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The ever-growing computational demands of increasingly complex machine learning models frequently
necessitate the use of powerful cloud-based infrastructure for their training. Binary neural networks are
known to be promising candidates for on-device inference due to their extreme compute and memory savings
over higher-precision alternatives. However, their existing training methods require the concurrent storage of
high-precision activations for all layers, generally making learning on memory-constrained devices infeasible.
In this article, we demonstrate that the backward propagation operations needed for binary neural network
training are strongly robust to quantization, thereby making on-the-edge learning with modern models a
practical proposition. We introduce a low-cost binary neural network training strategy exhibiting sizable
memory footprint reductions while inducing little to no accuracy loss vs Courbariaux & Bengio’s standard
approach. These decreases are primarily enabled through the retention of activations exclusively in binary
format. Against the latter algorithm, our drop-in replacement sees memory requirement reductions of 3-5X,
while reaching similar test accuracy (+2 pp) in comparable time, across a range of small-scale models trained
to classify popular datasets. We also demonstrate from-scratch ImageNet training of binarized ResNet-18,
achieving a 3.78X memory reduction. Our work is open-source, and includes the Raspberry Pi-targeted
prototype we used to verify our modeled memory decreases and capture the associated energy drops. Such
savings will allow for unnecessary cloud offloading to be avoided, reducing latency, increasing energy efficiency,
and safeguarding end-user privacy.

CCS Concepts: « Computing methodologies — Machine learning; - Computer systems organization
— Embedded systems.

Additional Key Words and Phrases: Deep neural network, binary neural network, training, edge devices,
embedded systems, memory reduction.

1 INTRODUCTION

Although binary neural networks (BNNs) feature weights and activations with just single-bit
precision, many models are able to reach accuracy indistinguishable from that of their higher-
precision counterparts [13, 43]. Since BNNs are functionally complete, their limited precision
does not impose an upper bound on achievable accuracy [12]. BNNs represent the ideal class of
neural network for edge inference, particularly for custom hardware implementation, due to their
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Table 1
Applied approximations used in low-cost neural network training works. X signifies approximation-free
(float32) variables.

Weights Weight Activations Activation Batch
Forward Backward &radients porgard Backward —gradients norm.
[51] inte! int6 int6 int6 int6 int6 X
[20] b'd b4 X X Recomputed? X X
[17] float16 floatl16 float16 float1l6  floatl6 float16 b 4
9] X X X int int X X
[38] X X X ESM2 ESM2 X X
[3] X X bool X X X X
[48] b 4 X X b 4 b 4 b 4 4
This bool float16 bool bool bool float16 BNN-specific
work

1 Arbitrary precision was supported, but significant accuracy degradation was observed below 6 bits.
2 Activations were not retained between forward and backward propagation in order to save memory.

use of XNOR for multiplication: a fast and cheap operation to perform. Their compact weights
also suit systems with limited memory and increases opportunities for caching, providing further
potential performance boosts. FINN, the seminal BNN implementation for field-programmable
gate arrays, reached the highest CIFAR-10, and SVHN classification rates to date at the time of its
publication [40].

Despite featuring binary forward propagation, existing BNN training approaches perform back-
ward propagation using high-precision floating-point data types—typically float32—often making
training infeasible on memory-constrained devices. The high-precision activations used between
forward and backward propagation commonly constitute the largest proportion of the total memory
footprint of a training run [7, 37]. Our understanding of standard BNN training algorithms led us to
the following realization: high-precision activations should not be used since we are only concerned
with weights and activations’ signs. In this article, we present a low-memory BNN training scheme
based on this intuition featuring binary activations only, facilitated through batch normalization
modification.

By increasing the viability of learning on the edge, this work will reduce the domain mismatch
between training and inference—particularly in conjunction with federated learning [6, 31]—and
ensure privacy for sensitive applications [1]. Via the aggressive memory footprint reductions they
facilitate, our proposals will enable models to be trained without the network access reliance,
latency and energy overheads or data divulgence inherent to cloud offloading. Herein, we make
the following contributions.

e We conduct a variable representation and lifetime analysis of Courbariaux & Bengio’s
standard BNN training process [13]. We use this to identify opportunities for memory
savings through approximation.

e Via our proposed BNN-specific forward and backward batch normalization operations, we
implement a neural network training regime featuring all-binary activations. This signifi-
cantly reduces the greatest constituent of a given training run’s total memory footprint.
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e We present a successful combination of binary activations and binary weight gradients
during neural network training. This aggregation allows for further reductions in memory
footprint.

e We systematically evaluate the impact of each of our approximations, and provide a detailed
characterization of our scheme’s memory requirements vs accuracy.

e Against the standard approach, we report memory reductions of up to 5.44%, with little
to no accuracy or convergence rate degradation, when training BNNs to classify MNIST,
CIFAR-10, and SVHN. No hyperparameter tuning is required. We also show that the batch
size used can be increased by ~10x while remaining within a given memory envelope, and
even demonstrate the efficacy of ImageNet training as a hard target.

e We provide an open-source release of our Keras-based training software, memory modeling
tool, and Raspberry Pi-targeted prototype for the community to use and build upon?!. Our
memory breakdown analysis represents a clear road map to further, future reductions.

