
An architecture for data integrity in untrustworthy social
networks

DA SILVA, Carlos <http://orcid.org/0000-0001-9608-439X> and YOUNG,
Angus

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/29815/

This document is the Accepted Version [AM]

Citation:

DA SILVA, Carlos and YOUNG, Angus (2022). An architecture for data integrity in
untrustworthy social networks. In: SAC'22: Proceedings of the 37th ACM/SIGAPP
Symposium on Applied Computing. New York, ACM, 1732-1739. [Book Section]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

An architecture for data integrity in untrustworthy social
networks

Carlos Eduardo da Silva ∗

Sheffield Hallam University
Sheffield, UK

C.daSilva@shu.ac.uk

Angus Young
Sheffield Hallam University

Sheffield, UK
angus@dotwave.io

ABSTRACT
Social media platforms have the power to massively influence pub-
lic opinion, and as such, are under increased pressure to submit to
state regulation. They operate under a centralised model, in which
users should trust the service provider that the information being
presented has not been altered. This paper presents an architecture
for enabling independent verification of content integrity in social
networks. Our solution assumes a scenario of an untrustworthy
social network provider, utilising public key cryptography for sign-
ing user content, and distributed hash tables for storing detached
signatures. We have developed a proof of concept system that has
been used to demonstrate the feasibility of the proposed solution.

CCS CONCEPTS
• Information systems → Social networks; • Security and
privacy → Social network security and privacy;

KEYWORDS
Online social networkss, Security, Data integrity, Public-key cryp-
tography, Distributed hash table

ACM Reference Format:
Carlos Eduardo da Silva and Angus Young. 2022. An architecture for data
integrity in untrustworthy social networks. In The 37th ACM/SIGAPP Sym-
posium on Applied Computing (SAC ’22), April 25–29, 2022, Virtual Event, .
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3477314.3507001

1 INTRODUCTION
We live in a world where public discourse, and in some cases diplo-
macy are increasingly conducted on social media. In fact, it provides
a platform for powerful figures to spread their message. In March
of 2020, Twitter marked a video widely shared by the Trump ad-
ministration of Democratic frontrunner Joe Biden appearing to
tell Americans to vote for Trump as “significantly altered or fabri-
cated” [15]. The same video continued to be circulated on Facebook,
and has been viewed by millions of people. While the impact of this
video on voting cannot be directly measured, the degree to which

∗Corresponding Author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SAC ’22, April 25–29, 2022, Virtual Event,
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-8713-2/22/04. . . $15.00
https://doi.org/10.1145/3477314.3507001

it was circulated highlights the potential of social media content,
modified or otherwise to be propagated across the internet.

The companies that provide these platforms are coming under
increased political pressure to submit to state regulation, largely
in light of the 2018 Cambridge Analytica1 scandal and the scale of
the influence that major social media platforms (or Online Social
Networks, OSN) were found to have had in the 2016 UK-EU inde-
pendence referendum2 to mention two examples. The form that
regulation might take, or which organisations might implement it
is still unclear.

If these platforms continue to operate from within black boxes,
their potential to steer the global conversation will become even
more problematic. Jack Dorsey, the CEO of Twitter spoke about his
own scepticism of large technology companies:

[[2]]We have aspirations to serve every person on the
planet ... we have to think deeply about how we might
distribute and decentralise this work. I have a lot of
scepticism of companies like ours and leaders like me.

It is clear that social media platforms have the power to mas-
sively influence public opinion. Whether they actively set out to
do so is another question; if they did, how would you know? All
of the major platforms are highly centralised, and without third
party oversight there is no way of knowing that the information
they are presenting has been altered by a malicious actor or the
platform itself. For example, some governments enforce laws that
prohibit online services from operating in their countries if the
data is not stored domestically (See [9]). These governments could
theoretically gain access to this data and modify it without the
knowledge of the provider or the end user. On a smaller scale, many
businesses use internal social media-like applications for internal
and inter-company communication. These networks also have the
potential to be compromised and manipulated by an unauthorized
party.

Even with regulation, data centralisation still leaves the company
that owns the data with the ability to change whatever data they
want opaquely [6]. In a traditional centralised social media platform
(OSN), the burden of trust is placed on the provider. Users trust that
the provider will ensure that their data is secure, and that other
users cannot modify it without their permission.

In this context we conducted an exercisewhere this assumption is
removed and the provider is assumed to be untrustworthy, or unable
to maintain the integrity of user data (for example, in the case that
a 3rd party has access to their servers). Thus, this paper presents

1https://www.vox.com/policy-and-politics/2018/3/23/17151916/
facebook-cambridge-analytica-trump-diagram.
2https://www.ox.ac.uk/news-and-events/oxford-and-brexit/brexit-analysis/
views-from-oxford

https://doi.org/10.1145/3477314.3507001
https://doi.org/10.1145/3477314.3507001
https://www.vox.com/policy-and-politics/2018/3/23/17151916/facebook-cambridge-analytica-trump-diagram.
https://www.vox.com/policy-and-politics/2018/3/23/17151916/facebook-cambridge-analytica-trump-diagram.
https://www.ox.ac.uk/news-and-events/oxford-and-brexit/brexit-analysis/views-from-oxford
https://www.ox.ac.uk/news-and-events/oxford-and-brexit/brexit-analysis/views-from-oxford

SAC ’22, April 25–29, 2022, Virtual Event, Carlos Eduardo da Silva and Angus Young

an approach for verifying that content served by a OSN platform
is identical to content supplied to it. We designed an architecture
that provides third parties with the ability to verify content and its
author independently from the OSN service provider. A proof of
concept has been developed employing public key cryptography for
achieving content integrity and distributed hash tables (DHT) [21]
for storing signatures. In this way compromising the OSN opaquely
would require collusion from multiple parties, and by increasing
the number of involved parties the system would be harder to
compromise.

