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ABSTRACT
In recent years, inductive graph embedding models, viz., graph
neural networks (GNNs) have become increasingly accurate at
link prediction (LP) in online social networks. The performance
of such networks depends strongly on the input node features,
which vary across networks and applications. Selecting appropri-
ate node features remains application-dependent and generally
an open question. Moreover, owing to privacy and ethical issues,
use of personalized node features is often restricted. In fact, many
publicly available data from online social network do not contain
any node features (e.g., demography). In this work, we provide a
comprehensive experimental analysis which shows that harness-
ing a transductive technique (e.g., Node2Vec) for obtaining initial
node representations, after which an inductive node embedding
technique takes over, leads to substantial improvements in link
prediction accuracy. We demonstrate that, for a wide variety of
GNN variants, node representation vectors obtained fromNode2Vec
serve as high quality input features to GNNs, thereby improving
LP performance.
ACM Reference Format:
Chitrank Gupta, Yash Jain, Abir De, and Soumen Chakrabarti. 2021. In-
tegrating Transductive And Inductive Embeddings Improves Link Predic-
tion Accuracy. In Proceedings of the 30th ACM International Conference
on Information and Knowledge Management (CIKM ’21), November 1–5,
2021, Virtual Event, QLD, Australia. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3459637.3482125

1 INTRODUCTION
The link prediction problem (LP) is to predict the set of future edges
in a graph which are more likely to appear than the other edges,
after observing the graph at a certain time. It has a wide variety of
applications, viz., suggesting friends in social networks, connecting
people on LinkedIn [15], recommending movies on Netflix [4, 14],
etc. LP has been thoroughly studied from the perspectives of both
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network science and machine learning [8–11, 20, 26, 29] starting
from the seminal papers by Adamic and Adar [2] and Liben-Nowell
and Kleinberg [15].

1.1 Prior work and limitations
In recent years, there has been a flurry of deep learning models
which have shown a great potential in predicting links in online
social networks. Such models learn node embedding vectors which
compress sparse, high dimensional information about node neigh-
borhoods in the graph into low dimensional dense vectors. These
embedding methods predominantly follow two approaches. The
first approach consists of transductive neural models which learn
the embedding of each node separately by leveraging matrix fac-
torization based models, e.g., Node2Vec [7], DeepWalk [18], etc.
Such models suffer from two major limitations, viz., they cannot
make predictions using unseen nodes and, the corresponding model
complexity grows with the network size [8]. On the other hand, the
second approach consists of graph neural networks (GNNs) which
train inductive neural models using symmetric aggregator func-
tions [5, 11, 17, 19, 21, 25, 27, 28]. Such models feed the information
about the node-neighborhoods into a symmetric aggregator which
shares the same parameters globally across the graph. Hence, they
can predict links on unseen nodes which were not present during
training.

Given a node 𝑢, a GNN model collects features of the nodes at
different distances from 𝑢 and combine them using a symmetric set
aggregator. Therefore, the predictive prowess of GNN is contingent
on providing it appropriate node features, which however, are do-
main dependent and require significant effort to design. Moreover,
in the context of link recommendation in online social networks,
the use of node features may be restricted due to privacy and ethical
issues. As a result, most publicly available datasets on online social
networks severely limit access to node features. Therefore, existing
works use different proxies, e.g., random features, one-hot encoding
of node-IDs, etc.

1.2 Our work
In this work, we provide a detailed experimental study where we
first train one set of node embeddings which are agnostic to the
graph neural network (GNN), using a transductive embedding
model. Such node embeddings contain only structural informa-
tion about a node. Next, we feed these embedding vectors as input
node features into an inductive model. Finally, we train this in-
ductive model using an LP loss function, to obtain the final node
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embeddings. We observed that this two step procedure is consis-
tently more effective than introducing other types of ad-hoc proxy
node features into the model.

