
How Do Developers Deal with Security Issue Reports on GitHub?
Noah Bühlmann

Software Composition Group, University of Bern
Switzerland

noah.buehlmann@students.unibe.ch

Mohammad Ghafari
School of Computer Science, University of Auckland

New Zealand
m.ghafari@auckland.ac.nz

ABSTRACT
Security issue reports are the primary means of informing develop-
ment teams of security risks in projects, but little is known about
current practices. We aim to understand the characteristics of these
reports in open-source projects and uncover opportunities to im-
prove developer practices. We analysed 3 493 security issue reports
in 182 different projects on GitHub and manually studied 333 re-
ports, and their discussions and pull requests. We found that, the
number of security issue reports has increased over time, they are
resolved faster, and they are reported in earlier development stages
compared to past years. Nevertheless, a tiny group of developers
are involved frequently, security issues progress slowly, and a great
number of them has been pending for a long time. We realized
that only a small subset of security issue reports include repro-
ducibility data, a potential fix is rarely suggested, and there is no
hint regarding how a reporter spotted an issue. We noted that the
resolution time of an issue is significantly shorter when the first
reaction to a security report is fast and when a reference to a known
vulnerability exists.

CCS CONCEPTS
• Security and privacy → Software and application security;

KEYWORDS
Security; developer practice; open-source software development
ACM Reference Format:
Noah Bühlmann and Mohammad Ghafari. 2022. How Do Developers Deal
with Security Issue Reports on GitHub? . In The 37th ACM/SIGAPP Sympo-
sium on Applied Computing (SAC ’22), April 25–29, 2022, Virtual Event, .ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3477314.3507123

1 INTRODUCTION
Open Source Software development has become impressively pop-
ular in recent years. For instance, GitHub, the leading software
development platform worldwide, has more than 40 million devel-
opers who have closed 20+ million issues only in 2019 [6]. The
advancements in Open Source Software have encouraged the soft-
ware industry and large companies such as Google and Facebook to
open source their otherwise proprietary software for reasons such
as engaging in a large community, obtaining prompt responses, and
getting fast feedback [9].

Preprint – SAC ’22, April 25–29, 2022,
2022. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/3477314.3507123

However, security issues are prevalent in Open Source Soft-
ware [4, 5, 7]. HeartBleed [2] and the Equifax [10] Breach are two
remarkable examples of vulnerabilities in such projects. The for-
mer vulnerability, located in the OpenSSL library (CVE-2014-0160),
exposed an enormous number of secrets to the Internet, and the
latter, located in the Apache Struts 2 (CVE-2017-5638), leaked the
private records of more than 140 million customers of Equifax.

Timely reaction to security issues has received great attention,
but previous work has mostly revolved around discerning security
issues from non-security bugs [8], or predicting the abundance
of vulnerabilities in an application [15]. In the end of the day, it
is the developer’s responsibility to discuss and resolve security
issues. Nevertheless, there is dearth of evidence regarding how
developers deal with security issue reports in practice. Therefore,
we investigated the prevalence of security issue reports, their charac-
teristics, and how they progress. We believe this is an important step
to understand the dynamic of development teams, and to uncover
improvement opportunities to form a better security culture in our
community.

We collected a dataset of nearly 250 000 issue reports from 182
different GitHub Java projects and analysed 3 493 security issue
reports, and we inspected a significant subset of these reports. We
explored the prevalence of issues, reaction time, reporter, and reso-
lution time, among others; and when needed, we compared them
to non-security issues to put our observations in perspective. We
publicly shared our full dataset to facilitate future investigations [1].

We found that the number of security issue reports has increased
over time, developers have succeeded to shorten the resolution time
of these issues, but a great number of security issues are pending
for a long time. We noted that the report of the first security issue
has shifted to earlier development stages, nonetheless, security
issues are still reported significantly later than non-security issues
in a project. We identified that, compared to non-security issues,
only a small group of developers are involved in reporting and
resolving security issues. We found that a small subset of security
issue reports includes reproducibility data, a potential fix is rarely
suggested, and there is no hint regarding how a reporter spotted
an issue. Finally, we noted that the resolution time of an issue is
significantly shorter when the first reaction to a security report is
fast and when a reference to a known vulnerability exists.

The remainder of this paper is organized as follows. In section 2,
we present the basics of issue tracking on GitHub. We explain our
methodology in section 3. We present our results in section 4 and
discuss them in section 5. We report threats to validity of this work
in section 6. In section 7, we give an overview of related work, and
we draw our conclusion in section 8.

U
pl

oa
de

d
to

 a
rx

iv
.o

rg

https://doi.org/10.1145/3477314.3507123
https://doi.org/10.1145/3477314.3507123

Preprint – SAC ’22, April 25–29, 2022, Bühlmann and Ghafari

2 BACKGROUND
Issue reports are the bug tracking functionality of GitHub. They
have their own section in every repository that has issue tracking
enabled. Generally, any user who has read access to a repository
can submit an issue. For public open source projects, this means
that every GitHub user can create an issue. In order to do so, one
has to fill out a simple form that contains the title and description
fields. For the description, a project may provide issue templates
that have a predefined structure (e.g., a section for reproducibility
information) that the issue reporter should follow because it is
desired by the community.

Participants in an issue can have one of the following associa-
tions with the project:

• TheOwner/Member is the GitHub userwho created the repos-
itory. If the repository was created and is maintained by an
organization, then all developers who belong to that organi-
zation fall into the member category.

• Collaborators are users who were invited by the project own-
ers to contribute to a project and have write access to the
repository.

• Contributors are users who do not have collaborator access to
a repository, but they have contributed to a project through
making a pull request that was merged into the repository.

• Users who do not belong to one of the above categories fall
into the None category.

Labels are a way to organize issue reports in a project. They are
predefined categories defined per project that can be applied to
issues and pull requests. Each issue can have one or multiple labels.
Labelling and assigning of issues only happen after the creation of
an issue and can only be performed by GitHub users with the status
owner, member or collaborator for the project, i.e., developers with
write access to the repository. Finally, an assignee is a person who
is responsible for the issue. One or multiple users can be assigned
to an issue. They receive a notification in GitHub when they are
assigned to a new issue.

3 METHODOLOGY
We followed an empirical approach to shed light on how developers
deal with security issues reports in open-source projects. In the
rest of this paper, we use the terms “issue” and “issue report” inter-
changeably, which both refer to issues that are reported in GitHub
projects. In terms of the “significance” of our observations, we rely
on a non-parametric Mann–Whitney U test to judge the difference
of means, and we determine the significance of a correlation based
on the p-value of the Pearson’s correlation.

