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ABSTRACT
Given a collection of untrimmed and unsegmented videos, video
corpus moment retrieval (VCMR) is to retrieve a temporal moment
(i.e., a fraction of a video) that semantically corresponds to a given
text query. As video and text are from two distinct feature spaces,
there are two general approaches to address VCMR: (i) to sepa-
rately encode each modality representations, then align the two
modality representations for query processing, and (ii) to adopt
fine-grained cross-modal interaction to learn multi-modal represen-
tations for query processing. While the second approach often leads
to better retrieval accuracy, the first approach is far more efficient.
In this paper, we propose a Retrieval and Localization Network
with Contrastive Learning (ReLoCLNet) for VCMR. We adopt the
first approach and introduce two contrastive learning objectives
to refine video encoder and text encoder to learn video and text
representations separately but with better alignment for VCMR.
The video contrastive learning (VideoCL) is to maximize mutual
information between query and candidate video at video-level. The
frame contrastive learning (FrameCL) aims to highlight the moment
region corresponds to the query at frame-level, within a video. Ex-
perimental results show that, although ReLoCLNet encodes text and
video separately for efficiency, its retrieval accuracy is comparable
with baselines adopting cross-modal interaction learning.1
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1 INTRODUCTION
Video corpus moment retrieval (VCMR) is a domain-specific re-
trieval task. The aim is to retrieve a short fraction in a video, that se-
mantically corresponds to a text query, from a corpus of untrimmed
and unsegmented videos. We use the term VCMR to distinguish
this task from single video moment retrieval (SVMR). As its name
suggests, SVMR is to retrieve a short fraction from a single given
video that corresponds to a text query. In fact, the task of VCMRwas
extended from SVMR by Escorcia et al. [16]. VCMR better matches
real-world application scenarios, such as query-based video surveil-
lance, search, and navigation, within a video corpus.

Video and text are from two feature spaces. In order to perform
query-based video moment retrieval, we need to learn the matching
between query and video from training samples. In general, there
are two approaches, illustrated in Figure 1. One is to encode video
and text separately, and learn the matching through late feature
fusion, known as unimodal encoding [16, 37]. With unimodal en-
coding, the text query is encoded to a 𝑑-dimensional feature vector.
A video is encoded to a sequence of 𝑑-dimensional feature vectors,
where each vector corresponds to a small fraction of the video,
e.g., a few frames. The other is cross-modal interaction learning,
which takes in a video as a sequence of visual features, and the
query as a sequence of word features to learn their interactions [78].
The latter typically leads to better retrieval accuracy as the learned
parameters capture the relevance between query and video at fine-
grained granularity. However, in query evaluation, cross-modal
encoding needs to be performed between query and every video
in corpus (illustrated by “×𝑁 ” in Figure 1), leading to high compu-
tational cost. On the other hand, with unimodal encoding, visual
features can be pre-encoded and stored. In query evaluation, we
only need to encode query and then perform video retrieval and
moment localization. The challenge becomes to refine two separate
encoders during training process, such that the encoded features
are well aligned for accurate retrieval. We follow the unimodal
encoding approach for its high efficiency. As illustrated in Figure 1,
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Figure 1: Two approaches to VCMR: unimodal encoding vs.
cross-modal interaction learning.

for both approaches, video retrieval and moment localization are
performed jointly, i.e., the model is trained with a joint objective.
An earlier study [37] has shown that joint learning outperforms
two-stage learning where video retrieval and moment localization
are treated as two separate subtasks and performed in stages.

The essence of cross-modal interaction is to highlight the rel-
evant and important information from both modalities via co-
attention mechanisms. Meanwhile, contrastive learning [22, 25, 71]
is a strategy to maximize the mutual information (MI) [5, 33] of
positive pairs and to minimize the MI of negative pairs. In our
context, a pair of matching video and query is a positive pair and
a non-matching pair is a negative pair in training. We consider
that both cross-modal interaction learning and contrastive learning
share the same objective of emphasizing the relevant information
of input pairs. Hence, we can apply contrastive learning to refine
encoders in unimodal encoding to achieve similar effectiveness.

In this paper, we develop a Retrieval and Localization Network
(ReLoNet) as a base network to separately encode video and query
representations, and to (late) fuse them for joint retrieval. We then
introduce contrastive learning to ReLoNet to simulate cross-modal
interactions between video and query, and propose ReLoCLNet.
Build on top of ReLoNet, ReLoCLNet is trained with two contrastive
learning objectives: VideoCL and FrameCL. The VideoCL objective
aims to learn video and text features such that the semantically
related videos and queries are close to each other, and far away oth-
erwise. The FrameCL works at frame-level for moment localization,
which simulates fine-grained cross-modal interactions between vi-
sual and textual features within a video. In FrameCL, we regard
the features within target moment as foreground (positive sam-
ples), while the remaining as background (negative samples). Thus,
FrameCL enhances the MI between query and foreground, while
suppresses the MI between query and background. Once trained,
the learned parameters in video encoder and text encoder can be
used to encode video and text features separately and independently.
Accordingly, all videos in a given corpus can be pre-encoded by
the learned video encoder and stored, as illustrated in Figure 1, for
efficient retrieval. Our main contributions are as follows:

• To the best of our knowledge, we are the first to address
the contradiction between high efficiency and high-quality
retrieval in VCMR, by replacing conventional cross-modal
interaction learning with contrastive learning.

• We propose two contrastive learning objectives, VideoCL
and FrameCL, to simulate cross-modal interactions at both
video level and frame level, by measuring the mutual infor-
mation between video and query at different granularity.

• We conduct experiments on two benchmarks to demonstrate
that ReLoCLNet achieves comparable accuracy with cross-
modal interaction learning, with much faster retrieval speed.
On TVR dataset, ReLoCLNet is about 56 times faster.

2 RELATEDWORK
We review related studies on video retrieval, single video moment
retrieval, video corpus moment retrieval, and contrastive learning.

Video Retrieval. Given a text query and a set of candidate videos,
video retrieval (VR) aims to retrieve and rank candidate videos based
on their relevance to the query. Many works [50, 54, 72] jointly
model video and text to map them into two holistic representa-
tions in a joint embedding space. Their similarities are computed
as ranking scores. Venugopalan et al. [64] develop a sequence to se-
quence model for video to text translation and matching. To handle
long text query, hierarchical models [58, 79] are proposed to match
video and text at different scales. Recently, Li et al. [39] present a
text-video matching strategy by using multiple encoders, which
can prevent matching from being dominated by a specific encoder.