We perform a comparative analysis across seven datasets and
four GNNmodels, which reveal that for online social networks, such
a combination of transductive and inductive models consistently
improves predictive performance, for all commonly-used LP loss
functions1. However, for citation graphs, such an approach does
not provide any improvement, which indicates that the structural
properties alone are not enough to capture the generative process
of the underlying graph.

2 LINK PREDICTION METHODS
After setting up notation and preliminaries, we will introduce the
two major mechanisms through which node representations can
be obtained: inductive and transductive embeddings. Then we will
describe how to combine their strengths. We will conclude the
section with a brief review on standard loss objectives for LP.

2.1 Notation
Given an undirected graph𝐺 = (𝑉 , 𝐸), we denote nbr(𝑢) and nbr(𝑢)
as the neighbors and non-neighbors of 𝑢, respectively. In this con-
text, note that nbr(𝑢) also contains𝑢, i.e., nbr(𝑢) = {𝑣 | (𝑢, 𝑣) ∈ 𝐸}∪
{𝑢}, nbr(𝑢) = {𝑣 ≠ 𝑢 | (𝑢, 𝑣) ∉ 𝐸}. Finally, we denote 𝑦𝑢,𝑣 = 1 if
𝑣 ∈ nbr(𝑢) and 𝑦𝑢,𝑣 = 0, otherwise.

2.2 Inductive node embeddings
Suppose, through some means, we obtain an initial node represen-
tation 𝒛𝑢 for each node 𝑢. These can be used by an inductive model
to obtain graph-context sensitive node representations. Various
graph neural networks (GNNs) are standard examples of inductive
models. At a very high level, given a node 𝑢 and an integer 𝐾 , a
GNN takes the underlying graph𝐺 = (𝑉 , 𝐸) and the initial node em-
beddings {𝒛𝑢 |𝑢 ∈ 𝑉 } as input, and then computes inductive node
embeddings {emb𝑢 |𝑢 ∈ 𝑉 } by iteratively aggregating structural
information from the nodes 𝑘 = 1, 2, ..., 𝐾 hops away from 𝑢.

𝒙𝑢 (0) = 𝒛𝑢 (1)
𝒙𝑢 (𝑘) = 𝐹𝜃 (𝒙𝑣 (𝑘 − 1) | 𝑣 ∈ nbr(𝑢)) (2)
emb𝑢 = 𝐺𝜃 (𝒙𝑢 (𝑘) | 𝑘 ∈ [𝐾]) (3)

In Eqs. (2) & (3), 𝒙𝑢 (•) are intermediate node embeddings.Moreover,
𝐹𝜃 and 𝐺𝜃 are neural networks parameterized with 𝜃 . The exact
form of 𝐹𝜃 and𝐺𝜃 varies across different GNNmodels. In this paper,
we consider four competitive GNNs, viz., GCN [11], GraphSAGE [8],
GIN [26] and DGCNN [29]. For a downstream task such as LP, we
compute the score for the node-pair (𝑢, 𝑣) as

𝑠𝜃 (𝑢, 𝑣) = 𝐻𝜃 (emb𝑢 , emb𝑣) (4)
Here 𝐻𝜃 is another network that compares embeddings emb𝑢 , emb𝑣
to arrive at a link score. We call this scheme ‘inductive’ because,
once 𝐹𝜃 ,𝐺𝜃 , 𝐻𝜃 are trained for a task, the induced model can be
applied to a completely new graph in the same problem domain, to
get meaningful node representations.

1Our code is available at https://www.cse.iitb.ac.in/~abir/codes/linkPredCIKM2021.zip