Our proof-of-concept has been implemented following the same
microblogging format of Twitter, employing cryptography soft-
ware PGP [4] and the Kademlia DHT implementation (the same
used for bittorrent), being able to provide an user a clear indication
when content has been modified by someone other than its au-
thor. This proof-of-concept has then been evaluated in terms of its
performance and effectiveness based on the STRIDE threat model.
The results obtained with this proof-of-concept demonstrated the
capability of verifying the integrity of social media content inde-
pendently of the OSN itself.

This paper is organised as follows: Section 2 discuss related work
and existing solutions. Section 3 presents the design of the proposed
system and a definition of its scope and functionality. Section 4
covers the system’s implementation, deployment and any issues
faced. Section 5 presents an evaluation of our approach, testing of
the DHT and a threat model. Section 6 concludes the paper with a
brief discussion on its limitations and avenues for potential future
work.

2 RELATEDWORK
Online Social Networks (OSN) have received considerable attention
due to several issues uncovered throughout the time, motivating the
creation of Decentralised Online Social Networks (DOSN) [6], i.e.,
an OSN implemented on a distributed platform. [6] have performed
a comprehensive survey on DOSN analysing several works that
explore DHT to store the social content or as an indexing service,
such as, PeerSon [1] and My3 [13]. They also identify real deploy-
ments of DOSN, for example Diaspora3 and Mastodon [16], which
are not fully decentralised as they work based on a federation of
trusted servers independently operated. Our work takes inspiration
in these approaches. However, the main difference is that we are
not trying to recreate the whole OSN, but recognising the existence
of an underlying OSN platform, while exploring the DHT to store
content signature.

More recently there has been a movement on exploring Dis-
tributed Ledger Technologies (DLTs) for DOSN [5]. DLT are append-
only distributed records, where new data is verified by peers using
a consensus algorithm. Amongst the existing approaches we can
find works that saves all posts and social interaction information
in a DLT, such as SteemIt [10]. There are also some approaches
that employ some sort of distributed storage system for OSN con-
tent, such as DHT-based InterPlanetary File System (IPFS)4 where
post contents are saved (encrypted or not), and a DLT for storing

3https://joindiaspora.com/
4https://ipfs.io

social interaction information along-side a pointer to the actual
content [7, 20].

In fact, we have considered DLT as an initial solution to our
approach. However, the problems identified by [5] with the use of
DLT for OSN, such as the lack of identity checking capabilities and
scalability issues, have made us reconsider our approach. Another
issue with the suitability of DLTs for use within OSNs is the inabil-
ity for data to be removed from the ledger. This is incompatible
with some regulations on data storage such as GDPR’s "Right to
erasure", which specifies that upon request from a user, a company
must be able to completely remove all records that they hold in
regards to that user [3, p. 43, article 17]. A potential solution to this
problem involves encrypting all user data, and then "losing" the
cryptographic key to this content in order to render it unreadable,
although this raises issues regarding future-proofing encryption
procedures.

3 SOLUTION DESIGN
Figure 1 shows a high level overview of the applications involved
in the system and the operations they perform. Central to the op-
eration of our proposal is the client application, which performs
the signing and verification of content. The client application cor-
responds to a front-end Single Page Application commonly used
by Twitter and Facebook. Private and public keys are stored lo-
cally by the client, which provides standard life-cycle operations
for key management and capabilities for creation and signing of
plain text content by a user, and verification of content by another
independent user.

Social Media
Application

Create and retrieve posts

Publish and retrieve signatures
Publish and

retrieve
public keys

Client
Application

Public Key
Server

DHT
Nodes

DHT
Nodes

DHT
Nodes

User

Figure 1: General overview of the proposed solution.

To ensure content integrity, our solution uses PGP detached
signatures to sign content [4]. These signatures will be stored in a
public distributed hash table (DHT). Distributed hash tables (DHT)
are commonly used in distributed file system applications, peer to
peer (P2P) networking and web caching. It operates similarly to
the traditional hash table data structure, whereby a hash function
is used to calculate an associative key for any given value, except
the data is distributed among multiple nodes [21]. Third parties
can participate in the table by bootstrapping their nodes from one
or more static nodes. In this way, a client can use any node of
the DHT to perform a lookup for a signature, and then verify post
content against a public key retrieved from a public key server (PKS).
Public key servers (or PKS) provide an interface for publishing
and retrieving public keys over HTTP. Users wishing to verify or
encrypt content can use these servers to search for keys by email
address or by key fingerprints.

https://joindiaspora.com/
https://ipfs.io

An architecture for data integrity in untrustworthy social networks SAC ’22, April 25–29, 2022, Virtual Event,

Client Application

Sign post

return signature

DHT Social Media
Application

Create post

Publish signature

return DHT key

Public (post, DHT key)

return

Figure 2: Sequence diagram describing the post creation flow.

Figure 2 shows the process of a user creating a post. Once the
user creates some plain text content the client generates a detached
PGP signature for this content using their private key, and publishes
it to a DHT node via an API call. This API call will return the status
of the insert operation. If it succeeds, it will also return a SHA1 hash
of the inserted content, which will act as a DHT key to retrieve
this value later. This key, along with the plain text post content, are
published to the OSN via another API call.

