
Tests as Maintainable Assets Via Auto-generated Spies
A case study involving the Scala collections library’s Iterator trait

Konstantin Läufer
Loyola University Chicago

laufer@cs.luc.edu

John O’Sullivan
Loyola University Chicago

josullivan@cs.luc.edu

George K. Thiruvathukal
Loyola University Chicago and
Argonne National Laboratory
gkt@cs.luc.edu,gkt@anl.gov

Abstract
In testing stateful abstractions, it is often necessary to record
interactions, such as method invocations, and express asser-
tions over these interactions. Following the Test Spy design
pattern, we can reify such interactions programmatically
through additional mutable state. Alternatively, a mocking
framework, such as Mockito, can automatically generate test
spies that allow us to record the interactions and express
our expectations in a declarative domain-speci�c language.
According to our study of the test code for Scala’s Iterator
trait, the latter approach can lead to a signi�cant reduction
of test code complexity in terms of metrics such as code
size (in some cases over 70% smaller), cyclomatic complexity,
and amount of additional mutable state required. In this
tools paper, we argue that the resulting test code is not only
more maintainable, readable, and intentional, but also a bet-
ter stylistic match for the Scala community than manually
implemented, explicitly stateful test spies.
Keywords Automated unit testing, mock-based testing,
spy-based testing, test code complexity, test code metrics,
Iterator design pattern, stream processing, pre�x sum

Accepted for publication at the Tenth ACM SIGPLAN Scala
Symposium (Scala ’19), July 17, 2019, London, United Kingdom

1 Introduction
In our university-level programming languages course [11],
the scanLeft method (similar to foldLeft with intermedi-
ate results) in the Scala collections library is an important
part of our overall pedagogy and the subject of many exam-
ples, including running averages and other forms of sliding
analysis on unbounded streams, e.g., dynamic word clouds,
stock market analysis, etc. In general, such pre�x scans are
useful and e�cient building blocks for interactive, event-
based, and other stream processing systems.

In this—and other—courses, we also emphasize the no-
tion of tests as assets. The software development community
increasingly views automated tests as longer-term, main-
tainable assets along with the production code itself [9, 13],
and a body of work on design patterns for automated testing
has emerged [14]. In particular, a Mock Object replaces an
object the system-under-test (SUT) depends on, is usually
precon�gured to provide certain behaviors the SUT expects,
and dynamically veri�es the expected interactions coming

from the SUT. By contrast, a Test Spy also takes the place
of a dependency of the SUT but behaves like the original
dependency while recording the SUT’s indirect outputs, i.e.,
interactions with the dependency in terms of method invo-
cation frequency and arguments, for later veri�cation. Both
of these are subpatterns of Test Double.

In the context of our course, we noticed and reported a
seven-year-old bug in the scanLeft method of the Iterator
trait, which provides some lazy stateful behaviors that are
challenging to test. Indeed, the original test for Iterator.
scanLeft does not fully test the correctness of this method
under certain conditions. This led us to study the Scala col-
lections library’s source code, where we noticed that the test
suite includes several instances of manually implemented,
explicitly stateful test spies. While the corrected scanLeft
implementation was successful in terms of clarity, concise-
ness, and idiomatic style, we found it di�cult to understand
the code and the actual cases being tested.

In this paper, we look for opportunities to use automati-
cally generated test spies as a systematic way to improve the
tests for scanLeft and other Iterator methods and bring
them in line with the notion of tests as assets. While this
serves as the underlying case study for this paper, the tech-
nique we describe is of general value as a programming pearl.
More broadly, it brings existing tools and techniques to the
Scala community in the hope that they will be useful. We
have organized the rest of the paper as follows:

• a detailed explanation of the case study based on the
scala.collection.Iterator trait

• an overview of auto-generated test spies and how
they can replace manually implemented test depen-
dencies

• a side-by-side comparison of the o�cial scanLeft
test vs. an equivalent test with an auto-generated spy

• a comparison of complexity metrics, including code
size and cyclomatic complexity (a quantitative mea-
sure of the number of linearly independent paths
through a program’s source code) [12], before and af-
ter refactoring several tests from manually-implemented
to auto-generated test spies, and

• a summary of human and technical challenges that
must be addressed for the proposed approach to be
used more widely by Scala developers.

ar
X

iv
:1

80
8.

