods from Restarts. JSAT, 1(3-4):147–167, 2007.

[15] Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. Exponential Recency Weighted
Average Branching Heuristic for SAT Solvers. In AAAI, pages 3434–3440, 2016.

[16] Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. Learning Rate Based Branching
Heuristic for SAT Solvers. In SAT, pages 123–140, 2016.

[17] João Marques-Silva and Karem A. Sakallah. Grasp: A search algorithm for propositional satisfiability.
IEEE Transactions on Computers, 48(5):506–521, August 1999.

[18] Laurent Michel and Pascal Van Hentenryck. Activity-based search for black-box constraint programming
solvers. In CPAIOR, pages 228–243, 2012.

[19] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff: Engi-
neering an Efficient SAT Solver. In DAC, pages 530–535, 2001.

[20] Philippe Refalo. Impact-based search strategies for constraint programming. In CP, pages 557–571, 2004.

[21] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint Programming, volume 2 of
Foundations of Artificial Intelligence. Elsevier, 2006.

[22] Daniel Sabin and Eugene C. Freuder. Contradicting Conventional Wisdom in Constraint Satisfaction. In
ECAI, pages 125–129, 1994.

[23] Christian Schulte. Programming branchers. In Christian Schulte, Guido Tack, and Mikael Z. Lagerkvist,
editors, Modeling and Programming with Gecode. 2018. Corresponds to Gecode 6.0.1.

[24] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press, Cambridge,
MA, USA, 1st edition, 1998.

8

