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ABSTRACT
This paper tackles the Campaign Allocation Problem of commercial
Ads in TV breaks. The problem is NP-Hard and can be viewed as a
multi-stakeholders multiobjective problem with highly competing
objectives for different brands and numerous constraints. The ex-
pected solutions should be able to focus on, at least, one sub-part of
the Pareto Optimal Front according to the decision maker’s (DM)
region of interest. Consequently, reference point-based many objec-
tive approaches could be a good option for solving this kind of prob-
lems. However, such approaches suffer from limitations in terms of
diversity around the reference points, and other issues due to the
fact that they consider the objective space as Euclidean. For the lat-
ter, recently a new algorithm called AGE-MOEA, by removing the
assumption of Euclidean spaces, has proven to be the best in terms
of diversity for a lot of many-objective problems in the literature.
Nevertheless, AGE-MOEA has a high computational complexity
and cannot be driven to a specific sub-parts of the Pareto Front. For
that, we propose a novel approach, called RAGE-MOEA, that com-
bines the AGE-MOEA diversity principles with the convergence
elements of reference based approaches. Experiments have shown
that this approach obtains better results in terms of compromise
between diversity and convergence around the reference points
than usual Reference-based methods (R-NSGA-II and R-NSGA-III)
on literature benchmarks, and significantly better results for our
industrial problem.

CCS CONCEPTS
• Computing methodologies → Mathematical optimization,
Bio-inspired Approaches;

KEYWORDS
Media Planning, Many objective optimization, Reference point-
based approaches, Decision Maker preference, Evolutionary algo-
rithms

∗Produces the permission block, and copyright information

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SAC ’22, April 25–29, 2022, Virtual Event,
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-8713-2/22/04. . . $15.00
https://doi.org/10.1145/3477314.3507320

ACM Reference Format:
Fodil Benali, Damien Bodénès and Cyril de Runz, Nicolas Labroche. 2022.
A new Reference-based Algorithm based on Non-Euclidean Geometry for
Multi-Stakeholder Media Planning. In The 37th ACM/SIGAPP Symposium on
Applied Computing (SAC ’22), April 25–29, 2022, Virtual Event, . ACM, New
York, NY, USA, Article 4, 10 pages. https://doi.org/10.1145/3477314.3507320

1 INTRODUCTION
Optimization of Advertisement Media plan allocation is an NP-hard
combinatorial multiobjective optimization problem that involves
several conflicting objectives and complicated constraints [2]. Con-
sidering a set of advertisers’ campaigns (TV advertisements) and a
set of commercial breaks with air times (slots), the Campaign Allo-
cation Problem (CAP) [23] consists in determining how campaigns’
spots (brands messages) should be allocated to a subset of breaks
in order to maximize the total revenue of the TV networks and
evenness with respect to the advertisers’ requirements and limited
advertising inventory restrictions.

To this end, several works have been proposed in the litera-
ture, noticeably in the operation research community [2, 4, 5, 29].
These approaches tend to formulate the problem based on a single
objective with a large number of constraints. In the case of multi-
campaigns, they treat the campaigns either sequentially [4] or by
considering an aggregated objective [29] to be solved efficiently by
reference solvers such as CPlex [8]. Another approach [16] consid-
ers the use of a multi-objective evolutionary algorithm by searching
to optimize one objective per campaign (audience coverage) but it
does not consider the other objectives to reach for a campaign nor
their preferences.

Unlike the previous contributions, our work in [1], considers
multi-stakeholders configuration, i.e., advertisers, and TV networks,
each with their own objectives. They also consider the size of the
problem instance, all breaks from a 3 to 6 months period, that may
not be appropriate for an exact resolution based on solvers. We con-
sider the same problem configuration in this work. In complements
of the mentioned problem, we envision an interactive tool, where
planner expert – Decision Maker (DM) – of the TV networks can
choose among different solutions to propose to its clients (advertis-
ers). The suggested solutions should present a certain diversity at
least in the objective space by considering one or several reference
point defined by the DM.

Evolutionary algorithms (EAs) [6] have been recognized to be
well-suited to solve multi-objective problems [7, 22], thanks to
their ability to provide the decision-maker with a set of trade-off
solutions in a single run in addition to their insensitivity to the
geometrical features of the objective space. However, in our context,
using an EA still raises challenges:
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• Many-objective problem: as we consider a large number
of objectives, most solutions become equivalent to each other
in this objective high dimensionality space, therefore making
the algorithm behaves like a random search. The probability
of getting new solutions which optimize all objectives de-
creases exponentially with the number of objectives. There-
fore, finding real operational and useful solutions that are
better compared to others according to the whole set of ob-
jectives is really challenging and requires adapted techniques
to support the optimization.
• Diversity of solutions: the majority of MOEA use strate-
gies and heuristics that are built upon the implicit assump-
tion that the Pareto Front (PF) has an Euclidean geometry.
However, in many MOPs, the PF is convex or concave which
impacts the shape and the diversity of the obtained solutions.
Though, estimating the shape of the Pareto Front will greatly
help the diversity promoting mechanism.
• Preference based context: we propose to take advantage
of any preferences on the objectives that could be implic-
itly provided by the expert before the optimization task is
performed. In this paper, we focus on, at least, one specific
subset of the Pareto-optimal set according to one or multiple
reference points that drives the convergence of the EA.

According to their problem which is a sub-part of ours, Benali et
al. [1] use for instance R-NSGA-II [13] to target their objectives.
Despite the fact that their proposal obtains interesting results, they
tackle the problem only partially. First, R-NSGA-II is able to deal
with several specific subsets of the Pareto Front, but they only
consider one in their problem modeling. Second, R-NSGA-II uses
Euclidean distance to promote diversity, nevertheless, the Pareto
Front may have different shapes that do not fit with Euclidean space
assumptions. Finally, Euclidean distance may not be the suitable
choice for high dimensional objective spaces. As AGE-MOEA [25]
has shown to be the best in terms of diversity promoting in many-
objective optimization problems, our idea is to use its principles of
estimating an 𝐿𝑝 norm that fits well the geometry of Pareto Front in
combination with the key elements of reference point approaches.
This harmonious combination will allow to obtain solutions that are
close enough to the reference points chosen by DM and sufficiently
diverse to offer different alternatives.