Client Application

Verify signature

return Signature OK

DHTSocial Media
Application

View post

Retrieve signature

return Detached signature

Retrive post

return post + DHT key

Public Key
Server

Retrieve public key

return public key

Figure 3: Sequence diagram describing the post verification
flow.

Figure 3 shows the process of a user verifying a post. As a prereq-
uisite, the user must have published a public key to the PKS. This
public key must be associated with the email used to access the
OSN, and it must have been verified. The client application receives
a post from the OSN, containing the post’s content, its author and
a DHT key. The user retrieves the post’s signature from the DHT
via an API call. This signature is then verified against the authors
public key, retrieved from the PKS. If the verification is successful,
the post is considered to be verified.

4 SYSTEM IMPLEMENTATION
The system architecture is outlined in Figure 4. This figure gives
a low-level overview of the applications that make up the system,
and defines the boundaries of 1st party (the OSN provider) and 3rd
party deployments. This extends the system overview presented in
Figure 1. Each of the following components follow a microservice
architecture, and aim to operate completely independently of each
other.

The Social Media Platform is designed to act as a very basic online
social network (OSN), to demonstrate how this system design could
be applied to existing social media applications. It follows the same
microblogging format implemented by Twitter5, with users posting
short plain text posts and viewing the posts of others in a chrono-
logical “feed”. This format was chosen as it is familiar to most users
of OSNs. It is generic in function, and could operate completely
independently to the verification and signature publishing services
that the client facilitates and interacts with.

The social media platform is written in Java, and serves HTTP
requests via RESTful endpoints provided by the Spring framework
(REST Interface component). The application utilises Spring’s in-
built message broker to provide websocket endpoints for clients to
consume messages from. Post and user data is stored in a Mongo
database via Spring Data’s ORM (Object Relational Mapping) im-
plementation for Mongo.

When identifying a DHT implementation for use within this
system, the open arrival and departure of nodes was essential, in
order to enable third parties to participate. For this reason, we chose
Kademlia [12], the DHT system underlying BitTorrent, which oper-
ates the largest DHT in the world with over 10m nodes participating
daily [18]. The DHT nodes have been implemented using the Bittor-
rent DHT implementation in Javascript6. It allows for bootstrapping
(initialising the node with an exiting hash table from another node),
and provides an interface for inserting and retrieving values from
the table via an abstraction of the protocol’s kRPC interface [11].

To utilise this functionality in the system, each node needed
to expose this functionality over the Web. To accomplish this, the
insert and retrieve functions were encapsulated by an API writ-
ten in Node.js using the Express framework7, providing a RESTful
API for interacting with the DHT. By exposing these endpoints on
each node, any node in the table can be used as an entry point,
minimising points of failure. We assume that the bootstrap node is
maintained by the service provider, considered as an static DHT
node, and that 3rd party nodes would be available, as is the case in
the Bittorrent network. This means that the availability of signa-
tures is directly linked to the availability of nodes within the hash
table. Depending on the number of posts, n nodes must be available
for all signatures to be retrieved.

The client is written in Vue.js8, a JavaScript framework designed
for building reactive web applications. The client needed to be
transparent enough in its operation that should the user decide that
they do not trust the client, they could replicate any functionality,
or re-implement the client in its entirety. The client has 5 core func-
tions: Displaying post content; Managing keypairs (generating and
publishing new keypairs, revoking pre-existing keypairs, importing
and exporting keypairs); Verifying post content; Signing posts; and
Managing user state.

The signing and verification operations have been implemented
usingOpenPGP.js library, a javascript implementation of theOpenPGP
protocol, providing anAPI for PGP cryptographywithin the browser.
The client’s interactions with the OSN are RESTful calls for authen-
tication, retrieving and creating posts, and a websocket connection

5https://twitter.com
6Bittorrent-dht v9.0.3, https://github.com/webtorrent/bittorrent-dht
7Express v4.17.1, https://expressjs.com/
8https://vuejs.org/

https://twitter.com

SAC ’22, April 25–29, 2022, Virtual Event, Carlos Eduardo da Silva and Angus Young

Third party
deployment

ServiceClient

Vue.JS Web Application Spring Application

OpenPGPHTTP
Client

WebRTC
Client

OSN
backend

Message
Broker

REST
interface

Mongo DatabaseDHT Bootstrap Node

DHT Node DHT Node DHT Node

User

Public Key Server (PKS)

Figure 4: Deployment diagram of the system architecture implementation.

to the message broker endpoint for displaying new posts in real-
time. It interacts with the DHT API and the PKS API to retrieve
public keys and publish signatures to the DHT. In a production
environment, the user should be able to select providers for these
services, in the case that one particular provider is not trusted, and
to reduce the number of points of failure.

State management in Vue is handled using the Vuex library. Vuex
uses the concept of ’stores’ to manage stateful data. Within stores,
methods for accessing and modifying (mutating) data are separated
in order to enforce access rules. In the case of the client application,
Vuex maintains stores for the currently logged in user (profile
data, authentication tokens), and keypairs. Keypairs are persisted
in application storage after a user logs out, and then loaded into
keypair store when the user logs back in.

Figure 5: Live view of the client feed page.