2 RELATED WORK

The authors of all published works on BNN inference acceleration to date made use of high-
precision floating-point data types during training [13, 14, 16, 21, 27-29, 39, 41, 42]. There is
precedent, however, for the use of quantization when training non-binary networks, as we show in
Table 1 via side-by-side comparison of the approximation approaches taken in those works along
with those detailed in this article.

The effects of quantizing the gradients of models with high-precision data, either fixed or floating
point, have been studied extensively. Zhou et al. [51] and Wu et al. [47] trained networks with fixed-
point weights and activations using fixed-point gradients, reporting no accuracy loss for AlexNet
classifying ImageNet with gradients wider than five bits. Wen et al. [45] and Bernstein et al. [3]
focused solely on aggressive weight gradient quantization, aiming to reduce communication costs
for distributed learning. Weight gradients were losslessly quantized into ternary and binary formats,
respectively, with forward propagation and activation gradients kept at high precision. Tatsumi et al.
identified redundancy in the rounding implementations of IEEE-754 standard, such as the IEEE-754
conversion for rounding, subnormal, and not-a-number and infinity encodings, at MAC outputs [38].
The authors also presented empirical evidences showing the feasibility of training DNNs using
low-precision floating point formats such as ESM1 and E5M2 which use five bits for exponent and
one and two bits for mantissa, respectively. In this work, we make the novel observation that BNNs
are more robust to approximation during training than higher-precision networks. We thus propose
a data representation scheme more aggressive than all of the aforementioned works combined,
delivering large memory savings with near-lossless performance.

An intuitive method to lower the memory footprint of training is to simply reduce the batch
size. However, doing so generally leads to increased total training time due to reduced memory
reuse [37]. The method we propose in this article does not conflict with batch size tuning, and
further allows the use of large batches while remaining within the memory limits of edge devices.

Gradient checkpointing—the recomputation of activations during backward propagation—has
been proposed as a method to reduce the memory consumption of training [10, 20]. Such methods
introduce additional forward passes, however, and so increase each run’s duration and energy cost.
Graham [19] and Chakrabarti & Moseley [8] saved memory during training by buffering activations
in low-precision formats, achieving comparable accuracy to all-float32 baselines. Wu et al. [48]
and Hoffer et al. [23] reported reduced computational costs via #; batch normalization. Finally,
Helwegen et al. [22] asserted that the use of both trainable weights and momenta is superfluous in

Ihttps://github.com/awai54st/Enabling-Binary-Neural-Network-Training-on-the-Edge
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BNN optimizers, proposing a weightless BNN-specific optimizer, Bop, able to reach the same level
of accuracy as Adam. We took inspiration from these works in locating sources of redundancy
present in standard BNN training schemes, and propose BNN-specific modifications to #; batch
normalization allowing for activation quantization all the way to binary, thus saving memory
without increasing latency. Yayla et al. [49] further developed methods to compress the momentum
values uniquely introduced in Bop, and obtained memory savings in BNN training without incurring
significant loss in accuracy. Our method aims to identify common bottlenecks for BNN training,
irrespective of the optimizer choice, and is therefore orthogonal and complementary to techniques
such as Yayla et al’s.

Recent efforts have shown that, in some circumstances, batch normalization can be completely
removed from BNN training. Chen et al. replaced the trainable scaling factors and biases within
standard ¢, batch normalization with hand-tuned values, thereby approximating these functions via
trial and error [11]. Our method follows a conventional training approach; no manual, offline steps
are required. Jiang et al. proposed the use of batch normalization-free BNNs for super-resolution
imaging [24]. The information loss incurred from the removal of batch normalization in this case
is recovered by expanding the receptive fields of convolution operations using parallel sets of
binary dilated convolutions. While Jiang et al. demonstrated promising results for super-resolution
imaging, we assume a generic deep learning setting rather than focusing on a specific application
domain. We further present an open-source Raspberry Pi-based prototype to corroborate our
memory reduction estimates, making our work closer to real application deployment than both of
the aforementioned publications.

The authors of works including Bi-Real Net [29], ResNetE-18 [4], and ReActNet [28] discovered
that the accuracy of BNNs can be significantly increased via the addition of high-precision skip con-
nections. Many further enhanced BNN performance via improvements to gradient approximation
and weight initialization [4, 15, 28—-30]. Optimizations such as these are intended to increase accu-
racy: a goal orthogonal to ours of efficiently deploying BNNs on edge-scale devices. Nevertheless,
we incorporated all of them into our work in order to reach competitive accuracy.

For works such as ReActNet [28], BN-Free [11], BN-Free ISR [24], and Real-to-Binary [30], it
was found that knowledge distillation—the employment of a high-precision network as a “teacher”
running alongside a BNN—can greatly improve the performance of the latter’s training. This method
is, however, outside our scope; the teacher would dominate overall memory requirements and
thereby make savings with regards to the BNN insignificant.

3 STANDARD TRAINING FLOW

For simplicity of exposition, we assume the use of a multi-layer perceptron (MLP), although the
presence of convolutional layers would not change any of the principles that follow. We use 9
symbol to represent a gradient with respect to the neural network cost function C, such that ox
denotes gradient 9C/ax. Let W; and X denote matrices of weights and activations, respectively, in
the network’s I™" layer, with oW, and 9X; being their gradients. For W}, rows and columns span
input and output channels, respectively, while for X; they span a batch’s feature maps and their
channels. Henceforth, we use & to denote binary encoding.