Therefore, the approach presented in this manuscript, called
Reference-based Adaptive GEometry Multi-Objective Evolution-
ary Algorithm (RAGE-MOEA), proposes an adaptation of the
R-NSGA-II diversity mechanism inspired by AGE-MOEA princi-
ples. It produces solutions that are more diverse than the ones
of R-NSGA-II with low computational complexity compared to
AGE-MOEA, and less parameters than R-NSGA-III, one of the best
reference-based MOEA.

The remainder of the paper is organized as follows: Section 2 de-
scribes the related works. Section 3 details the proposed framework
RAGE-MOEA while Section 4 describes our experiments. Section
5 presents our industrial case study and the experiments used to
validate the proposal. Finally, Section 6 concludes and opens future
work perspectives.

2 RELATEDWORKS
Inspired by the work of Benali et al. [1], our idea is to use an EA to
find Pareto-optimal solutions to the Campaign Allocation Problem.
We describe here the main contributions in Multi-Objective Evo-
lutionary Algorithms (MOEAs) and Many-Objective Evolutionary
Algorithms (MaOEAs) before emphasizing on the importance of
reference points to guide the convergence in high dimensional ob-
jective space as the case of our problem of Multi-Stakeholder Media
Planning.

Evolutionary algorithms have been widely used in literature to
solve multi and many-objective optimization problems (resp. MOPs
and MaOPs). The goal of MOEAs is to approximate the optimal
Pareto Front with a set of non-dominated solutions. To achieve this,
MOEAs attempt to generate non-dominated solutions as close as
possible to the PF (proximity or convergence), and that are well-
distributed over the optimal PF (diversity).

There are two main approaches to deal with MOPs using EAs.
First, decomposition-based algorithms such asMOEA/D [28], NSGA-
III [11] and [17, 27], where a MOP is decomposed into a number of
single-objective problems. Each single-objective problem has the
same scalarizing function and a different weight vector. A single
solution is assigned to each single-objective problem. All single-
objective problems are optimized in a cooperative manner towards
different directions in the objective space along the weight vectors.
However such methods rely on multiple parameters (e.g., setup of
the reference lines) which is not adequate for a decision maker in
an industrial context.

Second, methods that deal with all objectives at the same time.
Among the most well-known and efficient MOEAs, the Non dom-
inated Sorting Genetic Algorithm (NSGA-II) [12]. NSGA-II is an
elitist algorithm that uses two types of fitness functions: (i) a pri-
mary fitness function that corresponds to the Pareto-optimality
and (ii) a secondary crowding distance to promote diversity.

NSGA-II has demonstrated to be one of the most competitive
MOEAs through the specialized literature [6] as it is a simple,
parameter-less, and computationally fast (low computational
complexity of O(𝑀𝑁 2)) with elitist approach that enhances the
convergence properties. However, it faces difficulties in solving
problems with a large number of objectives [10, 19]. This degra-
dation happens when there is a need for an exponentially larger
number of points to represent a higher-dimensional Pareto- opti-
mal Front. As a consequence, the emphasis of all non-dominated
solutions in a population for a large number of objectives may not
produce enough selection pressure for a small-sized population to
move towards the Pareto-optimal region fast enough.

Nevertheless, recent studies [18, 24] have shown that NSGA-
II can be improved in many objective contexts by focusing on a
smaller subset of the Pareto optimal solutions close to a supplied
set of reference points such as R-NSGA-II [13] and R-NSGA-III
[26]. This allows to relieve the selection burden for the DM, and
avoids computational efforts for finding unexpected solutions. The
problemwith suchmethods is that they use strategies and heuristics
built upon the implicit assumption that the PF has an Euclidean
geometry. For example, in R-NSGA-III the reference points are
generated using Das and Dennis’s systematic approach, which
places points on a flat hyper-surface. However, in many MOPs the
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PF is convex (i.e., hyperbolic geometry) or concave (i.e., spherical
geometry). As consequence, this impacts greatly the convergence
and diversity of the obtained solutions.

To overcome such limitation, a new MaOEA has been proposed
recently, called AGE-MOEA [25]. The idea consists in fitting the
geometry of the PF in order to adapt diversity and convergence
mechanisms on the Pareto Front shape. AGE-MOA is the best in
terms of convergence and diversity of solutions on the Pareto Front.
However, it is very time consuming (high computational complexity
O(M𝑁 2 + 𝑁 3)). Moreover, it does not support reference points
integration and therefore could not be used for problems where
only a subset of the PF is of interest.

In conclusion, the combination of reference based principle with
AGE-MOEA Pareto Front fitting could be the good recipe in order
to build an efficient MaOEA that is able to generate a diverse set
of solutions near DM’s preferred regions in a high dimensional
objectives space. Details about our idea are developed in the next
section.

3 PROPOSED ALGORITHM
As presented in the introduction, the tool, we want to develop,
should (i) converge to solutions optimizing a large number of objec-
tives simultaneously, (ii) assist the DM in choosing the most suitable
configurations, according to her regions of interest, (iii) be fast in
order to obtain efficient solutions within a limited computational
time budget.

The proposed framework, called RAGE-MOEA, inherits from the
computational fast and elitist framework NSGA-II, as illustrated in
Algorithm 1. It incorporates the reference point concept in order
to integrate DM’s preferences and uses the AGE-MOEA Pareto
Front geometry estimation technique to be adapted to different
shapes of the Pareto Front. The objective is to have an efficient
management for both of the diversity and convergence around the
reference points defined according to DM’s preferences in a limited
time budget.