The client has two main pages, one for viewing a list of chrono-
logically ordered posts (/feed, see figure 5), and another for man-
aging the currently logged in user’s keys. Posts displayed on the
feed include a status indicator for the verification state of the post.
A verified post will display a green tick, which can be clicked to
reveal the signature that was retrieved from the DHT. A post that

fails verification or that doesn’t have an associated DHT signature
key will display a red error symbol.

The key management page allows a user to generate a new
keypair, of which the public key is automatically published to the
PKS, import an existing keypair, or export the currently loaded
keypair as a zip archive. The client also has a basic profile page
(/profile/username) that displays the users public key and a history
of their posts.

Mailvelope’s public key server was used to create a sandboxed
PKS instance for the system to interact with. This keyserver soft-
ware was chosen because it has a well-documented RESTful API,
and is completely open source. The PKS had to be sandboxed to
avoid polluting the public keypool with testing signatures. To inte-
grate this keyserver with the system, it needed to be containerised
to run alongside the other applications. To do this the main repos-
itory was forked and a Dockerfile container configuration was
created.

Each of the above applications is built and deployed as a container
image running on a private container registry hosted on a virtual
private server (VPS). Portainer, a web dashboard for managing a
Docker instances, is then used to deploy these container images.

To orchestrate deployment, docker-compose was used to create
"stacks" (a group of containers that share a network) of containers.
Figure 6 shows an overview of the containers deployed within the
system and the flow of Web traffic.

We have deployed out client application in an isolated container,
acting as the frontend for the whole system. Two stacks comprise
the backend system; The first stack represents the provider’s do-
main, and is composed of a single instance of the OSN API and its
MongoDB instance. The second stack represents external (or third
party) services, such as the PKS (PKS API) and its database.

Three instances of the hash table container image are also man-
aged by this stack (DHT Node). Multiple instances were used so
if one instance goes down, the routing table is maintained by the
others. Each of these hash table nodes bootstrap off of each other,
so if a fatal event occurred and a container had to restart, it would

An architecture for data integrity in untrustworthy social networks SAC ’22, April 25–29, 2022, Virtual Event,

VPS

DHT
Gateway

(Nginx load
balancer)

DHT
Node

DHT
Node

DHT
NodeMongoDB MongoDB

OSN API PKS APIClient
Application

Nginx Reverse Proxy

Web browserUser

Figure 6: Overview of the container stacks used for deploying
our proof-of-concept application.

automatically recover its state. To distribute bootstrap requests and
lookups to the hash table, a Nginx9 container instance acting as a
gateway provides load balancing. All access to these containers is
routed through a nginx reverse proxy running on the VPS.

5 EVALUATION
This section presents an evaluation of our approach. We have con-
ducted a series of tests to demonstrate its effectiveness, performed
a preliminary performance evaluation and a threat analysis based
on the STRIDE threat model [17].

5.1 Solution Effectiveness
We initially considered the goals of the system against the system’s
implementation. The Java API was tested using the JUnit testing
framework, which provides a harness for writing unit and inte-
gration tests. Tests were written using a mock client provided by
Spring, which makes requests to the API running in a test envi-
ronment managed by JUnit. These tests ensure that the API forms
responses and errors as expected, and that changes made to the API
do not cause regressions in functionality or any deviations from
spec.

After that we have devised different scenarios and conducted
tests based on them. These scenarios consider two users (user A
and user B) with their respective keypairs created and registered
within our client application, and public key published into the
PKS.

• Uncorrupted Post: This scenario considers the situation in
which one user signs a post and another user successfully
validates it. User A creates some plain text content and signs
it using their private key. The signature is then successfully
published to the hash table addressed via the bootstrap node
gateway. The DHT key returned from this operation, along
with the plain text post content is published to the OSN.
User B retrieves this content from the OSN, and performs a
lookup for its corresponding signature in the DHT. User B

9Nginx is an open source web server, API gateway and load balancer. See
https://www.nginx.com/.

then verifies the signature against the content and User A’s
public key. The verification is confirmed manually via the
gpg command line tool.

• Corrupted Post: This scenario involves the content of the
post being modified by a party with access to the database
(such as the OSN provider). As above, user A signs and posts
some content to the platform, and publishes the post signa-
ture to the hash table. The post is then manually modified
in the database. User B then attempts and fails to verify the
message. The client reports that the content is corrupted.
The corruption is again confirmed using the gpg command
line tool.

• Corrupted Signature: In this scenario, it is assumed that a
node n is malicious or operating out of specification, and is
incorrectly storing signatures in such a way that it indicates
to peers that it has the data, and returns an invalid or cor-
rupted signature. User A signs and posts content, and the
signature is successfully stored in the DHT. When user B re-
trieves the signature from the hash table, the malicious node
responds with the corrupted key. On attempting validation,
the client of user B reports that the signature is invalid, or
that it does not match the public key associated with the
post.

5.2 Hash Table Performance
Performance of DHT implementations have been extensively ex-
plored in the literature considering both intensive churn (node
departure/arrival) and lookup intensive workloads (e.g., [14]). For
example, [8] evaluates the performance of 5 popular DHT imple-
mentations (Chord, Kademlia, Kelips, OneHop. and Tapestry), and
states that Kademlia (the underlying DHT implementation that
Bittorrent-DHT is based on) suffers from longer lookup times un-
der churn but lower overall bandwidth usage, due to its method of
simultaneous peer discovery and lookup. It also states that Kadem-
lia’s lookup times do not benefit from routing table stabilisation
like other DHT implementations. For this reason, utilising static
nodes as is done in this system is only beneficial for the purpose of
guaranteeing available nodes for parallel lookups. Although churn
performance is an important metric for evaluating the performance
of any hash table based application, in the case of the proof of con-
cept, lookup performance is more relevant, since the DHT is likely
to have a high number of static nodes, and lookups are frequent.