Fig. 1 shows the training graph of a fully connected binary layer. A detailed description of the
standard BNN training procedure introduced by Courbariaux & Bengio [13] for each batch of B
training samples, which we henceforth refer to as a step, is provided in Algorithm 1. Therein, “©”
signifies element-wise multiplication. For brevity, we omit some of the intricacies of the baseline
implementation—lack of first-layer quantization, use of a final softmax layer, and the inclusion of
weight gradient cancelation [13]—as these standard BNN practices are not impacted by our work.
We initialize weights as outlined by Glorot & Bengio [18].
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Fig. 1. Standard BNN training graph for fully connected layer I. “sgn”, “x”, and “BN” are sign, matrix
multiplication, and batch normalization operations. Forward propagation dependencies are shown with solid
lines; those for backward passes are dashed. High-precision activations must be retained due to the red
dependency.

Algorithm 1 Standard BNN training step. Algorithm 2 Proposed BNN training step.
1: forl « {1,---,L -1} do »Forward prop. 1: for! < {1,---,L—1}do » Forward prop.
2: Xl «— sgn(Xy) 2 Xl «— sgn(Xy)
3: W «— sgn(W)) 3: W «— sgn(W))
4 Yl — XIWI 4 Yl — X[Wl
5 form « {1,--- ,M;} do »Batchnorm. 5 for m « {1,---,M;} do » Batch norm.
6 l(m) - O_(yl(m)) 6 %(m  [u -u(u™) s
(m) (m) (m) (m)
y," —ply y,"" -y
S o )
1 v
oy =i/
9: forl < {L-1,---,1} do> Backward prop. 9: for! « {L —1,---,1} do> Backward prop.
10: form « {1,--- ,M;} do > Batch norm. 10 form « {1,--- ,M;} do > Batch norm.
1 (m) (m)
11 v — Waxlﬁ 11: v — W&xlﬁ
12: ayl(’") — v - pulv) - 1z ayl(’") — v - ulv) -
r*(**)? r*(**)? rTT T T T m\r- - -7
ool ) = loolsizo o
R S | L e - — = [ |
13: aﬂl(”’) —> axff;) 13: aﬁl"") S axl(ﬁ)
14: 0X| «— aYlW,T 14: 0X| « aYlW;r
15: W) — XfaY, 15: oW — XlTaY,
16: 16: W «— sgn(aW))
17: forl < {1,---,L — 1} do » Weight update 17: for! « {1,---,L — 1} do > Weight update
18: W, « Optimize(W, oW, 1) 18: W) « Optimize(W;, oW1/\ai, i)
19: B, « Optimize(B;, 9, n) 19: B, < Optimize(B;, 9, n)
20: n < LearningRateSchedule(r) 20: n « LearningRateSchedule(r)

¢ denotes binary encoding. Our refinements are shown in red. Dashed boxes highlight Algorithm 2’s lack of high-precision
activations.
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Table 2
Exemplary memory-related properties of variables used during CIFAR-10 training of BinaryNet with Adam
and a batch size of 100.

Standard training Proposed training
Variable Per-layer D
lifetime! Data Modeled o Data Modeled Ax )
type memory (MiB) type memory (MiB)

X X f32 111.33 21.71  bool 3.48 32.00
X, Y? v f32 50.00 9.75 16 25.00 2.00
u(y). o(y;) X 32 0.03 0.00 f16 0.02 2.00
Y v f32 50.00 9.75 f16 25.00 2.00
w b 4 f32 53.49 10.43  f16 26.74 2.00
w X f32 53.49 10.43  bool 1.67 32.00
B.op X f32 0.03 0.00 f16 0.02 2.00
Momenta b 4 f32 106.98 20.86 f16 53.49 2.00
Pooling masks b 4 f32 87.46 17.06  bool 2.73 32.00
Total 512.81 100.00 138.15 3.71

1 ¢ indicates that a variable does not need to be retained between forward, backward or update phases.
2 9X and Y can share memory since they are equally sized and have non-overlapping lifetimes.

Many authors have established that BNNs require batch normalization in order to avoid gradient
explosion [2, 33, 35], and our early experiments confirmed this to indeed be the case. We thus
apply it as standard. Matrix products Y; are channel-wise batch-normalized across each layer’s M
output channels (lines 5-7) to form the subsequent layer’s inputs, X;,;. B constitutes the batch
normalization biases. Layer-wise moving means y(y;) and standard deviations o(y;) are retained
for use during backward propagation and inference. We forgo trainable scaling factors; these are
irrelevant to BNNs since their activations are binarized thereafter (line 2).

As emphasized in both Fig. 1 and Algorithm 1 (line 12), high-precision storage of the entire
network’s activations is required. Addressment of this forms our key contribution.