Selection of projects. We had to make a selection of GitHub
projects (repositories) as, practically, we cannot analyse all the
projects. Therefore, we set up several selection criteria on these
projects. Precisely, we stuck to Java projects as it is one of the top
programming languages, it has a very large user base on GitHub,
and we are very familiar with this programming language. We did
not include forks of another repository to prevent duplicate projects
and redundant issue reports. We selected projects that had a size
of more than 2 kB to exclude repositories that were mostly empty.
We did not include toy and personal projects that are not known
to other developers. Specifically, we considered projects that had

more than 10 forks and 10 stars, and at least 50 commits and 10
issue reports. We only selected projects that had at least one push
within the last 365 days. We added this criterion to exclude inactive
projects. Finally, we selected projects that used English as their
issue tracking language to be able to carry out a manual analysis
of the issue reports.

With these criteria, out of all GitHub projects, we were left with
5 572 repositories that we further processed to exclude those that
did not include any issues of security-related type. We used a simple
label-based approach to classify issue reports into security and non-
security issues. For each remaining repository, we extracted any
labels that contained the string “security”.We found 276 repositories
that had at least one such label available, and in 182 instances such
a label was actually used to tag at least a single issue report in the
project. We therefore proceeded with those 182 projects because
we only wanted to include projects in our analysis that had both
security and non-security issues.

Full dataset. We downloaded all the issue reports in these
projects and classified those reports that were labelled with one
of the aforementioned security labels as security issues and all
other issues as non-security issues. We ended up with our final
dataset of 182 GitHub projects containing a total of 249 043 issue
reports, of which 3 493 were labelled as security issues, and a total
of 852 341 discussion comments. Our data represents a snapshot at
the 11.04.2020 14:00 UTC. The key statistics of these projects are
summarized in table 1.

We relied on 39 features to acquire a clear insight into our full
dataset. In particular, 15 features were about the repositories; 20
features concerned the issue reports; and four features were related
to the comments. The full dataset as well as the explanation of each
feature is available online [1].

Sampling. Manual analysis of all the security issues in our
dataset would have exceeded our time and resources. Therefore,
we drew a significant sample from the full dataset and performed
our manual investigation on that sample. We were particularly
interested in the discussions of the security issues, and therefore
we excluded all issues with zero comments, where a meaningful
analysis of the discussion was not possible. With such restrictions,
our population of 3 493 security issues shrank to 2 354 commented
security issues. We wanted to achieve a confidence interval of ±5%
at a confidence level of 95%, which resulted in a minimum required
sample size of 331.

The distribution of our population with respect to the number
of comments and the status of an issue vary (see table 2). Therefore,
we adopted a stratified-random sampling to preserve the distribu-
tion of the aforementioned features in our sample set and maintain
sufficient representativeness to draw conclusions for the main pop-
ulation. We distributed the samples to the strata according to each
quartile of data and ended up using a sample of 333 security issues
in order to accommodate for rounding imprecisions. The composi-
tion of this sample set is shown in table 3. Finally, we used a true
random number generator1 to randomly select the number of issues
from our different strata of the population.

1https://www.random.org

U
pl

oa
de

d
to

 a
rx

iv
.o

rg

How Do Developers Deal with Security Issue Reports on GitHub? Preprint – SAC ’22, April 25–29, 2022,

Metric commits forks stars issues pull requests age [years]
Mean (Std. Error) 6 135 (679) 629 (123) 1 751 (335) 1 368 (178) 1 416 (222) 5.20 (0.18)
Std. Deviation 9 167 1 657 4 524 2 397 2 999 2.42

Table 1: General statistics of the 182 repositories in the dataset

Quartile Accepted Pending Rejected Total
1 321 (13.6%) 162 (6.9%) 267 (11.3%) 750
2 357 (15.2%) 120 (5.1%) 138 (5.9%) 615
3 165 (7.0%) 142 (6.0%) 122 (5.2%) 429
4 247 (10.5%) 139 (5.9%) 174 (7.4%) 560

Total 1 090 563 701 2 354
Table 2: The distribution of 2 354 commented security reports
in each quartile (number of comments)

Strata Accepted Pending Rejected Total
1 45 23 38 106
2 50 17 19 86
3 23 20 17 60
4 36 20 25 81

Total 154 80 99 333
Table 3: The distribution of 333 sampled issue reports based
on stratification

We inspected the 333 randomly selected issue reports, the 1 335
comments in the issue discussions and the 124 pull request discus-
sions related to these issues.

Categorization of resources. We categorized resources that
were provided either directly in the issue or via a hyperlink into
the categories “fix”, “documentation”, “cve” and “reproducibility”.
A “fix” is generally a concrete suggested change to the source code
that is likely to resolve the issue. “Documentation” refers to further
information about the functionality of software or a third-party
library. “CVE”2 includes all kinds of entries in public vulnerability
databases. We used the value “reproducibility” if the report included
any kind of resources that describe how to reproduce an issue.
Finally, we assigned the value “none” if none of the information
mentioned before was provided.We also checkedwhether the above
information exists in comments.

Inspection of pull requests. We checked if a pull request was
directly linked to an issue. If we could not find any pull request,
we assigned the value “no”. If a pull request existed, we checked
whether or not (and how many times) the review feature on GitHub
was used on the pull request corresponding to the issue. If no
review had been performed, we assigned the value “no review”.
If one review had been conducted, we assigned the value “single
review”, and if more than one review had been done, we assigned
the value “multiple reviews”.

We checked whether the author of an issue also created the pull
request, was assigned as a reviewer of the pull request, or was not
involved at all in the pull request. These roles are exclusive, as the

2Common Vulnerabilities and Exposures

creator of a pull request should not review his or her own pull
request.

We counted distinct people who left a comment on the pull re-
quest. This should not be confused with the number of participants
in a pull request that is displayed on the GitHub. In fact, the former
only includes participants who contributed to a pull request dis-
cussion, whereas the latter count also includes people who merely
performed an action on a pull request (e.g. adding a label or merging
the pull request).

We were interested to figure out how challenging it is for de-
velopers to discuss a pull request. We took into consideration how
long it took to reach (i) the final merge state, or (ii) the decision
to merge or abandon the pull request; and checked how strong
the participants disagreed or argued. We assigned a value “low” if
there was basically no disagreement between the participants of
the discussion, “medium” if there was a moderate discussion going
on and “high” if it was extremely challenging and controversial to
come to a conclusion.

Pilot study.We conducted a pilot study to mitigate subjective
influence during our manual study i.e., to ensure what we extract
during the manual inspection is correct. We randomly selected 17
security issues from the remaining 2 021 commented security issues
that were not used for the actual study. The two authors of this
paper inspected every issue, the comments, and its pull requests.
They compared their results (e.g., the types of information contained
in each report) in the end and discussed them until consensus was
reached.

4 RESULTS
We report various characteristics of security issue reports that we
identified, and when needed, we compare them to non-security
issue reports to put our observations in perspective.