Algorithm 1: RAGE-MOEA Framework.
Input: Number of ObjectivesM, Size of the Population N,

Reference Points R;
Output: Final population P;

1 begin

2 P ←− Generate-Initial-Population(N);

3 while not (stop-condition) do

4 Q ←− Generate-Offspring(P);

5 P ←− P ∪ Q;

6 F ←− Evaluate(P,M);

7 P ←− Select-Survival(P, F, N, R);

8 end

9 return P;

10 end

In the following, we first present an overview of the proposed
framework in Section 3.1. Then, we detail the principle components
of RAGE-MOEA in Section 3.2, 3.3, and 3.4.

3.1 Overview
As outlined in Algorithm 1, the framework starts with an initial set
of N solutions (line 2 in Algorithm 1). This initial population of
solutions could be randomly generated or empty solutions. Then
an exploration mechanism is executed based on proper crossover
and mutation operators, depending on the problem, to produce new
offsprings (line 4). The offspring populationQ is therefore combined
with the current population P forming a new population P ∪ Q
of size 2 × 𝑁 (line 5). After that, an evaluation process is executed
to evaluate for each solution candidate the set of M objective
functions (line 6). Once the evaluation process is terminated, a
survival selection process is done, to ensure that unfit solutions are
eliminated from the population and reduces it back toN individuals
(line 7). The steps 4-7 in Algorithm 1, are repeated until a stop
condition (e.g., allocated time budget) is satisfied.

The selection process, as shown in Algorithm 2, starts by divid-
ing the population into different levels of non-dominated fronts
using the fast-non-dominated sorting (NDS) algorithm [12] (line
2 Algorithm 2). Solutions from the best non-domination levels are
chosen front-wise (lines 5-7). The goal of this step is to keep good
performance solutions (the most advanced solutions). This elitist
strategy will allow to converge faster towards the Pareto-optimal
Front.

However, it is commonly the case that the last front could not
be entirely maintained to fit the size (N ) of the next generation
population. As a consequence, a mechanism has to be established
to choose the best individuals to be kept even though between mu-
tually non-dominated solutions (line 9). To do it, for each reference
point chosen by the DM, the following steps are performed:

(1) The considered front is normalized using a variant of the
normalization procedure defined in NSGA-III [20] (line 11)
(see Section 3.2).

(2) The normalized front, then, is used to estimate the L𝑝 that
best fits the front geometry (line 12). More details are de-
scribed in Section 3.3.

(3) Solutions are assigned a survival score that combines both
diversity and proximity to the reference Pareto-optimal point
(line 13).

Finally, RAGE-MOEA selects the remaining solutions from F𝑟
according to the descending order (line 15) of their survival scores in
order to complete the remaining individuals of the new population
P𝑛𝑒𝑤 (line 16).

3.2 Normalization
Normalizing the objective space is an important step in multi-
objective optimization problems. In fact, objective functions may
have different scales, which leads to a neglecting of one or more ob-
jective functions. As a consequence, this impacts how diversity and
performance measures of solutions are compared when dominance
relations are not sufficient. For that, we suggest to normalize our
objective functions by applying the same formula used in [11, 25]:
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Algorithm 2: RAGE-MOEA Survival Selection.
Input: Population P, Population objectives’ scores F, Target

population size N, Reference Points R;
Output: Next generation population P𝑛𝑒𝑤 ;

1 begin

2 F←− Fast-Non-Dominated-Sort(P, F);

3 P𝑛𝑒𝑤 ←− ∅;

4 𝑟 ←− 1;

5 while |P𝑛𝑒𝑤 | + |F𝑟 | ≤ N do // Frontwise Selection

6 P𝑛𝑒𝑤 ←− P𝑛𝑒𝑤 ∪ F𝑟 ;

7 𝑟 ←− 𝑟 + 1;

8 end

9 if |P𝑛𝑒𝑤 | < N then // Remaining Solution Selection

10 foreach R (𝑘 ) ∈ R do

11 F̂ (𝑘 ) ←− Normalize(F𝑟 , R (𝑘 ) );

12 𝑝 ←− Fit-P-Norm(F𝑟 , F̂ (𝑘 ) );

13 Calculate-Survival-Score(F𝑟 , 𝑝 , 𝑘 , 𝜖);

14 end

15 Sort(F𝑟 );

16 P𝑛𝑒𝑤 ←− P𝑛𝑒𝑤 ∪ F𝑟 [1 : (N − |P𝑛𝑒𝑤 |) ];

17 end

18 return P𝑛𝑒𝑤 ;

19 end

𝑓𝑖 (𝑆) =
𝑓𝑖 (𝑆) − R (𝑘)𝑖

𝑎𝑖
,∀𝑆 ∈ F𝑟 ,∀𝑖 ∈ ⟦1;𝑀⟧ (1)

Where 𝑓𝑖 (𝑆) denotes the objective 𝑓𝑖 for the solution 𝑆 and R (𝑘)
𝑖

is 𝑖𝑡ℎ component of the 𝑘𝑡ℎ reference point. The objectives are
translated to have the reference point equal to the origin of the
axes. Thereafter, aM-dimensional linear hyperplane 𝑍𝑚𝑎𝑥 is con-
structed based on the extreme points in each objective axis, i.e.,
𝑧𝑚𝑎𝑥
𝑖 = max

𝑆 ∈F𝑟
(𝑓𝑖 (𝑆) − R (𝑘)𝑖

). The denominator 𝑎𝑖 is the intercept of
the M-dimensional hyperplane with the objective axis 𝑓𝑖 , and it is
obtained by solving the following linear system: 𝑍𝑚𝑎𝑥 · 𝑎−1 = 1M .