2.3 Transductive node embeddings
For each application, a key question is how to set initial node repre-
sentations {𝒛𝑢 }. If rich local signals (such as text or demographics)
are available at each node, these can be suitably featurized using
classical feature engineering or deep techniques. In the absence of
node features, GNN practitioners have tried fixed random vectors,
one-hot codes for (arbitrary) node IDs, and a row or column of
the adjacency matrix corresponding to each node. One may ar-
gue that the GNNs are in charge of network signal aggregation,
so local features should suffice for setting up {𝒛𝑢 }. Our key note-
worthy observation is that when graph features are used to also
determine the initial {𝒛𝑢 }, the GNNs may behave better and lead to
better end-task accuracy. We will now describe two ways in which
how graph-based transductive methods can be used to obtain these
initial node representations.
Node2Vec (N2V) [7] Given a node𝑢, Node2Vec first samples nodes
𝑁𝑆 (𝑢) using different randomwalk based heuristics. Then it models
the likelihood of the sampled nodes using amultinomial distribution
informed by the proximity of the nodes, measured in terms of
exp(𝒛⊤𝑢 𝒛𝑣). More specifically, we have:

Pr(𝑁𝑆 (𝑢) | 𝒛𝑢 ) =
∏

𝑣∈𝑁𝑆 (𝑢)

exp(𝒛⊤𝑢 𝒛𝑣)∑
𝑤∈𝑉 exp(𝒛⊤𝑢 𝒛𝑤)

(5)

Finally, the node embeddings 𝒛𝑢 are estimated by solving the fol-
lowing training problem.

max
{𝒛𝑢 }

∑︁
𝑢∈𝑉

− log
∑︁
𝑤∈𝑉

exp(𝒛⊤𝑢 𝒛𝑤) +
∑︁

𝑣∈𝑁𝑆 (𝑢)
𝒛⊤𝑢 𝒛𝑣

 (6)

Matrix factorization (MF) [16] Apart from Node2Vec, we also
consider Matrix factorization as a candidate transductive model,
i.e., we train the node embeddings {𝒛𝑢 } as,

min
{𝒛𝑢 }

∑︁
𝑢∈𝑉

∑︁
𝑣∈𝑉

(𝑦𝑢,𝑣 − 𝒛⊤𝑢 𝒛𝑣)2 + 𝜆
∑︁
𝑢∈𝑉

| |𝒛𝑢 | |22 (7)

where 𝜆 is a regularizing constant.

2.4 Combining inductive and transductive
approaches

Once we train the transductive embeddings {𝒛𝑢 } using Eq. (6) or (7),
we feed them into the GNN model (1)– (3) to learn emb𝑢 .
Training losses We learn the parameters 𝜃 used to parameterize
Eqs. (2), (3) byminimizing a LP loss function— the twomost popular
of which binary cross entropy (BCE) loss and ranking loss are
considered in this work.
BCE loss We compute the binary cross entropy loss as follows:
ℓBCE (𝜃 ;𝐺) = −

∑︁
(𝑢,𝑣) ∈𝐸

log[𝜎 (𝑠𝜃 (𝑢, 𝑣))] −
∑︁

(𝑢,𝑣)∉𝐸
log[1 − 𝜎 (𝑠𝜃 (𝑢, 𝑣))]

(8)
Pairwise ranking loss We compute the pairwise ranking loss as
follows:

ℓRank (𝜃 ;𝐺) =
∑︁
𝑢∈𝑉

∑︁
𝑤∉nbr(𝑢)
𝑣∈nbr(𝑢)

ReLU(𝑠𝜃 (𝑤,𝑢) − 𝑠𝜃 (𝑣,𝑢) + 𝛿) (9)

where 𝜎 is the sigmoid function and 𝛿 is a tunable margin.

3 EXPERIMENTS
In this section, we provide a comprehensive evaluation of our pro-
posed approach, and comparisons with standard alternatives.

https://www.cse.iitb.ac.in/~abir/codes/linkPredCIKM2021.zip


Dataset |𝑉 | |𝐸 | 𝑑𝑎𝑣𝑔 Diameter |Q|
Twitter-1 213 12173 115.38 3 209
Twitter-2 235 10862 92.44 3 235
Twitter-3 193 7790 79.73 4 190
Google+ 769 22515 57.56 7 718
PB 1222 17936 28.36 8 999
Citeseer 3312 7848 3.74 28 1010
Cora 2708 7986 4.90 19 1470

Table 1: Dataset statistics.