How prevalent are issues, and when do they emerge? Our full
dataset consisted of 182 GitHub projects which included a total of
249 043 issues, of which 3 493 (1.40%) are security issues and 245 550
(98.60%) are non-security issues. When analysing the percentages of
security issues in each individual project, we realized that security
issues generally make up a very small percentage of all the issues
of a project. We found that 75% of all projects have a percentage
that is lower than 2.23%.

Security issues, expectedly, comprise only a small proportion
of all issues in a project

We were interested to know when security issues emerge in
a project. We analysed the time interval between the creation of
a project and the creation of the first security issue, and also the
mean time interval between subsequent security issues in a project.
We found that the median is 655.50 days (interquartile range (IQR)
1 202.25 days) until the creation of the first security issue. Once

U
pl

oa
de

d
to

 a
rx

iv
.o

rg

Preprint – SAC ’22, April 25–29, 2022, Bühlmann and Ghafari

the first security issue is created, we found that the median time
between subsequent security issues is 54.37 days (IQR 107.06 days).
To put these results into perspective, we also calculated the numbers
for non-security issues and found that the median is 28.21 days (IQR
140.03 days) until the creation of the first non-security issue. Once
the first non-security issue is created, we found that the median
time between subsequent non-security issues is 2.53 days (IQR 4.68
days). This shows that security issues are created later in a project
and emerge less frequently than non-security issues.

Security issues are reportedmuch later than non-security issues
in a project.

We were wondering if the activity of a project is related to the
number of security issues it contained. We used three different
metrics to assess the activity. The number of commits is an indicator
for the activity in terms of code changes, and the number of forks
and the number of stars give an idea of how many developers use
a project. We applied Pearson correlation coefficient analysis to
understand the relationship between the number of security issues
and these metrics. We found that there is a statistically significant
positive correlation between the number of security issues and all
three metrics, with the 2-tailed p-value being smaller than 0.001.
According to Cohen [3], the correlation coefficient indicates that
the effect is medium for the number of commits (r=0.374) and strong
for the number of forks (r=0.552) and stars (r=0.593). We can say
that the more active a project is, the more security issues it contains
or vice versa.

The more active a project is, the more security issues it contains,
or vice versa.

How often do developers report issues, and what is their
relationship with the projects? We counted how many security
issues and non-security issues reporters posted in the analysed
projects. We found that for security issues, the mean is 2.37 (SE
0.40) reported issues per reporter, and for non-security issues, the
mean is 2.61 (SE 0.72), showing that there is no significant difference.
We analysed how far reporters of issues in general and security
issues in particular overlap. We found 30 490 distinct reporters of
issues, of which 29 749 (97.6%) reported only non-security issues;
130 (0.4%) reported only security issues; and 611 developers (2.0%)
reported both security and non-security issues. Therefore, only 741
of 30 490 developers (2.4%) report security issues. Additionally, we
found 15 cross-project security issue reporters, i.e., they created
security issues in more than one of the 182 projects in our dataset.
Thirteen of those reporters reported security issues in two projects,
while two reported in five projects.

Only 2.4% of issue reporters report security issues. Most of
these developers also report non-security issues.

We analysed how the reporters of security and non-security is-
sues are associated with the project the issue belongs to and found
significant differences. For security issues only 733 of 3 493 (21.0%)
issues are reported by outside users who are not associated with
the project at all, 1 257 of 3 493 (37.5%) come from core members

Me
mb
er

Co
lla
bo
rat
or

Co
ntr
ibu
tor

Ot
he
r

0

50

100
19.9 23.0 23.0

44.5
25.8

53.1
25.0

24.7

54.3

23.9
52.0

30.8

is
su
es

[%
]

Accepted Pending Rejected

Figure 1: The performance of issue reporter groups

(members and collaborators) and 1 448 of 3 493 (41.5%) from estab-
lished contributors to the project. For non-security issues a lot more
issues are reported by unassociated users, namely 86 325 of 245 550
(35.2%). Here, core members account for 70 626 of 245 550 (31.1%)
and contributors for 82 684 of 245 550 (33.7%) of non-security issues.

Comparison between accepted and rejected security issues re-
vealed that accepted issues are more often reported by core mem-
bers of a project than rejected issues; and rejected issues are re-
ported much more often by unassociated users than accepted issues.
Digging into the status of issues reported by each user group, shown
in figure 1, proves that unassociated users have the worst perfor-
mance i.e., the proportion of issues that they reported and were
rejected is two times more than for other issue reporters. Members
and contributors have the best performance as more than half of
their reports were accepted. Unexpectedly, more than half of issues
that collaborators reported were pending, which is twice more than
for other groups.

The role of established contributors is significantly more in the
reporting of security issues than non-security issues, whereas
it is the opposite for outsiders.

How long are issue discussions, and how many developers
participate in such discussions? We counted how many com-
ments exist in issue discussions, and we found that security issue
discussions have a mean of 2.87 (SE 0.09) comments, which is less
than non-security issue discussions that have a mean of 3.47 (SE
0.01) comments. Surprisingly, 736 out of 2 527 concluded security
issues (i.e., 29.1%) did not receive any comment. When analysing
the data per project, we found that in 81 out of 182 analysed projects
(44.5%) security issue discussions contained on average fewer com-
ments than non-security issue discussions in the same project. We
did not note any significant difference in the number of comments
on accepted security issues v.s. rejected security issues.

U
pl

oa
de

d
to

 a
rx

iv
.o

rg

How Do Developers Deal with Security Issue Reports on GitHub? Preprint – SAC ’22, April 25–29, 2022,

The majority of security issues contain a maximum of three
comments. Unexpectedly, 29% of security issues are closed with-
out any discussion.

We analysed how many developers participate in discussions of
issues. We excluded pending issues and only included closed issues
into our analysis because a lot of very recently created issues do not
yet have any participants in their discussions. We did not find any
significant difference between the number of distinct participants
in security issue discussions and non-security issue discussions
(1.51 vs 1.55).

We also studied how many developers participate in the security
issue discussions of a whole project. We found that on average
only 7.78 (SE 1.47) developers are involved in all security issues
of a project combined. The median is even lower with only three
developers. This is very few, especially when we compare it to
the number of participants in non-security discussions of a whole
project, where we find that on average 231.61 (SE 42.61) developers
are involved in all issues of a project combined, with the median
being 63 participants. We were wondering how far participants in
issue discussions in general and in security issue discussions in
particular overlap. In our dataset we found 37 093 distinct partic-
ipants of issue discussions. Only 941 of 37 093 (2.5%) developers
participated in both security and non-security issue discussions.
35 904 (96.8%) participated only in non-security issue discussions
and 248 (0.7%) only in security issue discussions. This leads us
to the conclusion that only 1 189 of 37 093 developers (3.2%) are
involved in security issue discussions. Furthermore, we checked
how frequently developers participate in issue discussions. For each
participant in security issue discussions, we calculated the ratio
between the total number of security issues in a project and the
number of security issues in a project that he or she participated in.
We found that the developers participate in more than one-fourth
of the security issue discussions of a project with the mean ratio
being 0.25 (SE 0.01). Of course, this value is extremely lower for
non-security issues, where the mean participation ratio is only
0.0083 (SE 0.00029).