Single Video Moment Retrieval. SVMR aims to localize a relevant
temporal moment in an untrimmed video for a given query [18, 29].
This problem has been well studied and many approaches have
been proposed. Ranking-based methods [11, 18, 19, 28, 30, 42, 83]
solve SVMRwith propose-and-rank pipeline. The given video is pre-
segmented into proposals (i.e., video segments) and the proposals
are ranked by their similarities to the query. Anchor-based meth-
ods [8, 66, 75, 84] replace proposal generation process by assign-
ing each frame with multi-scale anchors sequentially. The anchor
(similar to temporal window on video) with highest confidence is
selected as result. Regression-based methods [9, 10, 44, 52, 76, 77] di-
rectly regress temporal times of targetmoment through cross-modal
interactions learning. Span-basedmethods [20, 56, 80, 81] follow the
concept of extractive question answering (QA) [32, 57, 68, 73]. These
methods adopt QA based models to encode multimodal representa-
tions for video and query, and predict start and end boundaries of
target moment directly. There are also studies [6, 23, 24, 67, 69, 70]
formulate SVMR as sequential decision-making problem and design
reinforcement learning methods. Other solutions such as weakly
supervised learning and jointly training with event captioning have
also been explored [10, 41, 51, 58, 65, 69, 82].

Video Corpus Moment Retrieval. Escorcia et al. [16] first extend
SVMR to VCMR, and devise a ranking-based clip-query alignment
model. The model compares query features with uniformly parti-
tioned video clips. Lei et al. [37] construct a new VCMR dataset
named TVR, where the videos come with textual subtitles. The
authors propose a proposal-free cross-modal moment localization



(XML) model to jointly learn video retrieval and moment localiza-
tion objectives. Note that, the “cross-modal” component in XML
conceptually is the same as late feature fusion in unimodal encoding
approach (see Figure 1). In our classification, the XML model falls
under unimodal encoding approach. As a typical cross-modal inter-
action learning approach, Zhang et al. [78] propose a hierarchical
multimodal encoder (HAMMER) to jointly train video retrieval and
moment localization with fine-grained cross-modal interactions
between query and video. Though effective, HAMMER suffers from
low-efficiency and high computational cost. Lastly, Li et al. [38]
develops a video-language model for joint representation learning.
The model is applied on VCMR for fine-tuning purpose only.

Contrastive learning. Contrastive learning (CL) usually serves as
an unsupervised objective to learn representations by contrasting
positive pairs against negative pairs [12, 22, 25, 49, 71, 86]. In our
context, a positive pair is a matching video-query pair, and a nega-
tive pair is a non-matching video and query. One way to achieve
contrastive learning is to directly maximize the mutual information
(MI) [5, 33] between latent representations [2, 31]. There are also
solutions to estimate the lower bounds of MI [4, 53] for unsuper-
vised learning [31, 60, 63]. CL has been applied to vision-language
tasks to learn the joint representations of visual and textual modal-
ities [46, 47, 59]. Miech et al. [47] proposes a MIL-NCE objective to
address the misalignment between text and video clip in narrated
videos for joint representation learning. While MIL-NCE is used for
video-text matching, Luo et al. [46] develops a unified pre-training
model for multimodal understanding and generation.

3 THE ReLoCLNet MODEL
To ensure retrieval efficiency, we follow the unimodal encoding
approach (see Figure 1) and aim to develop video encoder and text
encoder for effective feature encoding separately. To achieve high-
quality retrieval results, we aim to simulate the cross-modal interac-
tion learning to better align the encoded video and text features. To
this end, we introduce contrastive learning to our model. Concep-
tually, contrastive learning and cross-modal interaction learning
share a similar objective of highlighting the relevant information of
input pairs, i.e.,matching video-query pairs in our setting. Different
from cross-modal interaction learning, contrastive learning is only
engaged in the training phase. Once trained, the learned parameters
ensure the alignment between the encoded video features and text
features even though the two features are encoded separately. The
task objective, i.e., video retrieval and moment localization, can
then be easily achieved through late feature fusion.

In this section, we first develop the ReLoNet as a base model,
to separately encode video and query inputs and fuse them for
prediction. Then we design two contrastive learning objectives:
(i) Video-level Contrastive Learning (VideoCL) for video retrieval,
and (ii) Frame-level Contrastive Learning (FrameCL) for moment
localization. During training phrase, VideoCL and FrameCL sim-
ulate the cross-modal interaction to enhance the representation
learning. During inference (i.e., retrieval) phrase, the model sepa-
rately encodes video and query to maintain retrieval efficiency. The
overall architecture of the proposed model is shown in Figure 2.
Next, we formally formulate the research problem, then detail the
components in ReLoNet and ReLoCLNet.

3.1 Problem Formulation
We denote a video corpus asV = {𝑉 1,𝑉 2, . . . ,𝑉𝑀 }, where𝑀 is the
number of videos and 𝑉𝑘 = [𝑓𝑖 ]𝑇−1𝑖=0 represents the 𝑘-th video with
𝑇 frames.2 Given a text query 𝑄 = [𝑞𝑖 ]

𝑛𝑞−1
𝑖=0 , we aim to retrieve

the temporal moment (starting from 𝜏𝑠 and ending at 𝜏𝑒 ) in 𝑉 ∗

that semantically corresponds to 𝑄 from video corpus V . Here 𝑉 ∗

denotes a video that contains the ground truth moment and 𝜏𝑠/𝑒
are the start/end time points of target moment in 𝑉 ∗. Thus, VCMR
has two objectives: (i) video retrieval, i.e., finding 𝑉 ∗ fromV; and
(ii) moment localization, i.e., locating the target moment in 𝑉 ∗.