4 VARIABLE ANALYSIS

In order to quantify the potential gains from approximation, we conducted a variable representation
and lifetime analysis of Algorithm 1 following the approach taken by Sohoni et al. [37]. Table 2
lists the properties of all variables in Algorithm 1, with each variable’s contribution to the total
footprint shown for a representative example. Variables are divided into two classes: those that must
remain in memory between computational phases (forward propagation, backward propagation,
and weight update), and those that need not. This is of pertinence since, for those in the latter
category, only the largest layer’s contribution counts towards the total memory occupancy. For
example, 0X; is read during the backward propagation of layer [ — 1 only, thus 0X;_; can safely
overwrite 0X| for efficiency. Additionally, Y and dX are shown together since they are equally
sized and only need to reside in memory during the forward and backward pass for each layer,
respectively.

5 LOW-COST BNN TRAINING

As shown in Table 2, all variables within the standard BNN training flow use float32 representation.
In the subsections that follow, we detail the application of aggressive approximation specifically
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tailored to BNN training. Further to this, and in line with the observation by many authors that
float16 can be used for ImageNet training without inducing accuracy loss [17, 32, 44], we also
switch all remaining variables to this format. Our final training procedure is captured in Algorithm 2,
with modifications from Algorithm 1 in red and the corresponding data representations used shown
in Table 2.

5.1 Batch Normalization Approximation

Analysis of the backward pass of Algorithm 1 reveals conflicting requirements for the precision of X.
When computing weight gradients 9W (line 15), only binary activations X are needed. For the batch
normalization training (lines 10-13), however, high-precision X is used. The latter occurrences
are highlighted with dashed boxes. Per Table 2, the storage of X between forward and backward
propagation constitutes the single largest portion of the algorithm’s total memory. If we are able to
use X in place of X for these operations, there will be no need for this high-precision activation
retention, significantly reducing memory footprint as a result. We achieve this as follows.

Step 1: 1 Normalization. Standard batch normalization sees channel-wise ¢, normalization per-
formed on each layer’s centralized activations. Wu et al, however, shows that the less-costly ¢
normalization is approximately equivalent to the original ¢ normalization, by proving that ¢
normalization is approximately equivalent to the original £, normalization multiplied with a fixed
scaling factor equal to \/”_/2 [48]. We argue that this observation is especially true for BNNs, in
which batch normalization is immediately followed by binarization, thus canceling the effects of
any scaling factor.

Replacement of batch normalization’s backward propagation operation with our # norm-based
version sees lines 11-12 of Algorithm 1 swapped with (1), where B is the batch size. Not only does
our use of #; batch normalization transform one occurrence of xl(m)

+1 into its binary form, it also
beneficially eliminates all squares and square roots.

1 (m)
5
I PP e (1)

ayl(’”) —v-—ulv) - p(v ©) xfﬁ))fcl(ﬁ)

[

Our derivation of this function is as follows. Let

a=y, - ply)
and
1 aC
Y= Tall oxr’
B 1+1

so that our forward function in line 7 becomes

m ™

w1 T T A
I

X
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We compute the expression for gradient 9C/ay, by first computing 9C/aa, which can be derived with
chain rule,

aC ac ™ o ™

2atm " g™ " 9alm " gy (m " galm)

(m) (m) (m)
aC axl+1 aC axl+1 awl

. + . . .
(m) (m) (m) (m) (m)
0x, da ox),, Y, da

By evaluating each component in the above equation, we have

aoC a
—=v—-—X >
da |a| ||a||)

X pulao©
( axl+1)

B

and thus

aC aoC aoC
dy, oa a da

(v —p(o) -

X[+1 X141 aC
lal ~H Tl plao :
g Olal g old e

Since the output of batch normalization, x,1, is expected to have a mean value of zero across
samples in a batch, i.e.,

p(xp) =0,

we have
aC N
— = (v — p(v)) — p(v © Xp41) X141
%Y,
Step 2: BNN-Specific Approximation. We further replace the remaining x}fi) term in (1) with the

product of its signs and mean magnitude— ™ o™ l(ﬁ)

1e1 @y, —Where ;" is precomputed (line 8).
Our complete batch normalization training functions are shown on lines 10-13 of Algorithm 2. As
again highlighted within dashed boxes, these only require the storage of binary X along with layer-
and channel-wise mean magnitudes. With elements of X now binarized, we reduce its memory

cost by 32X and also save energy thanks to the corresponding memory traffic reduction.

5.2 Weight Gradient Quantization

In common with other BNN training approaches, we employ “straight-through estimation” (STE)
to facilitate gradient propagation in the presence of discretization in forward functions. STE
approximates the gradient of a discontinuity by disregarding the derivative of the discretizer itself.
As shown in Table 2, float32 gradients were typically used with STE in the past. Intuitively, BNNs
should be particularly robust to weight gradient quantization since their weights only constitute
signs. On line 16 of Algorithm 2, therefore, we binarize and store post-STE weight gradients, oW,
for weight update. During that phase, we attenuate the gradients by vN;, where N is layer I’s
fan-in, to reduce the learning rate and prevent premature weight clipping as advised by Sari et
al. [35] (line 18). Since fully connected layers are used as an example in Algorithm 2, Ny = M;_; in
this instance.

Table 2 shows that, with binarization, the portion of our exemplary training run’s memory
consumption attributable to weight gradients dropped from 53.49 to just 1.67 MiB, leaving the
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scarce resources available for more quantization-sensitive variables such as W and momenta. Energy
consumption will also decrease due to the associated reduction in memory traffic.