We learned that of total participants in issue discussions, 3.2%
are involved in security discussions. In each project, on aver-
age, 7.78 (SE 1.47) developers participated in all the security
issue discussions, which is greatly lower than participants in
non-security issue discussions. However, participants in secu-
rity issue discussions take part in such discussions much more
frequently than participants in non-security discussions.

How fast do developers react to issues and resolve them? We
wanted to know how fast developers react to security issues. We
analysed two metrics to answer this question. We looked at the
time it takes until the first comment emerges on an issue report,
often called “reaction time”, and computed the mean time it takes
between every two consecutive comments that follows after the first
comment in the discussion. Naturally, issues without any comments
were excluded from this analysis.

Judging by the mean, non-security issues get their first comment
approximately six days faster than security issues (47.52 days vs.

53.17 days). Standard deviation is very high with this metric indicat-
ing that the data is very spread out and outliers, e.g., issues taking
years until their first comment, are influencing the mean. However,
the median reveals a different picture. 50% of security issues receive
the first comment nearly one hour earlier than non-security issues.
The comparison of mean time between subsequent comments in the
issue discussion also suggests that the discussions proceed slower
in security issues than in non-security issues (median 6.87 days vs.
4.71 days).

We also compared these two metrics between accepted, pending
and rejected security issues. We found that rejected security issues
have a much slower reaction time than accepted security issues,
which is less than half the time with 35.89 (SE 4.48) days vs. 76.80
(SE 7.77) days. Also, the mean time between discussion comments
is significantly longer in pending and rejected security issues than
it is in accepted security issues.

The first reaction to an issue is within a few hours. Nevertheless,
discussions related to security issues progress slower than that
of non-security issues. In security discussions, the first reaction
to an issue as well as the follow up discussions happen much
faster in accepted issues than in rejected ones.

We looked into the resolution time of security issues. We ob-
served that the data is very spread out with a standard deviation
of 283.51 days. 25% of the security issues are resolved within 1.90
days or less, and 25% take 94.88 days (approximately three months)
or more to be resolved. When judged by the mean, security issues
are resolved slightly faster than non-security issues (110.08 days vs.
116.97 days), when judging by the median; however, non-security
issues are resolved in half the time of security-issues (8.06 days vs.
15.32 days). When analysing the data per project, we found that
in 94 out of 182 available projects (51.6%) security issues were on
average resolved slower than non-security issues.

We found a strong correlation (r= 0.637, p= 0.000, n= 1791) be-
tween the resolution time of a security issue and its reaction time,
i.e., the time until the first comment. This signifies the importance
of the first comment in a security issue. The faster there is a first
comment, the faster a security issue is resolved or vice versa. We no-
ticed that accepted security issues are resolved significantly faster
than rejected security issues with a mean of 84.95 (SE 5.03) vs.
153.32 (SE 9.61) days. Note that the mean age of pending security
issues is 625.94 (SE 17.84) days.

Developers are mostly slower in concluding a security issue
report than a non-security issue. In at least half the cases, the
average resolution time of a security issue is twice longer than
a non-security issue. Reports with shorter reaction time are
concluded faster. Accepted security issues are concluded much
faster than rejected ones.

We also analysed how long issues without a single comment
have been pending, and how long the resolution time for accepted
and rejected issues with zero comments was. We found that in such
cases non-security issues have been pending only insignificantly
longer than security issues with means of 614.65 (SE 5.18) days vs.
602.29 (SE 28.28) days. For closed issues without any comments the
resolution times were on average 34.58 (SE 0.67) days and 33.49 (SE

U
pl

oa
de

d
to

 a
rx

iv
.o

rg

Preprint – SAC ’22, April 25–29, 2022, Bühlmann and Ghafari

4.17) days for accepted, and 132.02 (SE 3.50) days and 48.27 (SE 11.92)
days for rejected non-security and security issues respectively. This
shows that issues without any comment get rejected significantly
faster in the case of security issues than for non-security issues.

We also studied the resolution time of security issues that were
concluded without any comment, and interestingly, found that
such issues are resolved significantly faster than security issues that
received at least one comment. In particular, accepted issueswithout
comments were resolved in 33.49 (SE 4.17) days, whereas accepted
issues with comments took 108.94 (SE 7.00) days to conclude. In
the same vein, rejected issues without any comment were resolved
in 48.27 (SE 11.92) days, whereas those with comments took 187.48
(SE 11.86) days to conclude.

The resolution time of security issues that did not receive
any comment is significantly faster than those with comments.
Pending security issues that have not received any single com-
ment have an average age of more than 600 days, which sur-
prisingly, is too long.

How often do developers get assigned to issues, and how do
they perform? We found that in 1 698 of 3 493 (48.6%) security
issues at least one developer was assigned to the issue, and for non-
security issues this share was lower with 107 923 of 245 550 (44.0%).
We find that 1 069 of 1 598 (66.9%) accepted security issues have
at least one assignee, while 316 of 966 (32.7%) pending issues and
313 of 929 (33.7%) rejected issues have an assignee. We conclude
that accepted issues have most assignees, while in pending and
rejected issues about two-thirds of the security issues do not have
an assignee. This is also confirmed by the mean values with 0.71
(SE 0.01) assignees for accepted, 0.31 (SE 0.02) for pending and 0.33
(SE 0.02) for rejected security issues. In reverse, this also yields
a much higher acceptance rate for security issues that have an
assignment with 77.4% vs. 46.3% for issues with no assignment. In
63.3% of security issues with assignees, actually a self-assignment
took place, i.e., a user assigned himself to a security issue. Finally,
we found that neither the reaction time nor the resolution time
differs significantly between issues with and without an assignee.

The acceptance rate of security issues with an assignee is much
higher than issues with no assignee.

Further analysis showed that 328 distinct developers were as-
signed to the 1 698 security issues that had at least one assignee.
We found that these 328 developers (in short, “security assignees”)
reported 1 505 of 3 493 (43.1%) of the security issues in our dataset.
The mean number of reported security issues by such a security
assignee is 7.00 (SE 0.80), which is significantly higher than the
mean number of 2.37 (SE 0.40) security issue reports by security
issue reporters in general. Further investigations revealed that of
the 1 117 developers who were not security assignees, 1 079 (96.6%)
have fewer comments in security issues and fewer security issue
reports than the average security assignee. We noted that the mean
resolution time, 80.86 (SE 5.95) days, is significantly shorter for secu-
rity issues reported by security assignees than the global resolution
time for security issues, which is 110.08 (SE 4.80) days. Furthermore,
we also found that the acceptance rate for security issues reported

by security assignees is 77.7%, which is much higher than the global
acceptance rate for security issues of 63.2% and the acceptance rate
of non-security assignees which is 49.0%.