3.3 Geometry Fitting
To determine the norm L𝑝 such that the corresponding unit hyper-
surface best fits the geometry of normalized objectives, we need to
find the value of 𝑝 that makes all points in F𝑟 equally distant to the
reference point 𝑅 (𝑖) , which coincides with the origin of the axes ®0
after the normalization.

The fitting process consists in solving the following system of
non-linear equations:


(𝑓1 (𝑆1)𝑝 + 𝑓2 (𝑆1)𝑝 + · · · + 𝑓𝑀 (𝑆1)𝑝 )

1
𝑝 = 1

(𝑓1 (𝑆2)𝑝 + 𝑓2 (𝑆2)𝑝 + · · · + 𝑓𝑀 (𝑆2)𝑝 )
1
𝑝 = 1

. . .

(𝑓1 (𝑆𝑞)𝑝 + 𝑓2 (𝑆𝑞)𝑝 + · · · + 𝑓𝑀 (𝑆𝑞)𝑝 )
1
𝑝 = 1

(2)

where 𝑞 is the number of points in the front F𝑟 .
Several numerical analysis methods have been proposed to re-

solve such systems of nonlinear equations (e.g., Newton’s itera-
tive method [15], Levenberg-Marquardt algorithm). However, such
methods are computationally expensive and not suitable for com-
puting the value of 𝑝 in each iteration with negligible overhead.

For that reason, we approximate the value of 𝑝 using the method
proposed in [25]. It consists in using the central point of the front F𝑟
for which the corresponding L𝑝 exponential equation can be easily
computed with an exact method. Moreover, the overall complexity
of this method is 𝑂 (𝑀 × 𝑁 ), which makes it a fast procedure to
estimate the geometry of the non-dominated front and can be easily
incorporated in the cycle of evolutionary algorithms.

3.4 Survival Score
To select the best individuals that will participate in the next genera-
tion, a survival score based on proximity and diversity is calculated
as the following:

𝑆𝑐𝑜𝑟𝑒 (𝑆)𝑆 ∈F𝑟 = max
𝑅 (𝑘 ) ∈R

𝑃𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦 (𝑘) (𝑆)2 × 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 (𝑘) (𝑆)1/2

(3)

𝑃𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦 (𝑘) (𝑆) = 1
∥ 𝑓 (𝑘) (𝑆)∥𝑝

(4)

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 (𝑘) (𝑆) =
2∑

𝑖=1

(𝑖)
min

𝑆,𝑇 ∈F𝑟 ,𝑆≠𝑇
∥ 𝑓 (𝑘) (𝑆) − 𝑓 (𝑘) (𝑇 )∥𝑝 (5)

In fact, for each reference point 𝑅 (𝑘) , the two measures (prox-
imity and diversity) are computed and the value that maximizes
its combination is considered as the survival score of the solution.
For the proximity measure defined in (eq.4), it is evaluated as the
inverse of the distance between the solution and the origin in a
reference based normalized objective space. The diversity of the
solutions 𝑆 ∈ F𝑟 is computed as the sum of distances (L𝑝 norm) to
the two adjacent solutions in the front F𝑟 .

Please note that in AGE-MOEA [25], the survival score is de-
fined by a multiplication between diversity and proximity which
can have different magnitudes. As a consequence, this may priori-
tize solutions located in hollow spaces despite being very far from
reference points. In RAGE-MOEA, for each reference point, we nor-
malize the obtained measures (diversity and proximity). After that,
we use a combination that makes proximity dominating diversity
by penalizing diversity by the square root function and increasing
proximity by the square function. Figure 1 illustrates equivalent
points for a survival score equal to 1 for both AGEMOEA (Blue
graph) and RAGEMOEA (Red graph).

From Figure 1, we can notice from the graph of AGE-MOEA
survival score (Blue graph) that a point with small proximity score
and large diversity is equivalent to a point with large proximity
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and small diversity score. This will increase the chance of having
points far from a reference point. Unlike AGE-MOEA, RAGE-MOEA
survival score is biased on the proximity side. As a result, this will
reduce the risk of having points far from reference points for the
sake of diversity.

Figure 1: RAGEMOEA Vs AGEMOEA survival scores.

Algorithm 3 details the procedure that assigns survival scores in
RAGE-MOEA. First of all, two sets are initialized: (i) Ω that keeps
track of all solutions with already assigned scores (line 3) and (ii)
Ω containing all solutions yet to score (line 2). Then, the proximity
score for the solutions in Ω is computed according to (Eq.4) (lines
4-6), and the pairwise L𝑝 distances between all solutions in F𝑟 are
computed in lines 7-10. After that, the diversity score is calculated
within the loop (lines 12-19). Each time, the procedure retrieves
the nearest point (line 13), i.e. the solution that maximizes the
proximity, and a crowding parameter is used to group solutions
being in a radius of 𝜖 (line 14). Once such points are grouped, they
are removed from Ω (line 15) in order to control the extent of
obtained solutions. The diversity score for the candidate solution
(𝑆∗) is computed considering the sum of distances to the adjacent
points outside its group (line 16). In this way, the diversity of a
solution is not impacted by crowded points.

In the R-NSGA-II, the scoring method strongly penalizes the
group’s crowding score. As a consequence, this encourages keeping
points far away from the reference points for the sake of diversity.
However, in RAGE-MOEA scoring method, the points of the group
Ω∗
𝑆
are penalized by a score 50% less than the considered solution 𝑆∗

(line 17). Therefore, this gives a chance for these points to appear in
the next population proportionally with the score of the remaining
points.

Once all solution candidates are scored, we normalized both of
the proximity and the diversity using the min-max normalization
technique (lines 20-21), and making such that the min value is equal
to 1. A temporary survival score is calculated (line 22) and compared
to the other survival score evaluation (based on other reference
points). The maximum value of the survival score is assigned for
each candidate solution (line 23).