3.1 Datasets
We use seven datasets from diverse domains. Among them, the first
three datasets, viz., Twitter-1, Twitter-2, Twitter-3 are three separate
connected components from Twitter [13]. The other datasets are
Google+ [12], PB [1], Cora [6, 22] and Citeseer [6, 22]. Among them,
the first five datasets are online social networks, whereas, the last
two datasets are citation networks. Refer Table 1 for details.

3.2 Setup
Candidates for inductive and transductive models We con-
sider four candidates for the inductive GNNs — GCN [11], GIN [26],
DGCNN [29] and GraphSAGE [8]. On the other hand, we consider
two candidates for transductive models— N2V [7] and MF [16].
LP methods As described in Section 2, we first train the transduc-
tive node embeddings {𝒛𝑢 } and then feed them into the inductive
models as input. While doing so, we also augment these transduc-
tive embeddings with the one-hot encodings of node labels obtained
using Double-Radius Node Labeling (DRNL) algorithm [29, 30]. In
addition, we also compare our approach with the corresponding
inductive model which only uses the DRNL node features.
Implementation details We used Adam optimizer with learning
rate 10−3. We use early stopping during training with patience
parameter 𝑃 = 6, i.e., we stop training when validation fold perfor-
mance does not improve within the last 𝑃 epochs. For the ranking
losses, we cross validate our method across three values of the
tunable margin 𝛿 ∈ {0.1, 1, 10}.

3.3 Evaluation
Protocol As suggested in previous works [3, 20], we consider pre-
dicting only on those node pairs whose one of the nodes participate
in at least one triangle. We call such nodes query nodes 𝑄 . Then
for each query node 𝑞 ∈ 𝑄 , we randomly split both nbr(𝑞) and
nbr(𝑞) into 70% training, 10% validation and 20% test sets. We use
the training set to supervise training of the GNN model. Next, we
rank the node pairs in the test set based on the scores computed by
the trained LP model.
Metrics We evaluate the predicted ranked list (of node pairs be-
longing to a query node 𝑞 ∈ 𝑄) via average precision (AP) and
reciprocal rank (RR). Finally, we report Mean Average Precision
(MAP) and Mean Reciprocal Rank (MRR) as follows:

MAP =
1
|𝑄 |

∑︁
𝑞∈𝑄

𝐴𝑃𝑞, MRR =
1
|𝑄 |

∑︁
𝑞∈𝑄

𝑅𝑅𝑞, (10)

where. 𝐴𝑃𝑞 and 𝑅𝑅𝑞 are the average precision and reciprocal rank
corresponding to the ranked list given by 𝑞 ∈ 𝑄 .

3.4 Results
Comparative analysis First, we compare our approach against
the corresponding inductive embedding model trained only with
the DRNL features. Here, we consider N2V as the transductive
embedding model. Table 2 summarizes the results for both BCE loss
and Ranking loss, which shows that: (i) for all datasets, except for
citation graphs, our method outperforms the other method; (ii) the
trained N2V embeddings provide significant performance boost in
GraphSAGE; and, (iii) the performance of GCN and GraphSAGE
are comparable in the absence of N2V embeddings, as they share
similar neural architectures. N2V computes the node embeddings
by performing long range random walk, whereas, the GNN models
limit their aggregation operation within 𝐾 ≤ 3 hop distance. As a
result, our approach is able to capture the structural information
better than a GNN model trained alone with the DRNL features.

Query-wise analysis Next, we look into the performance at the in-
dividual query level. Specifically, we probe the gain/loss achieved by
our model in terms of Gain = 𝐴𝑃 (Our method) −𝐴𝑃 (GNN-Only)
for each query 𝑞 ∈ 𝑄 . Figure 1 summarizes the results which show
that, for GCN model (GIN model), our method provides superior
performance for 71% and 53% (81% and 61%) queries for Twitter-3
and Google+ datasets, respectively.

Effect of Matrix Factorization (MF) as the inductive model
Then, we investigate if the superior performance of our approach
is consistent across transductive models. We show this to be the
case, when MF is the candidate transductive model in Table 3.