6 EVALUATION
6.1 Keras Emulation

We built a GPU-based implementation emulating our BNN training method using Keras and
TensorFlow, and experimented with the small-scale MNIST, CIFAR-10, and SVHN datasets, as well
as large-scale ImageNet, using a range of network models. By emulating our algorithm on GPU,
we can leverage the many powerful ML training softwares developed around it, and obtain large
batches of experimental results in a short period of time. Our emulation environment is built on a
Nvidia GeForce RTX 3090 GPU cluster with Red Hat Linux 9 operating system. Our baseline for
comparison was the standard BNN training method introduced by Courbariaux & Bengio [13], and
we followed those authors’ practice of reporting the highest test accuracy achieved in each run.
Note that we did not tune hyperparameters, thus it is likely that higher accuracy than we report is
achievable.

6.1.1  Small-Scale Datasets. For MNIST we evaluated using a five-layer MLP—henceforth simply
denoted “MLP”—with 256 neurons per hidden layer, and CNV [40] and BinaryNet [13] for both
CIFAR-10 and SVHN. We used three popular BNN optimizers: Adam [26], stochastic gradient
descent (SGD) with momentum, and Bop [22]. While all three function reliably with our training
scheme, we used Adam by default due to its stability. We used the development-based learning rate
scheduling approach proposed by Wilson et al. [46] with an initial learning rate n of 0.001 for all
optimizers except for SGD with momentum, for which we used 0.1. We used batch size B = 100 for
all except for Bop, for which we used B = 50 as recommended by Helwegen et al. [22]. MNIST and
CIFAR-10 were trained for 1000 epochs; SVHN for 200.

Our choice of quantization targets primarily rested on the intuition that BNNs should be more
robust to approximation in backward propagation than their higher-precision counterparts. To
illustrate that this is indeed the case, we applied our method to both BNNs and float32 networks,
with identical topologies and hyperparameters. Results of those experiments are shown in Table 3,
in which significantly higher accuracy degradation was observed for the non-binary networks, as
expected.

While our proposed BNN training method does exhibit limited accuracy degradation, as can be
seen for three cases in Table 4, this comes in return for a geomean modeled memory saving of
3.67x. It is also interesting to note that the reduction achievable for a given dataset depends on the
model used. This observation is largely orthogonal to our work: by applying our approach to the
training of a more appropriately chosen model, one can obtain the advantages of both optimized
network selection and training.

In order to explore the impacts of the various facets of our scheme, we applied them sequentially
while training BinaryNet to classify CIFAR-10 with multiple optimizers. As shown in Table 5,
choices of data type, optimizer, and batch normalization implementation lead to tradeoffs against
performance and memory costs. Major savings are attributable to the use of float16 variables and
through the high-precision activation elimination our # norm-based batch normalization facilitates.

Fig. 2 shows the modeled memory footprint savings from our proposed BNN training method
for different optimizers and batch sizes, again for BinaryNet with the CIFAR-10 dataset. Across
all of these, we achieved a geomean reduction of 4.81x. Also observable from Fig. 2 is that, for all
optimizers, movement from the standard to our proposed BNN training allows the batch size used
to increase by around 10X, facilitating faster completion, without a material memory increase. Fig. 2
finally shows that test accuracy does not drop significantly due to our approximations. With Adam
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Table 3
Test accuracy of non-binary networks and BNNs using the standard and our proposed training approaches
with Adam and a batch size of 100. Results for our training approach applied to the former are included for
reference only; we do not advocate for its use with non-binary networks.

Top-1 test accuracy

Model Dataset Standard training Reference training Proposed training

NN (%)' BNN (%) A(pp) NN (%)' A(pp)® BNN (%) A (pp)’
MLP [40] MNIST 98.22 98.24 0.02  89.98 —8.24 96.90 -1.34
CNV [40] CIFAR-10 86.37 82.67 -3.70  69.88 —16.49 83.08 0.41
CNV SVHN 97.30 96.37 —0.93 79.44 —17.86 94.28 -2.09
BinaryNet [13] CIFAR-10 88.20 88.74 1.61 76.56 —11.64 89.09 0.35
BinaryNet SVHN 96.54 97.40 0.86 85.71 —10.83 95.93 -1.47

! Non-binary neural network.
2 Baseline: non-binary network with standard training.
3 Baseline: BNN with standard training.

Table 4
Test accuracy and memory footprint of the standard and our proposed training schemes using Adam and a
batch size of 100.

Top-1 test accuracy Modeled memory
Model
(Dataset) Std. Prop. A Std. Prop. A

(%) (%) (pp) (MiB) (MiB) (x)

MLP g 24 9690 —1.34 740 265 278
(MNIST)
(CHS/IX\IIXIO) 82.67 83.08 0.41 134.05 32.16  4.17
(SS,NPI\;I) 96.37 94.28 —2.09 134.05 32.16  4.17
gﬁiﬁﬁ% 88.74 89.09 0.35 512.81 138.15 3.71
Bgérgg)et 97.40 95.93 —1.47 512.81 138.15 3.71

and Bop, accuracy was near-identical, while with SGD we actually saw modest improvements.
Unlike Adam or Bop, the standard SGD optimizer is unable to adapt its learning rate during
gradient descent, thus scaling in batch size means scaling in learning rate. This leads to the decline
in accuracy we see in Fig. 2(b), where increasing the batch size leads to undesirable learning rates.
Our method, on the other hand, binarizes the weight gradients, which effectively normalizes the
learning rate from the effects of batch size scaling.