In terms of lookup performance, Kademlia contacts 𝑂 (log(𝑛))
nodes during lookups [12]. Therefore, as the number of nodes in-
crease, we should expect to see a logarithmic increase in lookup
time. Nevertheless we have conducted some lookup related experi-
ments, as our approach’s use of Bittorrents DHT implementation
is not typical of its designed use case.

To test the performance of the DHT in the context of our system,
a test environment was created within Node.js v12.16.1 running
on an i5-7200U with 16GB of RAM. The test environment takes
two variables, n and c, which represent the number of hash table
nodes and the number of values to insert respectively. A hash
table node is a javascript object handled by Node.js event loop
asynchronously. Each value is 858 characters long, the same length
as a PGP detached signature. These values are random, and created

SAC ’22, April 25–29, 2022, Virtual Event, Carlos Eduardo da Silva and Angus Young

using the crypto library. Insert and lookup operations are initiated
from a random node within the environment. Varying values of n
and c were supplied to the environment, focusing on the lookup
failure count, which provides the basis for calculating the retention
rate 𝑟 of the DHT as the relation between the number of values
inserted (𝑐) and the number of lookup failures obtained.

It quickly became apparent that for values of 𝑛 < 30, the DHT
was unable to retain more than 1000 values. This was observed
consistently with 𝑐 varying between 2000 and 10000. With 𝑛 > 30
the retention rate (𝑟) became more inconsistent, for example, at
𝑛 = 80 and 𝑐 = 5000 the retention rate was 75.7%. At 𝑛 = 150
and 𝑐 = 5000 the retention rate increased to 98.9%. By considering
𝑘 = 𝑐/𝑛 the ratio between the number of values 𝑐 and the number
of nodes 𝑛 it was observed that the retention rate was consistently
at 𝑟 ≥ 99% for values of 𝑘 < 30. This ratio is likely to be specific to
the testing system.

Using this estimation, the average lookup time will be measured
for n with 𝑐 = 26𝑛. Lookup time was measured for n = 10, 50,
100, 500, 1000 and 5000. A graph of these results should show a
consistent increase in lookup time. It is worth noting that the re-
sources available to the testing system were definitely a factor in
performance; at values of 𝑛 ≥ 5000, the process started consuming
most of the available memory, to the point where tests of perfor-
mance at this scale could be considered inaccurate due to the system
attempting to maintain operating system stability.

Figure 7: Lookup Time vs Number of Nodes

Figure 7 presents the results considering a 3 run average. As
predicted, the line of best fit shows that average lookup times
increased at the expected rate, as the number of participating nodes
in the DHT increased. At values of n = 1000, an average lookup
failure count of 227 (or 0.87%) was observed, demonstrating that the
previously discussed ratio of nodes to values is not definitive, and
that the testing system was a limiting factor in result accuracy. For
the purposes of this experiment, values of 𝑟 ≥ 99% were considered
to be within the margin of error.

For the OSN to operate on a similar scale to Mastodon [16],
which as of October 2021 had 1.025M active users10, and assum-
ing each user creates at least two posts a day, and that the above
ratio of nodes to posts holds true on other systems, the system
would require at least 41,000 DHT nodes to be available to allow
all signatures to be retrieved for a single day. If the availability of
nodes was the same as in Bittorrents network, which as previously
mentioned has around 10 million nodes participating daily, this
would be feasible, but signatures that weren’t retrieved often would
eventually be evicted.

Due to the limitations of the testing system, more extensive
testing and further exploration of DHT configuration parameters
are neccessary to evaluate conclusively the performance of the
DHT under this kind of load, as well as its behavior in terms of
value retention.

5.3 Threat Model
The goal of the system is to prevent a malicious actor from changing
a user’s content without it being transparent that they have done
so. They should also be unable to forge content to make it appear
to have come from another user. We have used the STRIDE threat
modelling [17] as basis to evaluate our approach in relation to these
problems. STRIDE was chosen over alternative threat modelling
techniques because it explicitly covers tampering and spoofing,
security threats which this system aims to deal with.

For the purpose of this threat model, we are evaluating the se-
curity of the first party systems implemented. The security of the
public key server will not be covered.

Spoofing. Since the ability of each user to sign posts is dependant
on being able to decrypt their private key, to successfully spoof
a user, an attacker would need: a user’s account password; their
private key; and the decryption passphrase of their private key.

In the case of our proof-of-concept, passwords are stored on
the server as Bcrypt hashes, in line with best practices adopted by
OSN providers. The most likely attack vector for accessing a user’s
account password would be a phishing attack, in which the user
unwittingly provides a 3rd party with their credentials. Once they
have access to this password, the attacker can create, but not
sign posts. To other users, any posts created by the attacker would
not be marked as verified. For this reason, at this stage the attacker
could not be considered to have spoofed a user.

To be able to sign posts, the attacker would first need to have
access to the users private key. The easiest way for them to do this
would be to have access to the users browser. On shared machines,
this is trivial, but on remote machines this is far more complex,
and subject to the expansive and well tested security measures
implemented by operating systems and browsers. In the case that
the attacker did gain access, the key would still need to be decrypted
using the users decryption password. At this point, the security of
the private key is dependant on the strength of the password used
to encrypt it. Brute force attacks are possible, but unrealistic with a
sufficiently complex password.