0 50 100 150
q-ID (sorted by gain)→

−1.0

−0.5

0.0
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G
a
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(a) Google+
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q-ID (sorted by gain)→

−1.0

−0.5

0.0

0.5
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Figure 1: Querynodewise performance comparison in terms
of Gain = 𝐴𝑃 (Our method) −𝐴𝑃 (GNN-Only), i.e., the gain in
AP achieved by our method against the corresponding GNN
model which does not receive any input from the transduc-
tive model. Queries on 𝑥-axis are sorted in the decreasing
order of gain.

Effect of raw node attributes instead of N2V features Recall
that, the alternative GNN models use the node features computed
via DRNL algorithm [29, 30]. Here, we augment them with the
available node attributes and compare its performance with our
proposed approach. We find out that the performance of the two
methods is comparable, as shown in Table 4.

𝑟 = 0.02|𝑉 | 𝑟 = 0.05|𝑉 |
Twitter-3 0.769 0.775
Google+ 0.615 0.618

Table 5: Effect of length of random walk 𝑟 in N2V on MAP
for Twitter-3 and Google+ datasets with GCNmodel (our ap-
proach) and BCE loss.



BCE Mean Average Precision (MAP) Mean Reciprocal Rank (MRR)
Models→ GCN GIN DGCNN GraphSAGE GCN GIN DGCNN GraphSAGE

W/o With W/o With W/o With W/o With W/o With W/o With W/o With W/o With
Datasets ↓ N2V N2V N2V N2V N2V N2V N2V N2V N2V N2V N2V N2V N2V N2V N2V N2V
Twitter-1 0.845 0.878 0.845 0.859 0.833 0.859 0.847 0.876 0.953 0.962 0.935 0.95 0.939 0.952 0.932 0.971
Twitter-2 0.706 0.745 0.712 0.744 0.711 0.747 0.711 0.754 0.926 0.945 0.927 0.936 0.922 0.945 0.919 0.951
Twitter-3 0.734 0.769 0.743 0.773 0.734 0.766 0.738 0.781 0.878 0.909 0.897 0.908 0.885 0.912 0.878 0.934

PB 0.436 0.445 0.43 0.456 0.418 0.434 0.425 0.448 0.669 0.673 0.654 0.682 0.637 0.663 0.649 0.679
Google+ 0.585 0.615 0.528 0.624 0.563 0.597 0.364 0.633 0.808 0.816 0.764 0.82 0.794 0.797 0.59 0.822
Cora 0.5 0.45 0.493 0.465 0.481 0.473 0.429 0.495 0.561 0.503 0.554 0.522 0.54 0.518 0.483 0.552

Citeseer 0.518 0.476 0.521 0.516 0.508 0.469 0.48 0.539 0.578 0.524 0.581 0.567 0.572 0.53 0.538 0.601
Ranking Mean Average Precision (MAP) Mean Reciprocal Rank (MRR)
Models→ GCN GIN DGCNN GraphSAGE GCN GIN DGCNN GraphSAGE

W/o With W/o With W/o With W/o With W/o With W/o With W/o With W/o With
Datasets ↓ N2V N2V N2V N2V N2V N2V N2V N2V N2V N2V N2V N2V N2V N2V N2V N2V
Twitter-1 0.814 0.858 0.704 0.8 0.832 0.84 0.792 0.846 0.933 0.942 0.776 0.898 0.936 0.932 0.868 0.954
Twitter-2 0.694 0.734 0.57 0.644 0.703 0.781 0.693 0.738 0.923 0.928 0.761 0.8 0.92 0.922 0.897 0.928
Twitter-3 0.732 0.771 0.603 0.738 0.741 0.768 0.737 0.767 0.882 0.907 0.777 0.888 0.896 0.915 0.888 0.914