09
63

0v
3

 [
cs

.S
E

]
 2

3
A

ug
 2

01
9

1 object CumAvgFunctional extends App {

2 val lines = scala.io.Source.stdin.getLines

3 val values = lines.map(_.toDouble)

4 val results = values.scanLeft ((0, 0.0)) {

5 case ((count , sum), value) =>

6 (count + 1, sum + value)

7 }

8 results.drop (1).foreach { case (count , sum) =>

9 println(count + ": " + (sum / count))

10 }

11 }

Figure 1. The imperative version of the cumulative run-
ning average �lter is a simple, monolithic while loop. The
functional version shown here is a pipeline of modular, sepa-
rately testable stages, arguably making it more readable and
maintainable. Both run in linear time and constant space.

The novelty of our work is an initial exploration to iden-
tify, understand, and improve test assets, focused on a “by
hand” analysis of the test code complexity. Although our
e�orts have been focused on the Scala library itself, owing
to the critical role Scala’s core library plays in all Scala de-
velopment, the methods we describe are of general value
and also play a role in our own development e�orts. We are
not aware of other work focused speci�cally on understand-
ing test code complexity and using the resulting metrics to
improve test assets. We believe our work has important im-
plications in education and professional Scala development
by training the next generation of Scala developers how to
write e�ective, comprehensible, and maintainable tests.

2 Case study: Iterator.scanLeft
The scala.collection.Iterator trait did not have a scan-
Left method until it was requested in Scala Issue 4054 [4]
and implemented in January 2011 as shown in Figure 3.

This version, however, causes the example from Figure 1
to behave incorrectly as seen in Figure 2b: Instead of printing
the �rst updated average right after reading the �rst value, it
prints this only after reading the second value; it then prints
each subsequent update delayed by one input value, and the
�nal update only after EOF. The reason is that the iterator
returned by scanLeft does not return the current item until
after the (premature) call to self.next() on line 600 in
Figure 3 returns. The included test does not catch this bug
because it focuses on the correctness of the resulting items,
irrespective of the interactions with the original iterator.

We reported this bug as Scala Issue 10709 [6] in February
2018, after attempting to use scanLeft in the context of our
spring 2018 Scala-based programming languages course [11].
The Scala team promptly �xed this issue as of Scala 2.12.5,
by reimplementing the method using a �at four-state ma-
chine, replaced as of Scala 2.13.x [7] with an arguably more
elegant and straightforward implementation based on the
State pattern [3].

The corresponding test, shown in Figure 4a, uses a test spy
in the form of a custom iterator with additional state to test
for incremental correctness along with the “right amount of
laziness.”

Discussion There are several possible factors contributing
to the fact that this bug remained unreported for so long:

• Iterator.scanLeft might be rarely used, or rarely
used incrementally as described above.

• Developers might have resorted to a workaround but
not taken the time to report the actual bug.

• State-dependent behaviors are challenging to com-
prehend, document, implement, and test.

Furthermore, there is considerable essential complexity [2]
to a stateful behavior such as scanLeft: it returns a deco-
rator [3] around the receiver, after which one is no longer
allowed to interact directly with the receiver, while subse-
quent interactions with the decorator have side e�ects on
the original receiver, such as reading lines from input. This
complexity carries over to the spy-based test in terms of the
dynamic interactions shown in Figure 5.

We conjecture that tests that rely on manually imple-
mented spies typically su�er from two additional shortcom-
ings: (1) accidental complexity that a�ects maintainability,
and (2) unhelpful failure messages. We will now explore how
automatically generated spies can help address both issues.

3 Auto-generated test spies can help
As an alternative to manually implementing test doubles
(see Section 1) to represent the SUT’s dependencies, mock-
ing frameworks support the automatic generation of mock
objects, usually based on their type. Some mocking frame-
works, such as Mockito [5], additionally support the auto-
matic generation of test spies. We chose Mockito because
of its maturity, support for idiomatic Scala syntax [8], and
unique support for spying on �nal and anonymous classes.