For words in𝑄 , the initial encoding is obtained from pre-trained
word embeddings or language models as 𝑸 = [𝒒𝑖 ]

𝑛𝑞−1
𝑖=0 ∈ R𝑑𝑤×𝑛𝑞 ,

where 𝑑𝑤 is the word feature dimension. For each video 𝑉 ∈ V ,
we split it into 𝑛𝑣 clip units, and use pre-trained feature extractor
to encode them into visual features 𝑽 = [𝒗𝑖 ]𝑛𝑣−1

𝑖=0 ∈ R𝑑𝑣×𝑛𝑣 , where
𝑑𝑣 is the visual feature dimension. Then, 𝜏𝑠 (𝑒) are mapped to the
corresponding indices 𝑖𝑠 (𝑒) in the visual feature sequence, and the
target moment is represented as 𝒎∗ = {𝒗𝑖 |𝑖 = 𝑖𝑠 , · · · , 𝑖𝑒 }, where
0 ≤ 𝑖𝑠 ≤ 𝑖𝑒 ≤ 𝑛𝑣−1. That is, in term of visual feature space,𝒎∗ may
correspond to a sequence of 𝒗𝑖 ’s of any length within 𝑛𝑣 starting
from any index. The best matching 𝒎∗ can be estimated by:

𝒎∗ = arg max
𝒎∈𝑽 ,𝑽 ∈V

𝑝 (𝒎 |𝑽 ,𝑸)𝑝 (𝑽 |𝑸) (1)

Given 𝑀 videos in V with average video feature length 𝑛𝑣 , the
search space is O(𝑀 × 𝑛2𝑣). It is infeasible to compute 𝒎∗ in such a
large space. Hence, we approximate Eq. 1 by:

𝑽 ∗ = argmax
𝑽

𝑝 (𝑽 |𝑸) and 𝒎∗ ≈ arg max
𝒎∈𝑽 ∗

𝑝 (𝒎 |𝑽 ∗,𝑸) (2)

Eq. 2 is consistent with two objectives of VCMR, e.g., video retrieval
and moment localization. The search space reduces to O(𝑀 +𝑀 ′ ×
𝑛2𝑣), where 𝑀 ′ is the top-𝑀 ′ retrieved videos (𝑀 ′ ≪ 𝑀) from the
video corpus. In addition to visual features, a video may contain
its own multi-modality features, such as subtitle and audio. For
instance, videos in TVR dataset [37] come with subtitles. We denote
the subtitle of a video by 𝑆 , and the features extracted from subtitle
by 𝑺 ∈ R𝑑𝑤×𝑛𝑣 . For easy presentation, we assume all videos come
with subtitles and simply use “video” to refer “video + subtitle”.

3.2 Query Encoder
The structure of query encoder is shown in Figure 2. Given a text
query 𝑄 with 𝑛𝑞 words, we first apply textual feature extractor to
covert words in the query to corresponding features𝑸 = [𝒒𝑖 ]

𝑛𝑞−1
𝑖=0 ∈

R𝑑𝑤×𝑛𝑞 . Then we project the obtained features into dimension 𝑑
with a feed-forward layer as 𝑸̂ =𝑾𝑞 ·𝑸 +𝒃𝑞 ∈ R𝑑×𝑛𝑞 , where𝑾𝑞 ∈
R𝑑×𝑑𝑤 and 𝒃𝑞 ∈ R𝑑 are the learnable weight and bias, respectively.

Positional embedding is incorporated to each feature of the query
sequence 𝑸̂ before they are fed to the transformer blocks [62].
We adopt the transformer block to better capture the contextual
representations of the query, for its proven effectiveness [9, 44,
81]. Specifically, the transformer block consists of a multi-head
attention layer and a feed-forward layer. Residual connection [26]
and layer normalization [1] strategies are applied to each layer in

2Videos in V could be of different lengths; we simply use𝑇 to represent the length
(in number of frames) of an arbitrary video.
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the transformer block. The encoded contextual representations of
the query after the transformer block become ˜𝑸 .

˜𝑸 = Transformer𝑞 (𝑸̂) (3)

We use two transformer blocks in the query encoder. Then we apply
additive attention mechanism [3] to compute the attention scores of
each query word. The scores computed are utilized to aggregate the
information of ˜𝑸 = [𝒒̃0, 𝒒̃2, . . . , 𝒒̃𝑛𝑞−1] to compute the modularized
query vector, i.e., the sentence representation of ˜𝑸 :

𝜶𝑞 = Softmax
(
𝑾𝑚,𝛼 · ˜𝑸)

)
∈ R𝑛𝑞 , 𝒒𝑚 =

𝑛𝑞−1∑︁
𝑖=0

𝛼
𝑞

𝑖
× 𝒒𝑖 ∈ R𝑑 (4)

where 𝒒𝑚 ∈ R𝑑 denotes the modularized query vector.𝑚 ∈ {𝑣, 𝑠}
means two modularized query vectors, 𝒒𝑣 and 𝒒𝑠 , are computed for
matching with visual and subtitle features, respectively. Both 𝒒𝑣
and 𝒒𝑠 are 𝑑-dimensional vectors as shown in Figure 2. If the videos
to be retrieved do not contain subtitles, then only 𝒒𝑣 is computed.

3.3 Video Encoder
We detail the video encoder with the assumption that the videos
come with subtitles, as shown in Figure 2. Given a video with its
subtitle, we first use visual and textual feature extractors to obtain
the corresponding visual and subtitle features 𝑽 ∈ R𝑑𝑣×𝑛𝑣 and
𝑺 ∈ R𝑑𝑤×𝑛𝑣 , respectively. Then both 𝑽 and 𝑺 are projected into
dimension 𝑑 with two feed-forward layers as 𝑽̂ = 𝑾𝑣 · 𝑽 + 𝒃𝑣 ∈
R𝑑×𝑛𝑣 and 𝑺 =𝑾𝑠 ·𝑺 +𝒃𝑠 ∈ R𝑑×𝑛𝑣 , where𝑾𝑣 ∈ R𝑑×𝑑𝑣 and 𝒃𝑣 ∈ R𝑑
are the weight and bias for video feed-forward layer;𝑾𝑠 ∈ R𝑑×𝑑𝑤
and 𝒃𝑠 ∈ R𝑑 are the weight and bias for subtitle feed-forward layer.

Similar to the query encoder, we add positional embeddings to
both 𝑽̂ and 𝑺 , and feed them to the transformer block. The encoded
contextual representations for video and subtitle are:

˜𝑽 = Transformer𝑣 (𝑽̂ ), ˜𝑺 = Transformer𝑠 (𝑺) (5)

where˜𝑽 ∈ R𝑑×𝑛𝑣 and˜𝑺 ∈ R𝑑×𝑛𝑣 .
Different from the query encoder, we do not use two transformer

blocks here. Instead, after the first transformer blocks, we use co-
attentional transformer blocks [37, 45, 61, 85]. Because the visual

content in a video and its subtitle are well aligned, through co-
attentional transformers, we are able to better capture the cross-
modal representations of video and subtitle within a video. Given
˜𝑽 and˜𝑺 , the cross-modal representations are encoded as:

𝑯 ′
𝑣 = Co-Transformer𝑣𝑠 (˜𝑽 , ˜𝑺)

𝑯 ′
𝑠 = Co-Transformer𝑠𝑣 (˜𝑺, ˜𝑽 )

(6)

where 𝑯 ′
𝑣 ∈ R𝑑×𝑛𝑣 and 𝑯 ′

𝑠 ∈ R𝑑×𝑛𝑣 are the learned cross-modal
representations of video and subtitle, respectively.