PB 0.43 0.436 0.222 0.36 0.414 0.426 0.276 0.449 0.662 0.662 0.374 0.584 0.635 0.649 0.451 0.676
Google+ 0.513 0.576 0.262 0.34 0.456 0.48 0.379 0.611 0.763 0.777 0.477 0.566 0.703 0.696 0.54 0.801
Cora 0.479 0.486 0.424 0.427 0.475 0.437 0.384 0.45 0.533 0.54 0.482 0.479 0.53 0.478 0.434 0.506

Citeseer 0.516 0.483 0.429 0.468 0.498 0.484 0.49 0.479 0.584 0.537 0.474 0.517 0.562 0.548 0.546 0.541
Table 2: Performance comparison in terms of MAP (left half) and the MRR (right half) of our proposed method — which
integrates the transductive and inductive models — against the inductive model which does not receive any input from the
transductive model, across all datasets and all inductive models, i.e., GCN [11], GIN [26], DGCNN [29] and GraphSAGE [8]. We
choose N2V as the transductive embedding model. The top and the bottom halves of the table report the results for BCE loss
and Ranking loss objective, respectively. We observe that for all datasets except citation networks, our proposed approach
outperforms the inductive model trained without transductive embeddings.

Models→ GCN GIN DGCNN GraphSAGE
W/o With W/o With W/o With W/o With

Datasets ↓ MF MF MF MF MF MF MF MF
Twitter-1 0.845 0.859 0.845 0.851 0.833 0.857 0.847 0.872
Twitter-2 0.706 0.734 0.712 0.736 0.711 0.739 0.711 0.752
Twitter-3 0.734 0.766 0.743 0.775 0.734 0.755 0.738 0.781

PB 0.436 0.457 0.43 0.452 0.418 0.45 0.425 0.438
Google+ 0.585 0.624 0.528 0.616 0.563 0.585 0.364 0.637

Table 3: Performance comparison in terms of MAP of our
proposal when we use MF [16] as the transductive model
against the inductive model trained without any transduc-
tive embedding for the first five datasets with BCE loss.

Effect of random walk length in Node2Vec Finally, we change
the length 𝑟 of the randomwalk in N2V and observe theMAP values
obtained by our approach. Table 5 summarizes the results, which
shows that the MAP values improves with increasing the value
of 𝑟 . This is because a larger value of 𝑟 can encode the structural
information of the graph neighborhood of node 𝑢 better into the
node embedding {𝒛𝑢 } compared to smaller values of 𝑟 .

4 CONCLUSION
There are two dominant paradigms to represent graph nodes using
continuous embedding vectors. The transductive approach, typi-
fied by Node2Vec and Matrix Factorization, scales up the number

Mean Average Precision (MAP)
Models→ GCN GIN DGCNN GraphSAGE
Datasets ↓ Attribute N2V Attribute N2V Attribute N2V Attribute N2V
Twitter-1 0.871 0.878 0.873 0.859 0.866 0.859 0.873 0.876
Twitter-2 0.748 0.745 0.756 0.744 0.743 0.747 0.753 0.754
Twitter-3 0.78 0.769 0.775 0.773 0.768 0.766 0.77 0.781

PB 0.454 0.445 0.461 0.456 0.451 0.434 0.454 0.448
Google+ 0.641 0.615 0.642 0.624 0.622 0.597 0.629 0.633
Cora 0.491 0.45 0.462 0.465 0.499 0.473 0.542 0.495

Citeseer 0.477 0.476 0.495 0.516 0.502 0.469 0.558 0.539
Table 4: Performance in terms of MAP of our proposed
method against the inductive model trained with the raw
node attributes and DRNL as the input features.We use BCE
loss as training objective. In almost all cases, the perfor-
mance of the two methods are comparable.

of parameters with the number of nodes, but can effectively ex-
ploit long-range influence in the graphs. The inductive approach
has a globally-tied, smaller-capacity local neighborhood feature
aggregator that is rarely applied beyond two hops. In this paper we
establish that combining their strengths can give notable accuracy
improvements for social networks where access to intrinsic node
features may be restricted or prohibited.
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