Finally, we also analysed when the first assignment of a security
issue happens. On average, the first assignment takes place 51.00
(SE 4.52) days after the creation of a security issue. It happens earlier
for accepted issues with a mean of 39.29 (SE 5.30) days than for
pending and rejected issues with means of 87.19 (SE 13.10) and
54.49 (SE 9.69) days respectively. At the time of the first assignment,
a mean of 1.34 (SE 0.09) comments have already been left on the
security issues, and a mean of 2.81 (SE 0.11) comments follow after
the first assignment, which shows that, on average, the amount of
discussion would significantly increase after an assignment.

Security assignees, on average, report significantly higher
number of security issues and have a higher acceptance rate
than security issue reporters in general. Besides that, the aver-
age resolution time of security issues that are reported by such
developers is significantly shorter than the global resolution
time of security issues.

Have characteristics of security issues changed in the past
years? We examined the number of security issues over the course
of the last six years from 2014 until April 2020.3 A big increase in
the number of security issues after 2016 was evident. We noted
that the proportion of accepted issues is consistently bigger than
pending and rejected issues.

We also analysed how security issue evolve when they age. We
grouped the 3 493 security issues in our dataset into ten “age bins”,
according to the 10%-quantiles of the age of the issues. In general,
as security issues age the numbers of accepted and rejected issues
decrease (because they are closed) and the number of pending is-
sues increases of course. For issues between two and 47 days old,
there are more than twice as many accepted issues than rejected
issues. Notably, the number of accepted and rejected security is-
sues converges more as the issues get older. We confirm that the
cross-comparison between the age group and the issue statuses is
significant. We also found a strong positive correlation (r=0.635*,
p=0.000, n=182) between the age of a project and the days until
the first security issue is reported. In other words, the first security
issue is reported faster in “younger” projects than in older projects.

We checked the development of the mean number of participants
as well as the mean number of comments in security issue discus-
sions in the past years. We found that the number of participants
who were involved in security issues has not really changed over
the years. Nevertheless, in recent years fewer comments have been
needed to resolve issues. Interestingly, there are constantly more
comments on rejected issues than accepted and pending issues.
Our further investigations show that in recent years security issues
are reported more often by contributors than the core members
of the projects, which could be explained with the growing open
source community. Nevertheless, the participation of core members,
contributors, and outsiders in the discussions has remained almost
stable over the years. Additionally, we explored the distribution of
the number of participants and the number of comments as security

3We excluded issues created before 2014 as they were rare in our dataset.

U
pl

oa
de

d
to

 a
rx

iv
.o

rg

How Do Developers Deal with Security Issue Reports on GitHub? Preprint – SAC ’22, April 25–29, 2022,

issues age and confirm that both increase as issues age. Neverthe-
less, if an issue is not resolved after half a year, fewer participants
get interested in joining the discussion.

We analysed if there are any trends in the resolution time of
security issues over the years, and found that it has become faster
and faster. Notably, rejected security issues are resolved signifi-
cantly slower than accepted security issues almost all the time. We
also confirm that reaction time to security issues has significantly
decreased in recent years.

The number of reported security issues have increased over the
years, but also developers have succeeded to spot, react, and
resolve security issues faster. Interestingly, rejected security
issues needed longer discussions and progressed slower than
accepted issues. The population of issue reporters has shifted
from core members to contributors.

What kind of information exist in security issue reports
and their discussions? We found that 200 out of 333 security
issue reports (60.1%) include specific types of information shown in
figure 2. It is most common that developers refer to documentation
(40.2%), but reproducibility data is not very common (14.7%). Only
in 4.5% of cases reference to vulnerability entries (CVE) exist. We
realized that issue reporters rarely, i.e., only 2 issues out of 333
(0.60%), include any concrete fix in their issue descriptions. We
found that accepted security issues are more enriched than rejected
ones. Most notably, accepted security issues more often refer to
documentation (44.2%) or reproducibility information (16.9%) than
rejected security issues (34.3% resp. 14.1%). Furthermore, there was
no occurrence of a pending security issue containing a reference to
a CVE entry. This cross-comparison between further information
and issue statuses is significant, with a p-value of 0.027.

We also checked whether any of the aforementioned types of
information exist in security discussions, and found that in 77 of
333 security issues (23.13%) a fix was provided in the comments,
and in 90 of 333 issues (38.63%) comments included documentation.

We did not find any evidence that the status of an issue, its
resolution time, or even the length of the issue discussion would
change if the security issue report or its discussion includes a fix.
Surprisingly, we neither found any evidence that a reminder (i.e.,
a comment that asks developers if there is any update on an issue
or mentions certain developers to remind them of an issue) would
speed up the resolution process of a security issue.

The presence of a possible fix is very rare (i.e., 0.7%) in the
security issue reports, and only a small subset of issues (i.e.,
14.7%) include reproducibility data. We confirm that a possible
fix arose in 23.13% of the issue discussions.

How do developers apply a security fix? Our manual analysis
revealed that 106 out of 154 analysed accepted security issues (68.8%)
were fixed by a pull request, 44 issues (28.6%) were fixed with a
direct commit to the repository without a pull request, and in four
cases it was unknown where or how a fix was implemented. A
key functionality of pull requests on GitHub is the possibility to
add users as reviewers so that they can assess the proposed code
changes. Fortunately, we found that 105 of 124 (84.7%) analysed pull

Accepted Pending Rejected Total

0

50

100 2.0 0.75.1 7.2 4.5
16.9

11.2
14.1 14.7

44.2
40.0

34.3 40.2

33.8
48.8 42.4 39.9

is
su
es

[%
]

None Documentation Reproducibility CVE Fix

Figure 2: Further information in security issue reports

requests were reviewed at least once by another person than the
pull request creator. In 54 of 124 (43.6%) pull requests there were
even multiple reviews carried out. We noticed in most cases where
there is more than one review, reviews from multiple reviewers
were requested simultaneously right from the beginning, because
the creator wanted to have feedback from more than one person,
or because the policies of a project require a certain number of
reviews.

We assume that an issue reporter is knowledgeable about the
issue, and therefore we investigated whether the reporter has any
role in a pull request that emerged from the reported issue. We
found that a security issue reporter is not involved in 50.8% of
pull requests. In 35.5% of pull requests the issue reporter has made
the pull request too, and in 13.7% of cases the issue reporter has
reviewed the suggested fix.