Finally, we refine the encoded cross-modal representations of
𝑯 ′
𝑣 and 𝑯 ′

𝑠 with standard transformer blocks by learning the self-
attentive contexts, respectively. The final output is calculated as:

𝑯𝑣 = Transformer𝑣 (𝑯 ′
𝑣), 𝑯𝑠 = Transformer𝑠 (𝑯 ′

𝑠 ) (7)

where 𝑯𝑣 ∈ R𝑑×𝑛𝑣 and 𝑯𝑠 ∈ R𝑑×𝑛𝑣 are the final output represen-
tations of video and subtitle, respectively.

If videos do not come with subtitles, then the feature encoding
pipeline for subtitle will be removed. Accordingly, the co-attentional
transformer becomes the standard transformer, and the final output
is 𝑯𝑣 only.

3.4 Video Retrieval Module
Through query encoding, a query is encoded to two 𝑑-dimensional
vectors 𝒒𝑚 ∈ R𝑑 ,𝑚 ∈ {𝑣, 𝑠}, for matching with visual and subtitle
features from a video. Recall that, with video encoding, each video
is encoded to 𝑯𝑚 = [𝒉0𝑚,𝒉2𝑚, . . . ,𝒉

𝑛𝑣−1
𝑚 ] ∈ R𝑑×𝑛𝑣 , i.e., a sequence

of 𝒉𝑚 ’s each represents two 𝑑-dimensional vectors for visual and
subtitle features extracted from a small fraction of a video.

We estimate the matching between the query and a video by co-
sine similarities computed on 𝒒𝑚 and 𝑯𝑚 , i.e., a simple late feature
fusion. Specifically, we compute the cosine similarities between 𝒒𝑚
and each element of 𝑯𝑚 as:

𝝋𝑚 = norm(𝑯⊤
𝑚) · norm(𝒒𝑚) (8)

where𝑚 ∈ {𝑣, 𝑠}, 𝝋𝑚 ∈ R𝑛𝑣 , and norm denotes the 𝑙2 normalization
operation. Then we select the maximum score in 𝝋𝑚 to represent
the matching between query and video:

𝜑𝑚 = max(𝝋𝑚) = max( [𝜑0𝑚, 𝜑1𝑚, . . . , 𝜑
𝑛𝑣−1
𝑚 ]) (9)



where 𝜑𝑚 is a scalar. If videos come with subtitles, then 𝜑 = 1
2 (𝜑𝑣 +

𝜑𝑠 ), otherwise 𝜑 = 𝜑𝑣 .
We adopt the hinge loss as training objective for video retrieval,

similar to [15, 17, 37, 74]. We first sample two sets of negative pairs
{(𝑄−

𝑖
,𝑉 )}𝑁

𝑖=1 and {(𝑄,𝑉 −
𝑖
)}𝑁

𝑖=1 for each positive pair (𝑄,𝑉 ), where
𝑄− and𝑉 − denote the negative (i.e., non-matching) query and video,
respectively.3 Suppose the computed similarity scores of both sets
of negative pairs are 𝝋 ′ and 𝝋 ′′, the hinge loss is calculated as:

L𝑉𝑅 = max(0,Δ+ 1
𝑁

∑︁
𝝋 ′−𝜑) +max(0,Δ+ 1

𝑁

∑︁
𝝋 ′′−𝜑) (10)

where Δ is the pre-defined margin value and we set Δ = 0.1.

3.5 Moment Localization Module
For efficiency purpose, moment localization is also computed based
on the encoded query features 𝒒𝑚 and video features 𝑯𝑚 , through
late feature fusion, following [37, 40]. Specifically, 𝒒𝑚 is further
encoded with a feed-forward layer as 𝒒′𝑚 = 𝑾𝑚 · 𝒒𝑚 + 𝒃𝑚 ∈ R𝑑 .
Then we compute video-query similarity scores as:

S𝑚𝑞 = 𝑯⊤
𝑚 · 𝒒′𝑚 ∈ R𝑛𝑣 , where 𝑚 ∈ {𝑣, 𝑠} (11)

Again, if subtitle is available, S = 1
2 (S𝑣𝑞 + S𝑠𝑞), otherwise S =

S𝑣𝑞 . The start and end scores for target moment are generated by
convolutional start-end boundary predictor [37]:

Sstart = Conv1Dstart (S), Send = Conv1Dend (S) (12)

where Sstart/end ∈ R𝑛𝑣 . Then, the probability distributions of start
and end boundaries are computed by:

𝑷start = Softmax(Sstart), 𝑷end = Softmax(Send) (13)

For a video-query pair, the predicted start and end boundaries of
the target moment are derived by maximizing the joint probability:

(𝑖𝑠 , 𝑖𝑒 ) = arg max
𝑎𝑠 ,𝑎𝑒

𝑷start (𝑎𝑠 ) × 𝑷end (𝑎𝑒 )

𝑃𝑠𝑒 = 𝑷start (𝑖𝑠 ) × 𝑷end (𝑖𝑒 )
(14)

where 0 ≤ 𝑖𝑠 ≤ 𝑖𝑒 ≤ 𝑛𝑣 − 1, and 𝑃𝑠𝑒 is the score of best boundaries
(𝑖𝑠 , 𝑖𝑒 ). The training objective of moment localization is:

L𝑀𝐿 =
1
2
×

(
𝑓XE (𝑷start, 𝒀start) + 𝑓XE (𝑷end, 𝒀end)

)
(15)

where 𝑓XE is the cross-entropy function, 𝒀start and 𝒀end are one-hot
labels for start (𝑖𝑠 ) and end (𝑖𝑒 ) boundaries of the ground truth
moment, respectively.

We now have the full picture of the base architecture ReLoNet
with four modules: query encoder (Section 3.2), video encoder (Sec-
tion 3.3), video retrieval and moment localization modules (Sec-
tions 3.4 and 3.5). Next, we incorporate contrastive learning objec-
tives into ReLoNet to develop ReLoCLNet.