Complexity. The computational complexity of Algorithm 3 is
𝑂 (M × N2), whereM is the number of objectives and N is the
population size. The elements of the overall complexity are:
• 𝑂 (M ×N) for computing the proximity scores in lines 4-6.
• 𝑂 (M ×N2) for computing the pairwise distances (7-11).
• 𝑂 (N2) for the evaluation of diversity in the loop (12-19).

Algorithm 3: RAGE-MOEA Survival Score.
Input: Pool of Non-Dominated-Front F𝑟 , Exponent 𝑝 of estimated

𝑛𝑜𝑟𝑚 , 𝑘 index of the reference point, crowding parameter

𝜖 ;

1 begin

2 Ω←− F𝑟 ;

3 Ω←− ∅;

4 foreach S ∈ Ω do

5 Proximity[S]←− 1
∥𝑓 (𝑘 ) (𝑆 ) ∥𝑝

;

6 end

7 foreach 𝑆1 ∈ Ω do

8 foreach 𝑆2 ∈ Ω do

9 D[𝑆1, 𝑆2]←− ∥𝑓 (𝑘 ) (𝑆1) − 𝑓 (𝑘 ) (𝑆2) ∥𝑝 ;

10 end

11 end

12 while |Ω | > 0 do

13 𝑆∗ ←− arg max
𝑆∈Ω,𝑆∉Ω

Proximity[S];

14 Ω∗
𝑆
←− Subset𝑆∈Ω (D[𝑆∗, 𝑆]< 𝜖);

15 Ω←− Ω \ Ω∗
𝑆
;

16 Diversity[𝑆∗]←− min
𝑆1∈Ω𝑆

D[𝑆∗, 𝑆1] + min
𝑆2∈Ω𝑆 ,𝑆1≠𝑆2

D[𝑆∗, 𝑆2];

17 Diversity[Ω∗
𝑆
]←− Diversity[𝑆∗]/2

18 Ω←− Ω ∪ {𝑆∗,Ω∗
𝑆
} ;

19 end

20 Proximity←−Min-Max-Normalization(Proximity);

21 Diversity←−Min-Max-Normalization(Diversity);

22 New-Survival-Score←− 𝑃𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦2 × 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦1/2;

23 Survival-Score←− max(Survival-Score, New-Survival-Score);

24 end

• 𝑂 (M ×N) for min-max normalization (20-21).
• 𝑂 (N) for score evaluation and comparing (22-23).

Therefore, RAGE-MOEA is an alternative to R-NSGA-II and R-
NSGA-III, which will basically help to obtain a better compromise
between diversity and proximity to reference points as illustrated
in the next section.

4 EMPIRICAL STUDY
This section reports the conducted experiments to show the appli-
cability and validity of the proposed approach to solve the reference
based multi and many objective optimization problems based on
different literature test problems.

In order to evaluate our approach, we answer the following
questions:

(1) Howdoes RAGE-MOEA balance between convergence
to reference points and diversity in multiobjective op-
timization context? To investigate this, we propose ex-
periments where state-of-the-art reference based methods
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R-NSGA-II and R-NSGA-III are compared to RAGE-MOEA
using literature based multiobjective test problems.

(2) How does our approach scale in terms of the number
of objectives? To find out, we conduct experiments on high
dimensional objective spaces to assess the scalability of our
approach.

4.1 Experimentation Environment Settings
We implemented RAGE-MOEA1 in Python using Pymoo [3]. Pymoo
provides the source code for all benchmark problems as well as of
the algorithms we use as baselines in our study. For all MOEAs, we
used the same parameter setting reported in the related literature
[13, 26]. Table 1 shows all parameters values for the evaluated
MOEAs. For all the other parameters we use the values suggested
by their developers.

In our study, we considered the ZDT [30] and DTLZ [14] test
benchmarks, with the number of objectivesM=2, 3, 5, and 15. Both
suites contain several test problems with different properties, such
as concave (e.g., DTLZ2, and ZDT2), convex (e.g., convexDTLZ2,
and ZDT1), and multimodal (e.g., DTLZ1) PFs. Therefore, such
suites are good representations of various real-world scenarios.

For each test problem, we generate multiple reference based
test-problems by generating randomly one or multiple reference
points. For each reference point R𝑘 , we use the euclidean distance
to extract all the Pareto optimal front (POF) points that are within
a radius r of the reference point, such as r is defined as follows:

r = 𝛼 × max
𝑆 ∈POF

(𝐷 [R𝑘 , 𝑆]) − (1 − 𝛼) min
𝑆 ∈POF

(𝐷 [R𝑘 , 𝑆])) (6)

where 𝛼 is picked randomly in the interval [0,1]. Figure 2 illus-
trates two reference based DTLZ-problems (Sub-Figure 2a concave
reference based DTLZ2, and Sub-Figure 2b convex reference based
DTLZ2).

(a) 𝛼 = 0.05. (b) 𝛼 = 0.15.

Figure 2: Reference based DTLZ test problems.

4.2 RAGE-MOEA in Multi-Objective Problem
context

To illustrate RAGE-MOEA validity in MOPs context, we study the
performance of the proposed solution against two reference based
methods R-NSGA-II, and R-NSGA-III. Each time, we show the dis-
tribution and proximity of solutions to the reference points based
on different shaped multi-objective optimization problems. First,
we consider the 30-variable ZDT-1 [30] test problem. This problem
1The source codes are available at https://github.com/AdwLab/RAGE-MOEA

Table 1: Shared parameters for all experiments. n denotes
the number of decision variables.