Security fixes are often (68.8%) applied to a repository through
a pull request. Most of pull requests (84.7%) are reviewed at
least by one other developer. However, an issue reporter who
is presumably a very knowledgeable person about the issue, is
not involved in 50.8% of pull requests at all.

How long are pull request discussions, and how many de-
velopers participate in such discussions? We found that the
number of participants in pull request discussions that emerged
from security issues follows a normal distribution with a mean of
2.09 (SE 0.11) and a standard deviation of 1.20, and only four pull
requests have more than four participants. Therefore, the mean
number of participants in the pull requests is significantly higher
than that of the issue discussions (mean 1.51 and SE 0.03).

We also investigated the number of comments in the pull request
discussions, and found that they have a mean of 10.06 comments
(SE 1.48) with a standard deviation of 16.52, which shows the data
is widely spread out. Hence, pull request discussions have a sig-
nificantly higher number of comments than the issue discussions
(mean 2.87 and SE 0.09). Moreover, we found that the number of
comments in the issue discussion has a statistically significant cor-
relation of medium effect with the number of comments in the pull

U
pl

oa
de

d
to

 a
rx

iv
.o

rg

Preprint – SAC ’22, April 25–29, 2022, Bühlmann and Ghafari

request discussion (r= 0.427, p= 0.000, n= 124). In other words, the
more comments exist in the issue discussion, the more comments
there are in the pull request discussion or vice versa.

The main pattern that we noted about the issues that had very
extensive pull request discussion is the following. A pull request is
opened because someone has “coded“ a possible solution for the
security issue. This solution however is either incomplete, does
not pass automated testing, has merge conflicts or there are simply
changes that are requested/proposed by a fellow developer before it
is merged. This leads to changes in the pull request and discussion
about those changes. Manual investigation has also shown that this
effect is amplified if the pull request is very complex or challenging,
which often causes “back and forth" discussion between developers.

The number of participants as well as the number of comments
are significantly higher in pull requests than issue report dis-
cussions.

In cases where pull requests had zero comments, we noticed that
the changes were apparently quite straightforward or minor and
there was no need for discussion. Those cases did not have many
comments in the issue discussion either. We noticed though, even
when there is no discussion, the GitHub review feature was used in
about half of cases, showing that there was some form of feedback.

What factors possibly influence the resolution time of se-
curity issues? Figure 3 presents cases where a strong correlation
exists between the mean resolution time of issues and several fea-
tures that we extracted in our manual analysis. We found that
resolution time is significantly longer if documentation is provided
in the comments; the issue is reported by core members (members
and collaborators) or vice versa. Conversely, security issues con-
clude significantly faster if a CVE reference exists in the report or
the comments; the pull request is not reviewed multiple times or
vice versa. As we only measured correlation with our study, future
work is necessary to identify if and how much each of the above
factors actually impact the resolution time.

In our quantitative analysis we found that the faster developers
react to an issue, i.e., leave the first comment, the faster a security
issue is resolved or vice versa. Nevertheless, we were not able to
identify any strong indicator to discern security issues that attract
a quick reaction from those that have a slow reaction time. We
believe an interview study with developers is necessary to better
understand these phenomena.

The resolution time of a security issue is significantly shorter
if a CVE reference exists, or the issue reporter is involved.

5 DISCUSSION
We studied the distribution of security issues that were reported
from 2014 until 2020, and found a big increase in the number of
reported issues in recent years, particularly starting in 2017. We
noted that, once the first security issue of a project is created, a new
one appears on average every 54 days. Luckily, security issues are
reported much earlier in more recent projects than in older projects.
These observations might indicate the integration of security in
development workflows in newer projects, which is different from

Do
c. i
n c
om
me
nts CV

E

Re
po
rte
r: c
ore

me
mb
er

PR
: n
o/s
ing
le
rev
iew

0

50

100

150

200

250

m
ea
n
re
so
lu
tio

n
tim

e
[d
ay
s] Yes No

Figure 3: Mean resolution time of closed security issues for
different values of categorical features

older projects that apparently treated security as a single goal (i.e.,
check security at a certain point in development). Moreover, the rise
in the adoption of open-source software by organizations as well
as the growth of enterprise open source (i.e., open-source software
that is backed by enterprises) might have improved attention to
security concerns over the last few years.

Security issues are reported by a very small circle (i.e., 2.4%) of
developers. We believe security issues, as opposed to non-security
issues, are not observable to many developers and spotting such
issues requires domain expertise that only a limited number of
developers possess. This is in line with our observation that se-
curity issues are mostly reported by developers associated with
the project (i.e., core members and established contributors), as
opposed to non-security issues, which are greatly reported by those
who are not associated with the project. We identified a strong
correlation between the popularity of a project, in terms of the
number of forks and stars, and the number of security issues in a
project. This finding would lead to the hypothesis that the more
developers are involved in a project, there will be more opportuni-
ties to discover security issues or vice versa. Likewise, a security
issue identified in a fork project may get reported back to the main
project. Surprisingly though, we found that half of security issues
reported by contributors are pending. Future work may investigate
which issues tend not to get resolved. Are they mostly low-risk
issues, or are they high-risk issues that remain open?

We identified a visible decrease in the number of comments and
the resolution time of security issues over time. We speculate the
movements toward agile methodologies may have resulted in re-
solving issues more efficiently (i.e., shorter time and discussion).
One other reason might be the availability of more tool support.
For instance, seven cases used the GitHub Security Advisory that
enables periodic scanning of the source code to detect known vul-
nerability patterns in the project and its dependencies. Otherwise,

U
pl

oa
de

d
to

 a
rx

iv
.o

rg

How Do Developers Deal with Security Issue Reports on GitHub? Preprint – SAC ’22, April 25–29, 2022,

we noticed that developers do not mention any specific tool that
might have helped them to identify the issues. Remarkably, we
observed that many security issues are concluded without any dis-
cussion. Future research may investigate the characteristics of such
issues to identify what they have differently than other issues, and
encourage practitioners to do so.

We found that, on average, the same number of participants
are involved in security and non-security discussions, but security
discussions progress slower, and resolving them takes significantly
longer than non-security issues. A possible explanation might be
the complexity of security issues, which requires expertise to com-
prehend and address. The huge difference between non-security
and security issues in terms of the number of issue reporters, and
their association with the projects confirms the scarcity of security
knowledge among developers. Besides that, security issues are not
as straightforward as non-security issues to spot and test, which
further underlies the slow progress and resolution of security issues.
We found that developers who are assigned to security issues play
an important role in resolving security issues. They outperform
97% of the other developers that are involved in security issues by
reporting more issues and participating in more discussions. These
security assignees were involved in roughly 64% of all security
issues, and 77.7% of the issues that they reported were accepted,
which is much higher than the other security issue reporters. Fu-
ture work may investigate how we can boost security discussions.
Particularly, under what circumstances developers participate in
addressing security issues and how we can streamline the partici-
pation of more developers in this process.