3.6 Video and Frame Contrastive Learning
In ReLoNet, video retrieval and moment localization are fully based
on the encoded query features 𝒒𝑚 and video features 𝑯𝑚 . They
are both computed by simple late future fusion. Quality of the final
moment retrieval hence heavily relies on the effectiveness of the
two separate encoders, query encoder and video encoder.

3We simply use𝑉 to represent a video with its subtitle if available.

In ReLoCLNet, we aim to guide the two encoders to simulate
cross-modal interaction learning in the training phase. To this end,
we introduce two contrastive learning objectives, VideoCL and
FrameCL. VideoCL guides the two encoders to better distinguish
matching video-query pairs from non-matching pairs. FrameCL
guides the two encoders to better distinguish the matching moment
to the query from the non-matching moments.

3.6.1 Video Contrastive Learning (VideoCL). VideoCL guides the
encoders to learn a joint feature space where the semantically
related videos and queries are close to each other, and far away
otherwise. In other words, VideoCL aims to reduce the distance of
matching video-query pairs, and to increase the distance of non-
matching pairs, in the joint feature space.

We encode the latent representation of video 𝑯 ′
𝑚 ∈ R𝑑×𝑛𝑣 from

Eq. 6 (illustrated as 𝑯 ′
𝑣 and 𝑯 ′

𝑠 in Figure 2) into its modularized
video representation 𝒄𝑚 . Similar to modular component in query
encoder, we adopt additive attention mechanism to compute 𝒄𝑚 :

𝜶𝑚 = Softmax
(
𝑾𝑚,𝛼 · 𝑯 ′

𝑚

)
∈ R𝑛𝑣 , 𝒄𝑚 =

𝑛𝑣−1∑︁
𝑖=0

𝛼𝑚𝑖 × 𝒉′𝑚,𝑖 (16)

where 𝒄𝑚 ∈ R𝑑 ,𝑾𝑚,𝛼 ∈ R1×𝑑 and𝑚 ∈ {𝑣, 𝑠}.
Given a set of positive (i.e., matching) video-query pairs P =

{(𝒄𝑚, 𝒒𝑚)} and the sampled set of negative (i.e., non-matching)
video-query pairs N = {(𝒄 ′𝑚, 𝒒′𝑚)}, we adopt the noise-contrastive
estimation (NCE) [21, 34, 47, 59] to compute the VideoCL score:

I𝑒
𝑚 = log

( ∑
(𝒄𝑚,𝒒𝑚) ∈P

𝑒 𝑓 (𝒄𝑚)⊤ ·𝑔 (𝒒𝑚)∑
(𝒄𝑚,𝒒𝑚) ∈P

𝑒 𝑓 (𝒄𝑚)⊤ ·𝑔 (𝒒𝑚) + ∑
(𝒄′𝑚,𝒒′

𝑚)∼N
𝑒 𝑓 (𝒄

′
𝑚)⊤ ·𝑔 (𝒒′

𝑚)

)
(17)

where the exponential term, 𝑒 𝑓 (𝒄)
⊤ ·𝑔 (𝒒) , computes the mutual infor-

mation (MI) between 𝒄 and 𝒒. 𝑓 (·) and 𝑔(·) denote the parametrized
mappings, which project video and query representations into the
same embedding space. Again, I𝑒 = 1

2 (I
𝑒
𝑣 + I𝑒

𝑠 ) if subtitle is avail-
able, otherwise I𝑒 = I𝑒

𝑣 .
The objective of NCE is to optimize max𝑓 ,𝑔 (I𝑒 ), which is equiv-

alent to maximizing the ratio of the summed MI’s of all samples
in P and the summed MI’s of all samples in N [47]. The loss of
VideoCL is defined as:

L𝑉𝑖𝑑𝑒𝑜𝐶𝐿 = −I𝑒 (18)

3.6.2 Frame Contrastive Learning (FrameCL). FrameCL focuses on
moment localization within a given pair of video-query, where
the video retrieval module predicts the video contains a matching
moment to the query. We regard the video features that reside
within boundaries of the target moment as foreground or positive
samples, and the rest as background or negative samples. Then
we compute the contrastive loss by measuring MI between the
query and the positive/negative video features. For this purpose,
we utilize a discriminative approach based on mutual information
maximization [31, 63].

The structure of FrameCL module is shown in Figure 3. The
inputs 𝑯 ′

𝑣 , 𝑯 ′
𝑠 , 𝒒𝑣 , and 𝒒𝑠 are outputs illustrated in Figure 2. Given

the latent representation of video 𝑯 ′
𝑚 ∈ R𝑑×𝑛𝑣 , we first split it into

two parts by boundaries of target moment. The positive/foreground
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Figure 3: Structure of the FrameCL module.

video features are 𝑯 ′
𝑚,𝐹

= {𝒉′
𝑚,𝑖

|𝑖 = 𝑖𝑠 , . . . , 𝑖𝑒 } ∈ R𝑑×𝑛𝑡 , which are
features within the target moment.4 The negative/background fea-
tures 𝑯 ′

𝑚,𝐵
= {𝒉′

𝑚,𝑖
|𝑖 = 0, . . . , 𝑖𝑠 −1, 𝑖𝑒 +1, . . . , 𝑛𝑣−1} ∈ R𝑑×(𝑛𝑣−𝑛𝑡 ) ,

are not in the target moment.
With query representation 𝒒𝑚 , foreground representation 𝑯 ′

𝑚,𝐹
,

and background representation𝑯 ′
𝑚,𝐵

, our goals are to maximize the
MI between the query and the foreground, as well as to minimize
the MI between the query and the background. Since MI estimation
is in general intractable for continuous and random variables, we
choose to maximize the value over lower bound estimators of MI,
through Jensen-Shannon MI estimator [31] as:

I𝑎
𝑚 = E𝑯 ′

𝑚,𝐹

[
− sp

(
− C𝜃 (𝒒,𝑯 ′

𝑚,𝐹 )
) ]

− E𝑯 ′
𝑚,𝐵

[
sp

(
C𝜃 (𝒒,𝑯 ′

𝑚,𝐵)
) ]
(19)

where sp(𝑥) = log(1+𝑒𝑥) is the Softplus activation. C𝜃 : 𝑑×𝑑 → R
refers to a discriminator. Similarly, I𝑎 = 1

2 (I
𝑎
𝑣 + I𝑎

𝑠 ) if subtitle is
available, otherwise I𝑎 = I𝑎

𝑣 . The contrastive loss of FrameCL is:

L𝐹𝑟𝑎𝑚𝑒𝐶𝐿 = −I𝑎 (20)

Note that, both VideoCL and FrameCL are training objectives,
and their losses are used to update video and query encoders. Al-
though the two objectives are designed for video retrieval and
moment localization respectively, they mutually affect each other,
because both video and query encoders are adjusted based on the
loss from both VideoCL and FrameCL, together with other losses.