Parameters M = 2, 3 M = 5 M = 15

Population Size [21] 91 210 680

Number of Generations 300

Polynomial Mutation Probability [13] 𝑝𝑚 = 1/𝑛
Mutation Distributed Index [13] 𝜂𝑚 = 20

SBX Probability [9] 𝑝𝑐 = 1

SBX Distributed Index [9] 𝜂𝑐 = 10

has a convex PF and two objective functions (𝑛 = 30, M = 2).
Next, we use the DTLZ-2 [14] test problem (𝑛 = 11, M = 3)
which has a concave PF. Two widely separated reference points are
chosen for both of the problems: R𝑍𝐷𝑇−1 = {(0.5, 0.2), (0.1, 0.6)},
R𝐷𝑇𝐿𝑍−2 = {(0.8, 0.2, 0.2), (0.2, 0.2, 0.8)}. Finally, to make the three
algorithms comparable, we use the same norm (euclidean norm)
and the same value of 𝜖 (𝜖𝑍𝐷𝑇−1 = 0.1, 𝜖𝐷𝑇𝐿𝑍−2 = 0.001) in both
of test problems to control the diversity of the obtained solutions.

Figure 3 shows the obtained solutions (OPF), the optimal Pareto
Front (POF) and reference points. We can clearly see that, for both
problems, RAGE-MOEA promotes a well distributed and close so-
lutions to the reference points. On the other side, RNSGA-II and
RNSGA-III do not present sufficient alternatives close to each of
the reference points. This is because the mechanism used in both of
the algorithms takes into consideration the center of groups only
and penalizes greatly the candidate solutions of the same group. As
a consequence, only the centers of the groups close to reference
points are selected which reduces the diversity of the obtained
solutions.

4.3 RAGE-MOEA in Many Objective Problem
Context

To assess the effectiveness of RAGE-MOEA in Many-Objective
Problems (MaOPs) context, we use 2 different shaped reference
based test problems withM= 5 and 15 respectively. For each test
problem, we run each algorithm 30 times to account for their non
deterministic nature. In each independent run, we collected the
non-dominated front produced by a given algorithm at the end of
the search (i.e., when the number of generations is reached) and
computed the inverted generational distance (IGD) [31] to measure
its overall quality. The IGD metric provides a single scalar value
measuring both proximity and diversity of the solutions in the front.
The smaller the IGD values, the lower the distance between POF
and OPF, i.e., the better the performance of the algorithm. Figure 4
illustrates the results of IGD variation for the three methods.

From Figure 4, RAGE-MOEA performs globally better than R-
NSGA-II in 4 out of 4 reference based DTLZ2 test problems with
M = 5 andM = 15. For example, forM = 5, RAGE-MOEA has
an IGD variation that does not exceed 0.22 compared to an IGD
variation that exceeds 0.5 For R-NSGA-II.

For what regards the comparison with R-NSGA-III, we observe
that RAGE-MOEA outperforms significantly R-NSGA-III in 3 out
of 4 test problems (100% withM = 5 and 50% withM = 15. For

https://github.com/AdwLab/RAGE-MOEA
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example, for concave reference based DTLZ2 test problems, RAGE-
MOEA obtains a median IGD value equal to 0.2 compared to a
median IGD value equal to 0.46 for R-NSGA-III. However, forM =

15 and particularly for the Reference based convex DTLZ2, R-NSGA-
III outperforms RAGE-MOEA. This is due to the mechanism of R-
NSGA-III that generates a lot of solutions in the central region of the
hyperbolic surface, as in Convex DTLZ2. This is an advantage when
compared to the other methods, as the majority of the problems are
based on reference points located in the central part of the Pareto
Front.

Even though R-NSGA-III outperforms our proposal in some cases,
it should be mentioned that it requires the configuration of several
parameters (e.g. reference lines), that are not within the reach of
DM. In addition, it requires a lot of points in a large dimensionality,
which does not correspond to our industrial context, where the
idea is to facilitate the task of DM by offering her a small set of
solutions in the regions of interest.

Results in this section have confirmed our findings that the use
of R-NSGA-II as proposed by Benali et al. in [1] does not seem to be
the most appropriate choice for our industrial problem presented
in Section 5. As R-NSGA-III is better than R-NSGA-II in terms of
diversity and convergence, it will be used for comparison in the
industrial case study experiments.

(a) Concave DTLZ2,M = 5. (b) Convex DTLZ2,M = 5.

(c) Concave DTLZ2,M = 15. (d) Convex DTLZ2,M = 15.

Figure 4: IGD variation achieved by the RAGE-MOEA and
the baselines on the Generated Reference based DTLZ
benchmarks with M=5, and 15 objectives.

5 INDUSTRIAL CASE STUDY:
MULTI-STAKEHOLDER MEDIA PLANNING

5.1 Problem Description
Scheduling TV advertisements involves two types of participants
that are television networks (channels) and advertisers (or ad-
vertising agencies acting as intermediaries) and can be briefly out-
lined as follows. After announcing TV shows programs, the TV
networks finalize their rating forecasts and set the rate cards for

the available advertising breaks. In this paper, we focus on tack-
ling Problem (1), i.e., we do not consider the optimization of spots
sequences within breaks. In such context, the rate cards contain:
• The gross price for 1-second of message broadcasting inside
the commercial break. The net price depends on the client’s
contract.
• Whether it is a Prime break, which corresponds to periods
with a peak of audience. Generally, the price of prime breaks
is more expensive than typical breaks.
• Expected gross rating point (GRP) for each break. The GRP is
an estimator of the ratio of the audience that will be present
during the commercial break. This indicator is computed gen-
erally for multiple target groups based on socio-demographic
criteria like sex and age (e.g. Women13-34, Men13-34)
• The date and the timing of the break.