We noted that in security issues, the longer, in terms of the num-
ber of comments, an issue discussion is, the longer a pull-request
discussion will be or vice versa. This is consistent with the intuition
that a hard or complex issue that requires more discussion also leads
to more discussion during the implementation phase (pull request)
because the changes are likely more complex as well. What’s more,
pull-request discussions are significantly more involving, in terms
of the numbers of comments and distinct participants, than issue
discussions. A potential explanation derived from our observations
is that an issue discussion is often about examining the validity
of the report and providing the outlook of a possible fix, whereas
a pull request discussion is mostly about a concrete solution and
its impact on the program, requiring much more “going back and
forth” discussions if the matter is complex or hard to fix.

We analysed the relationship between the resolution time and
various characteristics of security issues, and discovered a number
of significant relationships. Firstly, the shorter the initial reaction
time to an issue is, the faster developers resolve that issue or vice
versa. This finding could suggest, not prove however, that reacting
to an issue quickly may generate enough attention such that the
issue is also resolved promptly. However, future work must investi-
gate under what circumstances developers reaction to a security
report would increase. For example, is it dependent on the way an
issue is explained or is it due to a perceived level of severity by
developers? We also discovered that the resolution time is shorter
if the issue reporter is a core member of the project or vice versa.
Recognition and trust to internal members of a project are possible
reasons why security issues reported by them are resolved faster.
Moreover, we found that the resolution time for issues that were

reported by “security assignees" was significantly shorter than the
global mean. These developers were involved in a large proportion
of security issues, which reflects their experience and commitment
to resolving security issues.

The resolution time of security issues is also shorter if a CVE
report is referenced in the issue report/discussion or vice versa.
This indicates that a CVE is alerting developers and is a sign of
urgency of a security issue, however only 4.5% of the security issues
included a reference to a CVE. Surprisingly, we discovered that the
resolution time of security issues is longer if further documentation
is provided in the discussions or vice versa. We realized, during
the manual analysis, that mostly complex issues require/include
documentation to be understood correctly. Unexpectedly though,
the issue reporter of a security issue is not involved at all in 50%
of the issue’s pull request, neither as creator nor as a reviewer or
discussion participant of the pull request. This might be explained
by the fact that those issues were straightforward to fix and did not
require the reporter’s expertise. Indeed, 72% of the pull requests
corresponding to such issues were categorized as “not challenging"
in our manual analysis.

Finally, we came across a few security issues that were special
in some aspects. In two cases, a security vulnerability was not
disclosed publicly (“responsible disclosure”) in the issue report. In
fact, the reporter did not explain the issue but asked for a contact
email address where the details could be submitted. We observed
two issues due to a vulnerable outdated dependency. Although
the vulnerabilities even received a CVE identifier, the dependency
was upgraded to a newer (safe) version after more than one year.
Interestingly, in one security issue,4 the reporter explicitly stated
in the issue description that the issue is reported by a group of
researchers from the University of Nebraska. We found six security
issues that directly led to the creation of CVE entries. The first one,
CVE-2019-11405, was created because the OpenAPI Tools OpenAPI
Generator used http:// instead of https:// in various Gradle build
files, which may cause insecurely resolved dependencies.5 The
five other security issues were related to the FasterXML jackson-
databind project.6 Two vulnerabilities would allow an attacker to
perform remote code execution (RCE) attacks (CVE-2018-14718
and CVE-2018-14719), one would allow external XML entity (XXE)
attacks (CVE-2018-14720), another one server-side request forgery
(SSRF) attacks (CVE-2018-14721) and the final one would allow
exfiltration of content (CVE-2018-11307).

These findings drive several research directions as follows:

• Which issues tend not to get resolved, and notably, why half
of issues reported by contributors are pending? For example,
are there severe issues that stay unresolved, or are they
mostly low-impact bugs?

• Under what circumstances do developers participate in re-
solving security issues, and how canwe streamline the partic-
ipation of more developers in this process? For instance, does
the inclusion of documentation and a fix help onboarding
non-expert developers to the process?

4https://github.com/TEAMMATES/teammates/issues/8183
5https://github.com/OpenAPITools/openapi-generator
6https://github.com/FasterXML/jackson-databind

U
pl

oa
de

d
to

 a
rx

iv
.o

rg

Preprint – SAC ’22, April 25–29, 2022, Bühlmann and Ghafari

• Why are the developers’ reaction to certain reports fast? For
instance, is it because of the way an issue is explained, or is
it due to a perceived level of severity by developers?

• Why are many issues resolved without any discussion? For
instance, how are such issue reports different from slow-
progressing issues, and how can we encourage the reporters
to do so?

6 THREATS TO VALIDITY
There exists a threat to validity related to the bias in sampling
projects. Especially, the restrictions to Java projects and projects
with English issue tracking, which have been imposed for logistical
reasons, might bias the results. The data for our study represents a
snapshot of a very specific point in time. The projects will likely
evolve in the future, and the results could look different if the study
were to be carried out at a later time. There is also a threat to
validity concerning the classification of issues into security issues
and non-security issues. We used a simple label-based approach to
do the classification. It was clear that we will not be able to capture
all security issues with this approach, e.g. in projects where strict
labelling is not enforced. Finally, the proportion of non-security
issue reports was much larger than security reports in our dataset.
Although such a class imbalance can be problematic for certain
observations, we often relied on a t-test to compare security and
non-security reports, which handles unequal sample sizes.

Finally, personal bias is also a threat to validity. We tried to
describe our methodology, principles and criteria as transparently
as possible and adhere to them in order to minimize the effects of
our personal opinions or expectation of results. Furthermore, we
tried to mitigate subjective influence during the manual analysis by
conducting a pilot study previous to the real study, where results
were discussed and agreed upon between the two experimenters.

7 RELATEDWORK
Zahedi et al. investigated the prevalence of security issues in a
random sample of open source projects and found that security
issues comprise approximately 3% of all issues and the majority of
them are related to identity management and cryptography [14].
Morrison et al. conducted an empirical analysis of three open source
projects to study the differences between the discovery and the
resolution of defects versus vulnerabilities [12]. They found that
vulnerabilities are discovered later in the development cycle and are
resolved more quickly than defects. Pletea et al. analysed security
discussions on GitHub with the specific intent to extract emotions
from the comments [13]. They found that more negative emotions
are expressed in security-related discussions than in other discus-
sions, which confirms the anecdotal evidence that implementing
application security can often lead to frustration and anger among
developers. Meyers et al. analysed the style and the tone of devel-
opers’ language in bug reports in the Chromium project [11]. Their
initial investigation of metrics such as formality, informativeness,
implicature, politeness, and uncertainty showed that the differ-
ence between security and non-security conversations are small
but statistically significant. Zhou et al. investigated the association
between bounties and the likelihood of addressing issue reports
on GitHub [16]. They found that bounty issue reports are more

likely to be addressed if they are for projects in which bounties are
used more frequently. The bounty value of an issue report is the
most important factor that is associated with the issue-addressing
likelihood in the projects in which no bounties were used before.