In summary, the worst case scenario for a spoofing attack is a
user that uses the same, simple password for both their account

10Data obtained on 15/10/2021 from https://fediverse.party/en/mastodon

https://fediverse.party/en/mastodon

An architecture for data integrity in untrustworthy social networks SAC ’22, April 25–29, 2022, Virtual Event,

login and their private key, and uses the system via an unsecured
or public browser. It is also worth noting that the same security
principles applied to handling and storing private keys must also
be adopted by the user, who could willingly or unwillingly provide
their private key (encrypted or otherwise) to a third party, and
circumvent the security measures adopted by this system.

Tampering. Regarding data in transit, all communication is based
on the HTTPS protocol, meaning content is encrypted from the
server to the client. Thus, in a situation of Man in the Middle Attack
(MITM) the attacker could make the social media platform believe
that the request came from the user, and have it store manipulated
data. However, other clients would be unable to verify this content,
with or without the social media platform providing a signature
key.

Regarding tampering of data within the platform, we consider
that OSN databases are hosted on a private network with limited
connectivity. If an attacker had access to the server however, they
would potentially be able to manually modify the database. This
also means that the provider has the potential to modify data. Just
as mentioned previously, any modification to users posts would
result in verification failing on the client.

Regarding tampering of data within the Distributed Hash Table,
due to the nature of how hash tables function, data is immutable
once inserted. It is however possible in the Bittorrent DHT im-
plementation to modify a cached value on a node, which it will
return to the user instead of performing a lookup from other nodes.
Although this behaviour can be overridden to always perform the
lookup, the potential still exists for modified cached values to be
returned from a rogue node. This doesn’t pose much of an issue
to the system in general, as the bootstrap node that most clients
will query will always perform the lookup. In an production en-
vironment, the client should allow users to choose their entrance
node in order to balance power between nodes, and to avoid the
bootstrap node(s) from becoming points of failure or attack.

The client application could be used as a vector for attack. If a
malicious party managed to alter the client application they could
present unverified content as verified, or divert calls from the real
hash table and public key servers to their own, which could return
data that make content appear valid. The system alone cannot
circumvent this, but the availability of public key servers means
that if a user was to make their own query to the PKS, they could
find that the public key presented by the client is incorrect, and thus
reveal the tampering. There is also the potential for a malicious
party to prevent a user from signing posts bymodifying or removing
their private key (in browser storage). If the user has not exported
their private key and the one loaded into the web application was
their only copy, they would effectively be unable to sign posts.

Repudiation. A user that has signed a post, then revoked that
signature could effectively deny that they had signed it. This could
be disproven if a copy of their previous public key was available,
and it was confirmed to have been verified, however repudiation is
not the primary goal of the system.

An attack from outside the system would be evident from con-
tainer and system logs, however an attacker with access to the
system could remove any trace of an attack by deleting or redacting

logs. To mitigate this, a log aggregator such as ELK stack11 could
collate logs on an external system to reduce the likelihood of an
attacker being able to hide their tracks.

Information Disclosure. No traffic to or from the bootstrap nodes,
the client application or the platform itself is plain text. All traffic is
sent via HTTPS, using a certificate signed by Cloudflare12. Traffic
between the gateway (nginx) and the services is over HTTP, but
never leaves the server. User passwords are stored as Bcrypt hashes
in the database, but it would be possible for these to be logged
by the platform as it processes the request, and so the potential
exists here for passwords to be leaked. As mentioned previously,
this doesn’t threaten the primary goals of the system, but does
mean that anyone with access to the service configuration could
enable trace logging for the authentication controller and view
plain text logs of incoming requests, which may contain passwords.
This could be partially negated by implementing a log masker, but
this would not be effective at hiding these logs from an attacker
with insider access to the system (such as the platform provider).
As configured, only warnings are logged by the platform, which do
not contain request data.

Denial of Service. As deployed as a proof of concept, the social
media platform itself is not configured to load balance requests or
restrict traffic in the case of resource starvation. Since the system
is deployed as containers, little extra configuration is required to
redeploy the system within a Kubernetes cluster or behind an nginx
load balancer to provide this functionality. This means that in its
current state, the platform is vulnerable to flooding attacks and
DDOS.

The 3 DHT nodes deployed to facilitate third party bootstrapping
operate behind an nginx load balancer, but since they operate on
the same system behind the same network interface they are also
susceptible to flooding/DDOS attacks.

To negate the risk of DOS attacks in production, each microser-
vice (or cluster of microservice instances) could be deployed on
independent systems and accessed via an API gateway that facili-
tates load balancing and request routing.

Elevation of Privileges. The system is deployed as a set of mi-
croservices within containers managed by Docker. These containers
run on a VPS based on a long term support version of Ubuntu, which
regularly gets security patches. Container groups (or stacks) are
stopped and started via Portainer, a Web management dashboard
for Docker. This dashboard requires a username and password com-
bination for access. Portainer supports role based access control,
and the user that can manage the containers within the system’s
stack cannot manage other containers or create new ones. The
administrator user can only authenticate from the server itself, and
so cannot be used remotely. If a user was to bypass these security
measures, they would also gain shell access to each container in-
stance. In this case, an attacker would be able to modify any data
they wished, or take the system down. This could be mitigated by
incorporating two factor authentication into the Portainer.