Once rate cards are prepared, the commercial break slots are
exposed for selling. On the other hand, the advertisers buy the
slots in order to obtain the most efficient advertising campaign.
An advertiser’s request corresponds to one brand’s advertising
campaign, and it contains:
• The budget to invest for one brand’s advertising campaign
(e.g., 800k$).
• The cost per one point (CPP) 2 of GRP.
• Percentage of budget to invest in Prime breaks (e.g., 20% of
the total budget).
• The advertising spot duration (e.g., 15 seconds).
• The brand’s competition code, which allow to avoid to have
slot allocation with other competitive brands in the same
break.

The advertising campaigns optimization consists in obtaining
a distribution of the available commercial breaks’ slots that max-
imizes the invested budget allocation and achieves the best GRP
for each client’s brand while maximizing the revenue of the TV
networks and maintaining the potential clients’ loyalty. Moreover,
for each campaign, there is a rate of Prime breaks to reach. As
a consequence, this leads to a multi-stakeholders many-objective
setting with highly competing objectives for different brands and
numerous constraints.

The obtained distribution must take into account clients’ con-
straints and TV networks’ inventory restrictions. The major con-
straints associated with clients’ requests are the maximum budget
allowed to spend, and the list of brands’ commercials that are al-
lowed to be exposed in the same break based on competitive exclu-
sion rules. Besides, the sum of advertised spots’ duration cannot
exceed the break’s length capacity.

According to this industrial context, the desired tool should (i)
be able to converge to solutions optimizing all objectives simulta-
neously – as a consequence, it should not cover the whole Pareto
Front – (ii) be fast in order to obtain efficient solutions within a
limited computational time budget.

5.2 Problem Formulation
In order to formally present the problem, we use the notation pre-
sented below.
2the CPP is used in this problem formulation to compute the total GRP to reach. In
fact, the aimed GRP to reach is calculated as the invested budget divided by the CPP.
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(a) RNSGA-2, ZDT1. (b) RNSGA-3, ZDT1. (c) RAGE-MOEA, ZDT1.

(d) RNSGA-2, DTLZ2, 𝜖 = 0.001. (e) RNSGA-3, DTLZ2, 𝜖 = 0.0001. (f) RAGE-MOEA, DTLZ2.

Figure 3: Preferred Obtained solutions using RNSGA-2, RNSGA-3 and RAGE-MOEA (POF: Blue, OPF: Orange).

𝐵 set of commercial breaks, 𝐵 = {𝑏1, ..., 𝑏𝑚};
𝑚 number of commercial breaks;
𝑖 index of commercial break;
𝑇𝑖 length of the commercial break 𝑏𝑖 , in seconds;
𝑅 set of brands to advertised, 𝑅 = {𝑟1, ..., 𝑟𝑛};
𝑛 number of brands to be advertised;
𝑗 index of the brand ;
𝑔𝑟𝑝𝑖 𝑗 the value of grp in the 𝑖𝑡ℎ break,

for the category mentioned in the request 𝑗 ;
𝑡 𝑗 advertising message duration for the brand 𝑟 𝑗 ;
𝑥𝑖 𝑗 1 if the brand 𝑟 𝑗 is advertised in the break 𝑏𝑖 ,

0 otherwise;
𝑐𝑖 𝑗 cost of 1 second-advertising, in the break 𝑏𝑖 ,

for the brand 𝑟 𝑗 ;
𝑓𝑝 1 if the ith break is prime break, 0 otherwise;
𝑓𝑐 1 if 𝑟 𝑗1 and 𝑟 𝑗2 are in competition, 0 otherwise;

Using the notation above, we present the mathematical problem
formulation as follows:

min |
𝑚∑
𝑖=1

𝑥𝑖 𝑗 ∗ 𝑔𝑟𝑝𝑖 𝑗 −𝐺𝑅𝑃 𝑗 |, 𝑗 ∈ ⟦1;𝑛⟧ (7)

min |
𝑚∑
𝑖=1

𝑥𝑖 𝑗 ∗ 𝑐𝑖 𝑗 ∗ 𝑡 𝑗 ∗ 𝑓𝑝 (𝑖) − 𝑃𝑅𝐼𝑀𝐸 𝑗 |, 𝑗 ∈ ⟦1;𝑛⟧ (8)

max
𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝑥𝑖 𝑗 ∗ 𝑐𝑖 𝑗 ∗ 𝑡 𝑗 (9)

max
𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝑥𝑖 𝑗 ∗ 𝑃𝑅𝐼𝑂𝑅𝐼𝑇𝑌𝑗 (10)

Subject To:

𝑚∑
𝑖=1

𝑥𝑖 𝑗 ∗ 𝑐𝑖 𝑗 ∗ 𝑡 𝑗 ≤ 𝐵𝑈𝐷𝐺𝐸𝑇𝑗 , 𝑗 ∈ ⟦1;𝑛⟧ (11)

𝑛∑
𝑗=1

𝑥𝑖 𝑗 ∗ 𝑡 𝑗 ≤ 𝑇𝑖 , 𝑖 ∈ ⟦1;𝑚⟧ (12)

𝑚∑
𝑖=1

𝑛∑
𝑗1=1

𝑛∑
𝑗2=1
(𝑥𝑖 𝑗1 ∗ 𝑥𝑖 𝑗2 ∗ 𝑓𝑐 ( 𝑗1, 𝑗2)) = 0, 𝑗1 ≠ 𝑗2 (13)

The problem objective functions and constraints could be divided
into two categories, as follows:

5.2.1 Client Side. Optimize for each client’s brand 𝑟 𝑗 , a set of ob-
jectives defined as follows:

• Objective function (7) consists in maximizing the GRP goal
attainment, by minimizing the absolute difference between
the achieved GRP and the aimed GRP (𝐺𝑅𝑃 𝑗 ).
• Objective function (8), maximizes budget invested in prime
breaks, by minimizing the absolute difference between the
allocated prime breaks budget and the invested prime breaks
budget (𝑃𝑅𝐼𝑀𝐸 𝑗 ).