Concretely, as shown in Figure 4b, we can use Mockito
to wrap a test spy around a simple iterator instance, invoke
scanLeft, and then interact with the iterator resulting from
this invocation; these interactions still correspond to Figure 5.
During these interactions, we can test not only the (overall)
correctness of the values of the resulting iterator, but also the
(incremental) correctness of the e�ects of these interactions
on the original iterator. In this case, the correct amount
of laziness means to have invoked next() on the original
iterator i times, where i is the position of the current value
in the resulting iterator. Speci�cally, when we invoke next()
on the resulting iterator for the �rst time, we expect to see
the initial z value of scanLeft, and there should not yet have
been any invocations of next() on the original iterator.

This test is three times as short as the o�cial version. We
argue that it is not only more comprehensible, maintainable,
and e�ective at conveying the intent, but it also produces a

2

$./ target/universal/stage/bin/cum -avg -imp

> 6

1: 6.0

> 7

2: 6.5

> 2

3: 5.0

> ^D (a) correct behavior

$./ target/universal/stage/bin/cum -avg -fun

> 6

> 7

1: 6.0

> 2

2: 6.5

> ^D

3: 5.0 (b) incorrect behavior

Figure 2. Correct (left) and incorrect (right) sample runs of the cumulative running average �lters. In the incorrect case, the
updated average goes up to the previous instead of the current input value. (We pre�x input lines with >.)

595 def scanLeft[B](z: B)(op: (B, A) => B): Iterator

[B] = new Iterator[B] {

596 var hasNext = true

597 var elem = z

598 def next() = if (hasNext) {

599 val res = elem

600 if (self.hasNext) elem = op(elem, self.next())

601 else hasNext = false

602 res

603 } else Iterator.empty.next()

604 }

9 object Test {

10 def main(args: Array[String]) {

11 val it = Iterator.from (1).map(n => n * n).

scanLeft (0)(_+_)

12

13 assert(it.next == 0)

14 assert(it.next == 1)

15 assert(it.next == 5)

16 // etc.

17 }

18 }

Figure 3. Original version of scanLeft and associated correctness test. In this implementation, the resulting iterator does not
return the current item until after the (premature) call to self.next() on line 600 returns (shown in boldface above). The test
does not catch this bug because it focuses on the overall correctness of the sequence of items returned.

Method under test Test method Mutb LOCb LOCa LOC∆ CCb CCa
Iterator.sliding IteratorTest.groupedIteratorShould-

NotAskForUnneededElement
2 10 4 -60% 3 1

Iterator.++ IteratorTest.noExcessiveHasNextIn-
JoinIterator

2 15 8 -47% 6 2

Iterator.toStream IteratorTest.toStreamIs-
SufficientlyLazy

1 9 7 -22% 3 3

Iterator.scanLeft IteratorTest.`scan is lazy enough` 3 26 7 -73% 5 3
HashMap.getOrElseUpdate HashMapTest.getOrElseUpdate_eval-

Once
1 5 4 -20% 2 2

Table 1. Comparison of test code complexity metrics (number of mutable objects, LOC, and Cyclomatic Complexity counted
manually) before/after refactoring from manually implemented to auto-generated test spies. (Muta = 0 for all test methods.)
Even when there is no or little reduction in the metrics, there is usually a gain in readability and clarity of intent. This table
includes most a�ected tests in IteratorTest and HashMapTest; there may be other applicable tests elsewhere in the codebase.

more useful error message pointing directly to the o�ending
eager invocation of next().

Discussion By eliminating the need for custom iterator
implementations with mutable state, auto-generated test
spies allow the programmer to focus on the functional cor-
rectness of the SUT. This promotes the view of test code
as readable, comprehensible, teachable, and maintainable
assets, which has the potential to work its way back into to
the API documentation. If more developers feel encouraged
to write tests, this might foster a test-driven mindset in the
community.

Table 1 shows other test methods that can bene�t from
this approach; those typically exhibit code smells such as var
or mutable state other than the stateful SUT, e.g., a bu�er.
Because Test Spy is a common subpattern of Test Double [14],
we expect the technique of spying on a stateful SUT to be
bene�cial in similar scenarios to Figure 5, even when the
result of the method-under-test (MUT) depends on the SUT
in more general ways than decorating/wrapping the SUT. For
instance, we have used generated test spies for unit testing
a view component in a Scala-based Android app [10].