11https://www.elastic.co/elastic-stack/
12Cloudflare is a web services company that provides DNS and CA services. See
https://www.cloudflare.com/

https://www.elastic.co/elastic-stack/

SAC ’22, April 25–29, 2022, Virtual Event, Carlos Eduardo da Silva and Angus Young

5.4 Discussion
In conclusion, our POC system is capable of preventing attacks that
aim to spoof user content through its use of detached signatures.
This is especially true when the provider of the OSN is considered
to be a threat. We would still be susceptible to data tampering,
mainly when considering the client application as attack vector.
However this scenario would also be true of any OSN platform,
and mitigation techniques already employed could be reused in our
system.

Our system using Kademlia Bittorrent DHT implementation
demonstrates the feasibility of our approach regarding the number
of nodes required and the number of nodes available. In terms of a
proof-of-concept we consider these to be very positive results, in
line with the existing body of work on DHT performance. More per-
formance related experiments are needed, mainly considering that
we used standard Bittorrent parameters for the DHT configuration.
This is also alignedwith other solutions for descentralised/federated
OSN such as peertube13, which employes Webtorrent for storing
videos, a DHT implementation compatible with Bittorrent.

Another aspect that deserves further investigation is the use
of PGP and public key server to handle user’s keys. That adds a
number of requirements that are difficult to implement in large
scale, mainly related to public key distribution. It is important to
mention that PGP and PKS were used as a proof-of concept due
to their simplicity of implementation. Those can, and should, be
replaced by more appropriate public key distribution approaches,
such as the mechanisms used in some instant messages application,
such as Signal and more recently Matrix14.

6 CONCLUSION
This paper presented an architecture for ensuring integrity of user
content in Online Social Network (OSN), using a combination of
distributed computing and public key cryptography. User posts are
signed using PGP detached signatures that are then stored in a DHT.
We developed a proof-of-concept15 to demonstrate the effectiveness
of our solution employing the Bittorrent-dht implementation for
storing content signature.

As our solution is a POC, it doesn’t cover some of the traditional
features of OSNs, such as user to user messenging, post commenting
or multimedia content. Thus, an obvious direction of future work
would be extending the functionality of the POC to provide more
of the features available in traditional OSNs, while maintaining
a focus on content integrity. We are currently investigating the
ActivityPub [19] protocol used in the Mastodon OSN with the
objective of integrating our solution to one of their existent client.

An obvious future direction involves dealing with the key dis-
tribution problem of using PGP, maybe exploring mechanisms to
facilitate key exchange, such as the approach adopted by the Ma-
trix system. It is also necessary to deal with privacy related issues,
which have been considered out-of-scope for the moment. Another
future work is to further explore DHT implementations and config-
urations. The Bittorrent DHT implementation was designed for use

13https://joinpeertube.org
14https://matrix.org/
15The POC is available on demand by contacting the main author.

within torrenting, a use case in which there is a high level of churn
(arrival/departure of nodes), and persisting data is not a priority.

REFERENCES
[1] Sonja Buchegger, Doris Schiöberg, Le-Hung Vu, and Anwitaman Datta. 2009.

PeerSoN: P2P Social Networking: Early Experiences and Insights. In Proceedings
of the Second ACM EuroSys Workshop on Social Network Systems (Nuremberg,
Germany) (SNS ’09). Association for Computing Machinery, New York, NY, USA,
46–52. https://doi.org/10.1145/1578002.1578010

[2] Jack Dorsey. [n.d.]. The Joe Rogan Experience. https://www.youtube.com/watch?
v=_mP9OmOFxc4

[3] Council of the European Union European Parliment. [n.d.]. Regulation on the
protection of natural persons with regard to the processing of personal data and on
the free movement of such data, and repealing Directive 95/46/EC (Data Protection
Directive). https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:
32016R0679&from=EN

[4] Hal Finney, Lutz Donnerhacke, Jon Callas, Rodney L. Thayer, and David Shaw.
[n.d.]. OpenPGP Message Format. https://doi.org/10.17487/RFC4880

[5] Barbara Guidi. 2020. When Blockchain meets Online Social Networks. Pervasive
and Mobile Computing 62 (2020), 101131. https://doi.org/10.1016/j.pmcj.2020.
101131

[6] Barbara Guidi, Marco Conti, Andrea Passarella, and Laura Ricci. 2018. Managing
social contents in Decentralized Online Social Networks: A survey. Online Social
Networks and Media 7 (sep 2018), 12–29. https://doi.org/10.1016/j.osnem.2018.
07.001

[7] Le Jiang and Xinglin Zhang. 2019. BCOSN: A Blockchain-Based Decentralized
Online Social Network. IEEE Transactions on Computational Social Systems 6, 6
(dec 2019), 1454–1466. https://doi.org/10.1109/tcss.2019.2941650

[8] Jinyang Li, J. Stribling, R. Morris, M. F. Kaashoek, and T. M. Gil. 2005. A perfor-
mance vs. cost framework for evaluating DHT design tradeoffs under churn. In
Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Commu-
nications Societies., Vol. 1. 225–236 vol. 1. https://doi.org/10.1109/INFCOM.2005.
1497894

[9] KPMG. [n.d.]. The ”localisation” of Russian citizens’ personal data Compliance
with the Russian law on personal data. https://home.kpmg/be/en/home/insights/
2018/09/the-localisation-of-russian-citizens-personal-data.html

[10] Chao Li and Balaji Palanisamy. 2019. Incentivized Blockchain-Based Social Media
Platforms: A Case Study of Steemit. In Proceedings of the 10th ACM Conference on
Web Science (Boston, Massachusetts, USA) (WebSci ’19). Association for Comput-
ing Machinery, New York, NY, USA, 145–154. https://doi.org/10.1145/3292522.
3326041

[11] Andrew Loewenstern and Arvid Norberg. [n.d.]. DHT Protocol. http://www.
bittorrent.org/beps/bep_0005.html

[12] Petar Maymounkov and David Mazières. 2002. Kademlia: A Peer-to-Peer Infor-
mation System Based on the XOR Metric. In Peer-to-Peer Systems, Peter Druschel,
Frans Kaashoek, and Antony Rowstron (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 53–65.