3.7 Training and Inference
The overall training loss for ReLoCLNet is:

L = 𝜆1 ×L𝑉𝑅 +𝜆2 ×L𝑀𝐿 +𝜆3 ×L𝑉𝑖𝑑𝑒𝑜𝐶𝐿 +𝜆4 ×L𝐹𝑟𝑎𝑚𝑒𝐶𝐿 (21)

𝜆𝑖 ’s are hyperparameters to balance the contribution of each loss.
We set 𝜆1 = 1.0 and 𝜆2,3,4 = 0.01 to keep all losses at the same order
of magnitude i.e., equal contributions from the four components.
Note that each video contains a large number of candidate moments.

During inference for VCMR, given a text query and a video
corpus with 𝑀 videos, we first use Eq. 8 and 9 to compute the
similarity between the query and each of the𝑀 videos, leading to
𝝋 = [𝜑1, 𝜑2, . . . , 𝜑𝑀 ]. The top-𝐾 most relevant videos are retrieved

4𝑛𝑡 = 𝑖𝑒 − 𝑖𝑠 + 1, and it denotes the length of target moment.

Table 1: The hyper-parameters for TVR and ANetCaps

Hyperparameter Name TVR ANetCaps
𝑛𝑣 (max video sequence) 128
𝑛𝑞 (max query sequence) 30 64
𝑑𝑣 (visual feature dim) 3072 2048(ResNet)+1024(I3D) 1024 (I3D)

𝑑𝑤 (word feature dim) 768 (RoBERTa) 300 (GloVe)

𝑑 (hidden size) 384
𝛾 30 20
# negative samples in VR: 10 Optimizer: AdamW [14]
Dropout rate: 0.1 Weight decay rate: 0.01 Batch size: 128
Learning rate (lr): 0.0001 lr warmup proportion: 0.01
Early stop tolerance: 10 # total training epochs: 100

based on 𝝋 (𝐾 = 100 in our implementation). For each retrieved
video, we compute the scores of a few candidate predicted moments
by Eq. 14. Let 𝑃𝑠𝑒 be the score of one predicted moment in the video.
The final VCMR score is computed by:

𝛿 = 𝑃𝑠𝑒 × 𝑒𝛾 ·𝜑 (22)

The exponential term and the hyperparameter 𝛾 are used to balance
the importance of video retrieval and moment localization scores.

4 EXPERIMENTS
4.1 Datasets and Evaluation Metrics
We conduct experiments on two benchmark datasets: ActivityNet
Captions [36] and TVR [37]. ActivityNet Captions (ANetCaps)
contains around 20K videos taken from the ActivityNet [27] dataset.
The average video duration is about 120 seconds, the average query
length is around 14.78 words, the average moment duration is about
36.18 seconds, and each video contains 3.68 annotations on average.
This dataset is originally designed for SVMR task, then adapted
to VCMR by Escorcia et al. [16]. We follow the setup in [16, 78]
with 10, 009 and 4, 917 videos (i.e., 37, 421 and 17, 505 annotations)
for train and test, respectively. TVR is collected by Lei et al. [37],
which contains 21.8K videos and 109K queries in total. The average
video duration is 76.2 seconds, the query contains 13.4 words on
average, the average moment duration is 9.1 seconds, and each
video contains 5 annotations on average. We follow Zhang et al.
[78] with 17, 435 and 2, 179 videos for train and test, respectively.
Same as Lei et al. [37] and Zhang et al. [78], we utilize both video
and subtitle features in the TVR dataset for train and test.

We evaluate the models for the VCMR task as well as its two sub-
tasks: video retrieval (VR) and SVMR. For VR, we use “Recall@𝑘”
(𝑘 ∈ {1, 5, 10, 100}) as the evaluation metric following [37, 78]. Note
that we do not use “Precision@𝑘” because each query only cor-
responds to one ground truth video, in both datasets. For SVMR
and VCMR, we use “Recall@𝑘, IoU=𝜇” as the evaluation metric,
which denotes the percentage of test samples that have at least
one predicted moment whose intersection over union (IoU) with the
ground-truth moment is larger than 𝜇 in the top-𝑘 predictions. We
set 𝑘 ∈ {1, 10, 100} and 𝜇 ∈ {0.5, 0.7}. A prediction is correct if (i)
the predicted video matches the ground truth video, and (ii) the
predicted moment has high overlap with the ground truth moment,
where temporal IoU is used to measure the overlap [37].



Table 2: Results of VCMR on TVR and ANetCaps datasets

Dataset Method Recall@𝑘, IoU = 0.5 Recall@𝑘, IoU = 0.7
R1 R10 R100 R1 R10 R100

TV
R

XML [37] - - - 2.62 9.05 22.47
HERO [38] - - - 2.98 10.65 18.25
FLAT [78] 8.45 21.14 30.75 4.61 11.29 16.24
HAMMER [78] 9.19 21.28 31.25 5.13 11.38 16.71
ReLoNet 5.46 16.65 35.08 2.71 9.37 22.87
ReLoCLNet 8.03 21.37 44.10 4.15 14.06 32.42

A
N
et
Ca

ps

MCN [30] 0.02 0.18 1.26 0.01 0.09 0.70
CAL [16] 0.21 1.32 6.82 0.12 0.89 4.79
FLAT [78] 2.57 13.07 30.66 1.51 7.69 17.67
HAMMER [78] 2.94 14.49 32.49 1.74 8.75 19.08
ReLoNet 2.16 9.96 24.54 1.26 5.64 17.43
ReLoCLNet 3.09 11.28 25.95 1.82 6.91 18.33

Table 3: Retrieval efficiency on the TVR dataset

Method Retrieval Efficiency
Total Time Average Per Query

XML [37] 39.34 seconds 3.61 milliseconds
HAMMER [78] 2, 378.67 seconds 218.33 milliseconds
ReLoNet 42.07 seconds 3.86 millisecondsReLoCLNet

4.2 Implementation Details
For ANetCaps, we use I3D [7] pre-trained on Kinetics dataset [35]
as the visual feature extractor following Zhang et al. [78], and adopt
GloVe embeddings [55] as the textual feature extractor for query
words. For TVR, we directly use the visual and textual features
provided by Lei et al. [37]. The visual feature is the concatenation
of appearance feature extracted by ResNet152 [26] pre-trained on
ImageNet [13] and temporal feature extracted by I3D. The textual
feature of query and subtitle is extracted by 12-layer pre-trained
RoBERTa [43]. The negative sets of video retrieval and VideoCL
modules are sampled within each mini-batch during training. The
hyperparameters are summarized in Table 1. Other hyperparame-
ters are given when describing the corresponding model compo-
nents. Our model is implemented in PyTorch 1.7.0with CUDA 11.1
and cudnn 8.0.5. All experiments are conducted on a workstation
with dual NVIDIA GeForce RTX 3090 GPUs.