3

300 @Test def `scan is lazy enough`(): Unit = {

301 val results = ListBuffer.empty[Int]

302 val it = new AbstractIterator[Int] {

303 var cur = 1 ; val max = 3

304 override def hasNext = {

305 results += -cur ; cur < max }

306 override def next() = {

307 val res = cur ; results += -res

308 cur += 1 ; res }

309 }

310 val xy = it.scanLeft (10)((sum , x) => {

311 results += -(sum + x) ; sum + x

312 })

313 val scan = ListBuffer.empty[Int]

314 for (i <- xy) { scan += i ; results += i }

315 assertSameElements(List (10 ,11 ,13), scan)

316 assertSameElements(List

(10,-1,-1,-11,11,-2,-2,-13,13,-3), results)

317 }

java.lang.AssertionError: expected:<List(10, -1,

-1, -11, 11, -2, -2, -13, 13, -3)> but was:<

ListBuffer(-1, -1, -11, 10, -2, -2, -13, ...)>

at org.junit.Assert.fail(Assert.java :88)

at AssertUtil.assertSameElements (...)

at IteratorTest.scan_is_lazy_enough(IteratorTest

.scala :316) <-- line 316 above

(a) test with manually implemented spy

9 @Test def `scan is lazy enough with spy`() = {

10 val it = spy(Iterator(1, 2, 3))

11 val expected = Array(0, 1, 3, 6)

12 val result = it.scanLeft (0)(_ + _)

13 for (i <- expected.indices) {

14 result.next() shouldBe expected(i)

15 it.next() wasCalled i.times

16 }

17 }

org.mockito.exceptions.verification.

NeverWantedButInvoked:

elements.next();

Never wanted here:

-> at scala.collection.IndexedSeqLike$Elements.

next(IndexedSeqLike.scala :59)

But invoked here:

-> at scala.collection.Iterator$$anon$14.next(

Iterator.scala :600) <-- line 600 in Figure 3

at scala.collection.IndexedSeqLike$Elements.next

(IndexedSeqLike.scala :59)

at OurIteratorTest.

$anonfun$scan_is_lazy_enough_with_spy$2(

OurIteratorTest.scala :15) <-- line 15 above

(b) test with auto-generated spy

Figure 4. Incremental correctness and laziness tests for Iterator.scanLeft. (a) Manually implemented, explicitly stateful
spy de�ned (interwoven with the SUT itself) on lines 301–309 and 311, exercised on line 314, and veri�ed on line 316. (b)
Auto-generated, declarative spy using Mockito Scala de�ned on line 10, exercised on lines 13–14, and veri�ed on line 15. We
argue that the failure message for (b) is more helpful by directly indicating the site of the unwanted invocation of next().

Figure 5. Collaboration diagram for a spy-based test of a
stateful SUT’s method that returns a decorator of the SUT.
The test veri�es through the spy that the interactions with
the MUT’s result have the desired e�ect on the original SUT.

4 Conclusions and Future Work
We have shown that Mockito’s auto-generated test spies
eliminate much accidental complexity from certain state-
based tests. We plan to conduct a similar investigation of
Scala view, Stream, and the LazyList class added in 2.13.x.

More broadly, we hope to use repository mining to identify
other Scala projects that can bene�t from making tests more
immutable and declarative, understand the e�ect of these
refactorings on test code complexity/quality [1] and process
metrics [15], and investigate the possibility of tool support.

Finally, it turns out that a test coverage tool would not have
indicated the problem with the original test for Iterator.
scanLeft shown in Figure 3. Common metrics, such as state-
ment and branch coverage, remain unchanged (after com-
pensating for a �nite vs. inde�nite iterator as SUT). Further
study might reveal whether suitable existing test coverage
metrics are e�ective for these complex stateful behaviors.
Nevertheless, taming test code complexity using test spies
can be an e�ective strategy for improving the comprehension
and maintainability of test cases.
Acknowlegments We are grateful to the Scala team for
their responsiveness to our bug report; and to Bruno Bo-
nanno for suggesting we use Mockito Scala in our examples.