While not of concern with regards to memory consumption, decreases in convergence rate
are undesirable due to their elongation of training times and, consequently, reduction of energy
efficiency. In order to ensure that our algorithmic modifications do not cause material convergence
rate degradation, we inspected the validation accuracy curves obtained during our training runs.
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Table 5

Impacts of moving from the standard to our proposed data representations with BinaryNet and CIFAR-10
and a batch size of 100.

o Data type Batch Top-1 test accuracy Modeled memory
Optimizer lizati
W oY normalization A A (pp)l MiB A (X l)l
float32 float32 b 88.74 - 512.81 -
float16 floatl16 b 88.71 —0.03 256.41 2.00
Adam bool float16 b 87.93 —0.81 231.33 2.22
bool float16 4] 89.69 0.95 231.33 2.22
bool  float16  Proposed  89.09 0.35 138.15 3.71
float32 float32 b 88.52 - 459.32 -
. float16 floatl16 b 88.54 0.02 229.66 2.00
D with
HSIOGme:rtlflm bool float16 b 87.35 -1.17 204.58 2.25
bool float16 0 89.09 0.57 204.58 2.25
bool floatl16 Proposed 88.10 —0.42 109.20 4.21
float32 float32 t 91.38 - 405.83 -
float16 floatl16 b 91.36 —0.02 202.92 2.00
Bop bool float16 ty 90.54 —0.84 177.84 2.28
bool float16 4 91.27 -0.11 177.84 2.28
bool floatl6 Proposed 91.48 0.10 82.45 4.92
1 Baseline: float32 OW and 90X with standard (¢) batch normalization.
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Fig. 2. Batch size vs training memory footprint and achieved test accuracy for BinaryNet with CIFAR-10.
Annotations show memory reductions for the proposed training approach. Each test accuracy point marks

the mean of five independent training runs, with an error bar indicating its distribution.

Figs. 3 and 4 exemplify these for the experiments whose results were reported in Table 4 and Fig. 2,
respectively. No discernible change in convergence rate can be seen in any of the plots, thus we

can be confident that our proposals will not negatively impact training times.
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Fig. 3. Comparison in achieved validation accuracy curves between the standard and our proposed training
schemes with multiple combinations in models and datasets, using Adam and a batch size of 100. These plots
correspond to results which are reported in Table 4.

For the results presented thus far, we made use of off-the-shelf network models. As confirmed
by Zhang et al., a network possess perfect expressivity once its number of parameters matches
the number of data points used for its training [50]. Consequently, most practical networks are
overparameterized. While the impact of overparametrization on network generalization is an
active research field [9] and outside the scope of this work, we sought to investigate whether
overparametrization was the source of robustness to gradient approximation that we observed of
BNNs. To do this, we performed neural architecture search (NAS) for the MNIST, CIFAR-10 and
SVHN datasets, comparing the impact of removing network redundancy on both the standard and
our training approaches. We adopted Shen et al.’s approach to BNN NAS, applying it to the MLP and
BinaryNet models as starting points [36]. Following their proposals, we set accuracy-to-parameter
weight factor A to 0.1 for MLP with MNIST and 0.01 for BinaryNet with CIFAR-10 and SVHN. As
shown in Table 6, we achieved sizeable parameter reductions for all of these and, most importantly,
observed no difference in accuracy degradation for the two training approaches. These experiments
therefore suggest that the reduction of network complexity impacts both methods equally, and that
the performance of ours is not reliant on overparameterization.

6.1.2 ImageNet. We also trained ResNetE-18 [4] and Bi-Real-18 [29]—mixed-precision models with
most convolutional layers binarized—to classify ImageNet. These models are representative of a
broad class of ImageNet-capable networks, thus similar results should be achievable for others with



Enabling Binary Neural Network Training on the Edge
T T T T T T T T
Adam SGD with momentum Bop
100 |- 1 r 1 r n
(B = 100) (B = 100) (B = 100) J
P e
80 m " | |
60 1 r . 2
—— Standard
0 \ \ I B I \ \ I B I ----]:"’IOPO‘SCd d
8 T T T T T T T T T T T T
? 1001 Adam | | SGD with momentum | | Bop |
5 (B = 500) (B = 500) (B=500)
S oA
]
= 80 f’ér | |
g
g
= 60 R B
<
>
Aaml
Lo40| 1t 1 f |
| | | | | | | | | | | |
&
T T T T T T T T T T T T
1001 Adam | | SGD with momentum | | Bop
(B = 1000) (B = 1000) (B = 1000) J
80 = s
60 . n
0 \ \ I B I \ \ I B I \ \ L
N D D D D NN D D D D NN D D D D D
ST ST
N N N
Epoch

Fig. 4. Comparison in achieved validation accuracy curves between the standard and our proposed training
schemes with multiple combinations in optimizers and batch sizes (B), using BinaryNet model and CIFAR-10
dataset. These plots correspond to results which are reported in Fig. 2.