4.3 Performance Comparison
We compare our models with MCN [30], CAL [16], XML [37],
HERO [38], FLAT [78] and HAMMER [78]. Among them, MCN,
CAL, XML, and HERO follow unimodal encoding approaches, while
FLAT and HAMMER belong to cross-modal interaction learning
approaches (see Figure 1). FLAT is a variant of HAMMER without
using hierarchical structure. In all tables, results of the compared
models are reported in their corresponding papers.5 The best results
are in boldface and the second bests are in italic.
5Two sets of results are reported for HERO in [38], with and without large-scale pre-
training. We choose the version without pre-training as all other models compared
here do not use pre-training.

Table 4: Results of VR subtask on TVR and ANetCaps datasets

Dataset Method Recall@𝑘
𝑘 = 1 𝑘 = 5 𝑘 = 10 𝑘 = 100

TVR

MCN [30] 0.05 0.38 0.66 3.59
CAL [16] 0.28 1.02 1.68 8.55
MEE [48] 7.56 20.78 29.88 73.07
XML [37] 16.54 38.11 50.41 88.22
ReLoNet 16.96 39.28 51.34 88.46
ReLoCLNet 22.13 45.85 57.25 90.21

ANetCaps

FLAT [78] 5.37 - 29.14 71.64
HAMMER [78] 5.89 - 30.98 73.38
ReLoNet 7.02 24.42 35.24 78.08
ReLoCLNet 9.64 28.02 40.26 79.13

Table 5: Results of SVMR subtask on TVR and ANetCaps datasets

Dataset Method Recall@1, IoU = 𝜇

𝜇 = 0.3 𝜇 = 0.5 𝜇 = 0.7

TVR

MCN [30] - 13.08 5.06
CAL [16] - 12.07 4.68
ExCL [20] - 31.34 14.19
XML [37] - 30.75 13.41
ReLoNet 48.14 29.49 13.13
ReLoCLNet 49.87 31.88 15.04

ANetCaps

FLAT [78] 57.58 39.60 22.59
HAMMER [78] 59.18 41.45 24.27
ReLoNet 39.27 23.67 14.55
ReLoCLNet 42.65 28.54 17.76

The results of VCMR on TVR and ANetCaps datasets are re-
ported in Table 2. On TVR dataset, ReLoNet is comparable to XML
with slightly better performance. ReLoCLNet outperforms all base-
lines over Recall@10 and Recall@100 metrics. Observe that the
performance of ReLoCLNet is lower than FLAT and HAMMER over
Recall@1. Since both FLAT and HAMMER adopt fine-grained cross-
modal interaction learning, they are more adequate to align video
and query for precise moment retrieval. Compared with ReLoNet,
ReLoCLNet achieves significant improvements over all evaluation
metrics, which demonstrate the effectiveness of the proposed con-
trastive learning objectives.

On ANetCaps dataset, ReLoNet surpasses the ranking-based
methods, MCN and CAL, by large margins over all evaluation met-
rics. Similarly, ReLoCLNet is superior to ReLoNet thanks to the
contrastive learning components. Compared with FLAT and HAM-
MER, ReLoCLNet outperforms both over Recall@1 but is poorer
over Recall@10 and Recall@100. This observation is contrary to
that on TVR dataset. Recall that FLAT and HAMMER adopt cross-
modal interactions learning between video and query, and we have
separate encoders for video and query. In addition, FLAT and HAM-
MER utilize pre-trained RoBERTa to extract textual features for
query, while we simply adopt GloVe embeddings. All these con-
tribute the differences between our results and that of FLAT and
HAMMER. Overall, we consider ReLoCLNet achieves comparable
effectiveness with FLAT and HAMMER.



Table 6: The effects of different objectives on TVRdataset (VR=VideoRetrieval, ML=Moment Localization, VideoCL=VideoContrastive Learn-
ing, and FrameCL=Frame Contrastive Learning)

Objective VCMR VR SVMR
Recall@𝑘, IoU=0.5 Recall@𝑘, IoU=0.7 Recall@𝑘 Recall@𝑘, IoU=0.5 Recall@𝑘, IoU=0.7

VR ML VideoCL FrameCL 1 10 100 1 10 100 1 10 100 1 10 100 1 10 100
✔ ✘ ✘ ✘ - - - - - - 16.23 49.33 87.38 - - - - - -
✘ ✔ ✘ ✘ - - - - - - - - - 30.21 59.81 83.43 13.91 41.55 68.51
✔ ✔ ✘ ✘ 5.46 16.65 35.08 2.71 9.37 22.87 16.96 51.34 88.46 29.49 54.06 75.89 13.13 35.46 58.84
✔ ✔ ✔ ✘ 6.63 18.16 39.69 3.24 11.78 27.69 20.69 55.70 89.71 29.52 57.32 78.65 13.76 38.26 64.27
✔ ✔ ✘ ✔ 7.21 20.04 42.45 3.75 12.77 30.32 19.81 54.38 88.96 31.75 62.20 85.99 14.73 44.60 71.44
✔ ✔ ✔ ✔ 8.03 21.37 44.10 4.15 14.06 32.42 22.13 57.25 90.21 31.88 63.89 86.67 15.04 45.24 72.12

Figure 4: Recall@1 and Recall@10 of VCMR on TVR dataset
over different IoU thresholds.

Figure 5: Recall@1 and Recall@10 of SVMR on TVR dataset
over different IoU thresholds.

Figure 6: Recall@𝐾 of VR on TVR dataset over different 𝐾 .

4.4 Retrieval Efficiency and Ablation Study
In this section, we compare retrieval efficiency and perform in-
depth ablation studies. We study the performance of our models on
VR and SVMR subtasks, and the effects of different components.