References
[1] Len Bass, Paul Clements, and Rick Kazman. 2012. Software Architecture

in Practice (3rd ed.). Addison-Wesley Professional.
[2] Frederick P. Brooks, Jr. 1987. No Silver Bullet—Essence and Accidents

of Software Engineering. Computer 20, 4 (April 1987), 10–19. h�ps:
//doi.org/10.1109/MC.1987.1663532

[3] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
1995. Design Patterns: Elements of Reusable Object-oriented Software.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

4

https://doi.org/10.1109/MC.1987.1663532
https://doi.org/10.1109/MC.1987.1663532

[4] GitHub. 2010. missing scanLeft in Iterator #4054. (Dec. 2010). h�ps:
//github.com/scala/bug/issues/4054

[5] GitHub. 2017. Mockito 2.x. h�p://site.mockito.org/. (2017).
[6] GitHub. 2018. Iterator.scanLeft has incorrect element-by-element

behavior (delayed by one item) #10709. (Feb. 2018). h�ps://github.
com/scala/bug/issues/10709

[7] GitHub. 2018. scala/collection-strawman: Implementation of the
new Scala 2.13 Collections. (March 2018). h�ps://github.com/scala/
collection-strawman

[8] GitHub. 2019. Mockito Scala 1.x. h�ps://github.com/mockito/
mockito-scala. (2019).

[9] Danielle Gonzalez, Joanna C. S. Santos, Andrew Popovich, Mehdi
Mirakhorli, and Mei Nagappan. 2017. A Large-scale Study on the
Usage of Testing Patterns That Address Maintainability Attributes:
Patterns for Ease of Modi�cation, Diagnoses, and Comprehension.
In Proceedings of the 14th International Conference on Mining Soft-
ware Repositories (MSR ’17). IEEE Press, Piscataway, NJ, USA, 391–401.
h�ps://doi.org/10.1109/MSR.2017.8

[10] Konstantin Läufer. 2014. Android Stopwatch example for
COMP 413: Intermediate Object-Oriented Programming (Scala-
based fall 2014 section). h�ps://github.com/loyolachicagocode/
stopwatch-android-scala. (2014).

[11] Konstantin Läufer. 2018. Lecture Notes: Theory (and Practice) of
Programming Languages. h�p://lucproglangcourse.github.io. (2018).
Loyola University Chicago.

[12] Thomas J. McCabe. 1976. A Complexity Measure. In Proceedings
of the 2Nd International Conference on Software Engineering (ICSE
’76). IEEE Computer Society Press, Los Alamitos, CA, USA, 407–.
h�p://dl.acm.org.flagship.luc.edu/citation.cfm?id=800253.807712

[13] John D. McGregor. 2002. Building Reusable Test Assets for a Product
Line. In Software Reuse: Methods, Techniques, and Tools, Cristina Gacek
(Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 345–346.

[14] Gerard Meszaros. 2006. XUnit Test Patterns: Refactoring Test Code.
Prentice Hall PTR, Upper Saddle River, NJ, USA.

[15] George K. Thiruvathukal, Shilpika, Nicholas J. Hayward, and Kon-
stantin Läufer. 2018. Metrics Dashboard: A Hosted Platform for Soft-
ware Quality Metrics. CoRR abs/1804.02053 (2018). arXiv:1804.02053
h�p://arxiv.org/abs/1804.02053

5

https://github.com/scala/bug/issues/4054
https://github.com/scala/bug/issues/4054
http://site.mockito.org/
https://github.com/scala/bug/issues/10709
https://github.com/scala/bug/issues/10709
https://github.com/scala/collection-strawman
https://github.com/scala/collection-strawman
https://github.com/mockito/mockito-scala
https://github.com/mockito/mockito-scala
https://doi.org/10.1109/MSR.2017.8
https://github.com/loyolachicagocode/stopwatch-android-scala
https://github.com/loyolachicagocode/stopwatch-android-scala
http://lucproglangcourse.github.io
http://dl.acm.org.flagship.luc.edu/citation.cfm?id=800253.807712
http://arxiv.org/abs/1804.02053
http://arxiv.org/abs/1804.02053

	Abstract
	1 Introduction
	2 Case study: Iterator.scanLeft
	3 Auto-generated test spies can help
	4 Conclusions and Future Work
	References