Table 6
Model complexity and test accuracy impacts of NAS under the standard and proposed training schemes.

Parameters (M)

Top-1 test accuracy

Model Dataset  Pre Post Standard training ~ Proposed training

¥ ¥ A Pre  Post A Pre Post A
xl) (» %) @Ep) (%) (% (pp)
MLP MNIST 0.40 0.16 2.52 98.24 97.58 —-0.66 96.90 96.35 —0.55
BinaryNet CIFAR-10 14.02 3.62 3.87 88.74 87.14 —-1.60 89.09 87.17 -1.92
BinaryNet =~ SVHN  14.02 3.77 3.72 97.40 97.26 —-0.14 95.93 95.38 —0.55
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Table 7
Test accuracy and memory footprint of the standard and proposed schemes for ImageNet training with
Adam and a batch size of 4096.

ResNetE-18 Bi-Real-18
L Top-1 Modeled Top-1 Modeled
Approximations
test acc. memory test acc. memory
% A(pp) GB A(x])) % A(p) GB A(x])

None 58.77 - 70.11 - 56.71 - 70.11 -
All-bfloat16 58.85 0.08 35.45 1.98 56.72 0.01 3545 1.98
bool oW only 57.59 -1.28 70.07 1.00 55.69 -1.02 70.07 1.00

1 batch norm. only  58.3¢ —-0.43 70.11 1.00 56.08 -0.63 70.11 1.00
Prop. batch norm. only 58.23 —0.54 47.86 1.46 5559 -1.12 47.86 1.46
Proposed 57.04 -1.73 1854 3.78 54.45 -2.26 1854 3.78

! Baseline: approximation-free training.

which they share architectural features. Finding development-based learning rate scheduling to
not work well with ResNetE-18, we resorted to the fixed decay schedule described by Bethge et
al. [4]. n began at 0.016 and decayed by a factor of 10 at epochs 70, 90, and 110. We trained for 120
epochs with B = 4096. For Bi-Real-18, we trained for 80 epochs with B = 512 and a cosine-decaying
learning rate starting from n = 0.001. Both models were optimized using Adam.

We show the performance of these benchmarks when applying each of our proposed approxi-
mations in turn, as well their assemblage, in Table 7. Since the Tensor Processing Units we used
here natively support bfloat16 rather than float16, we switched to the former for these experi-
ments. Where bfloat16 variables were used, these were employed across all layers; the remaining
approximations were applied only to binary layers. While these savings are smaller than those for
our small-scale experiments, we note that the first convolutional layer of both ResNetE-18 and
Bi-Real-18 is the largest and is non-binary, thus its activation storage dwarfs that of the remaining
layers. We also remark that, while ~2 pp accuracy drops may not be acceptable for some application
deployments, sizable memory reductions are otherwise achievable. The effects of binarized oW
are insignificant since ImageNet’s large images result in proportionally small weight memory
occupancy.

We acknowledge that dataset storage requirements likely render ImageNet training on edge
platforms infeasible, and that network fine-tuning is a task more commonly deployed on devices of
such scale. However, given that the accuracy changes and resource savings we report for more
challenging, from-scratch training are favorable and reasonably consistent across a wide range of
use-cases, we have confidence that positive results are readily achievable for fine-tuning as well.
Nevertheless, our ImageNet proof of concept confirms the efficacy of large-scale neural network
training on the edge.

In common with our small-scale experiments, our proposals did not lead to noticeable conver-
gence rate changes vs the standard BNN training algorithm. This is evident from Fig. 5, which
contains the validation accuracy curves obtained for the experiments whose results were reported
in Table 7.
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Fig. 5. Achieved validation accuracy over time for the experiments whose results are reported in Table 7.

6.2 Embedded Platform Prototypes

To more concretely demonstrate the benefits of our proposed training method, we also wrote
software targeting an embedded-scale computing platform. We chose to use a Raspberry Pi 3B+, a
popular single-board computer with hardware representative of current mobile and other edge
devices, for this purpose. The platform features a four-core, 64-bit Arm Cortex-A53 CPU clocked at
1.4 GHz and 1 GiB of LPDDR2 RAM. We used the PyPI memory_profiler module and Valgrind to
monitor the memory occupancy of Keras- and C++-based implementations, respectively. Energy
consumption was logged with a standard USB power meter connected to the Raspbberry Pi’s
external power supply [34].

6.2.1 Naive C++ Implementation. While existing training frameworks, including TensorFlow and
PyTorch, allow for some data format customization, they lack support for direct control of variable
storage. Moreover, when in training mode, they tend to reserve hundreds of MiBs of memory
regardless of the model size, making their use infeasible on edge devices. TensorFlow-lite delivers
low-memory inference, but it does not support training. Therefore, while these existing frameworks
are useful for accuracy evaluation, implementations of our approach that realize its promised
memory advantage must be built from scratch. Our first prototypes were direct implementations of
Algorithms 1 and 2 in C++. We also trained using Keras, where possible within the Raspberry Pi’s
memory limit, for comparison.