In the context of media planning, we have to maximize the
budget allocation in order to satisfy the clients’ requirements but
without exceeding the budget invested by each client. Hence, a
budget constraint (11) is needed for each brand.
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5.2.2 TV Networks Side. a global optimization is required:

• Objective function (9), maximizes the total revenue of the
TV Networks.
• Objective function (10), maximizes slots allocation based on
client’s potential and loyalty (𝑃𝑅𝐼𝑂𝑅𝐼𝑇𝑌𝑗 ).

Please note that in the general case, 1-s advertising price 𝑐𝑖 𝑗𝑘
depends on the break 𝑏𝑖 and the client contract for the brand 𝑟 𝑗 . To
illustrates the utility of this objective function, let consider a 60-
second commercial break for which we have four brands requests
with spot duration of 20, 20, 30, and 30 seconds, each paying 1400,
1500, 800, and 900 dollars per second. For each client, we have a
priority which is defined by the TV networks based on client’s
potential and loyalty. Supposing that, clients’ requests having a
priority of 30, 10, 10, 30 respectively. It is clear that several com-
binations are possible. The best in terms of revenue has a cost of
58000 (20 ∗ 1400 + 20 ∗ 1500). In terms of priority, the best solution
has a cost of 55000 (1400 ∗ 20 + 900 ∗ 30). Hence, there is a real need
to define both objective functions in order to get a diverse set of
solutions while respecting the Commercial break length constraint
(12) and not allowing competing brands to be advertised in the
same break (13).

5.3 Industrial Experimentation
To illustrate the validity of the proposed approach in our industrial
context, we answer the following research question:

(1) To which extent our approach is sensitive to the the
Decision Maker choices? We set up an experiment where
we change the reference point so as to reflect possible DM’s
different preferences on the objectives.

For our experiments, we use 2 private datasets devoted to media
planning. The first dataset contains 1000 breaks (𝑚 = 1000, i.e., low
dimensional search space) and the second dataset contains 10000
breaks (𝑚 = 10000, i.e., high dimensional search space).

In all experiments, we consider the following parameters: the
population size is set to 40, the time budget (stopping criterion)
is set to 180 sec. Together, these two parameters imply a fair and
objective evaluation of the algorithms in our real-time industrial
context. Evolutionary operators parameters are set to standard con-
figurations: the mutation probability 𝑝𝑚 = 1/𝑚 and the crossover
probability 𝑝𝑐 = 1.

5.3.1 Interest Of Reference Point For Decision Maker. In order to
study the flexibility of the proposed method and to which extent it
is capable to satisfy DM’s preferences, we evaluate each approach’s
performance by perturbing the reference point. Each time, we eval-
uate the absolute percentage error of the GRP attainment (eq. 7) and
the Prime budget achieved (eq. 8) for 6 brands’s requests (M = 14)
competing over a pool of 1000 commercial breaks (𝑚 = 1000). For
that, in a first experiment, we produce a full perturbation by modi-
fying all the objectives so that they are optimized up to 70% of the
optimal values. In a second experiment, we perturb the reference
point partially by setting only the first and second brands’ objec-
tives to be optimized up to 50%. Figures 5 and 6 show respectively
the impact of the full and partial perturbation of the reference point
on the quality of the optimization.

(a) GRP error (RAGEMOEA). (b) GRP error (RNSGA-3).

(c) Prime error (RAGEMOEA). (d) Prime error (RNSGA-3).

Figure 5: Impact of full perturbation of the optimum refer-
ence point on the absolute percentage error variation of the
GRP and Prime Budget.

From Sub-Figures 5a and 5c, we can observe that, a full pertur-
bation of the reference point results results in a degradation for all
objectives (GRP and Prime for each brand’s request). The variation
of errors are globally around 0.3. This results was confirmed in
Sub-Figures 6a and 6c, where we can notice partial degradation for
the objectives of the first and second brands’ requests (variation
error around 0.5). The rest is fully optimized.

In the other side (Sub-Figures 5b, 5d, 6b, 6d), we can clearly see
that R-NSGA-III does not focus on the regions of interest (close to
chosen reference points).

As a consequence, these results validate the effectiveness and
the sensitivity of our proposed framework to DM’s reference point.
This allows to incorporate the DM in the process of scheduling
and gives her/him a large flexibility for prioritizing some brands’
requests and objective functions without impacting the others.

6 CONCLUSIONS
In this paper, we have introduced a novel reference based MOEA,
called RAGE-MOEA, whose convergence mechanisms considers
both the diversity among the population members, and the prox-
imity to DM’s reference points. Unlike state-of-the-art Reference
based MOEAs, RAGE-MOEA does not make any assumption about
the geometry of the Pareto front. Instead, it estimates the geometry
of the front by fitting an L𝑝 norm. Consequently, this allows to
best model the concept of diversity and proximity in DM’s region
of interest for different shaped pareto fronts.

To assess the performance of our proposal, several experiments
have been executed based on different shaped literature bench-
marks. Each time, we vary the number of objectives M ∈ {2, 3,
5, 15}. The achieved results offer currently the best compromise
between diversity and convergence around reference points com-
pared to R-NSGA-II and R-NSGA-III. Applying RAGE-MOEA in
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(a) GRP error (RAGEMOEA). (b) GRP error (RNSGA-3).

(c) Prime error (RAGEMOEA). (d) Prime error (RNSGA-3).

Figure 6: Impact of Partial perturbation of the optimum ref-
erence point on the absolute percentage error variation of
the GRP and Prime Budget.

the industrial context has confirmed our findings and results have
shown that RAGE-MOEA is very sensitive to DM’s choices.

As future works, we will develop the concept of preference by
allowing the DM to select the density (number of solutions) in
each region of interest. In a second step, we envision to tackle the
problem of search space diversity based on clients’ profiles to build
an interactive and personalized media plan allocator system.
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