8 CONCLUSION
Reacting to security issue reports in open-source projects is crucial,
however, there is a dearth of evidence regarding developer practices
from reporting such issues to resolving them. We conducted an
exploratory study of security issue reports in 182 GitHub projects.
We described several characteristics of these reports and current
practices in terms of reporters, assignment, reaction, discussion,
status, and resolution time, among the others. Our findingsmotivate
the need for several research directions to better support the open-
source community in resolving security issues.

REFERENCES
[1] Noah Bühlmann and Mohammad Ghafari. 2021. How do developers deal with

security issue reports on GitHub? Online auxiliary materials. https://osf.io/
y4esu/?view_only=2b7ce43eab49406f846ffd37c0ef1961

[2] Marco Carvalho, Jared DeMott, Richard Ford, and David A. Wheeler. 2014. Heart-
bleed 101. IEEE Security & Privacy 12, 4 (July 2014), 63–67.

[3] Jacob Cohen. 2013. Statistical Power Analysis for the Behavioral Sciences (zeroth
ed.). Routledge, Abingdon-on-Thames, England.

[4] Pascal Gadient, Mohammad Ghafari, Patrick Frischknecht, and Oscar Nierstrasz.
2018. Security code smells in Android ICC. Empirical Software Engineering 24, 5
(2018), 3046–3076. https://doi.org/10.1007/s10664-018-9673-y

[5] Pascal Gadient, Mohammad Ghafari, Marc-Andrea Tarnutzer, and Oscar Nier-
strasz. 2020. Web APIs in Android through the Lens of Security. In 2020 IEEE
27th International Conference on Software Analysis, Evolution and Reengineering
(SANER). 13–22. https://doi.org/10.1109/SANER48275.2020.9054850

[6] GitHub. 2019. The State of the Octoverse. https://octoverse.github.com/
#community-overview

[7] Mohammadreza Hazhirpasand, Mohammad Ghafari, and Oscar Nierstrasz. 2020.
Java Cryptography Uses in the Wild. In Proceedings of the 14th ACM / IEEE
International Symposium on Empirical Software Engineering and Measurement
(ESEM) (ESEM ’20). Article 40, 6 pages. https://doi.org/10.1145/3382494.3422166

[8] Yuan Jiang, Pengcheng Lu, Xiaohong Su, and Tiantian Wang. 2020. LTRWES: A
New Framework for Security Bug Report Detection. Information and Software
Technology 124 (Aug. 2020), 106314. https://doi.org/10.1016/j.infsof.2020.106314

[9] Pavneet Singh Kochhar, Eirini Kalliamvakou, Nachiappan Nagappan, Thomas
Zimmermann, and Christian Bird. 2019. Moving from Closed to Open Source:
Observations from Six Transitioned Projects to GitHub. IEEE Transactions on
Software Engineering 46 (2019), 1–1. https://doi.org/10.1109/TSE.2019.2937025

[10] Jeff Luszcz. 2018. Apache Struts 2: How Technical and Development Gaps Caused
the Equifax Breach. Network Security 2018, 1 (Jan. 2018), 5–8.

[11] Benjamin S. Meyers, Nuthan Munaiah, Andrew Meneely, and Emily
Prud’hommeaux. 2019. Pragmatic Characteristics of Security Conversations:
An Exploratory Linguistic Analysis. In 2019 IEEE/ACM 12th International Work-
shop on Cooperative and Human Aspects of Software Engineering (CHASE). IEEE,
Montreal, QC, Canada, 79–82. https://doi.org/10.1109/CHASE.2019.00026

[12] Patrick J. Morrison, Rahul Pandita, Xusheng Xiao, Ram Chillarege, and Laurie
Williams. 2018. Are Vulnerabilities Discovered and Resolved like Other Defects?
Empirical Software Engineering 23, 3 (June 2018), 1383–1421. https://doi.org/10.
1007/s10664-017-9541-1

[13] Daniel Pletea, Bogdan Vasilescu, and Alexander Serebrenik. 2014. Security and
Emotion: Sentiment Analysis of Security Discussions on GitHub. In Proceedings
of the 11th Working Conference on Mining Software Repositories - MSR 2014. ACM
Press, Hyderabad, India, 348–351. https://doi.org/10.1145/2597073.2597117

[14] Mansooreh Zahedi, Muhammad Ali Babar, and Christoph Treude. 2018. An
Empirical Study of Security Issues Posted in Open Source Projects. In 51st Hawaii
International Conference on System Sciences, Tung Bui (Ed.). ScholarSpace / AIS
Electronic Library (AISeL), Hawaii, USA, 1–10.

[15] Mengyuan Zhang, Xavier de Carne de Carnavalet, Lingyu Wang, and Ahmed
Ragab. 2019. Large-Scale Empirical Study of Important Features Indicative of
Discovered Vulnerabilities to Assess Application Security. IEEE Transactions on
Information Forensics and Security 14, 9 (Sept. 2019), 2315–2330.

[16] Jiayuan Zhou, ShaoweiWang, Cor-Paul Bezemer, Ying Zou, and Ahmed E. Hassan.
2021. Studying the Association between Bountysource Bounties and the Issue-
addressing Likelihood of GitHub Issue Reports. IEEE Transactions on Software
Engineering 47, 12 (2021), 2919–2933. https://doi.org/10.1109/TSE.2020.2974469

U
pl

oa
de

d
to

 a
rx

iv
.o

rg

https://osf.io/y4esu/?view_only=2b7ce43eab49406f846ffd37c0ef1961
https://osf.io/y4esu/?view_only=2b7ce43eab49406f846ffd37c0ef1961
https://doi.org/10.1007/s10664-018-9673-y
https://doi.org/10.1109/SANER48275.2020.9054850
https://octoverse.github.com/#community-overview
https://octoverse.github.com/#community-overview
https://doi.org/10.1145/3382494.3422166
https://doi.org/10.1016/j.infsof.2020.106314
https://doi.org/10.1109/TSE.2019.2937025
https://doi.org/10.1109/CHASE.2019.00026
https://doi.org/10.1007/s10664-017-9541-1
https://doi.org/10.1007/s10664-017-9541-1
https://doi.org/10.1145/2597073.2597117
https://doi.org/10.1109/TSE.2020.2974469

	Abstract
	1 Introduction
	2 Background
	3 Methodology
	4 Results
	5 Discussion
	6 Threats to validity
	7 Related Work
	8 Conclusion
	References