Measurements of the peak memory use of our naive C++ prototypes prove the validity of our
memory model. As reflected in Fig. 6, two effects cause the model to produce underestimates. There
is a constant, ~5% memory increase across all experiment pairs. This is attributable to process
overheads, which we left unmodeled. There is also a second, batch size-correlated overhead due to
activation copying between layers. This is significantly more pronounced for the standard algorithm
due to its use of float32—rather than bool—activations. While we did not model these copies
since they are not strictly necessary, their avoidance would have unbeneficially complicated our
software.
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Fig. 6. Batch size vs memory footprint for our naive C++ prototypes training MLP to classify MNIST with
Adam. Annotations mark the ratio between measured and modeled memory pairs.
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Fig. 7. Measured peak memory consumption vs training time (a)-(b) per batch for implementations training
MLP/MNIST and BinaryNet/CIFAR-10. Each data point represents a distinct batch size. BinaryNet/CIFAR-10
training with Keras was not possible due to the Raspberry Pi’s memory limit (<]).

Figs. 7(a) and 7(b) show the measured memory footprint vs training time for the naive (standard
and proposed) and Keras implementations across a range of batch sizes. For MLP trained to classify
MNIST, our naive implementation saw memory requirements reduce by 2.90-4.54x vs the standard
approach, with no impact on speed. While use of Keras led to much shorter training times, this
came at the cost of superproportional memory increases: two orders of magnitude higher than
the demands of the proposed approach. Keras-based training of BinaryNet is not possible due to
the platform’s 1 GiB memory limit. Keras’ training backend uses methods which buffer additional
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Fig. 8. Measured peak memory consumption (a) and energy consumption per batch (b) for implementations
training MLP/MNIST and BinaryNet/CIFAR-10. Batch sizes of 200 and 40 were chosen for MLP and BinaryNet,
respectively. BinaryNet/CIFAR-10 training with Keras was not possible due to the Raspberry Pi’s memory
limit. Annotations show decreases vs the bar to the left. The energy savings in (b) were less significant than
memory savings in (a), since the memory traffic-associated energy reductions are partially offset by the costs
of bool-packing (and -unpacking) operations.

copies of data to optimize for training speed and, as far as we know, the option is not exposed for
parametrization [25].

6.2.2 CBLAS Acceleration. In a bid to close our training time gap with Keras, we optimized our
prototypes using the CBLAS library, trading off memory for speed [5]. As shown in Fig. 7(a), this
reimplementation led to reductions in training times of an order of magnitude with MLP, making our
optimized implementations reach similar speed to Keras. While the CBLAS-accelerated proposed
algorithm requires 1.59-2.08 X more memory than its naive counterpart, this comes in return for
speedups of 8.60-29.76X while remaining 2.16-2.61x more memory-efficient than the standard
approach with acceleration. Our approach with CBLAS bettered Keras’ memory requirements
by 27.66-58.34x while experiencing slowdowns of 2.10-3.22X. Experiments with BinaryNet and
CIFAR-10 showed similar trends, with the accelerated standard implementation failing to run with a
batch size over 40. Note that, due to operating system overheads, it was not possible for the running
training program to occupy all of the platform’s memory. In our CBLAS implementation, the
additional data format conversions between floating point and boolean were efficiently accelerated
with ARM’s single-cycle VCVT instructions. ARM also features native support for fp16 format with
VFPv3 architecture in more advanced devices, which would further advance our memory savings.

Energy Efficiency. In addition to memory savings, our use of low-precision activations and
gradients also reduces memory traffic, leading to reduced energy consumption. Fig. 8 shows the
measured memory footprint and energy consumption per epoch for both MLP with MNIST and
BinaryNet with CIFAR-10. For the batch sizes we tested, the CBLAS-accelerated implementation
of our proposed training method surpasses the equally optimized standard approach in terms of
energy efficiency by 1.02Xx and 1.18X for those respective network-dataset pairs. We remark that
these savings shown in Fig. 8(b) are not as significant when compared against the huge memory
reductions shown in Fig. 8(a), since data movement cost only accounts for a portion of the overall
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energy cost, and the memory traffic-associated energy reductions are partially offset by the costs
of bool-packing (and -unpacking) operations at output (and input) to every non-float32 GEMM
kernel. Due to lack of an assembly level-optimized bit-packing operation in CBLAS library, we opt
to implement in our prototypes a C++-based function which revisits all input and output data to
the GEMM kernels, leading to extra data movements. This overhead can be reduced by customizing
the CBLAS GEMM implementation to perform bit packing (and unpacking) on the fly.

7 CONCLUSION

In this article, we introduced a neural network training scheme tailored specifically to BNNs. Moving
first to 16-bit floating-point representation, we selectively and opportunistically approximated
beyond this based on careful analysis of the standard training algorithm presented by Courbariaux
& Bengio [13]. With a comprehensive evaluation conducted across multiple models, datasets,
optimizers, and batch sizes, we showed the generality of our approach and reported significant
memory reductions vs the prior art, challenging the notion that the resource constraints of edge
platforms present insurmountable barriers to on-device learning. We validated the veracity of
our claimed savings with Raspberry Pi-targeted prototypes, whose source code we have made
openly available for use and further development. In the future, we will explore the potential of
our training approximations in the custom hardware domain, within which we expect there to be
vast energy-saving opportunity via use of tailor-made arithmetic operators.
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