[13] R. Narendula, T. G. Papaioannou, and K. Aberer. 2012. A Decentralized Online
Social Network with Efficient User-Driven Replication. In 2012 International
Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on
Social Computing. 166–175. https://doi.org/10.1109/SocialCom-PASSAT.2012.127

[14] Zhonghong Ou, Erkki Harjula, Otso Kassinen, and Mika Ylianttila. 2010. Per-
formance evaluation of a Kademlia-based communication-oriented P2P sys-
tem under churn. Computer Networks 54, 5 (apr 2010), 689–705. https:
//doi.org/10.1016/j.comnet.2009.09.022

[15] Martin Pengelly. 2020. Trump retweets video of Biden labelled by Twitter as
‘manipulated media’. The Guardian (2020). https://www.theguardian.com/
us-news/2020/mar/09/trump-retweets-video-manipulated-media

[16] Aravindh Raman, Sagar Joglekar, Emiliano De Cristofaro, Nishanth Sastry, and
Gareth Tyson. 2019. Challenges in the Decentralised Web: The Mastodon Case.
In Proceedings of the Internet Measurement Conference (Amsterdam, Netherlands)
(IMC ’19). ACM, 217–229. https://doi.org/10.1145/3355369.3355572

[17] Riccardo Scandariato, Kim Wuyts, and Wouter Joosen. 2015. A Descriptive Study
of Microsoft’s Threat Modeling Technique. Requir. Eng. 20, 2 (June 2015), 163–180.
https://doi.org/10.1007/s00766-013-0195-2

[18] L. Wang and J. Kangasharju. 2013. Measuring large-scale distributed systems:
case of BitTorrent Mainline DHT. In IEEE P2P 2013 Proceedings. 1–10.

[19] Christopher Lemmer Webber, Jessica Tallon, Erin Shepherd, Amy Guy, and Evan
Prodromou. 2018. ActivityPub. https://www.w3.org/TR/activitypub/

[20] Quanqing Xu, Zhiwen Song, Rick SiowMong Goh, and Yongjun Li. 2018. Building
an Ethereum and IPFS-Based Decentralized Social Network System. In 2018 IEEE
24th International Conference on Parallel and Distributed Systems (ICPADS). IEEE,
1–6. https://doi.org/10.1109/padsw.2018.8645058

[21] Hao Zhang, Yonggang Wen, Haiyong Xie, and Nenghai Yu. 2013. Distributed
Hash Table: Theory, Platforms and Applications. Springer-Verlag GmbH. https:
//doi.org/10.1007/978-1-4614-9008-1

https://joinpeertube.org
https://matrix.org/
https://doi.org/10.1145/1578002.1578010
https://www.youtube.com/watch?v=_mP9OmOFxc4
https://www.youtube.com/watch?v=_mP9OmOFxc4
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679&from=EN
https://doi.org/10.17487/RFC4880
https://doi.org/10.1016/j.pmcj.2020.101131
https://doi.org/10.1016/j.pmcj.2020.101131
https://doi.org/10.1016/j.osnem.2018.07.001
https://doi.org/10.1016/j.osnem.2018.07.001
https://doi.org/10.1109/tcss.2019.2941650
https://doi.org/10.1109/INFCOM.2005.1497894
https://doi.org/10.1109/INFCOM.2005.1497894
https://home.kpmg/be/en/home/insights/2018/09/the-localisation-of-russian-citizens-personal-data.html
https://home.kpmg/be/en/home/insights/2018/09/the-localisation-of-russian-citizens-personal-data.html
https://doi.org/10.1145/3292522.3326041
https://doi.org/10.1145/3292522.3326041
http://www.bittorrent.org/beps/bep_0005.html
http://www.bittorrent.org/beps/bep_0005.html
https://doi.org/10.1109/SocialCom-PASSAT.2012.127
https://doi.org/10.1016/j.comnet.2009.09.022
https://doi.org/10.1016/j.comnet.2009.09.022
https://www.theguardian.com/us-news/2020/mar/09/trump-retweets-video-manipulated-media
https://www.theguardian.com/us-news/2020/mar/09/trump-retweets-video-manipulated-media
https://doi.org/10.1145/3355369.3355572
https://doi.org/10.1007/s00766-013-0195-2
https://www.w3.org/TR/activitypub/
https://doi.org/10.1109/padsw.2018.8645058
https://doi.org/10.1007/978-1-4614-9008-1
https://doi.org/10.1007/978-1-4614-9008-1

	Abstract
	1 Introduction
	2 Related Work
	3 Solution Design
	4 System Implementation
	5 Evaluation
	5.1 Solution Effectiveness
	5.2 Hash Table Performance
	5.3 Threat Model
	5.4 Discussion

	6 Conclusion
	References