4.4.1 Retrieval Efficiency. We consider VCMR in the validation set
of TVR dataset containing 2, 179 videos with 10, 895 queries. The
retrieval efficiency is summarized in Table 3. The time spent on
data pre-processing and feature extraction by pre-trained extractor
are not counted since the same process applies to all methods. We
used the XML code released by the authors, and re-implemented
HAMMER according to their paper as its code is not released. Ob-
serve that the retrieval efficiency of our models are comparable

to XML, and our models are far more efficient than HAMMER.
Although HAMMER performs better on more strict metrics (e.g.,
Recall@1, IoU=0.7), our models are around 56.71 times faster than
HAMMER in retrieval. Note that, ReLoCLNet and ReLoNet have the
same retrieval efficiency, because neither VideoCL nor FrameCL
introduces additional parameters; and all additional computations
of ReLoCLNet happen in training stage.

4.4.2 Video Retrieval Subtask. Table 4 reports the results on TVR
and ANetCaps datasets. Observe that ReLoNet performs slightly
better than XML on TVR, and significantly better than HAMMER
on ANetCaps. ReLoCLNet outperforms all baselines by large mar-
gins on both datasets. In particular, ReLoCLNet achieves 5.59%
improvement in Recall@1 comparing with XML on TVR dataset.
On ANetCaps dataset, ReLoCLNet obtains 9.64% absolute score in
Recall@1, compared with 5.89% of HAMMER.

4.4.3 Single Video Moment Retrieval Subtask. The results of SVMR
on both datasets are reported in Table 5. On TVR, ReLoCLNet
achieves best performance, and obtains significant improvements
against ReLoNet. Compared with ExCL, ReLoCLNet only outper-
forms by a small margin. ExCL is specially designed for SVMR,
with fine-grained cross-modal interactions learning. On ANetCaps,
ReLoCLNet is superior to ReLoNet by large margins, which again
shows the effectiveness of contrastive learning. However, ReLo-
CLNet performs worse than FLAT and HAMMER. Because both
FLAT and HAMMER inherit their architectures designed for SVMR,
which contain sophisticated and computational expensive cross-
modal interactions for high-quality moment retrieval. In contrast,
ReLoCLNet only relies on simple late fusion of separately encoded
query and video features.

4.4.4 Analysis on the Learning Objectives. Table 6 reports the con-
tributions of different training objectives on TVR dataset. Note
ReLoNet equals to VR+ML objectives, and ReLoCLNet is with all
the four objectives. We first analyze the video retrieval (VR) and
moment localization (ML) objectives. ReLoNet jointly trains VR and
ML objectives for the VCMR task. Comparing VR with ReLoNet,
the performance of ReLoNet on video retrieval is slightly better
than that of VR, which means the ML objective also contributes
to refine video retrieval learning process. In contrast, compared
to ML only, ReLoNet underperforms ML on moment localization
with marginal performance degradation, which implies that VR
objective has negligible negative impact on moment localization.
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Query: He takes the pasta out of the pot and puts it in a strainer.

Figure 7: Visualization of moment localization predictions by ReLoNet, ReLoCLNet, and ReLoNet with VideoCL or FrameCL,
for two queries on ANetCaps dataset.

Now we analyze the effects of VideoCL and FrameCL objectives.
Observe that VideoCL contributes to performance improvements
on both VCMR and VR, while it achieves marginal improvements
on SVMR. Recall that VideoCL adopts noise-contrastive estimation
to enlarge the similarities of matched video-query pairs, and re-
duce similarities between unpaired videos and queries; this is in line
with video retrieval objective. Thus, it is beneficial to video retrieval
learning. ReLoNet with FrameCL outperforms ReLoNet on all the
three tasks. FrameCL aims to distinguish the matching moment
from non-matching moment within a video. In this case, FrameCL
guides the model to search for boundaries of target moment for pre-
cise moment localization. In fact, the matching between query and
video is largely based on the matching moment in the video. In this
sense, by highlighting matching moment, FrameCL does contribute
to video retrieval task as well. Combining VideoCL and FrameCL,
ReLoCLNet further boosts the performances on all three tasks by
incorporating the advantages of both VideoCL and FrameCL.

4.5 Qualitative Analysis
Figure 4 plots Recall@1 and Recall@10 of VCMR performances on
TVR dataset over different IoU thresholds. We evaluate 9 different
IoU(𝜇) values, from 0.1 to 0.9. ReLoCLNet consistently outperforms
ReLoNet, and relative performance improvements of ReLoCLNet
are larger under more strict metrics. For instance, compared with
ReLoNet, ReLoCLNet achieves 47.07% relative gains (8.03 vs 5.46)
in Recall@1, IoU=0.5 versus 28.35% relative gains (21.37 vs 16.65)
in Recall@10, IoU=0.5.

Figure 5 plots Recall@1 and Recall@10 of SVMR over different
IoU thresholds, and similar observations hold on this task. Fig-
ure 6 plots the video retrieval (VR) results of ReLoNet and ReLo-
CLNet over different recall thresholds on TVR dataset. Similarly,
ReLoCLNet surpasses ReLoNet over all thresholds, and the relative
performance improvement ratio is larger under more strict metrics.

Finally, we show two retrieval examples in Figure 7 from ANet-
Caps dataset. The figure shows the predicted moments by ReLo-
CLNet and ReLoNet+FrameCL are closer to ground truth than that
by ReLoNet and ReLoNet+VideoCL, which demonstrates the effec-
tiveness of FrameCL module. Note FrameCL is designed to max-
imize the mutual information between query and frames within
the target moment, and to minimize the MI between the query and
frames outside target moment. With FrameCL, the model is guided
to search for the boundaries within the region of target moment.

5 CONCLUSION
In this paper, we propose a Retrieval and Localization Network
with Contrastive Learning (ReLoCLNet) for video corpus moment
retrieval (VCMR) task. Specifically, we introduce two contrastive
learning objectives (VideoCL and FrameCL) on top of a unimodal
encoding approach, ReLoNet, to address the contradiction between
retrieval efficiency and retrieval quality. The VideoCL objective
guides the video and query encoders to shorten the distance of
matching videos and queries while enlarge the non-matching pairs.
The FrameCL objective works at frame-level to simulate the fine-
grained cross-modal interactions between visual and textual fea-
tures within a video. Through extensive experimental studies, we
show that ReLoCLNet addresses VCMR with high efficiency, and
its retrieval accuracy is comparable with state-of-the-art methods
which are much costly in terms of computation. Compared with
the expensive cross-model interaction learning, we show that uni-
modal encoding with contrastive learning is a promising direction
to explore for video corpus moment retrieval.
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